0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADS54J54IRGCT

ADS54J54IRGCT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VQFN64_EP

  • 描述:

    IC ADC 14BIT PIPELINED 64VQFN

  • 数据手册
  • 价格&库存
ADS54J54IRGCT 数据手册
Product Folder Order Now Technical Documents Support & Community Tools & Software ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 ADS54J54 Quad Channel 14-Bit 500 MSPS ADC 1 Features 3 Description • • • • • The ADS54J54 is a low power, wide bandwidth 14-bit 500 MSPS quad channel analog-to-digital converter (ADC). It supports the JESD204B serial interface with data rates up to 5 Gbps supporting 1 or 2 lanes per ADC. The buffered analog input provides uniform input impedance across a wide frequency range while minimizing sample-and-hold glitch energy. A sampling clock divider allows more flexibility for system clock architecture design. The ADS54J54 provides excellent spurious-free dynamic range (SFDR) over a large input frequency range with very low power consumption. Optional 2x Decimation Filter provides high-pass or low-pass filter modes. 1 • • 4 Channel, 14-Bit 500 MSPS ADC Analog input buffer with high impedance input Flexible input clock buffer with divide by 1/2/4 1.25 VPP Differential full-scale input JESD204B Serial interface – Subclass 1 compliant up to 5 Gbps – 1 Lane Per ADC up to 250 Msps – 2 Lanes Per ADC up to 500 Msps 64-Pin QFN Package (9 mm x 9 mm) Key specifications: – Power dissipation: 875 mW/ch – Input bandwidth (3 dB): 900 MHz – Aperture jitter: 98 fs rms – Channel isolation: 85 dB – Performance at ƒin = 170 MHz at 1.25 VPP, 1lane 2x Decimation –1 dBFS – SNR: 67.2 dBFS – SFDR: 85 dBc HD2,3; 95 dBFS non-HD2,3 – Performance at ƒin = 370 MHz at 1.25 VPP, 2lane no Decimation –1 dBFS – SNR: 64.7 dBFS – SFDR: 75 dBc HD2,3; 83 dBFS non-HD2,3 Device Information(1) PART NUMBER PACKAGE ADS54J54 BODY SIZE (NOM) VQFN (64) 9.00mm x 9.00mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Simplified Schematic OVRA INAP/M 14-bit ADC Digital Block Optional 2x Decimination JESD204B DA[0,1]P/M INBP/M 14-bit ADC Digital Block Optional 2x Decimination JESD204B DB[0,1]P/M OVRB SYSREFABP/M 2 Applications • • • • • • • • • • • Multi-Carrier, Multi-Mode, Multi-Band Cellular Receivers – TDD-LTE, FDD-LTE, CDMA, WCMDA, CMDA2k, GSM Microwave backhaul Wireless repeaters Distributed antenna systems (DAS) Broadband wireless Ultra-wide band software defined radio Data acquisition Test and measurement instrumentation Signal intelligence and jamming Radar and satellite systems Cable infrastructure Divide by 1, 2, 4 CLKINP/M SYNCbAB PLL x10/x20 SYNCbCD SYSREFCDP/M OVRC INCP/M 14-bit ADC Digital Block Optional 2x Decimination JESD204B DC[0,1]P/M INDP/M 14-bit ADC Digital Block Optional 2x Decimination JESD204B DD[0,1]P/M VCM Common Mode OVRD 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 5 6.1 6.2 6.3 6.4 6.5 6.6 Absolute Maximum Ratings ...................................... 5 ESD Ratings.............................................................. 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 5 Electrical Characteristics........................................... 7 Electrical Characteristics: 250 MSPS Output, 2x Decimation Filter ........................................................ 8 6.7 Electrical Characteristics: 500 MSPS Output............ 9 6.8 Electrical Characteristics: Sample Clock Timing Characteristics ........................................................... 9 6.9 Electrical Characteristics: Digital Outputs ............... 10 6.10 Timing Requirements ............................................ 10 6.11 Reset Timing ......................................................... 10 6.12 Typical Characteristics .......................................... 13 7 Detailed Description ............................................ 23 7.2 7.3 7.4 7.5 7.6 8 Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ Programming........................................................... Register Maps ......................................................... 23 24 33 35 36 Application and Implementation ........................ 53 8.1 8.2 8.3 8.4 8.5 Application Information............................................ Typical Application .................................................. Design Requirements.............................................. Detailed Design Procedure ..................................... Application Curves .................................................. 53 53 54 54 55 9 Power Supply Recommendations...................... 