0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADG528FTQ

ADG528FTQ

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    ADG528FTQ - 4/8 Channel Fault-Protected Analog Multiplexers - Analog Devices

  • 数据手册
  • 价格&库存
ADG528FTQ 数据手册
a FEATURES Low On Resistance (300 typ) Fast Switching Times t ON 250 ns max t OFF 250 ns max Low Power Dissipation (3.3 mW max) Fault and Overvoltage Protection (–40 V to +55 V) All Switches OFF with Power Supply OFF Analog Output of ON Channel Clamped Within Power Supplies If an Overvoltage Occurs Latch-Up Proof Construction Break Before Make Construction TTL and CMOS Compatible Inputs APPLICATIONS Existing Multiplexer Applications (Both Fault-Protected and Nonfault-Protected) New Designs Requiring Multiplexer Functions GENERAL DESCRIPTION 4/8 Channel Fault-Protected Analog Multiplexers ADG508F/ADG509F/ADG528F* FUNCTIONAL BLOCK DIAGRAMS ADG508F/ADG528F S1 S1A DA S4A D S1B DB S8 ADG528F ONLY WR RS 1 OF 8 DECODER S4B 1 OF 4 DECODER ADG509F A0 A1 A2 EN A0 A1 EN 2. ON channel turns off while fault exists. 3. Low RON. 4. Fast Switching Times. 5. Break-Before-Make Switching. Switches are guaranteed break-before-make so that input signals are protected against momentary shorting. 6. Trench Isolation Eliminates Latch-up. A dielectric trench separates the p and n-channel MOSFETs thereby preventing latch-up. ORDERING GUIDE The ADG508F, ADG509F and ADG528F are CMOS analog multiplexers, the ADG508F and ADG528F comprising eight single channels and the ADG509F comprising four differential channels. These multiplexers provide fault protection. Using a series n-channel, p-channel, n-channel MOSFET structure, both device and signal source protection is provided in the event of an overvoltage or power loss. The multiplexer can withstand continuous overvoltage inputs from –40 V to +55 V. During fault conditions, the multiplexer input (or output) appears as an open circuit and only a few nanoamperes of leakage current will flow. This protects not only the multiplexer and the circuitry driven by the multiplexer, but also protects the sensors or signal sources that drive the multiplexer. The ADG508F and ADG528F switch one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG509F switches one of four differential inputs to a common differential output as determined by the 2bit binary address lines A0 and A1. The ADG528F has on-chip address and control latches that facilitate microprocessor interfacing. An EN input on each device is used to enable or disable the device. When disabled, all channels are switched OFF. PRODUCT HIGHLIGHTS Model1 ADG508FBN ADG508FBRN ADG508FBRW ADG508FTQ ADG509FBN ADG509FBRN ADG509FBRW ADG509FTQ ADG528FBN ADG528FBP ADG528FTQ Temperature Range –40°C to +85°C –40°C to +85°C –40°C to +85°C –55°C to +125°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –55°C to +125°C –40°C to +85°C –40°C to +85°C –55°C to +125°C Package Option2 N-16 R-16N R-16W Q-16 N-16 R-16N R-16W Q-16 N-18 P-20A Q-18 1. Fault Protection. The ADG508F/ADG509F/ADG528F can withstand continuous voltage inputs from –40 V to +55 V. When a fault occurs due to the power supplies being turned off, all the channels are turned off and only a leakage current of a few nanoamperes flows. *Patent Pending. NOTES 1 To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers. 2 N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip; RN = 0.15" Small Outline IC (SOIC), RW = 0.3" Small Outline IC (SOIC). REV. