0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD8033AKS-REEL7

AD8033AKS-REEL7

  • 厂商:

    AD(亚德诺)

  • 封装:

    TSSOP5

  • 描述:

    IC VOLTAGE FEEDBACK 1CIRC SC70-5

  • 数据手册
  • 价格&库存
AD8033AKS-REEL7 数据手册
Low Cost, 80 MHz FastFET Op Amps AD8033/AD8034 CONNECTION DIAGRAMS AD8033 8 NC 7 +VS +IN 3 6 VOUT –VS 4 5 NC NC = NO CONNECT AD8033 VOUT 1 5 +VS 4 –IN –VS 2 +IN 3 Figure 1. 8-Lead SOIC (R) 02924-002 NC 1 –IN 2 02924-001 FET input amplifier 1 pA typical input bias current Very low cost High speed 80 MHz, −3 dB bandwidth (G = +1) 80 V/μs slew rate (G = +2) Low noise 11 nV/√Hz (f = 100 kHz) 0.7 fA/√Hz (f = 100 kHz) Wide supply voltage range: 5 V to 24 V Low offset voltage: 1 mV typical Single-supply and rail-to-rail output High common-mode rejection ratio: −100 dB Low power: 3.3 mA/amplifier typical supply current No phase reversal Small packaging: 8-lead SOIC, 8-lead SOT-23, and 5-lead SC70 Figure 2. 5-Lead SC70 (KS) VOUT1 1 8 +VS –IN1 2 7 VOUT2 +IN1 3 6 –IN2 –VS 4 5 +IN2 AD8034 02924-003 FEATURES Figure 3. 8-Lead SOIC (R) and 8-Lead SOT-23 (RJ) 24 21 VOUT = 200mV p-p G = +10 18 15 APPLICATIONS 12 GAIN (dB) Instrumentation Filters Level shifting Buffering G = +5 9 6 G = +2 3 G = +1 0 –3 The AD8033/AD8034 FastFET™ amplifiers are voltage feedback amplifiers with FET inputs, offering ease of use and excellent performance. The AD8033 is a single amplifier and the AD8034 is a dual amplifier. The AD8033/AD8034 FastFET op amps in Analog Devices, Inc., proprietary XFCB process offer significant performance improvements over other low cost FET amps, such as low noise (11 nV/√Hz and 0.7 fA/√Hz) and high speed (80 MHz bandwidth and 80 V/μs slew rate). With a wide supply voltage range from 5 V to 24 V and fully operational on a single supply, the AD8033/AD8034 amplifiers work in more applications than similarly priced FET input amplifiers. In addition, the AD8033/AD8034 have rail-to-rail outputs for added versatility. G = –1 –6 –9 0.1 1 10 FREQUENCY (MHz) 100 1000 02924-004 GENERAL DESCRIPTION Figure 4. Small Signal Frequency Response The AD8033/AD8034 amplifiers only draw 3.3 mA/amplifier of quiescent current while having the capability of delivering up to 40 mA of load current. The AD8033 is available in a small package 8-lead SOIC and a small package 5-lead SC70. The AD8034 is also available in a small package 8-lead SOIC and a small package 8-lead SOT-23. They are rated to work over the industrial temperature range of −40°C to +85°C without a premium over commercial grade products. Despite their low cost, the amplifiers provide excellent overall performance. They offer a high common-mode rejection of −100 dB, low input offset voltage of 2 mV maximum, and low noise of 11 nV/√Hz. Rev. D Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved. AD8033/AD8034 TABLE OF CONTENTS Features .............................................................................................. 1  Input Overdrive .......................................................................... 16  Applications ....................................................................................... 1  Input Impedance ........................................................................ 16  General Description ......................................................................... 1  Thermal Considerations............................................................ 