56 10 Layout................................................................... 56 10.1 Layout Guidelines ................................................. 56 10.2 Layout Example .................................................... 56 11 Device and Documentation Support ................. 58 11.1 Trademarks ........................................................... 58 11.2 Electrostatic Discharge Caution ............................ 58 11.3 Glossary ................................................................ 58 12 Mechanical, Packaging, and Orderable Information ........................................................... 58 7.1 Overview ................................................................. 23 4 Revision History Changes from Original (January 2015) to Revision A Page • Added list item in Device and Register Initialization: "Write the data in Table 5 to.." .......................................................... 33 • Added Table 5 ..................................................................................................................................................................... 33 2 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 5 Pin Configuration and Functions AVDD33 INAP INAM AVDD33 AVDD18 INBM INBP AVDD18 DV DD DA0P DA0M IOVDD DA1P DA1M OVRA OVRB 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 ADS54J54 RGC 64 Pin Package Top View SDOUT 1 48 SYNCbABM SDATA 2 47 SYNCbABP SCLK 3 46 DB0P SDENb 4 45 DB0M SYSREFABM 5 44 IOVDD SYSREFABP 6 43 DB1P AVDDC 7 42 DB1M CL KINM 8 41 PLLVDD CL KINP 9 40 PLLVDD AVDDC 10 39 DD1M Th ermal Pad 32 OVRD 29 DC1P 31 28 IOVDD 30 27 DC0M DC1M 26 OVRC 25 DC0P SYNCbCDM DV DD 33 24 16 AVDD18 VCM 23 SYNCbCDP 22 DD0P 34 INDP 35 15 INDM 14 VREF 21 ENABLE 20 DD0 AVDD18 36 AVDD33 13 19 SRESETb INCM IOVDD 18 DD1P 37 17 38 12 INCP 11 AVDD33 SYSREFCDP SYSREFCDM No t to scale Pin Functions PIN NAME NO. I/O DESCRIPTION INPUT OR REFERENCE INAP, INAM 63, 62 I Differential analog input for channel A INBP, INBM 58, 59 I Differential analog input for channel B INCP, INCM 18, 19 I Differential analog input for channel C INDP, INDM 23, 22 I Differential analog input for channel D VCM 16 O Common mode output voltage to bias analog inputs, Vcm = 2.0 V VREF 15 O Voltage reference output. A 0.1-µF bypass capacitor to ground close to the pin is recommended CLKINP, CLKINM 9, 8 I Differential clock input for channel SYSREFABP, SYSREFABM 6, 5 I LVDS input with internal 100-Ω termination. External SYSREF input for channels A, B, C, and D SYSREFCDP, SYSREFCDM 11, 12 I LVDS input with internal 100-Ω termination. External SYSREF input for channels C and D if output rate of channel A/B is different from channel C/D. CLOCK/SYNC Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 3 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Pin Functions (continued) PIN NAME NO. I/O DESCRIPTION CONTROL OR SERIAL I Chip enable. Active high. Power down functionality can be configured through SPI register setting and exercised using the ENABLE pin. Internal 51-kΩ pulldown resistor. I Serial interface clock input ENABLE 14 SCLK 3 SDATA 2 SDENb 4 I Serial interface enable SDOUT 1 O Serial interface data output SRESETb 13 I Hardware reset. Active low. Initializes internal registers during high to low transition. This pin has an internal 51-kΩ pullup resistor. I/O Bidirectional serial data in 3-pin mode. In 4-pin interface, the SDATA pin is an input only. DATA OUTPUT INTERFACE DA[0,1]P, DA[0,1]M 55, 54, 52, 51 O JESD204B output interface for channel A DB[0,1]P, DB[0,1]M 46, 45, 43, 42 O JESD204B output interface for channel B DC[0,1]P, DC[0,1]M 26, 27, 29, 30 O JESD204B output interface for channel C DD[0,1]P, DD[0,1]M 35, 36, 38, 39 O JESD204B output interface for channel D OVRA 50 OVRB 49 I/O Fast over-range indicator channel A. O OVRC 31 I/O Fast over-range indicator channel C. OVRD Fast over-range indicator channel B. 32 O Fast over-range indicator channel D. SYNCbABP, SYNCbABM 47, 48 I SYNCb input for JESD204B interface for channel A/B, internal 100-Ω termination SYNCbCDP, SYNCbCDM 34, 33 I SYNCb input for JESD204B interface for channel C/D, internal 100-Ω termination AVDDC 7, 10 I Clock 1.8-V power supply AVDD18 21, 24, 57, 60 I Analog 1.9-V power supply AVDD33 17, 20, 61, 64 I Analog 3.3-V power supply 25, 56 I Digital 1.8-V power supply GND PowerPAD™ I Ground IOVDD 28, 37, 44, 53 I JESD204B output interface 1.8-V power supply 40, 41 I PLL 1.8-V power supply POWER SUPPLY DVDD PLLVDD 4 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature (unless otherwise noted) (1) Supply voltage MIN MAX AVDD33 –0.3 3.6 AVDD18 –0.3 2.1 AVDDC –0.3 2.1 DVDD –0.3 2.1 IOVDD –0.3 2.1 PLLVDD –0.3 2.1 –0.3 0.3 Voltage between AGND and DGND Voltage applied to input pins V –0.3 3 CLKINP, CLKINM –0.3 AVDD18 + 0.3 V SYNCbABP, SYNCbABM, SYNCbCDP, SYNCbCDM –0.3 AVDD18 + 0.3 V SYSREFABP, SYSREFABM, SYSREFCDP, SYSREFCDM –0.3 AVDD18 + 0.3 V SCLK, SDENb, SDATA, SRESETb, ENABLE –0.3 DVDD + 0.5 V Operating junction temperature, TJ –40 (2) Storage temperature, Tstg (2) V INAP, INBP, INCP, INDP, INAM, INBM, INCM, INDM Operating free-air temperature, TA (1) UNIT –65 V 85 ºC 125 ºC 150 °C Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated as recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN ADC clock frequency Resolution Supply NOM MAX UNIT 250 500 MSPS 14 14 bits AVDD33 3.15 3.3 3.45 AVDD18 1.8 1.9 2 AVDDC 1.7 1.8 1.9 DVDD 1.7 1.8 1.9 IOVDD 1.7 1.8 1.9 1.8 1.9 PLLVDD 1.7 TA Operating free-air temperature –40 TJ Operating junction temperature V 85 °C 125 °C 6.4 Thermal Information Thermal Metric (1) RΘJA (1) Junction-to-ambient thermal resistance RGC (64 PINS) UNIT 23.5 °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 5 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Thermal Information (continued) Thermal Metric (1) RGC (64 PINS) UNIT RΘJC(top) Junction-to-case, top 7.0 °C/W RΘJB Junction-to-board thermal resistance 2.6 °C/W φJT Junction-to-top of package 0.1 °C/W φJB Junction-to-board characterization parameter 2.6 °C/W RΘJC(bot) Junction-to-case, bottom 0.3 °C/W 6 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 6.5 Electrical Characteristics Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1-dBFS differential input, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT POWER SUPPLY IAVDD33 3.3-V analog supply current 500 mA IAVDD18 1.9-V analog supply current 320 mA IAVDDC 1.8-V clock supply current 18 mA IDVDD 1.8-V digital supply current IIOVDD I/O voltage supply current IPLLVDD PLL voltage supply current Pdis Total power dissipation 4-channel decimation filter 323 4-channel bypass digital mode 324 2-channel decimation filter, 2-channel bypass digital mode 324 2 lanes per ADC 373 1 lane per ADC 185 4-channel bypass digital mode 3.46 4-channel decimation filter 3.34 4-channel decimation filter, 1 lane per ADC 3.27 2-channel decimation filter, 2-channel bypass digital mode 3.51 SNR > 60 dB Light sleep mode power Wake-up time from light sleep mode mA 42 Deep sleep mode power Wake-up time from deep sleep mode mA SNR > 60 dB mA 3.7 W 791 mW 1.4 ms 1.68 W 8 µs ANALOG INPUTS Differential input full-scale 1 1.25 1.5 Vpp VCM ± 50 mV V 1 kΩ Input Each input to GND capacitance 2.75 pF VCM 2.18 V 900 MHz ±3 LSB ±0.9 LSB Input common mode voltage Input resistance Differential at DC Common mode voltage output Analog input bandwidth (–3 dB) INL Integral nonlinearity DNL Dynamic nonlinearity –1 Gain error ±2.24% Offset error ±1.91 mV CHANNEL-TO-CHANNEL ISOLATION Crosstalk (1) Near channel ƒIN = 170 MHz 85 Far channel ƒIN = 170 MHz 95 dB CLOCK INPUT 2000 (2) Input clock frequency 250 Input clock amplitude 0.4 1.5 Input clock duty cycle 45% 50% Internal clock biasing (1) (2) MHz Vpp 55% 0.9 V Crosstalk is measured with a –1-dBFS input signal on aggressor channel and no input on victim channel. CLK / 4 mode Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 7 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 6.6 Electrical Characteristics: 250 MSPS Output, 2x Decimation Filter Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1-dBFS differential input, unless otherwise noted. PARAMETER SNR HD2 HD3 Signal-to-noise ratio Second harmonic distortion Third harmonic distortion SFDR Spur free dynamic range (Non-HD2, (excluding HD2 and HD3) Non-HD3) IMD3 8 2F1-F2, 2F2-F1, Ain = –7 dBFS TEST CONDITIONS MIN TYP ƒIN = 10 MHz 68.3 ƒIN = 100 MHz 68.2 ƒIN = 170 MHz 67.2 ƒIN = 310 MHz 67.6 ƒIN = 450 MHz 66.8 ƒIN = 10 MHz 85 ƒIN = 100 MHz 85 ƒIN = 170 MHz 85 ƒIN = 310 MHz 85 ƒIN = 450 MHz 75 ƒIN = 10 MHz 85 ƒIN = 100 MHz 85 ƒIN = 170 MHz 85 ƒIN = 310 MHz 85 ƒIN = 450 MHz 85 ƒIN = 10 MHz 95 ƒIN = 100 MHz 95 ƒIN = 170 MHz 95 ƒIN = 310 MHz 90 ƒIN = 450 MHz 85 FIN = 169 and 171 MHz 93 Submit Documentation Feedback MAX UNIT dBFS dBc dBc dBc dBFS Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 6.7 Electrical Characteristics: 500 MSPS Output Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1-dBFS differential input, unless otherwise noted. PARAMETER SNR Signal-to-Noise Ratio TEST CONDITIONS MIN TYP ƒIN = 10 MHz 65.3 ƒIN = 100 MHz 65.2 Bypass Digital Mode (14 bit) ƒIN = 170 MHz 61 64.9 ƒIN = 370 MHz 64.7 ƒIN = 450 MHz 64.6 ƒIN = 10 MHz HD3 