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1998 ADG508F/ADG509F/ADG528F–SPECIFICATIONS1 Dual Supply (V DD = +15 V 10%, VSS = –15 V 10%, GND = 0 V, unless otherwise noted) T Version –55 C to +25 C +125 C VSS + 3 VDD – 1.5 400 450 0.6 5 Parameter ANALOG SWITCH Analog Signal Range RON B Version –40 C to +25 C +85 C VSS + 3 VDD – 1.5 350 400 Units V min V max Ω typ Test Conditions/Comments 300 300 RON Drift RON Match LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage I D (OFF) ADG508F/ADG528F ADG509F Channel ON Leakage I D, IS (ON) ADG508F/ADG528F ADG509F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies OFF) DIGITAL INPUTS Input High Voltage, V INH Input Low Voltage, VINL Input Current IINL or IINH CIN, Digital Input Capacitance DYNAMIC CHARACTERISTICS 2 tTRANSITION tOPEN tON (EN, WR) tOFF (EN, RS) tSETT, Settling Time 0.1% 0.01% ADG528F Only tW, Write Pulsewidth tS, Address, Enable Setup Time tH, Address, Enable Hold Time tRS, Reset Pulsewidth Charge Injection OFF Isolation CS (OFF) CD (OFF) ADG508F/ADG528F ADG509F POWER REQUIREMENTS IDD ISS 0.6 5 ± 0.02 ±1 ± 0.04 ±1 ±1 ± 0.04 ±1 ±1 ± 50 ± 60 ± 30 ± 60 ± 30 –10 V < VS < +10 V, IS = 1 mA; VDD = +15 V ± 10%, VSS = –15 V ± 10% Ω max –10 V < VS < +10 V, IS = 1 mA; VDD = +15 V ± 5%, VSS = –15 V ± 5% %/°C typ VS = 0 V, IS = 1 mA % max VS = 0 V, I S = 1 mA nA typ nA max nA typ nA max nA max nA typ nA max nA max nA typ µA max µA typ µA max µA typ µA max VD = ± 10 V, VS = Test Circuit 2 VD = ± 10 V, VS = Test Circuit 3 VS = VD = ± 10 V; Test Circuit 4 VS = ± 33 V, VD = 0 V, Test Circuit 3 VS = ± 25 V, VD = 10 V, Test Circuit 5 10 V; 10 V; ± 0.02 ±1 ± 0.04 ±1 ±1 ± 0.04 ±1 ±1 ± 0.02 ±2 ± 0.005 ±2 ± 0.001 ±2 ± 50 ± 200 ± 100 ± 200 ± 100 ± 0.02 ±2 ±2 ± 0.005 ±2 ± 0.001 ±2 2.4 0.8 ±1 5 200 300 50 25 200 250 200 250 VS = ± 25 V, VD = VEN = A0, A1, A2 = 0 V Test Circuit 6 2.4 0.8 ±1 5 200 300 50 25 200 250 200 250 V min V max µA max pF typ ns typ ns max ns typ ns min ns typ ns max ns typ ns max µs typ µs typ ns min ns min ns min ns min pC typ dB typ dB min pF typ pF typ pF typ VIN = 0 or VDD RL = 1 MΩ, CL = 35 pF; VS1 = ± 10 V, VS8 = 10 V; Test Circuit 7 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 8 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 9 RL = 1 kΩ, CL = 35 pF; VS = +5 V; Test Circuit 9 RL = 1 kΩ, CL = 35 pF; VS = +5 V 400 10 400 400 1 2.5 400 10 400 400 1 2.5 100 120 100 10 100 100 200 100 10 100 4 68 50 5 50 25 0.1 0.1 0.2 0.1 4 68 50 5 50 25 0.1 0.1 0.2 0.1 VS = 0 V, RS = 0 Ω, CL= 1 nF; Test Circuit 12 RL = 1 kΩ, CL = 15 pF, f = 100 kHz; VS = 7 V rms; Test Circuit 13 mA max mA max VIN = 0 V or 5 V NOTES 1 Temperature ranges are as follows: B Version: –40 °C to +85°C; T Version: –55°C to +125°C. 2 Guaranteed by design, not subject to production test. Specifications subject to change without notice. –2– REV. C ADG508F/ADG509F/ADG528F Table I. ADG508F Truth Table A2 X 0 0 0 0 1 1 1 1 A1 X 0 0 1 1 0 0 1 1 A0 X 0 1 0 1 0 1 0 1 EN 0 1 1 1 1 1 1 1 1 ON SWITCH NONE 1 2 3 4 5 6 7 8 A1 X 0 0 1 1 A0 X 0 1 0 1 Table II. ADG509F Truth Table EN 0 1 1 1 1 ON SWITCH PAIR NONE 1 2 3 4 X = Don’t Care X = Don’t Care Table III. ADG528F Truth Table A2 X X X 0 0 0 0 1 1 1 1 A1 X X X 0 0 1 1 0 0 1 1 A0 X X X 0 1 0 1 0 1 0 1 EN X X 0 1 1 1 1 1 1 1 1 WR g X 0 0 0 0 0 0 0 0 0 RS 1 0 1 1 1 1 1 1 1 1 1 ON SWITCH Retains Previous Switch Condition NONE (Address and Enable Latches Cleared) NONE 1 2 3 4 5 6 7 8 X = Don’t Care TIMING DIAGRAMS (ADG528F) 3V WR 0V 50% 50% 3V RS 0V 50% 50% tW tS tH 3V A0, A1, A2 EN 0V 2V 0.8V tRS tOFF (RS) VO SWITCH OUTPUT 0V 0.8VO Figure 1. Figure 2. Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while WR is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of WR. Figure 2 shows the Reset Pulsewidth, tRS, and the Reset Turnoff Time, tOFF (RS). Note: All digital input signals rise and fall times are measured from 10% to 90% of 3 V. tR = tF = 20 ns. REV. C –3– ADG508F/ADG509F/ADG528F ABSOLUTE MAXIMUM RATINGS* (TA = +25°C unless otherwise noted) ADG508F/ADG509F PIN CONFIGURATIONS DIP/SOIC DIP/SOIC VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +44 V VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +25 V VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –25 V VEN, VA Digital Input . . . . . . . – 0.3 V to VDD + 2 V or 20 mA, Whichever Occurs First VS, Analog Input Overvoltage with Power ON . . . . . VSS – 25 V to VDD + 40 V VS, Analog Input Overvoltage with Power OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–40 V to +55 V Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 20 mA Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle max) . . . . . . . . . . . 40 mA Operating Temperature Range Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C Extended (T Version) . . . . . . . . . . . . . . . . –55°C to +125°C Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C Cerdip Package θJA, Thermal Impedance 16-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76°C/W 18-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +300°C Plastic Package θJA, Thermal Impedance 16-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117°C 18-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110°C Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C SOIC Package θJA, Thermal Impedance Narrow Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77°C/W Wide Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75°C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C PLCC Package θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 90°C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C *Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time. A0 EN VSS S1 S2 S3 S4 D 1 2 3 4 5 6 7 8 16 A1 15 A2 14 GND 13 VDD TOP VIEW (Not to Scale) 12 S5 11 S6 10 S7 9 