16  Connection Diagrams ...................................................................... 1  Layout, Grounding, and Bypassing Considerations .................. 18  Revision History ............................................................................... 2  Bypassing ..................................................................................... 18  Specifications..................................................................................... 3  Grounding ................................................................................... 18  Absolute Maximum Ratings............................................................ 6  Leakage Currents ........................................................................ 18  Maximum Power Dissipation ..................................................... 6  Input Capacitance ...................................................................... 18  Output Short Circuit .................................................................... 6  Applications Information .............................................................. 19  ESD Caution .................................................................................. 6  High Speed Peak Detector ........................................................ 19  Typical Performance Characteristics ............................................. 7  Active Filters ............................................................................... 20  Test Circuits ..................................................................................... 14  Wideband Photodiode Preamp ................................................ 21  Theory of Operation ...................................................................... 16  Outline Dimensions ....................................................................... 23  Output Stage Drive and Capacitive Load Drive ..................... 16  Ordering Guide .......................................................................... 24  REVISION HISTORY 9/08—Rev. C to Rev. D Deleted Usable Input Range Parameter, Table 1 ........................... 3 Deleted Usable Input Range Parameter, Table 2 ........................... 4 Deleted Usable Input Range Parameter, Table 3 ........................... 5 4/08—Rev. B to Rev. C Changes to Format ............................................................. Universal Changes to Features and General Description ............................. 1 Changes to Figure 13 Caption and Figure 14 Caption ................ 8 Changes to Figure 22 and Figure 23 ............................................... 9 Changes to Figure 25 and Figure 28 ............................................. 10 Changes to Input Capacitance Section ........................................ 18 Changes to Active Filters Section ................................................. 21 Changes to Outline Dimensions................................................... 23 Changes to Ordering Guide .......................................................... 