Second Harmonic Distortion Third Harmonic Distortion SFDR Spur Free Dynamic Range (Non-HD2, (excluding HD2 and HD3) Non-HD3) IMD3 2F1-F2, 2F2-F1, Ain = –7 dBFS UNIT dBFS 85 ƒIN = 100 MHz HD2 MAX 85 ƒIN = 170 MHz 70 85 ƒIN = 370 MHz 75 ƒIN = 450 MHz 75 ƒIN = 10 MHz 85 ƒIN = 100 MHz 85 ƒIN = 170 MHz 70 dBc 85 ƒIN = 370 MHz 85 ƒIN = 450 MHz 85 ƒIN = 10 MHz 85 ƒIN = 100 MHz dBc 85 ƒIN = 170 MHz 70 85 ƒIN = 370 MHz 83 ƒIN = 450 MHz 83 fIN = 169 and 171 MHz 87 dBFS dBFS 6.8 Electrical Characteristics: Sample Clock Timing Characteristics Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted. PARAMETER MIN 98 Data latency 38 Fast over-range (OVR) latency tPDI TYP Aperture jitter, RMS 6 Clock aperture delay 1.1 MAX UNIT fs rms Sample clock cycles ns Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 9 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 6.9 Electrical Characteristics: Digital Outputs The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0 or 1. AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V. PARAMETER MIN TYP MAX UNIT 450 577 750 mV DIGITAL OUTPUTS: JESD204B INTERFACE (DA[0,1], DB[0,1], DC[0,1], DD[0,1]) Output differential voltage, |VOD| Transmitter short circuit current Transmitter terminals shorted to any voltage between –0.25 and 1.45 V 45 mA 50 Ω 2 pF 200 ps 110 ps Single ended output impedance Output capacitance Output capacitance inside the device, from either output to ground Unit interval, UI 5.0 Gbps Rise and fall times Output jitter 57 ps Serial output data rate 5.0 Gbps 6.10 Timing Requirements MIN TYP MAX UNIT DIGITAL INPUTS: SRESETb, SCLK, SDENb, SDATA, ENABLE, OVRA, OVRC, SYSREFCDP, SYSREFCDM High-level input voltage Low-level input voltage All digital inputs support 1.8-V and 3.3-V logic levels 1.2 V 0.4 V High-level input current 50 µA Low-level input current –50 µA 4 pF DVDD V Input capacitance DIGITAL OUTPUTS: SDOUT, OVRA, OVRB, OVRC, OVRD High-level output voltage ILoad = –100 µA DVDD – 0.2 Low-level output voltage 0.2 V DIGITAL INPUTS: SYNCbABP/M, SYNCbCDP/M, SYSREFABP/M, SYSREFCDP/M Input voltage VID 250 350 450 mV Input common mode voltage VCM 0.4 0.9 1.4 V tS_SYSREFxx Referenced to rising edge of input clock 100 ps tH_SYSREFxx Referenced to rising edge of input clock 100 ps 6.11 Reset Timing PARAMETER TEST CONDITIONS t1 Power-on delay Delay from power up to active-low RESET pulse t2 Reset pulse duration Active-low RESET pulse duration t3 Register write delay Delay from RESET disable to SDENb active 10 Submit Documentation Feedback MIN TYP MAX UNIT 3 ms 20 ns 100 ns Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 Power Supplies t1 SRESETb t2 t3 SDENb Figure 1. Reset Timing Diagram N+1 N+2 N SAMPLE tPD Data Latency: 74 Clock Cycles CLKINM CLKINP DA0P/M DB0P/M DC0P/M DD0P/M D 20 D 1 SAMPLE N ± 1 A. SAMPLE N D 20 SAMPLE N + 1 tPD is the propagation delay from sample clock input edge to serial data output transition Figure 2. Timing Diagram: 250 MSPS Output Data Rate Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 11 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 N+ 2 N+1 N SAMPLE www.ti.com N+3 tPD Data Latency: 38 Clock Cycles CLKINM CLKINP DA0P/M DB0P/M DC0P/M DD0P/M D 20 SAMPLE N ± 1 DA1P/M DB1P/M DC1P/M DD1P/M D 10 SAMPLE N + 1 D 1 SAMPLE N D D 11 20 D 20 SAMPLE N SAMPLE N ± 1 B. D 11 D 10 SAMPLE N + 2 D 1 SAMPLE N + 1 D 10 SAMPLE N + 2 tPD is the propagation delay from sample clock input edge to serial data output transition Figure 3. Timing Diagram: 500 MSPS Output Data Rate Sample N ts_SYSREFxx th_SYSREFxx CLKIN SYSREFxx Figure 4. Timing Using SYSREF (Subclass 1) 12 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 6.12 Typical Characteristics 0 0 -20 -20 -40 -40 Attenuation (dB) Attenuation (dB) Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768. -60 -80 -60 -80 -100 -100 -120 -120 0 25 Fin = 10 MHz 50 75 Frequency (MHz) 100 0 125 25 50 75 Frequency (MHz) D001 1-lane 2x decimation SNR = 65.29 dBFS Ain = –1 dBFS SFDR = 84.72 dBc Fin = 100 MHz 125 D002 1-lane 2x decimation SNR = 65.40 dBFS Figure 5. FFT 10 MHz Ain = –1 dBFS SFDR = 82.50 dBc Figure 6. FFT 100 MHz 0 0 -20 -20 -40 -40 Attenuation (dB) Attenuation (dB) 100 -60 -80 -100 -60 -80 -100 -120 -120 0 25 Fin = 170 MHz 50 75 Frequency (MHz) 100 125 0 25 50 75 Frequency (MHz) D003 1-lane 2x decimation SNR = 65.34 dBFS Ain = –1 dBFS SFDR = 91.62 dBc Fin = 230 MHz 100 D004 1-lane 2x decimation SNR = 65.16 dBFS Figure 7. FFT 170 MHz 125 Ain = –1 dBFS SFDR = 76.83 dBc Figure 8. FFT 230 MHz 0 96 93 -20 90 SFDR (dBc) Attenuation (dB) 87 -40 -60 -80 84 81 78 75 72 69 -100 66 -120 60 63 65 Fin = 230 MHz 70 75 80 85 Frequency (MHz) 90 1-lane 2x decimation SNR = 65.16 dBFS 95 100 0 100 200 300 D005 Ain = –1 dBFS SFDR = 76.83 dBc 1-lane 2x decimation Figure 9. 