S8 A0 EN VSS S1A S2A S3A S4A DA 1 2 3 4 5 6 7 8 16 A1 15 GND 14 VDD 13 S1B TOP VIEW (Not to Scale) 12 S2B 11 S3B 10 S4B 9 DB ADG508F ADG509F ADG528F PIN CONFIGURATIONS DIP PLCC WR NC A0 RS WR A0 EN VSS S1 S2 S3 S4 D 1 2 3 4 5 6 7 8 9 18 RS 17 A1 16 A2 EN 4 VSS 5 S1 6 S2 7 S3 8 3 2 1 20 19 18 A2 A1 17 GND 16 VDD 15 S5 14 S6 S7 ADG528F 15 GND ADG528F TOP VIEW (Not to Scale) TOP VIEW 14 VDD (Not to Scale) 13 S5 12 S6 11 S7 10 S8 9 S4 10 11 12 13 NC S8 D NC = NO CONNECT CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. WARNING! ESD SENSITIVE DEVICE –4– REV. C ADG508F/ADG509F/ADG528F TERMINOLOGY Typical Performance Graphs Most positive power supply potential. Most negative power supply potential. Ground (0 V) reference. Ohmic resistance between D and S. Change in RON when temperature changes by one degree Celsius. RON – 2000 1750 1500 1250 1000 750 500 250 0 –15 VDD = +10V VSS = –10V VDD = +15V VSS = –15V –10 –5 0 5 VD (VS) – Volts 10 15 TA = +25 C VDD VSS GND RON RON Drift RON Match IS (OFF) ID (OFF) ID, IS (ON) V D ( VS ) CS (OFF) CD (OFF) CD, CS (ON) CIN tON (EN) VDD = +5V VSS = –5V Difference between the RON of any two channels. Source leakage current when the switch is off. Drain leakage current when the switch is off. Channel leakage current when the switch is on. Analog voltage on terminals D, S. Channel input capacitance for “OFF” condition. Channel output capacitance for “OFF” condition. “ON” switch capacitance. Digital input capacitance. Delay time between the 50% and 90% points of the digital input and switch “ON” condition. Delay time between the 50% and 90% points of the digital input and switch “OFF” condition. Delay time between the 50% and 90% points of the digital inputs and the switch “ON” condition when switching from one address state to another. “OFF” time measured between 80% points of both switches when switching from one address state to another. Maximum input voltage for Logic “0”. Minimum input voltage for Logic “1”. Input current of the digital input. A measure of unwanted signal coupling through an “OFF” channel. A measure of the glitch impulse transferred from the digital input to the analog output during switching. Positive supply current. Negative supply current. Figure 3. On Resistance as a Function of VD (VS) 1m 100 VDD = 0V VSS = 0V VD = 0V IS – INPUT LEAKAGE – A 10 1 100n 10n OPERATING RANGE 1n 100p 10p tOFF (EN) tTRANSITION 1p –50 –40 –30 –20 –10 0 10 20 30 VIN – INPUT VOLTAGE – Volts 40 50 60 tOPEN Figure 4. Input Leakage Current as a Function of VS (Power Supplies OFF) During Overvoltage Conditions VINL VINH IINL (IINH) Off Isolation Charge Injection 1m 100 I D – INPUT LEAKAGE – A 10 1 VDD = +15V VSS = –15V VD = 0V 100n 10n OPERATING RANGE 1n IDD ISS 100p 10p 1p –50 –40 –30 –20 –10 0 10 20 30 VIN – INPUT VOLTAGE – Volts 40 50 60 Figure 5. Output Leakage Current as a Function of VS (Power Supplies ON) During Overvoltage Conditions REV. C –5– ADG508F/ADG509F/ADG528F 2000 1750 100 LEAKAGE CURRENTS – nA 1500 1250 VDD = +15V VSS = –15V 10 VDD = +15V VSS = –15V VD = +10V VS = –10V ID (OFF) RON – 1000 750 500 250 +25 C 0 –15 –10 –5 0 5 VD (VS) – Volts 10 15 +85 C +125 C 1 IS (OFF) 0.1 ID (ON) 0.01 25 35 45 55 85 95 65 75 TEMPERATURE – C 105 115 125 Figure 6. On Resistance as a Function of VD (VS) for Different Temperatures Figure 9. Leakage Currents as a Function of Temperature 1m 100 VDD = +15V VSS = –15V VD = 0V 260 VIN = +2V 240 220 200 IS – INPUT LEAKAGE – A 10 1 tON (EN) t – ns OPERATING RANGE 100n 10n 1n 100p 10p 1p –50 –40 180 160 140 tTRANSITION tOFF (EN) 120 100 10 –30 –20 –10 0 10 20 30 VIN – INPUT VOLTAGE – Volts 40 50 60 11 12 13 VSUPPLY – Volts 14 15 Figure 7. Input Leakage Current as a Function of VS (Power Supplies ON) During Overvoltage Conditions Figure 10. Switching Time vs. Power Supply 0.3 VDD = +15V VSS = –15V TA = +25 C IS (OFF) 0.1 ID (OFF) 280 260 240 220 VDD = +15V VSS = –15V VIN = +5V LEAKAGE CURRENTS – nA 0.2 tON (EN) t – ns 200 180 160 140 120 tTRANSITION 0.0 ID (ON) –0.1 tOFF (EN) 45 65 85 TEMPERATURE – C 105 125 –0.2 –14 –10 –6 –2 2 VS, VD – Volts 6 10 14 100 25 Figure 8. Leakage Currents as a Function of VD (VS) Figure 11. Switching Time vs. Temperature –6– REV. C ADG508F/ADG509F/ADG528F THEORY OF OPERATION The ADG508F/ADG509F/ADG528F multiplexers are capable of withstanding overvoltages from –40 V to +55 V, irrespective of whether the power supplies are present or not. Each channel of the multiplexer consists of an n-channel MOSFET, a pchannel MOSFET and an n-channel MOSFET, connected in series. When the analog input exceeds the power supplies, one of the MOSFETs will switch off, limiting the current to submicroamp levels, thereby preventing the overvoltage from damaging any circuitry following the multiplexer. Figure 12 illustrates the channel architecture that enables these multiplexers to withstand continuous overvoltages. When an analog input of VSS + 3 V to VDD – 1.5 V is applied to the ADG508F/ADG509F/ADG528F, the multiplexer behaves as a standard multiplexer, with specifications similar to a standard multiplexer, for example, the on-resistance is 400 Ω maximum. However, when an overvoltage is applied to the device, one of the three MOSFETs will turn off. Figures 12 to 15 show the conditions of the three MOSFETs for the various overvoltage situations. When the analog input applied to an ON channel approaches the positive power supply line, the n-channel MOSFET turns OFF since the voltage on the analog input exceeds the difference between VDD and the n-channel threshold voltage (VTN). When a voltage more negative than VSS is applied to the multiplexer, the p-channel MOSFET will turn off since the analog input is more negative than the difference between VSS and the p-channel threshold voltage (VTP). Since VTN is nominally 1.5 V and VTP is typically 3 V, the analog input range to the multiplexer is limited to –12 V to +13.5 V when a ± 15 V power supply is used. When the power supplies are present but the channel is off, again either the p-channel MOSFET or one of the n-channel MOSFETs will turn off when an overvoltage occurs. Finally, when the power supplies are off, the