24 8/02—Rev. 0 to Rev. A Added AD8033 ................................................................... Universal VOUT = 2 V p-p Deleted from Default Conditions ......... Universal Added SOIC-8 (R) and SC70 (KS) ..................................................1 Edits to General Description Section .............................................1 Changes to Specifications .................................................................2 New Figure 2 ......................................................................................5 Edits to Maximum Power Dissipation Section ..............................5 Changes to Ordering Guide .............................................................5 Change to TPC 3 ...............................................................................6 Change to TPC 6 ...............................................................................6 Change to TPC 9 ...............................................................................7 New TPC 16 .......................................................................................8 New TPC 17 .......................................................................................8 New TPC 31 .................................................................................... 11 New TPC 35 .................................................................................... 11 New Test Circuit 9 .......................................................................... 13 SC70 (KS) Package Added ............................................................ 19 2/03—Rev. A to Rev. B Changes to Features.......................................................................... 1 Changes to Connection Diagrams ................................................. 1 Changes to Specifications ................................................................ 2 Changes to Absolute Maximum Ratings ....................................... 4 Replaced TPC 31............................................................................. 11 Changes to TPC 35 ......................................................................... 11 Changes to Test Circuit 3 ............................................................... 12 Updated Outline Dimensions ....................................................... 19 Rev. D | Page 2 of 24 AD8033/AD8034 SPECIFICATIONS TA = 25°C, VS = ±5 V, RL = 1 kΩ, gain = +2, unless otherwise noted. Table 1. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Input Overdrive Recovery Time Output Overdrive Recovery Time Slew Rate (25% to 75%) Settling Time to 0.1% NOISE/HARMONIC PERFORMANCE Distortion Second Harmonic Third Harmonic Crosstalk, Output-to-Output Input Voltage Noise Input Current Noise DC PERFORMANCE Input Offset Voltage Conditions Min Typ G = +1, VOUT = 0.2 V p-p G = +2, VOUT = 0.2 V p-p G = +2, VOUT = 2 V p-p −6 V to +6 V input −3 V to +3 V input, G = +2 G = +2, VOUT = 4 V step G = +2, VOUT = 2 V step G = +2, VOUT = 8 V step 65 80 30 21 135 135 80 95 225 MHz MHz MHz ns ns V/μs ns ns −82 −85 −70 −81 −86 11 0.7 dBc dBc dBc dBc dB nV/√Hz fA/√Hz 55 fC = 1 MHz, VOUT = 2 V p-p RL = 500 Ω RL = 1 kΩ RL = 500 Ω RL = 1 kΩ f = 1 MHz, G = +2 f = 100 kHz f = 100 kHz VCM = 0 V TMIN − TMAX 1 Input Offset Voltage Match Input Offset Voltage Drift Input Bias Current Open-Loop Gain INPUT CHARACTERISTICS Common-Mode Input Impedance Differential Input Impedance Input Common-Mode Voltage Range FET Input Range Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Output Voltage Swing Output Short-Circuit Current Capacitive Load Drive POWER SUPPLY Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio TMIN − TMAX VOUT = ± 3 V 89 VCM = −3 V to +1.5 V −89 ±4.75 30% overshoot, G = +1, VOUT = 400 mV p-p 4 1.5 50 92 −90 Rev. D | Page 3 of 24 2 3.5 2.5 27 11 Unit mV mV mV μV/°C pA pA dB 1000||2.3 1000||1.7 GΩ||pF GΩ||pF −5.0 to +2.2 −100 V dB ±4.95 40 35 V mA pF 5 VS = ±2 V Max 3.3 −100 24 3.5 V mA dB AD8033/AD8034 TA = 25°C, VS = 5 V, RL = 1 kΩ, gain = +2, unless otherwise noted. Table 2. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Input Overdrive Recovery Time Output Overdrive Recovery Time Slew Rate (25% to 75%) Settling Time to 0.1% NOISE/HARMONIC PERFORMANCE Distortion Second Harmonic Third Harmonic Crosstalk, Output to Output Input Voltage Noise Input Current Noise DC PERFORMANCE Input Offset Voltage Conditions Min Typ G = +1, VOUT = 0.2 V p-p G = +2, VOUT = 0.2 V p-p G = +2, VOUT = 2 V p-p −3 V to +3 V input −1.5 V to +1.5 V input, G = +2 G = +2, VOUT = 4 V step G = +2, VOUT = 2 V step 70 80 32 21 180 200 70 100 MHz MHz MHz ns ns V/μs ns −80 −84 −70 −80 −86 11 0.7 dBc dBc dBc dBc dB nV/√Hz fA/√Hz 55 fC = 1 MHz, VOUT = 2 V p-p RL = 500 Ω RL = 1 kΩ RL = 500 Ω RL = 1 kΩ f = 1 MHz, G = +2 f = 100 kHz f = 100 kHz VCM = 0 V TMIN − TMAX 1 Input Offset Voltage Match Input Offset Voltage Drift Input Bias Current Open-Loop Gain INPUT CHARACTERISTICS Common-Mode Input Impedance Differential Input Impedance Input Common-Mode Voltage Range FET Input Range Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Output Voltage Swing Output Short-Circuit Current Capacitive Load Drive POWER SUPPLY Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio TMIN − TMAX VOUT = 0 V to 3 V 87 VCM = 1.0 V to 2.5 V −80 RL = 1 kΩ 0.16 to 4.83 30% overshoot, G = +1, VOUT = 400 mV p-p 4 1 50 92 −80 Rev. D | Page 4 of 24 2 3.5 2.5 30 10 Unit mV mV mV μV/°C pA pA dB 1000||2.3 1000||1.7 GΩ||pF GΩ||pF 0 to 2.0 −100 V dB 0.04 to 4.95 30 25 V mA pF 5 VS = ±1 V Max 3.3 −100 24 3.5 V mA dB AD8033/AD8034 TA = 25°C, VS = ±12 V, RL = 1 kΩ, gain = +2, unless otherwise noted. Table 3. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Input Overdrive Recovery Time Output Overdrive Recovery Time Slew Rate (25% to 75%) Settling Time to 0.1% NOISE/HARMONIC PERFORMANCE Distortion Second Harmonic Third Harmonic Crosstalk, Output to Output Input Voltage Noise Input Current Noise DC PERFORMANCE Input Offset Voltage Conditions Min Typ G = +1, VOUT = 0.2 V p-p G = +2, VOUT = 0.2 V p-p G = +2, VOUT = 2 V p-p −13 V to +13 V input −6.5 V to +6.5 V input, G = +2 G = +2, VOUT = 4 V step G = +2, VOUT = 2 V step G = +2, VOUT = 10 V step 65 80 30 21 100 100 80 90 225 MHz MHz MHz ns ns V/μs ns ns −80 −82 −70 −82 −86 11 0.7 dBc dBc dBc dBc dB nV/√Hz fA/√Hz 55 fC = 1 MHz, VOUT = 2 V p-p RL = 500 Ω RL = 1 kΩ RL = 500 Ω RL = 1 kΩ f = 1 MHz, G = +2 f = 100 kHz f = 100 kHz VCM = 0 V TMIN − TMAX 1 Input Offset Voltage Match Input Offset Voltage Drift Input Bias Current Open-Loop Gain INPUT CHARACTERISTICS Common-Mode Input Impedance Differential Input Impedance Input Common-Mode Voltage Range FET Input Range Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Output Voltage Swing Output Short-Circuit Current Capacitive Load Drive POWER SUPPLY Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio TMIN − TMAX VOUT = ±8 V VCM = ±5 V 88 −92 ±11.52 30% overshoot, G = +1 4 2 50 96 −85 Rev. D | Page 5 of 24 2 3.5 2.5 24 12 Unit mV mV mV μV/°C pA pA dB 1000||2.3 1000||1.7 GΩ||pF GΩ||pF −12.0 to +9.0 −100 V dB ±11.84 60 35 V mA pF 5 VS = ±2 V Max 3.3 −100 24 3.5 V mA dB AD8033/AD8034 ABSOLUTE MAXIMUM RATINGS Rating 26.4 V See Figure 5 26.4 V 1.4 V −65°C to +125°C −40°C to +85°C 300°C PD = (VS × IS) + (VS/4)2/RL In single-supply operation with RL referenced to VS−, worst case is VOUT = VS/2. 