2-Tone FFT 400 500 600 Fin (MHz) 700 800 900 1000 D006 D008 Ain = –1 dBFS Figure 10. SFDR vs Frequency Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 13 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Typical Characteristics (continued) Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768. 110 70.0 -40qC 0qC 105 85qC 100 SFDR (dBFS) SNR (dBFS) 68.0 25qC 55qC 66.0 95 90 85 64.0 80 75 -90 62.0 0 100 200 1-lane 2x decimation 300 400 500 600 Fin (MHz) 700 800 900 1000 -80 -70 -60 -50 -40 -30 Input Amplitude (dBFS) D007 Ain = –1 dBFS 1-lane 2x decimation Figure 11. SNR vs. Frequency -20 -10 0 D008 Fin = 170 MHz Figure 12. SFDR vs. Amplitude 71 95 -40qC 0qC 25qC 55qC 85qC 90 85 70 SFDR (dBc) SNR (dBFS) 80 69 68 75 70 65 60 55 67 50 45 66 -90 -80 -70 1-lane 2x decimation -60 -50 -40 -30 Input Amplitude (dBFS) -20 -10 40 1.5 0 1.7 1.9 Fin = 170 MHz 1-lane 2x decimation Figure 13. SNR vs. Amplitude 2.3 2.5 D010 Fin = 170 MHz Figure 14. SFDR vs. VCM 70 100 VREF=1.35V VREF=1.5V 69 95 68 SFDR (dBc) 67 SNR (dBFS) 2.1 VCM (V) D009 66 65 64 VREF=1.15V VREF=1.0V 90 85 80 63 62 75 61 60 1.5 70 1.7 1.9 2.1 VCM (V) 1-lane 2x decimation Fin = 170 MHz 2.3 2.5 0 100 D011 300 400 500 600 700 Input Frequency (MHz) 1-lane 2x decimation Figure 15. SNR vs VCM 14 200 800 900 1000 D012 Ain = –1 dBFS Figure 16. SFDR vs. VREF Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 Typical Characteristics (continued) Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768. 94 72 VREF=1.25V VREF=1.35V VREF=1.5V 0qC 25qC 55qC 85qC 92 90 SFDR (dBc) SNR (dBFS) 70 -40qC VREF=1.15V VREF=1.0V 68 66 88 86 84 82 64 80 78 1.7 62 0 100 200 300 400 500 600 700 Input Frequency (MHz) 1-lane 2x decimation 800 900 1000 1.8 1.9 2.0 AVDD18 Supply Voltage (V) D013 Ain = –1 dBFS 1-lane 2x decimation Figure 17. SNR vs. VREF 2.1 D014 D017 Ain = –1 dBFS Fin = 170 MHz Figure 18. SFDR vs. AVDD18 70 96 -40qC 0qC 25qC 55qC 85qC 94 -40qC 0qC 25qC 55qC 85qC 92 90 SFDR (dBc) SNR (dBFS) 68 66 88 86 84 82 80 64 78 76 74 62 1.7 1.8 1.9 2.0 AVDD18 Supply Voltage (V) 1-lane 2x decimation Ain = –1 dBFS 72 3.0 2.1 3.1 3.2 3.3 3.4 AVDD33 Supply Voltage (V) D015 Fin = 170 MHz 1-lane 2x decimation Figure 19. SNR vs. AVDD18 3.5 Ain = –1 dBFS 3.6 D016 Fin = 170 MHz Figure 20. SFDR vs. AVDD33 70 94 -40qC 0qC 25qC 55qC 85qC -40qC 0qC 25qC 55qC 85qC 92 90 SFDR (dBc) SNR (dBFS) 68 66 64 88 86 84 82 80 62 3.0 3.1 3.2 3.3 3.4 AVDD33 Supply Voltage (V) 1-lane 2x decimation Ain = –1 dBFS 3.5 3.6 78 1.6 D017 Fin = 170 MHz 1.7 1.8 1.9 PLLVDD Supply Voltage (V) 1-lane 2x decimation Figure 21. SNR vs. AVDD33 Ain = –1 dBFS 2.0 D018 Fin = 170 MHz Figure 22. SFDR vs. PLLVDD Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 15 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Typical Characteristics (continued) Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768. 100 70 -40qC 0qC 25qC 55qC 85qC 90 80 SFDR (dBc) SNR (dBFS) 68 66 70 60 50 40 30 64 1.6 1.7 1.8 1.9 PLLVDD Supply Voltage (V) 1-lane 2x decimation 20 0.0 2.0 0.5 1.0 1.5 2.0 2.5 Clock Amplitude (V peak to peak) D019 Ain = –1 dBFS Fin = 170 MHz 1-lane 2x decimation Figure 23. SNR vs PLLVDD 3.0 3.5 D020 Ain = –1 dBFS Fin = 170 MHz Figure 24. SFDR vs. Clock Amplitude 80 4.5 2x Decimation Digital Bypass 70 4.0 Power (W) SNR (dBFS) 60 50 3.5 40 3.0 30 20 0.0 0.5 1.0 1.5 2.0 2.5 Clock Amplitude (V peak to peak) 1-lane 2x decimation 3.0 2.5 250.0 3.5 300.0 D021 Ain = –1 dBFS Fin = 170 MHz Figure 25. SNR vs. Clock Amplitude AVDD18 = 1.9 V Ain = –1 dBFS 350.0 400.0 450.0 Sample Frequency (MHz) AVDD33 = 3.3 V Fin = 170 MHz 500.0 550.0 D022 Other supplies = 1.8 V 0 Attenuation (dB) -20 -80 0 C Channel to Channel 1-lane 2x decimation Ain = –1 dBFS 25 50 D023 hD to C hC C hB C hA C hD to C hD hD C C hC to to C hB C hA hC C hC C to hD to C C to C hB to hB C hB C hC hA C hD to C hC hA to C to hA C C -60 -120 C to hA C -40 -100 hB Crosstalk (dBFS) Figure 26. Power vs Sample Frequency 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 2-lane no decimation SNR = 65.27 dBFS 75 100 125 150 175 Frequency (MHz) Ain = –1 dBFS SFDR = 86.63 dBc 200 225 250 D024 Fin = 10 MHz Fin = 170 MHz Figure 28. FFT 10 MHz Figure 27. Crosstalk by Channel 16 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 Typical Characteristics (continued) 0 0 -20 -20 -40 -40 Attenuation (dB) Attenuation (dB) Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768. -60 -80 -100 -60 -80 -100 -120 -120 0 