NSi6602
High Reliability Isolated Dual-Channel
Gate Driver
Datasheet (EN) 1.7
Product Overview
NSi6602 is a family of high reliability isolated dualchannel gate driver ICs which can be designed to drive
power transistor up to 2MHz switching frequency. Each
output could source 4A and sink 6A peak current with
fast 25ns propagation delay and 5ns maximum delay
matching.
The NSi6602 provides 2500Vrms isolation per UL1577 in
5-mm x 5-mm LGA13 package, 3000Vrms isolation in
SOP16 (150mil) package, and 5700Vrms isolation in
SOP16 (300mil) or SOP14 (300mil) package. System
robustness is supported by 150kV/us typical commonmode transient immunity (CMTI).
The driver operates with a maximum supply voltage of
25V, while the input-side accepts from 2.7V to 5V supply
voltage. Under voltage lock-out (UVLO) protection is
supported by all the power supply voltage pins.
Safety Regulatory Approvals
UL recognition:
LGA13: 2500Vrms for 1 minute per UL1577
SOP16/SOP14(300mil): 5700Vrms for 1 minute per
UL1577
SOP16(150mil): 3000Vrms for 1 minute per UL1577
DIN VDE V 0884-11:2017-01
CSA component notice 5A
CQC certification per GB4943.1-2011
Key Features
Applications
Isolated dual channel driver
Isolated DC-DC and AC-to-DC power supplies in server,
telecom, and industry
Driver side supply voltage: up to 25V with UVLO
4A peak source and 6A peak sink output
High CMTI: ±150kV/us typical
25ns typical propagation delay
5ns maximum delay matching
6ns maximum pulse width distortion
Programmable deadtime
Accepts minimum input pulse width 15ns
Operation temperature: -40℃~125℃
DC-to-AC solar inverters
Motor drives and EV charging
UPS and battery chargers
Functional Block Diagram
VDDI
VDDA
INA
MOD
DEMOD
UVLO
DT
DIS
INB
OUTA
GNDA
UVLO,
Disable
&
Dead-Time
Isolation
barrier
Input side supply voltage: 2.7V to 5.5V
Functional Isolation
VDDB
MOD
DEMOD
UVLO
GNDI
OUTB
GNDB
Figure 0.1 NSi6602 Block Diagram
Copyright © 2022, NOVOSENSE
Page 1
NSi6602
Datasheet (EN) 1.7
INDEX
1.
PIN CONFIGURATION AND FUNCTIONS ........................................................................................................... 3
2.
ABSOLUTE MAXIMUM RATINGS ...................................................................................................................... 5
3.
RECOMMENDED OPERATING CONDITIONS ...................................................................................................... 6
4.
THERMAL INFORMATION ............................................................................................................................... 6
5.
SPECIFICATIONS .......................................................................................................................................... 7
5.1.
5.2.
5.3.
5.4.
6.
ELECTRICAL CHARACTERISTICS...................................................................................................................................... 7
SWITCHING CHARACTERISTICS ...................................................................................................................................... 8
TYPICAL PERFORMANCE CHARACTERISTICS .................................................................................................................. 9
PARAMETER MEASUREMENT INFORMATION ................................................................................................................ 13
HIGH VOLTAGE FEATURE DESCRIPTION ........................................................................................................ 15
6.1.
6.2.
6.3.
7.
INSULATION CHARACTERISTICS ................................................................................................................................... 15
SAFETY-LIMITING VALUES ............................................................................................................................................. 16
SAFETY-RELATED CERTIFICATIONS ............................................................................................................................... 19
FUNCTION DESCRIPTION ............................................................................................................................ 20
7.1. OVERVIEW ...................................................................................................................................................................... 20
7.2. UNDER VOLTAGE LOCK OUT (UVLO) ............................................................................................................................. 20
7.3. INPUT AND OUTPUT LOGIC TABLE ............................................................................................................................... 21
7.4. PROGRAMMABLE DEADTIME (DT PIN) .......................................................................................................................... 21
7.4.1.
PULLING THE DT PIN TO VDDI ............................................................................................................................... 21
7.4.2.
DT PIN LEFT OPEN OR CONNECTED TO A PROGRAMMING RESISTOR BETWEEN DT AND GND PINS .................. 21
7.5. ESD PROTECTION .......................................................................................................................................................... 22
8.
APPLICATION NOTE .................................................................................................................................... 23
8.1.
8.2.
9.
TYPICAL APPLICATION CIRCUIT .................................................................................................................................... 23
PCB LAYOUT .................................................................................................................................................................. 23
PACKAGE INFORMATION ............................................................................................................................. 24
10.
ORDERING INFORMATION ........................................................................................................................ 29
11.
TAPE AND REEL INFORMATION ................................................................................................................. 30
12.