gate of each MOSFET will be at ground. A negative overvoltage switches on the first n-channel MOSFET but the bias produced by the overvoltage causes the p-channel MOSFET to remain turned off. With a positive overvoltage, the first MOSFET in the series will remain off since the gate to source voltage applied to this MOSFET is negative. During fault conditions, the leakage current into and out of the ADG508F/ADG509F/ADG528F is limited to a few microamps. This protects the multiplexer and succeeding circuitry from over stresses as well as protecting the signal sources which drive the multiplexer. Also, the other channels of the multiplexer will be undisturbed by the overvoltage and will continue to operate normally. +55V OVERVOLTAGE n-CHANNEL MOSFET IS OFF Q1 Q2 Q3 +55V OVERVOLTAGE n-CHANNEL MOSFET IS OFF VDD Q1 Q2 Q3 VSS Figure 12. +55 V Overvoltage Input to the ON Channel Figure 14. +55 V Overvoltage with Power OFF –40V OVERVOLTAGE n-CHANNEL MOSFET IS ON VSS Q1 Q2 Q3 –40V OVERVOLTAGE n-CHANNEL MOSFET IS ON Q1 Q2 Q3 VDD p-CHANNEL MOSFET IS OFF p-CHANNEL MOSFET IS OFF Figure 13. –40 V Overvoltage on an OFF Channel with Multiplexer Power ON Figure 15. –40 V Overvoltage with Power OFF REV. C –7– ADG508F/ADG509F/ADG528F Test Circuits IDS VDD VSS VSS D VDD ID (ON) A VD EN +2.4V V1 S1 S2 S8 S VS D VS RON = V1 /IDS Test Circuit 4. ID (ON) Test Circuit 1. On Resistance VDD VSS VSS VDD VSS A VDD S1 S2 S8 IS (OFF) A VDD S1 S2 VSS D VD D EN VS +0.8V VS S8 EN VD +0.8V Test Circuit 5. Input Leakage Current (with Overvoltage) Test Circuit 2. IS (OFF) 0V VDD 0V A2 A1 VDD S1 ID (OFF) S2 S8 EN VS +0.8V D A VD VSS 0V VSS S1 A VS VDD VSS A0 EN RS ADG528F* S8 D WR GND * SIMILAR CONNECTION FOR ADG508F/ADG509F Test Circuit 3. ID (OFF) Test Circuit 6. Input Leakage Current (with Power Supplies OFF) VDD VSS 3V VSS S1 S2–S7 S8 VS8 VOUT RL 1M CL 35pF 90% VS1 VDD A2 VIN 50 A1 A0 +2.4V EN RS GND ADDRESS DRIVE (VIN) 50% 50% ADG528F* D WR VOUT 90% * SIMILAR CONNECTION FOR ADG508F/ADG509F tTRANSITION tTRANSITION Test Circuit 7. Switching Time of Multiplexer, tTRANSITION –8– REV. C ADG508F/ADG509F/ADG528F VDD VSS 3V VDD A2 VIN 50 A1 A0 RS +2.4V EN GND WR VSS S1 S2–S7 VS ADDRESS DRIVE (VIN) ADG528F* S8 D RL 1k CL 35pF VOUT 80% VOUT 80% tOPEN * SIMILAR CONNECTION FOR ADG508F/ADG509F Test Circuit 8. Break-Before-Make Delay, tOPEN VDD VSS 3V VDD A2 A1 A0 +2.4V RS EN VIN 50 GND VSS S1 S2–S8 VS ENABLE DRIVE (VIN) 0V 50% 50% ADG528F* D WR RL 1k CL 35pF VO VOUT 0.9VO tOFF (EN) 0.9VO OUTPUT 0V tON (EN) * SIMILAR CONNECTION FOR ADG508F/ADG509F Test Circuit 9. Enable Delay, tON (EN), tOFF (EN) VDD VDD A2 A1 A0 +2.4V EN RS WR VRS VWR GND VSS 3V VSS S1 S2–S8 VS 0V WR 50% ADG528F VO D RL 1k CL 35pF VOUT tON (WR) OUTPUT 0.2VO 0V Test Circuit 10. Write Turn-On Time, tON (WR) REV. C –9– ADG508F/ADG509F/ADG528F VDD VDD A2 A1 A0 +2.4V EN RS VIN GND WR D RL 1k CL 35pF VOUT VSS 3V VSS S1 S2–S8 VS 0V RS 50% 50% ADG528F VO tRS tOFF (RS) 0.8VO SWITCH OUTPUT 0V Test Circuit 11. Reset Turn-Off Time, tOFF (RS) VDD VSS 3V +2.4V VDD A2 A1 RS VS VIN A0 S EN GND VSS RS ADG528F* D CL 1nF WR VOUT LOGIC INPUT (VIN) 0V VOUT Q INJ = CL x VOUT VOUT * SIMILAR CONNECTION FOR ADG508F/ADG509F Test Circuit 12. Charge Injection VDD VDD A2 A1 A0 +2.4V RS EN GND WR VSS D RL 1k VOUT S1 S8 VIN ADG528F* VSS * SIMILAR CONNECTION FOR ADG508F/ADG509F Test Circuit 13. OFF Isolation –10– REV. C ADG508F/ADG509F/ADG528F OUTLINE DIMENSIONS Dimensions shown in inches and (mm). 