25 50 75 2-lane no decimation SNR = 65.41 dBFS 100 125 150 175 Frequency (MHz) 200 225 250 0 25 50 Ain = –1 dBFS SFDR = 83.25 dBc Fin = 100 MHz 2-lane no decimation SNR = 65.26 dBFS Figure 29. FFT 100 MHz 100 125 150 175 Frequency (MHz) 200 225 250 D026 Ain = –1 dBFS SFDR = 90.42 dBc Fin = 170 MHz Figure 30. FFT 170 MHz 0 0 -20 -20 -40 -40 Attenuation (dB) Attenuation (dB) 75 D025 -60 -80 -60 -80 -100 -100 -120 150 -120 0 25 50 75 2-lane no decimation SNR = 64.91 dBFS 100 125 150 175 Frequency (MHz) 200 225 250 155 160 165 170 175 Frequency (MHz) D027 Ain = –1 dBFS SFDR = 83.29 dBc Fin = 230 MHz 180 190 D028 2-lane no decimation Fin = 170 MHz Figure 31. FFT 230 MHz 185 Ain = –1 dBFS Figure 32. 2-Tone FFT 66.0 92 88 65.0 SNR (dBFS) SFDR (dBc) 84 80 76 72 64.0 63.0 68 62.0 64 0 100 200 300 2-lane no decimation 400 500 600 Fin (MHz) 700 800 900 1000 0 100 200 300 D006 D029 Ain = –1 dBFS 2-lane no decimation Figure 33. SDFR vs Frequency 400 500 600 Fin (MHz) 700 800 900 1000 Figure 34. SNR vs Frequency Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 D030 Ain = –1 dBFS 17 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Typical Characteristics (continued) Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768. 105 68 -40qC 0qC 85qC 95 90 80 63 -70 -60 -50 -40 -30 Input Amplitude (dBFS) 2-lane no decimation -20 -10 62 -90 0 -80 -70 -60 -50 -40 -30 Input Amplitude (dBFS) D031 Fin = 170 MHz 85qC 65 64 -80 25qC 55qC 66 85 75 -90 -40qC 0qC 67 SNR (dBFS) SFDR (dBFS) 100 25qC 55qC 2-lane no decimation Figure 35. SFDR vs Amplitude -20 -10 0 D032 Fin = 170 MHz Figure 36. SNR vs Amplitude 68 95 90 67 85 66 75 SNR (dBFS) SFDR (dBc) 80 70 65 60 55 65 64 63 62 50 61 45 40 1.5 1.7 1.9 2.1 2.3 VCM (V) 2-lane no decimation 60 1.5 2.5 1.7 1.9 Fin = 170 MHz 2.1 2.3 2.5 VCM (V) D033 2-lane no decimation Figure 37. SFDR vs VCM D034 Fin = 170 MHz Figure 38. SNR vs VCM 68 92 VREF=1.00V VREF=1.15V 88 VREF=1.25V VREF=1.35V VREF=1.5V VREF=1.00V VREF=1.15V VREF=1.25V 66 VREF=1.35V VREF=1.50V SNR (dBFS) SFDR (dBc) 84 80 76 64 62 72 60 68 64 58 0 100 200 300 400 500 600 700 Input Frequency (MHz) 2-lane no decimation 800 900 1000 0 100 D035 Ain = –1 dBFS 300 400 500 600 700 Input Frequency (MHz) 2-lane no decimation Figure 39. SFDR vs Input Frequency 18 200 Submit Documentation Feedback 800 900 1000 D036 Ain = –1 dBFS Figure 40. SNR vs Input Frequency Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 Typical Characteristics (continued) Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768. 94 92 68 -40qC 0qC 25qC 55qC 85qC -40qC 0qC 25qC 55qC 85qC 90 66 SNR (dBFS) SFDR (dBc) 88 86 84 82 64 80 62 78 76 74 1.7 1.8 1.9 2.0 AVDD18 Supply Voltage (V) 2-lane no decimation Ain = –1 dBFS 60 1.7 2.1 Fin = 170 MHz 2-lane no decimation Figure 41. SFDR vs AVDD18 Supply Voltage Ain = –1 dBFS 2.1 D038 Fin = 170 MHz Figure 42. SNR vs AVDD18 Supply Voltage 68 96 94 1.8 1.9 2.0 AVDD18 Supply Voltage (V) D037 -40qC 0qC 25qC 55qC 85qC -40qC 0qC 25qC 55qC 85qC 92 66 88 SNR (dBFS) SFDR (dBc) 90 86 84 82 64 80 78 62 76 74 72 3.0 3.1 3.2 3.3 3.4 AVDD33 Supply Voltage (V) 2-lane no decimation Ain = –1 dBFS 3.5 60 3.0 3.6 Fin = 170 MHz Figure 43. SFDR vs AVDD33 Supply Voltage Ain = –1 dBFS 3.5 3.6 D040 Fin = 170 MHz Figure 44. SNR vs AVDD33 Supply Voltage 68 -40qC 0qC 25qC 55qC 85qC -40qC 88 67 86 66 SNR (dBFS) SFDR (dBc) 3.2 3.3 3.4 AVDD33 Supply Voltage (V) 2-lane no decimation 90 84 64 80 63 1.7 1.8 1.9 PLLVDD Supply Voltage (V) 2-lane no decimation Ain = –1 dBFS 2.0 62 1.6 Figure 45. SFDR vs PLLVDD Supply Voltage 25qC 55qC 1.7 1.8 1.9 PLLVDD Supply Voltage (V) D041 Fin = 170 MHz 0qC 85qC 65 82 78 1.6 3.1 D039 2-lane no decimation Ain = –1 dBFS 2.0 D042 Fin = 170 MHz Figure 46. SNR vs PLLVDD Supply Voltage Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 19 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Typical Characteristics (continued) Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768. 80 100 90 70 70 SNR (dBFS) SFDR (dBc) 80 60 50 60 50 40 40 30 30 20 0.0 0.5 1.0 1.5 2.0 2.5 Clock Amplitude (V peak to peak) 2-lane no decimation 3.0 20 0.0 3.5 Ain = –1 dBFS Fin = 170 MHz Ain = –1 dBFS 3.0 3.5 D044 Fin = 170 MHz Figure 48. SNR vs Clock Amplitude hD C hC hA to C C hB hC to C C hD hD to C C hD hA to C C hB hD to C hC to hC D023 D045 C hC C to hB C hA C to hB C hD C to hB C C C hA to C C C hA to to hA C hC 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 hB Crosstalk (dBFS) 1.0 1.5 2.0 2.5 Clock Amplitude (V peak to peak) 2-lane no decimation Figure 47. SFDR vs Clock Amplitude C 0.5 D043 Channel to Channel 2-lane no decimation Ain = –1 dBFS Fin = 170 MHz Figure 49. Crosstalk by Channel 20 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 Typical Characteristics (continued) Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768. 