REVISION HISTORY ................................................................................................................................. 32
Copyright © 2022, NOVOSENSE
Page 2
NSi6602
Datasheet (EN) 1.7
1. Pin Configuration and Functions
GNDI
1
13
VDDA
INA
2
12
OUTA
INB
3
11
GNDA
VDDI
4
DIS
5
10
VDDB
DT
6
9
OUTB
VDDI
7
8
GNDB
Figure 1.1 NSi6602 LGA13 Package
INA
1
16
VDDA
INB
2
15
OUTA
VDDI
3
14
GNDA
GNDI
4
13
NC
DIS
5
12
NC
DT
6
11
VDDB
NC
7
10
OUTB
VDDI
8
9
GNDB
Figure 1.2 NSi6602 SOW16 Package
INA
1
14
VDDA
INB
2
13
OUTA
VDDI
3
12
GNDA
GNDI
4
DIS
5
DT
6
11
VDDB
NC
7
10
OUTB
VDDI
8
9
GNDB
Figure 1.3 NSi6602 SOW14 Package
Copyright © 2022, NOVOSENSE
Page 3
NSi6602
Datasheet (EN) 1.7
INA
1
16
VDDA
INB
2
15
OUTA
VDDI
3
14
GNDA
GNDI
4
13
NC
DIS
5
12
NRC
DT
6
11
VDDB
NC
7
10
OUTB
VDDI
8
9
GNDB
Figure 1.4 NSi6602 SOP16 Package
Copyright © 2022, NOVOSENSE
Page 4
NSi6602
Datasheet (EN) 1.7
Table 1.1 NSi6602 Pin Configuration and Description
PIN NO.
SYMBOL
FUNCTION
LGA13
SOW16
SOP16
SOW14
1
4
4
4
GND
Input-side ground reference.
2
1
1
1
INA
TTL/CMOS compatible input signal for channel A with internal pull
down to GND. It is recommended to connect this pin to GND if not
used.
3
2
2
2
INB
TTL/CMOS compatible input signal for channel B with internal pull
down to GND. It is recommended to connect this pin to GND if not
used.
4, 7
3, 8
3, 8
3, 8
VDDI
Input-side supply voltage. It is recommended to place a bypass
capacitor from this pin to GND as close as possible.
5
5
5
5
DISABLE
6
6
6
6
DT
8
9
9
9
GNDB
Ground for output channel B
9
10
10
10
OUTB
Output gate driver for channel B
10
11
11
11
VDDB
Supply voltage for channel B
11
14
14
12
GNDA
Ground for output channel A
12
15
15
13
OUTA
Output gate driver for channel A
13
16
16
14
VDDA
Supply voltage for channel A
/
7,12,13
7, 13
7
NC
Not connected
/
/
12
/
NRC
Internally connected to GNDB, not recommend connecting in circuit.
Disables the isolator inputs and driver outputs if asserted high,
enables if asserted low or left open. It is recommended to connect
this pin to GND if not used.
Programmable deadtime control. To allow the outputs overlapping
by connecting DT to VDDI. Place a 1kΩ to 200kΩ resistor (RDT)
between DT and GND to adjust deadtime following: tDT (ns) = 10 x RDT
(kΩ). It is recommended to parallel a low ESR capacitor, e.g., 2.2nF or
above.
2. Absolute Maximum Ratings
Parameters
Input Side Supply Voltage
Output Side Supply Voltage
Input Signal Voltage
Output Signal Voltage
Copyright © 2022, NOVOSENSE
Symbol
Min
Max
Unit
VDDI to GNDI
-0.3
6
V
VDDA to GNDA, VDDB to GNDB
-0.3
30
V
INA, INB, DIS, DT to GNDI
-0.3
VVDDI+0.3
V
INA, INB, DIS, DT to GNDI, Transient for 50ns
-5
VVDDI+0.3
V
OUTA to GNDA, OUTB to GNDB
-0.3
VVDDA+0.3
V
Page 5
NSi6602
Datasheet (EN) 1.7
Parameters
Symbol
Min
Max
Unit
VVDDB+0.3
OUTA to GNDA, OUTB to GNDB, Transient for
200ns
Channel A to Channel B Voltage
-2
VVDDA+0.3
V
VVDDB+0.3
GNDA to GNDB in LGA13 package
700
V
GNDA to GNDB in SOP16&SOW16 package
1500
V
GNDA to GNDB in SOW14 package
1850
V
Junction Temperature
TJ
-40
150
°C
Storage Temperature
Tstg
-65
150
°C
HBM (all pins)
-4000
4000
V
CDM
-1500
1500
V
Electrostatic discharge
3. Recommended Operating Conditions
Parameters
Symbol
Min
Max
Unit
VDDI to GNDI
3
5.5
V
VDDA to GNDA, VDDB to GNDB (NSi6602A)
7
25
V
VDDA to GNDA, VDDB to GNDB (NSi6602B)
9.4
25
V
VDDA to GNDA, VDDB to GNDB (NSi6602C)
14.2
25
V
INA, INB, DIS, DT
0
VVDDI
V
Ta
-40
125
°C
Input Side Supply Voltage
Driver Side Supply Voltage
Input Signal Voltage
Ambient Temperature
4. Thermal Information
Parameters
Symbol
LGA13
SOW16/SOW14
SOP16
Unit
Junction-to-ambient thermal resistance1)
RJA
209.5
97.0
150.5
°C/W
Junction-to-case(top) thermal resistance2)
RJC(top)
48.4
23.3
21.2
°C/W
Junction-to-top characterization parameter3)
ΨJT
41.8
35.8
52.3
°C/W
Junction-to-board characterization parameter3)
ΨJB
31.9
39.0
55.6
°C/W
1)
Standard JESD51-3 Low Effective Thermal Conductivity Test Board (1s) in an environment described in JESD51-2a.