2.0 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. MAXIMUM POWER DISSIPATION 1.5 SOT-23-8 1.0 SC70-5 0.5 0 –60 The maximum safe power dissipation in the AD8033/AD8034 packages is limited by the associated rise in junction temperature (TJ) on the die. The plastic that encapsulates the die locally reaches the junction temperature. At approximately 150°C, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the AD8033/ AD8034. Exceeding a junction temperature of 175°C for an extended period can result in changes in silicon devices, potentially causing failure. The still-air thermal properties of the package and PCB (θJA), ambient temperature (TA), and the total power dissipated in the package (PD) determine the junction temperature of the die. The junction temperature can be calculated as TJ = TA + (PD × θJA) PD is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins (VS) times the quiescent current (IS). Assuming the load (RL) is referenced to midsupply, the total drive power is VS/2 × IOUT, some of which is dissipated in the package and some in the load (VOUT × IOUT). The difference between the total drive power and the load power is the drive power dissipated in the package SOIC-8 –40 –20 0 20 40 60 AMBIENT TEMPERATURE (°C) 80 100 02924-005 Parameter Supply Voltage Power Dissipation Common-Mode Input Voltage Differential Input Voltage Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering 10 sec) If the rms signal levels are indeterminate, consider the worst case, when VOUT = VS/4 for RL to midsupply MAXIMUM POWER DISSIPATION (W) Table 4. Figure 5. Maximum Power Dissipation vs. Ambient Temperature for a 4-Layer Board Airflow increases heat dissipation, effectively reducing θJA. In addition, more metal directly in contact with the package leads from metal traces, through holes, ground, and power planes reduces the θJA. Care must be taken to minimize parasitic capacitances at the input leads of high speed op amps as discussed in the Layout, Grounding, and Bypassing Considerations section. Figure 5 shows the maximum power dissipation in the package vs. the ambient temperature for the 8-lead SOIC (125°C/W), 5-lead SC70 (210°C/W), and 8-lead SOT-23 (160°C/W) packages on a JEDEC standard 4-layer board. θJA values are approximations. OUTPUT SHORT CIRCUIT Shorting the output to ground or drawing excessive current for the AD8033/AD8034 will likely cause catastrophic failure. ESD CAUTION PD = Quiescent Power + (Total Drive Power − Load Power) PD = [VS × IS] + [(VS/2) × (VOUT/RL)] − [VOUT2/RL] RMS output voltages should be considered. If RL is referenced to −VS, as in single-supply operation, the total drive power is VS × IOUT. Rev. D | Page 6 of 24 AD8033/AD8034 TYPICAL PERFORMANCE CHARACTERISTICS Default conditions: VS = ±5 V, CL = 5 pF, RL = 1 kΩ, TA = 25°C. 24 21 8 VOUT = 200mV p-p G = +10 G = +2 7 18 12 5 GAIN (dB) 9 G = +2 6 VOUT = 1V p-p 4 3 3 G = +1 0 VOUT = 4V p-p 2 –3 G = –1 –9 0.1 1 1 100 10 FREQUENCY (MHz) 1000 VOUT = 2V p-p 0 0.1 02924-006 –6 1 10 FREQUENCY (MHz) 100 02924-009 GAIN (dB) VOUT = 0.2V p-p 6 G = +5 15 Figure 9. Frequency Response for Various Output Amplitudes (See Figure 45) Figure 