2lane no decimation Figure 50. SNR Contour Plot 2lane no decimation Figure 51. SFDR Contour Plot Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 21 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Typical Characteristics (continued) and and Fi l te rT ran sit Fil t er T r ion ans i tio Ba nd nB Tra ns ition B Fil ter Filter Transit ion Band Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768. 1lane 2x decimation ion rT ran sit Fi l te Fil t er T r ans i tio nB Ba nd and and Tra ns ition B Fil ter Filter Transit ion Band Figure 52. SNR Contour Plot 1lane 2x decimation Figure 53. SFDR Contour Plot 22 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7 Detailed Description 7.1 Overview The ADS54J54 is a low power, wide bandwidth 14-bit 500 MSPS quad channel ADC. It supports the JESD204B serial interface with data rates up to 5.0 Gbps supporting 1 or 2 lanes per channel. The buffered analog input provides uniform input impedance across a wide frequency range while minimizing sample-and-hold glitch energy. A sampling clock divider allows more flexibility for system clock architecture design. The ADS54J54 provides excellent SFDR over a large input frequency range with low power consumption. 7.2 Functional Block Diagram OVRA INAP/M 14-bit ADC Digital Block Optional 2x Decimination JESD204B DA[0,1]P/M INBP/M 14-bit ADC Digital Block Optional 2x Decimination JESD204B DB[0,1]P/M OVRB SYSREFABP/M Divide by 1,2,4 CLKINP/M SYNCbAB PLL x10/x20 SYNCbCD SYSREFCDP/M OVRC INCP/M 14-bit ADC Digital Block Optional 2x Decimination JESD204B DC[0,1]P/M INDP/M 14-bit ADC Digital Block Optional 2x Decimination JESD204B DD[0,1]P/M VCM OVRD Common Mode Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 23 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 7.3 Feature Description 7.3.1 Decimation by 2 (250 MSPS Output) Each channel has a digital filter in the data path as shown in Figure 54. The filter can be programmed as a lowpass or high-pass filter and the normalized frequency response of both filters is shown in Figure 55. Lowpass/ Highpass selection 500 MSPS Low Latency Filter 250 MSPS ADC 2 0, Fs/2 Figure 54. 2x Decimation Filter The decimation filter response has a 0.1-dB pass band ripple with approximately 41% pass-band bandwidth. The stop-band attenuation is approximately 40 dB. 10 0.1 0 0.05 Attenuation (dB) Attenuation (dB) -10 -20 -30 -40 0 -0.05 -50 -60 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 D00C Figure 55. Decimation Filter Response 0.06 0.12 0.18 0.24 0.3 0.36 0.42 0.48 D00D Figure 56. Decimation Filter Response Passband Ripple Detail 7.3.2 Over-Range Indication The ADS54J54 provides a fast over-range indication on the OVRA, OVRB, OVRC, and OVRD pins. The fast OVR is triggered if the input voltage exceeds the programmable over-range threshold and is output after just 6 clock cycles, enabling a quicker reaction to an over-range event. The OVR threshold can be configured using SPI register writes. The input voltage level at which the overload is detected is referred to as the threshold and is programmable using the over-range threshold bits. The threshold at which fast OVR is triggered is (full-scale × [the decimal value of the FAST OVR THRESH bits] / 8). After reset, the default value of the over-range threshold is set to 7 (decimal), which corresponds to a threshold of 1.12 dB below full scale (20 × log(7/8)). 24 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 Table 1. Fast Over Range Threshold Settings OVR Setting (decimal) OVR Threshold (dBFS) 1 –18.1 2 –12.0 3 –8.5 4 –6.0 5 –4.1 6 –2.5 7 (default) –1.1 Because the fast over-range indicator is single-ended LVCMOS logic, the ADS54J54 device can be configured through the SPI register write to keep the over-range indicator asserted high for an extra one, two, or four clock cycles. This longer assertion of the signal ensures the processor can capture the over-range event. Sampling Clock Internal Over-Range Event OVRA, OVRB, OVRC, OVR D Terminal Output Normal Hold 1 extra clock cycle Hold 2 extra clock cycles Figure 57. Fast Over Range Output Timing The ADS54J54 device also provides the fast over-range indication bit in the JESD204B output data stream. 