2)
Standard JESD51-3 Low Effective Thermal Conductivity Test Board (1s) by transient dual interface test method described in
JESD51-14.
3)
Obtained by Simulating in an environment described in JESD51-2a.
Copyright © 2022, NOVOSENSE
Page 6
NSi6602
Datasheet (EN) 1.7
5. Specifications
5.1. Electrical Characteristics
VDDI=3.3V or 5V, VDDA=VDDB=12V for NSi6602A/B, VDDA=VDDB=15V for NSi6602C, Ta=-40℃ to 125℃. Unless otherwise noted,
Typical values are at Ta=25℃
Parameter
Symbol
Min
Typ
Max
Unit
Comments
2
mA
INA=0, INB=0
mA
Input frequency
500kHz, COUTA/B=15pF
Input Side Supply
VDDI Quiescent Current
IVDDIQ
0.75
VDDI Operating Current
IVDDI
1.8
VDDI UVLO Rising Threshold
VVDDI_ON
2.35
2.55
2.75
V
VDDI UVLO Falling Threshold
VVDDI_OFF
2.15
2.35
2.55
V
VDDI UVLO Hysteresis
VVDDI_HYS
0.2
V
Output Side Supply
Output Side Supply Voltage
VVDDA, VVDDB
VDDA/B Quiescent Current, per Channel
IVDDAQ, IVDDBQ
1.6
VDDA/B Operation Current, per Channel
IVDDA, IVDDB
3.2
25
V
Minimum defined by
UVLO
2.5
mA
INA=0, INB=0,
VDDx=12V for 6V,8V
UVLO; VDDx=15V for
13V UVLO
mA
100pF, 500kHz,
VDDx=12V for 6V,8V
UVLO; VDDx=15V for
13V UVLO
VDDA/B UVLO Rising Threshold
VVDDA_ON, VVDDB_ON
5.7
6.15
6.5
V
VDDA/B UVLO Falling Threshold
VVDDA_OFF, VVDDB_OFF
5.4
5.85
6.2
V
VDDA/B UVLO Hysteresis
VVDDA_HYS, VVDDB_HYS
VDDA/B UVLO Rising Threshold
VVDDA_ON, VVDDB_ON
8.1
8.5
8.9
V
VDDA/B UVLO Falling Threshold
VVDDA_OFF, VVDDB_OFF
7.6
8.0
8.4
V
VDDA/B UVLO Hysteresis
VVDDA_HYS, VVDDB_HYS
VDDA/B UVLO Rising Threshold
VVDDA_ON, VVDDB_ON
12.7
13.2
13.7
V
VDDA/B UVLO Falling Threshold
VVDDA_OFF, VVDDB_OFF
11.7
12.2
12.7
V
VDDA/B UVLO Hysteresis
VVDDA_HYS, VVDDB_HYS
1
V
Input Pin Pull Down Resistance, INA, INB
RINA_PD, RINB_PD
100
kΩ
Input Pin Pull Down Resistance, DIS (EN)
RDIS_PD
100
kΩ
VINA_H, VINB_H, VDIS_H
1.7
0.3
NSi6602A (6V)
V
0.5
NSi6602B (8V)
V
NSi6602C (13V)
Input Side Characteristic
Logic High Input Threshold
Copyright © 2022, NOVOSENSE
2
V
Page 7
NSi6602
Parameter
Datasheet (EN) 1.7
Symbol
Min
Typ
VINA_L, VINB_L, VDIS_L
0.8
1.1
V
VINA_HYS, VINB_HYS,
VDIS_HYS
0.6
V
Logic High Output Voltage
VVDDA-VOUTA_H, VVDDBVOUTB_H
0.34
V
Iout = 100mA
Logic Low Output Voltage
VOUTA_L, VOUTB_L
55
mV
Iout = -100mA
Output Source Resistance 1)
ROUTA_H, ROUTB_H
3.4
Ω
Iout = 100mA
Output Sink Resistance
ROUTA_L, ROUTB_L
0.55
Ω
Iout = -100mA
Peak Output Source Current
IOUTA+, IOUTB+
4
A
Peak Output Sink Current
IOUTA-, IOUTB-
6
A
Logic Low Input Threshold
Input Hysteresis
Max
Unit
Comments
Output Side Characteristic
1)
The output source structure features a P-channel MOSFET and an N-channel MOSFET in parallel. The on-resistance of this Nchannel MOSFET is approximately 1.1Ω .