6. Small Signal Frequency Response for Various Gains 8 1 VS = +5V 7 0 VS = ±5V 6 5 VS = ±12V –2 GAIN (dB) –3 –4 VS = ±12V 1 G = +1 VOUT = 200mV p-p 0.1 1 10 FREQUENCY (MHz) 100 0 1 10 FREQUENCY (MHz) 100 VS = ±12V 6 VS = ±12V VS = ±5V VS = +5V 5 GAIN (dB) VS = ±5V VS = +5V –1 –2 –3 4 3 2 –4 1 –5 1 10 FREQUENCY (MHz) 100 G = +2 VOUT = 2V p-p 02924-008 GAIN (dB) 1 7 G = +1 VOUT = 2V p-p 0 –6 0.1 0.1 Figure 10. Small Signal Frequency Response for Various Supplies (See Figure 45) Figure 7. Small Signal Frequency Response for Various Supplies (See Figure 44) 2 G = +2 VOUT = 200mV p-p 02924-010 –6 3 2 02924-007 –5 VS = ±5V 4 0 0.1 Figure 8. Large Signal Frequency Response for Various Supplies (See Figure 44) 1 10 FREQUENCY (MHz) 100 Figure 11. Large Signal Frequency Response for Various Supplies (See Figure 45) Rev. D | Page 7 of 24 02924-011 GAIN (dB) –1 VS = +5V AD8033/AD8034 8 10 VOUT = 200mV p-p G = +1 CL = 100pF 9 6 VOUT = 200mV p-p G = +2 CL = 100pF 8 CL = 100pF RSNUB = 25Ω 2 0 6 5 CL = 33pF CL = 2pF 3 CL = 2pF 2 –4 1 100 10 0 0.1 02924-012 0.1 Figure 12. Small Signal Frequency Response for Various CL (See Figure 44) 8 CF = 0pF 7 CF = 1pF 100 VOUT = 200mV p-p G = +2 RL = 1kΩ 7 6 6 5 GAIN (dB) CF = 1.5pF 5 CF = 2pF 4 RL = 500Ω 4 3 3 2 2 1 10 FREQUENCY (MHz) 100 0 0.1 02924-013 0 0.1 Figure 13. Small Signal Frequency Response for Various CF (See Figure 45) 1 10 FREQUENCY (MHz) 100 Figure 16. Small Signal Frequency Response for Various RL (See Figure 45) 100 VOUT = 200mV p-p VS = ±12V 180 150 80 10 1 G = +1 60 120 40 90 PHASE 20 60 0 30 PHASE (Degrees) GAIN G = +2 GAIN (dB) IMPEDANCE (Ω) 02924-016 1 1 100 10 FREQUENCY (MHz) Figure 15. Small Signal Frequency Response for Various CL (See Figure 45) 9 VOUT = 200mV p-p RF = 3kΩ 8 G = +2 1 02924-015 1 FREQUENCY (MHz) GAIN (dB) CL = 33pF 4 –2 –6 CL = 51pF 7 GAIN (dB) GAIN (dB) 4 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) –20 100 02924-014 0.01 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 14. Output Impedance vs. Frequency (See Figure 47) Figure 17. Open-Loop Response Rev. D | Page 8 of 24 10M 0 100M 02924-017 0.1 AD8033/AD8034 –40 G = +2 HD3 RL = 500Ω –50 –60 –60 –70 –70 –80 DISTORTION (dBc) DISTORTION (dBc) –50 HD3 RL = 1kΩ –90 HD2 RL = 500Ω –100 –110 HD3 G = +2 –90 HD2 G = +2 –100 –110 HD3 G = +1 HD2 RL = 1kΩ 1 FREQUENCY (MHz) 5 –120 0.1 02924-018 –120 0.1 –20 G = +2 HD3 VS = 5V –50 HD3 VOUT = 10V p-p –50 –70 DISTORTION (dBc) DISTORTION (dBc) G = +2 –40 HD2 V S = 5V HD3 VS = 24V –90 5 –30 –60 –80 1 FREQUENCY (MHz) Figure 21. Harmonic Distortion vs. Frequency for Various Gains Figure 18. Harmonic Distortion vs. Frequency for Various Loads (See Figure 45) –40 HD2 G = +1 –80 02924-021 –40 –100 HD2 VOUT = 20V p-p HD3 V OUT = 20V p-p –60 –70 HD2 V OUT = 10V p-p –80 –90 HD3 VOUT = 2V p-p –100 HD2 VS = 24V –110 1 FREQUENCY (MHz) 5 02924-019 –120 0.1 HD2 V OUT = 2V p-p –120 0.1 Figure 19. Harmonic Distortion vs. Frequency for Various Supply Voltages (See Figure 45) 1 FREQUENCY (MHz) Figure 22. Harmonic Distortion vs. Frequency for Various Amplitudes (See Figure 45), VS = 24 V 1000 80 G = +1 VS = +5V POSITIVE SIDE PERCENT OVERSHOOT (%) 70 100 60 VS = +5V NEGATIVE SIDE 50 40 VS = ±5V NEGATIVE SIDE 30 20 VS = ±5V POSITIVE SIDE 10 10 100 1k 10k 100k 1M FREQUENCY (Hz) 1 0M 10M 100M Figure 20. Voltage Noise vs. Frequency 0 10 30 50 70 CAPACITIVE LOAD (pF) 90 110 Figure 23. Percent Overshoot