16-Lead Plastic (N-16) 0.840 (21.34) 0.745 (18.92) 16 1 9 8 16-Lead Cerdip (Q-16) 0.005 (0.13) MIN 16 0.080 (2.03) MAX 9 0.280 (7.11) 0.240 (6.10) 0.060 (1.52) 0.015 (0.38) 0.130 (3.30) MIN PIN 1 0.210 (5.33) MAX 0.160 (4.06) 0.115 (2.93) 0.022 (0.558) 0.014 (0.356) 0.100 (2.54) BSC 0.325 (8.26) 0.300 (7.62) 0.195 (4.95) 0.115 (2.93) 0.310 (7.87) 0.220 (5.59) 1 8 PIN 1 0.840 (21.34) MAX 0.200 (5.08) MAX 0.060 (1.52) 0.015 (0.38) 0.320 (8.13) 0.290 (7.37) 0.070 (1.77) SEATING 0.045 (1.15) PLANE 0.015 (0.381) 0.008 (0.204) 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 0.100 (2.54) BSC 0.150 (3.81) MIN SEATING 0.070 (1.78) PLANE 0.030 (0.76) 15° 0° 0.015 (0.38) 0.008 (0.20) 16-Lead SOIC (R-16N) (Narrow Body) 16-Lead SOIC (R-16W) (Wide Body) 0.4133 (10.50) 0.3977 (10.00) 16 9 0.3937 (10.00) 0.3859 (9.80) 16 1 9 8 0.1574 (4.00) 0.1497 (3.80) 0.2440 (6.20) 0.2284 (5.80) PIN 1 0.0098 (0.25) 0.0040 (0.10) 0.0688 (1.75) 0.0532 (1.35) 0.0196 (0.50) x 45° 0.0099 (0.25) 1 8 PIN 1 SEATING PLANE 0.0500 (1.27) BSC 0.0192 (0.49) 0.0138 (0.35) 0.0099 (0.25) 0.0075 (0.19) 8° 0° 0.0500 (1.27) 0.0160 (0.41) 0.0118 (0.30) 0.0040 (0.10) 0.1043 (2.65) 0.0926 (2.35) 0.4193 (10.65) 0.3937 (10.00) 0.2992 (7.60) 0.2914 (7.40) 0.0291 (0.74) x 45° 0.0098 (0.25) 0.0500 (1.27) BSC 8° 0.0192 (0.49) 0° SEATING 0.0125 (0.32) 0.0138 (0.35) PLANE 0.0091 (0.23) 0.0500 (1.27) 0.0157 (0.40) REV. C –11– ADG508F/ADG509F/ADG528F OUTLINE DIMENSIONS Dimensions shown in inches and (mm). 18-Lead Plastic (N-18) 0.925 (23.49) 0.845 (21.47) 18 1 10 9 18-Lead Cerdip (Q-18) 0.005 (0.13) MIN 18 0.098 (2.49) MAX 10 0.280 (7.11) 0.240 (6.10) PIN 1 0.210 (5.33) MAX 0.160 (4.06) 0.115 (2.93) 0.022 (0.558) 0.014 (0.356) 0.100 (2.54) BSC 0.070 (1.77) 0.045 (1.15) 0.060 (1.52) 0.015 (0.38) 0.130 (3.30) MIN SEATING PLANE 0.325 (8.25) 0.300 (7.62) 0.195 (4.95) 0.115 (2.93) 0.310 (7.87) 0.220 (5.59) 1 9 PIN 1 0.960 (24.38) MAX 0.200 (5.08) MAX 0.060 (1.52) 0.015 (0.38) 0.150 (3.81) MIN 0.100 (2.54) BSC 0.070 (1.78) SEATING 0.030 (0.76) PLANE 0.320 (8.13) 0.290 (7.37) 0.015 (0.381) 0.008 (0.204) 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 15° 0° 0.015 (0.38) 0.008 (0.20) 20-Lead PLCC (P-20A) 0.180 (4.57) 0.165 (4.19) 0.056 (1.42) 0.042 (1.07) 0.025 (0.63) 0.015 (0.38) 0.021 (0.53) 0.013 (0.33) 0.330 (8.38) 0.032 (0.81) 0.290 (7.37) 0.026 (0.66) 0.040 (1.01) 0.025 (0.64) 0.110 (2.79) 0.085 (2.16) 0.048 (1.21) 0.042 (1.07) 0.048 (1.21) 0.042 (1.07) 3 4 19 18 PIN 1 IDENTIFIER TOP VIEW (PINS DOWN) 8 9 14 13 0.050 (1.27) BSC 0.020 (0.50) R 0.356 (9.04) SQ 0.350 (8.89) 0.395 (10.02) SQ 0.385 (9.78) –12– REV. C PRINTED IN U.S.A. C1979c–0–8/98
ADG528FTQ 价格&库存

很抱歉,暂时无法提供与“ADG528FTQ”相匹配的价格&库存,您可以联系我们找货

免费人工找货