5.2. Switching Characteristics
VDDI=3.3V or 5V, VDDA=VDDB=12V for NSi6602A/B, VDDA=VDDB=15V for NSi6602C, Ta=-40℃ to 125℃.
Parameter
Minimum Pulse Width
Propagation Delay
Pulse Width Distortion |tPDLH-tPDHL|
Channel to Channel Delay Matching
Symbol
Min
Typ
Max
Unit
10
15
ns
25
35
ns
tPWD
6
ns
tDMLH, tDMHL
5
ns
200
240
ns
tDT(ns)=10*R(kΩ); Test for R = 20kΩ
tPWmin
tPDHL, tPDLH
10
COUTA/B = 0 pF
Programmed Deadtime
tDT
Output Rise Time (20% to 80%)
tR
7
16
ns
COUTA/B=1.8nF, verified by design
Output Fall Time (90% to 10%)
tF
6
12
ns
COUTA/B=1.8nF, verified by design
Shutdown Time from Disable True
tDIS
40
ns
Recovery Time from Disable False
tEN
40
ns
VDDI Power-up Time Delay
160
Comments
tstart_VDDI
8.5
15
us
INA or INB tied to VDDI
tstart_VDDA,
tstart_VDDB
18
30
us
INA or INB tied to VDDI
(Time from VDDI = VDDI_ON to OUTA/B =
INA/B)
VDDA/B Power-up Time Delay
(Time from VDDA/B = 2V to OUTA/B =
INA/B)
Common Mode Transient Immunity
Copyright © 2022, NOVOSENSE
CMTI
COUTA/B=1.8nF
100
150
kV/us
verified by design
Page 8
NSi6602
Datasheet (EN) 1.7
5.3. Typical Performance Characteristics
1
0.9
0.8
0.7
VDDI=3.3V
0.6
VDDI=5V
0.5
-40 -20
0
20 40 60 80 100 120 140
VDDI Operating Current (mA)
VDDI Quiescent Current (mA)
VDDI = 3.3 V, VDDA=VDDB=12V for NSi6602A/B, VDDA=VDDB=15V for NSi6602C, TA = 25°C. Output has no load unless otherwise
noted.
1.7
1.65
1.6
1.55
1.5
Freq=100kHz
Freq=500kHz
Freq=1MHz
1.45
1.4
-40 -20
Ambient Temperature (°C)
2.4
2.2
2
1.8
1.6
VDDA/B=12V
1.2
VDDA/B=25V
1
-40 -20
0
6
5
4
3
2
Freq=100kHz
Freq=500kHz
Freq=1MHz
1
0
20 40 60 80 100 120 140
-40 -20
Ambient Temperature (°C)
8
2.5
2
1.5
1
Output High
Output Low
0
5
10
15
20
Output High
7
Output Low
6
5
4
3
2
1
0
25
VDDA/B Supply Voltage (V)
Figure 5.5 VDDA/B Quiescent Current vs Supply Voltage
Copyright © 2022, NOVOSENSE
20 40 60 80 100 120 140
Figure 5.4 VDDA/B Operating Current vs Temperature
Output Resistance (Ω)
VDDA/B Quiescent Current
(mA)
0
Ambient Temperature (°C)
Figure 5.3 VDDA/B Quiescent Current vs Temperature
0.5
20 40 60 80 100 120 140
Figure 5.2 VDDI Operating Current vs Temperature
VDDA/B Operating Current
(mA)
VDDA/B Quiescent Current
(mA)
Figure 5.1 VDDI Quiescent Current vs Temperature
1.4
0
Ambient Temperature (°C)
-40 -20
0
20 40 60 80 100 120 140
Ambient Temperature(°C)
Figure 5.6 Output Resistance vs Temperature
Page 9
Datasheet (EN) 1.7
16
14
12
10
8
Rising
6
Falling
4
-40 -20
0
Output Peak Current (A)
Rising and Falling Time (ns)
NSi6602
10
8
6
4
2
Source
Sink
0
5
20 40 60 80 100 120 140
Ambient Temperature(°C)
2.8
2.6
2.4
2.2
Turn On
Turn Off
2
-40 -20
0
0.19
0.18
0.17
0.16
0.15
-40 -20
6
5.5
Turn On
Turn Off
5
-40 -20
0
20 40 60 80 100 120 140
Ambient Temperature(°C)
Figure 5.11 6V VDDA/B UVLO Threshold vs Temperature
Copyright © 2022, NOVOSENSE
0
20 40 60 80 100 120 140
Ambient Temperature(°C)
Figure 5.10 VDDI UVLO Hysteresis vs Temperature