vs. Capacitive Load (See Figure 44) Rev. D | Page 9 of 24 02924-023 10 02924-020 NOISE (nV/√Hz) 5 02924-022 –110 AD8033/AD8034 G = +1 20ns/DIV 25mV/DIV 02924-024 38pF 15pF 80mV/DIV Figure 24. Small Signal Transient Response 5 V (See Figure 44) 80ns/DIV 02924-027 G = +1 Figure 27. Small Signal Transient Response ±5 V (See Figure 44) G = +1 VOUT = 8V p-p VOUT = 8V p-p VOUT = 2V p-p VOUT = 2V p-p 3V/DIV 320ns/DIV 02924-025 VOUT = 20V p-p 320ns/DIV 3V/DIV Figure 25. Large Signal Transient Response (See Figure 44) 02924-028 G = +2 VOUT = 20V p-p Figure 28. Large Signal Transient Response (See Figure 45) G = –1 G = +1 350ns/DIV 1.5V/DIV Figure 26. Output Overdrive Recovery (See Figure 46) VIN 350ns/DIV Figure 29. Input Overdrive Recovery (See Figure 44) Rev. D | Page 10 of 24 02924-029 1.5V/DIV VOUT VOUT 02924-026 VIN AD8033/AD8034 VIN = 1V VIN = 1V VOUT – 2VIN +0.1% +0.1% 02924-030 1.5µs/DIV 2mV/DIV Figure 33. 0.1% Short-Term Settling Time 7.0 0 6.9 QUIESCENT SUPPLY CURRENT (mA) –5 –10 –Ib –20 +Ib –25 –30 –35 6.6 6.5 VS = ±5V 6.4 6.3 VS = +5V 6.2 6.1 30 35 40 45 50 55 60 65 TEMPERATURE (°C) 70 75 80 85 –20 0 20 40 TEMPERATURE (°C) 80 Figure 34. Quiescent Supply Current vs. Temperature for Various Supply Voltages 4.0 BJT INPUT RANGE 3.5 30 18 NORMALIZED OFFSET (mV) –Ib 24 +Ib 12 6 –Ib VS = ±12V 3.0 2.5 2.0 1.5 1.0 0.5 VS = ±5V VS = +5V 0 –0.5 0 2 4 6 8 COMMON-MODE VOLTAGE (V) 10 12 02924-032 0 FET INPUT RANGE 10 +Ib 5 0 –5 –10 –15 –20 –25 –30 –12 –10 –8 –6 –4 –2 60 02924-034 25 02924-031 20 5.9 –40 36 Ib (µA) VS = ±12V 6.0 Figure 31. Ib vs. Temperature Ib (pA) 6.8 6.7 Figure 32. Ib vs. Common-Mode Voltage Range –1.0 –14 –12 –10 –8 –6 –4 –2 0 2 4 6 8 COMMON-MODE VOLTAGE (V) 10 12 14 Figure 35. Input Offset Voltage vs. Common-Mode Voltage Rev. D | Page 11 of 24 02924-035 Ib (pA) –15 42 –0.1% 20ns/DIV 2mV/DIV Figure 30. Long-Term Settling Time –40 VOUT – 2VIN t=0 02924-033 –0.1% t=0 AD8033/AD8034 105 –20 100 –30 OPEN-LOOP GAIN (dB) 95 CMRR (dB) –40 –50 –60 90 RL = 500Ω 85 RL = 1kΩ RL = 2kΩ 80 75 70 –70 1 10 FREQUENCY (MHz) 100 60 –12 –10 02924-036 –80 0.1 –4 –2 0 2 4 OUTPUT VOLTAGE (V) 6 8 10 12 –40 1.0 –50 0.8 SOT-23 A/B VCC – VOH CROSSTALK (dB) 0.6 0.4 VOL – VEE 0.2 –60 SOIC A/B –70 SOT-23 B/A SOIC B/A –80 –90 5 10 15 20 25 30 ILOAD (mA) –100 0.1 02924-037 0 1 FREQUENCY (MHz) 10 50 02924-040 OUTPUT SATURATION (V) –6 Figure 39. Open-Loop Gain vs. Output Voltage for Various RL Figure 36. CMRR vs. Frequency (See Figure 50) 0 –8 02924-039 65 Figure 40. Crosstalk (See Figure 52) Figure 37. Output Saturation Voltage vs. Load Current 0 180 –10 150 –20 –30 FREQUENCY PSRR (dB) –PSRR –40 –50 +PSRR –60 120 90 60 –70 –80 30 0.001 0.01 0.1 1 10 100 FREQUENCY (MHz) Figure 38. PSRR vs. Frequency (See Figure 49 and Figure 51) 0 –1.5 –1.0 –0.5 0 0.5 VOS (mV) Figure 41. Initial Offset Rev. D | Page 12 of 24 1.0 1.5 02924-041 –100 0.0001 02924-038 –90 AD8033/AD8034 VOUT 1µs/DIV 1.2V/DIV VIN 1µs/DIV Figure 43. G = +2 Response, VS = ±5 V Figure 42. G = +1 Response, VS = ±5 V Rev. D | Page 13 of 24 02924-043 VIN 02924-042 1.2V/DIV VOUT AD8033/AD8034 TEST CIRCUITS +VS +VS 1µF 1µF + + 10nF 10nF RSNUB VIN AD8033/AD8034 49.9Ω 976Ω CLOAD VOUT AD8033/AD8034 49.9Ω 10nF 10nF VSINE 0.2V p-p 02924-047 –VS – + 1µF 02924-044 + 1µF + –VS Figure 47. Output Impedance, G = +1 Figure 44. G = +1 CF 1kΩ 1kΩ RF +VS 1kΩ +VS 1µF 1µF + + 10nF 499Ω VIN 49.9Ω RSNUB 976Ω AD8033/AD8034 