VDDI UVLO Hysteresis (V)
VDDI UVLO Threshold (V)
6.5
25
0.2
Ambient Temperature(°C)
7
20
Figure 5.8 Output Peak Current vs VDDA/B Supply Voltage
20 40 60 80 100 120 140
Figure 5.9 VDDI UVLO Threshold vs Temperature
15
VDDA/B Supply Voltage (V)
VDDI UVLO Hysteresis (V)
VDDI UVLO Threshold (V)
Figure 5.7 Typical Rise Time & Fall Time vs Temperature
10
0.35
0.34
0.33
0.32
0.31
0.3
0.29
0.28
0.27
0.26
0.25
-40 -20
0
20 40 60 80 100 120 140
Ambient Temperature(°C)
Figure 5.12 6V VDDA/B UVLO Hysteresis vs Temperature
Page 10
Datasheet (EN) 1.7
9
VDDI UVLO Hysteresis (V)
VDDI UVLO Threshold (V)
NSi6602
8.5
8
7.5
Turn On
Turn Off
7
-40 -20
0
0.6
0.595
0.59
0.585
0.58
0.575
0.57
0.565
0.56
0.555
0.55
20 40 60 80 100 120 140
-40 -20
Ambient Temperature(°C)
1.5
1
0.5
-40 -20
0
VIL
Figure 5.14 8V VDDA/B UVLO Hysteresis vs Temperature
VDDI UVLO Hysteresis (V)
VDDI UVLO Threshold (V)
2
VIH
0.7
0.68
0.66
0.64
0.62
0.6
0.58
0.56
0.54
0.52
0.5
20 40 60 80 100 120 140
-40 -20
Ambient Temperature(°C)
Figure 5.15 INA/INB/DIS Threshold vs Temperature
0
20 40 60 80 100 120 140
Ambient Temperature(°C)
Figure 5.16 INA/INB/DIS Hysteresis vs Temperature
27
28
26
24
Rising edge
Falling edge
22
-40 -20
0
20 40 60 80 100 120 140
Ambient Temperature(°C)
Figure 5.17 Propagation Delay vs Temperature
Copyright © 2022, NOVOSENSE
Propagation Delay (ns)
30
Propagation Delay (ns)
20 40 60 80 100 120 140
Ambient Temperature(°C)
Figure 5.13 8V VDDA/B UVLO Threshold vs Temperature
0
0
26
25
24
Rising Edge
23
Falling Edge
22
5
10
15
20
25
VDDA/B Supply Voltage (V)
Figure 5.18 Propagation Delay vs VDDA/B
Page 11
Datasheet (EN) 1.7
4
2
0
-2
Rising edge
Falling edge
-4
-40 -20
0
Pulse Width Distortion (ns)
Propagation Delay Matching
(ns)
NSi6602
4
2
0
-2
-4
20 40 60 80 100 120 140
-40 -20
Ambient Temperature(°C)
40
35
30
25
Disable
Enable
20
-40 -20
0
20 40 60 80 100 120 140
Ambient Temperature(°C)
Output Peak Current (A)
Figure 5.21 Disable & Enable Time vs Temperature
20 40 60 80 100 120 140
Ambient Temperature(°C)
Figure 5.20 Pulse Width Distortion vs Temperature
Programmed Deadtime (ns)
Disable & Enable Time (ns)
Figure 5.19 Propagation Delay Matching vs Temperature
0
250
230
210
190
170
150
-40 -20
0
20 40 60 80 100 120 140
Ambient Temperature(°C)
Figure 5.22 Deadtime (RDT=20kΩ) vs Temperature
10
8
6
4
2
Source
Sink
0
-40 -20
0
20 40 60 80 100 120 140
Ambient Temperature(℃)
a
1
Figure 5.23 Output Peak Current vs Temperature
Copyright © 2022, NOVOSENSE
Page 12
NSi6602
Datasheet (EN) 1.7
5.4. Parameter Measurement Information
Figure 5.23 Propagation Delay and Channel to Channel Delay Match Time, connect DT to VDDI
VCC2
INA
VDDA
INB
OUTA
Probe1
VCC1
VDDI
DT
Input
Logic
Isolation
barrier
GNDA
VDDB
DIS
OUTB
GNDI
GNDB
Probe2
Figure 5.24 Channel to Channel Delay Match Test Circuit
Figure 5.25 Disable Time and Enable Time
Copyright © 2022, NOVOSENSE
Page 13
NSi6602
Datasheet (EN) 1.7
Figure 5.26 Deadtime, Determined by RDT
VCC1
VCC2
INA
VDDA
INB
OUTA
Probe1
VDDI
DT
Input
Logic
Isolation
barrier
GNDA
VDDB
DIS
OUTB
GNDI
GNDB
Probe2
Common Mode
Surge Generator
Figure 5.27 Common-Mode Transient Immunity Test Circuit
Copyright © 2022, NOVOSENSE
Page 14
NSi6602
Datasheet (EN) 1.7
6. High Voltage Feature Description
6.1. Insulation Characteristics
Description
Test Condition
Symbol
Value
Unit
LGA 13
SOW16/14
SOP16
Min. External Air Gap (Clearance)
CLR
3.5
8
4
mm
Min. External Tracking (Creepage)
CPG
3.5
8
4
mm
Distance through the Insulation
DTI
32
CTI
>600
Comparative Tracking Index
DIN EN 60112 (VDE 0303-11)
Material Group
IEC 60664-1
um
V
I
Installation Classification per DIN VDE 0110
For Rated Mains Voltage ≤ 150Vrms
I to III
I to IV
I to IV
For Rated Mains Voltage ≤ 300Vrms
I to II
I to IV
I to III
For Rated Mains Voltage ≤ 600Vrms
I
I to IV
I to II
For Rated Mains Voltage ≤ 1000Vrms
/
I to III
/
Insulation Specification per DIN VDE V 0884-11:2017-011)
Climatic Category
40/125/21
Pollution Degree
per DIN VDE 0110, Table 1
Maximum Working Isolation Voltage
AC voltage
2
VIOWM
560
1000
700
VRMS
792
1414
990
VDC
VIORM
792
1414
990
Vpeak
Vpd (m)
1188
/
1485
Vpeak
Vpd (m)
/
2652
/
Vpeak
V pd (m)
1030
/
1287
Vpeak
V pd (m)
/
2263
/
Vpeak
V pd (m)
950
1697
1188
Vpeak
DC voltage
Maximum
Voltage
Repetitive
Isolation
Input to Output Test Voltage, Method
B1
Vini. b = VIOTM, Vpd(m) = VIORM × 1.5,
tini = tm = 1 sec, qpd ≤ 5 pC,
100% production test
Vini. b = VIOTM, Vpd(m) = VIORM × 1.875,
tini = tm =1 sec, qpd≤ 5 pC,
100% production test
Input to Output Test Voltage, Method
A. After Environmental Tests
Subgroup 1
Vini. a = VIOTM, Vpd(m) = VIORM × 1.3,
tini = 60 sec, tm = 10 sec, qpd ≤ 5 pC
Vini. a = VIOTM, Vpd(m) = VIORM × 1.6,
tini = 60 sec, tm = 10 sec, qpd ≤ 5 pC
Input to Output Test Voltage, Method
A. After Input and Output Safety Test
Subgroup 2 and Subgroup 3
Copyright © 2022, NOVOSENSE
Vini. a = VIOTM, Vpd(m) = VIORM × 1.2,
tini = 60 sec, tm = 10 sec, qpd ≤ 5 pC
Page 15
NSi6602
Datasheet (EN) 1.7
Description
Test Condition
Symbol
Value
Unit
Maximum Transient Isolation Voltage
t = 60 sec
VIOTM
3535
8000
4242
Vpeak
Maximum Surge Isolation Voltage
Test method per IEC62368-1,
VIOSM
3500
/
6000
Vpeak
/
6250
/
Vpeak
1.2/50us waveform, VTEST = 1.3 ×
VIOSM
Test method per IEC62368-1,
1.2/50us waveform, VTEST = 1.6 ×
VIOSM
Isolation Resistance
VIO = 500 V, Tamb = TS
RIO
VIO = 500 V, 100 °C ≤ Tamb ≤ 125 °C
Isolation Capacitance
f = 1MHz
CIO
VTEST = 1.2 × VISO, t = 1 sec,
VISO
>109
Ω
>1011
Ω
1.2
pF
Insulation Specification per UL1577
Withstand Isolation Voltage
2500
5700
3000
Vrms
100% production test
1)
This coupler is suitable for “safe electrical insulation” only within the safety ratings. Compliance with the safety ratings shall
be ensured by means of suitable protective circuits.