CLOAD 10nF VOUT AD8033/AD8034 49.9Ω 10nF 10nF VSINE 0.2V p-p –VS –VS Figure 45. G = +2 1kΩ Figure 48. Output Impedance, G = +2 1kΩ +VS 1µF + 10nF 976Ω AD8033/AD8034 499Ω VOUT 49.9Ω 10nF + 1µF –VS 02924-046 VIN – + 1µF 02924-045 + 1µF + Figure 46. G = −1 Rev. D | Page 14 of 24 02924-048 1kΩ AD8033/AD8034 1V p-p +VS – + +VS AC 1µF + +VS 49.9Ω 10nF AD8033/AD8034 VOUT VOUT AD8033/AD8034 10nF 02924-049 49.9Ω –VS AC + 1µF 02924-051 –VS 1V p-p + – –VS Figure 49. Negative PSRR 1kΩ Figure 51. Positive PSRR 1kΩ 1kΩ 1kΩ –VS +VS – 1µF TO PORT 1 499Ω + 50Ω VIN – + 49.9Ω 10nF 976Ω 1kΩ AD8033/AD8034 VOUT 499Ω TO PORT 2 1kΩ –VS +VS + 49.9Ω 10nF + 1µF 1kΩ –VS A – +VS 02924-050 1kΩ + B 1kΩ Figure 50. CMRR Figure 52. Crosstalk Rev. D | Page 15 of 24 1kΩ 02924-052 VIN AD8033/AD8034 THEORY OF OPERATION The incorporation of JFET devices into the Analog Devices high voltage XFCB process has enabled the ability to design the AD8033/AD8034. The AD8033/AD8034 are voltage feedback rail-to-rail output amplifiers with FET inputs and a bipolarenhanced common-mode input range. The use of JFET devices in high speed amplifiers extends the application space into both the low input bias current and low distortion, high bandwidth areas. Using N-channel JFETs and a folded cascade input topology, the common-mode input level operates from 0.2 V below the negative rail to within 3.0 V of the positive rail. Cascading of the input stage ensures low input bias current over the entire common-mode range as well as CMRR and PSRR specifications that are above 90 dB. Additionally, long-term settling issues that normally occur with high supply voltages are minimized as a result of the cascading. OUTPUT STAGE DRIVE AND CAPACITIVE LOAD DRIVE The common emitter output stage adds rail-to-rail output performance and is compensated to drive 35 pF (30% overshoot at G = +1). Additional capacitance can be driven if a small snub resistor is put in series with the capacitive load, effectively decoupling the load from the output stage, as shown in Figure 12. The output stage can source and sink 20 mA of current within 500 mV of the supply rails and 1 mA within 100 mV of the supply rails. INPUT OVERDRIVE An additional feature of the AD8033/AD8034 is a bipolar input pair that adds rail-to-rail common-mode input performance specifically for applications that cannot tolerate phase inversion problems. Under normal common-mode operation, the bipolar input pair is kept reversed, maintaining Ib at less than 1 pA. When the input common-mode operation comes within 3.0 V of the positive supply rail, I1 turns off and I4 turns on, supplying tail current to the bipolar pair Q25 and Q27. With this configuration, the inputs can be driven beyond the positive supply rail without any phase inversion (see Figure 53). As a result of entering the bipolar mode of operation, an offset and input bias current shift occurs (see Figure 32 and Figure 35). After re-entering the JFET common-mode range, the amplifier recovers in approximately 100 ns (refer to Figure 29 for input overload behavior). Above and below the supply rails, ESD protection diodes activate, resulting in an exponentially increasing input bias current. If the inputs are driven well beyond the rails, series input resistance should be included to limit the input bias current to
AD8033AKS-REEL7 价格&库存

很抱歉,暂时无法提供与“AD8033AKS-REEL7”相匹配的价格&库存,您可以联系我们找货

免费人工找货