6.2. Safety-Limiting Values
Basic isolation safety-limiting values as outlined in VDE-0884-11 of NSi6602x-xLAR (LGA13)
Description
Safety Supply Power
Safety Supply Current
Test Condition
Side
Value
Input
12
mW
Driver A, Driver B
293
mW
Total
598
mW
RθJA = 209.5 °C/ W1), VDDA/B = 12V, TJ = 150 °C, TA = 25 °C
Driver A, Driver B
24.4
mA
RθJA = 209.5 °C/ W1), VDDA/B = 25V, TJ = 150 °C, TA = 25 °C
Driver A, Driver B
11.7
mA
150
°C
RθJA = 209.5 °C/W1), TJ = 150 °C, TA = 25 °C
Safety Temperature2)
Unit
1)
Calculate with the junction-to-air thermal resistance, RθJA, of LGA13 package (Thermal Information Table) which is that of a
device installed on a low effective thermal conductivity test board (1s) according to JESD51-3.
2)
The maximum safety temperature has the same value as the maximum junction temperature (TJ) specified for the device.
Copyright © 2022, NOVOSENSE
Page 16
Datasheet (EN) 1.7
700
600
500
400
300
200
100
0
0
50
100
150
200
Safety Limiting Current per
Channel (mA)
Safety Limiting Power (mW)
NSi6602
30
IVDDA/B for VDD=25V
25
IVDDA/B for VDD=12V
20
15
10
5
0
0
Ambient Temperature (°C)
50
100
150
200
Ambient Temperature (°C)
Figure 6.1 NSi6602x-DLAR Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11
Reinforced isolation safety-limiting values as outlined in VDE-0884-11 of NSi6602x-xSWxR (SOW16/SOW14)
Description
Safety Supply Power
Safety Supply Current
Test Condition
Side
Value
Input
12
mW
Driver A, Driver B
638
mW
Total
1288
mW
RθJA = 97 °C/ W1), VDDA/B = 12V, TJ = 150 °C, TA = 25 °C
Driver A, Driver B
53.1
mA
RθJA = 97 °C/ W1), VDDA/B = 25V, TJ = 150 °C, TA = 25 °C
Driver A, Driver B
25.5
mA
150
°C
RθJA = 97 °C/W1), TJ = 150 °C, TA = 25 °C
Safety Temperature2)
Unit
Calculate with the junction-to-air thermal resistance, RθJA, of SOW16/SOW14 package (Thermal Information Table) which is
that of a device installed on a low effective thermal conductivity test board (1s) according to JESD51-3.
2)
The maximum safety temperature has the same value as the maximum junction temperature (TJ) specified for the device.
1400
1200
1000
800
600
400
200
0
0
50
100
150
200
Ambient Temperature (°C)
Safety Limiting Current per
Channel (mA)
Safety Limiting Power (mW)
1)
60
IVDDA/B for VDD=25V
50
IVDDA/B for VDD=12V
40
30
20
10
0
0
50
100
150
200
Ambient Temperature (°C)
Figure 6.2 NSi6602x-DSWR Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11
Basic isolation safety-limiting values as outlined in VDE-0884-11 of NSi6602x-xSPNR (SOP16)
Description
Copyright © 2022, NOVOSENSE
Test Condition
Side
Value
Unit
Page 17
NSi6602
Datasheet (EN) 1.7
Safety Supply Power
Safety Supply Current
Input
12
mW
Driver A, Driver B
409
mW
Total
830
mW
RθJA = 150.5 °C/ W1), VDDA/B = 12V, TJ = 150 °C, TA = 25 °C
Driver A, Driver B
34.0
mA
RθJA = 150.5 °C/ W1), VDDA/B = 25V, TJ = 150 °C, TA = 25 °C
Driver A, Driver B
16.3
mA
150
°C
RθJA = 150.5 °C/W1), TJ = 150 °C, TA = 25 °C
Safety Temperature2)
2)
The maximum safety temperature has the same value as the maximum junction temperature (TJ) specified for the device.
900
800
700
600
500
400
300
200
100
0
0
50
100
150
Ambient Temperature (°C)
200
Safety Limiting Current per
Channel (mA)
Calculate with the junction-to-air thermal resistance, RθJA, of SOP16 package (Thermal Information Table) which is that of a
device installed on a low effective thermal conductivity test board (1s) according to JESD51-3.
Safety Limiting Power (mW)
1)
40
IVDDA/B for VDD=25V
35
IVDDA/B for VDD=12V
30
25
20
15
10
5
0
0
50
100
150
200
Ambient Temperature (°C)
Figure 6.3 NSi6602x-DSPNR Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11
Copyright © 2022, NOVOSENSE
Page 18
NSi6602
Datasheet (EN) 1.7
6.3. Safety-Related Certifications
The NSi6602x-xLAR(LGA13) are approved or pending approval by the organizations listed in table.
CUL
UL1577
Component
Recognition Program
Single
Protection,
2500Vrms Isolation voltage
VDE
CQC
Approved
under
CSA
Component
Acceptance
Notice 5A
DIN VDE V 0884-11: 2017-01
Certified by CQC11-4715432012
Single Protection,2500Vrms
Isolation voltage
Basic Insulation at
GB4943.1-2011
Basic insulation
VIORM=792VPEAK
VIOSM=3500VPEAK
VIOTM=3535VPEAK
E500602
E500602
File (pending)
CQC21001289933
The NSi6602x-xSWxR(SOW16/SOW14) are approved or pending approval by the organizations listed in table.
CUL
UL
1577
Component
Recognition Program
Single
Protection,
5700Vrms Isolation voltage
VDE
CQC
Approved
under
CSA
Component
Acceptance
Notice 5A
DIN VDE V 0884-11: 2017-01
Certified by CQC11-4715432012
Single
Protection,
5700Vrms Isolation voltage
Reinforced insulation at
GB4943.1-2011
Reinforced insulation
VIORM=1414VPEAK
VIOSM=6250VPEAK
VIOTM=8000VPEAK
E500602
E500602
Certification No. 40052820
CQC20001264939
The NSi6602x-xSPNR(SOP16) are approved or pending approval by the organizations listed in table.
CUL
UL
1577
Component
Recognition Program
Single
Protection,
3000Vrms Isolation voltage
VDE
CQC
Approved
under
CSA
Component
Acceptance
Notice 5A
DIN VDE V 0884-11(VDE V
0884-11):2017-01
Certified by CQC11-4715432012
Single
Protection,
3000Vrms Isolation voltage
Basic insulation at
GB4943.1-2011
Basic insulation
VIORM=990VPEAK
VIOSM=6000VPEAK
VIOTM=4242VPEAK
E500602
Copyright © 2022, NOVOSENSE
E500602
File (pending)
CQC21001289931
Page 19
NSi6602
Datasheet (EN) 1.7
7. Function Description
7.1. Overview
NSi6602 is a high reliability dual channel isolated gate driver which could be designed in variety switching power and motor drive
topologies. NSi6602 has some useful protections, such as under voltage lock-out (UVLO) for both input and output supply, a disable
pin, dead-time control, default low output as input is floating. The functional circuit block diagram is shown as below:
VDDI
VDDA
UVLO
UVLO
DIS
MOD
Isolation
barrier
INA
DEMOD
Control
Logic
INB
Driver
Logic
OUTA
GNDA
Functional Isolation
VDDB
UVLO
DT
DeadTime
Control
MOD
DEMOD
Driver
Logic
GNDI
OUTB
GNDB
Figure 7.1 Functional Block Diagram
7.2. Under Voltage Lock Out (UVLO)
The NSi6602 has an internal under voltage lock out (UVLO) protection on both input and output supply circuit blocks. The driver
output is held low by an active clamp circuit when the supply voltage of VDDI or VDDA/VDDB is lower than VVDD_ON at power-up status
or lower than VVDD_OFF after power-up, regardless of the status of the input pins.
The VDDI and VDDA/B ULVO protections have hysteresis (VVDD_HYS) to prevent chatter noise from VDD supply and allow small drops in
supply power which are usually happened in startup.
Copyright © 2022, NOVOSENSE
Page 20
NSi6602
Datasheet (EN) 1.7
7.3. Input and Output Logic Table
When the device is power up, setting the DIS pin high can shut down both outputs simultaneously. Left open or grounding the DIS
pin can allow the device operating normally.
Table 7.1 Output status vs. Input and Power status
VDDI
status
VDDA/B
status
DIS
PU
PU
PU
IN
OUT
NOTE1)
A
B
A
B
L or O
L
H
L
H
PU
L or O
H
L
H
L
PU
PU
L or O
H
H
H
H
DT pin is pulled to VDDI.
PU
PU
L or O
H
H
L
L
DT is left open or programmed with RDT.
PU
PU
L or O
L
L
L
L
PU
PU
L or O
O
O
L
L
PU
PU
H
X
X
L
L
PU
PD
X
X
X
L
L
PD
PU
X
X
X
L
L
1)
If Deadtime function is used, output transits
to high after the deadtime expires.
PD= Power Down; PU= Power Up; H= Logic High; L= Logic Low; O= Left Open; X= Irrelevant.
7.4. Programmable Deadtime (DT pin)
7.4.1.
Pulling the DT Pin to VDDI
This allows outputs match inputs completely and no deadtime is asserted.
7.4.2.
DT Pin Left Open or Connected to a Programming Resistor between DT and GND Pins
If the DT pin is left open, the deadtime duration (tDT) is set to