14-Bit Data Output D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 OVR 0 16-bit data going into 8b/10b encoder Figure 58. Sample Data and Status Bit Format 7.3.3 JESD204B Interface The ADS54J54 supports device subclass 1 with a maximum output data rate of 5 Gbps for each serial transmitter. It allows independent JESD204B format configuration for channel A and B and channel C and D. An external SYSREF signal is used to align all internal clock phases and the local multi-frame clock to a specific sampling clock edge. This allows synchronization of multiple devices in a system and minimizes timing and alignment uncertainty. SYNCbAB input is used to control all the JESD204B SerDes blocks for channel A and B while SYNCbCD is used to control channel C and D. If the same LMFS configuration is used for all four channels, the SYNCbAB and SYNCbCD signals can be tied together externally and driven from the same source. Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 25 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Depending on the channel output data rate, the JESD204B output interface can be operated with either 1 or 2 lanes per single channel. The JESD204B setup and configuration of the frame assembly parameters are controlled via SPI interface. The JESD204B transmitter block consists of the transport layer, the data scrambler and the link layer. The transport layer maps the channel output data into the selected JESD204B frame data format and manages if the channel output data or test patterns are being transmitted. The link layer performs the 8b/10b data encoding as well as the synchronization and initial lane alignment using the SYNCb input signal. Optionally, data from the transport layer can be scrambled. SYSREF AB SYNCb AB INA JESD 204B JESD204B D0/D1 INB JESD 204B JESD204B D0/D1 INC JESD 204B JESD204B D0/D1 IND JESD 204B JESD204B D0/D1 Sample Clock SYSREF CD SYNCb CD Figure 59. JESD204B Lane Assignment Transport Layer Frame Data Mapping Link Layer 8b/10b encoding Scrambler 1+x14+x15 Comma characters Initial lane alignment Test Patterns D0 D1 SYNCb Figure 60. JESD204B Block 26 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.3.3.1 JESD204B Initial Lane Alignment (ILA) The ILA process is started by the receiving device by deasserting the SYNCb on the SYNCbAB input pins, the ADS54J54 device starts transmitting comma and B to establish code group synchronization. Upon detecting a logic high ADS54J54 device starts transmitting comma (K28.5) characters on channels synchronization. signal. Upon detecting a logic low (K28.5) characters on channels A on the SYNCbCD input pins, the C and D to establish code group After synchronization is completed, the receiving device asserts the SYNCb signal and the ADS54J54 starts the ILA sequence with the next local multi-frame clock boundary. The ADS54J54 device transmits 4 multi-frames each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame start and end symbols and the second multi-frame also contains the JESD204 link configuration data. SYSREF LMFC Clock LMFC Boundary Multi Frame SYNCb Transmit Data xxx K28.5 K28.5 Code Group Synchronization ILA Initial Lane Alignment ILA DATA DATA Data Transmission Figure 61. Initial Lane Assignment Format 7.3.3.2 JESD204B Test Patterns There are three different test patterns available in the transport layer of the JESD204B interface. The ADS54J54 supports a RAMP, 1555/2AAA and different PRBS patterns. They can be enabled through SPI register write and are located in address 0x1D and 0x32/33. 7.3.3.3 JESD204B Frame Assembly The JESD204B standard defines the following parameters: • L = number of lanes per link • M = number of converters for device • F = number of octets per frame clock period • S = number of samples per frame • HD = high density mode The ADS54J54 supports independent configuration of the JESD204B format for channel A and B and channel C and D. Table 2 lists the available JESD204B formats and valid ranges for the ADS54J54. The ranges are limited by the SerDes line rate and the maximum channel sample frequency. Table 2. Permissible LMFS Settings L M F S HD Max Channel Output Rate (MSPS) Max ƒSerDes (Gsps) 8 4 1 1 1 500 5.0 4 4 2 1 0 250 5.0 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 27 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com The detailed frame assembly is shown in Table 3. Table 3. LMFS Data Formats LMFS = 8411 A1[13:6] A0[13:6] Lane DA1 A0[5:0], 00 A1[5:0], 00 A2[5:0], 00 A3[5:0], 00 Lane DB0 B0[13:6] Lane DB1 B0[5:0], 00 B1[5:0], 00 B2[5:0], 00 B3[5:0], 00 Lane DC0 C0[13:6] Lane DC1 C0[5:0], 00 C1[5:0], 00 C2[5:0], 00 C3[5:0], 00 Lane DD0 D0[13:6] Lane DD1 D0[5:0], 00 D1[5:0], 00 D2[5:0], 00 D3[5:0], 00 B1[13:6] C1[13:6] D1[13:6] A2[13:6] LMFS = 4421 Lane DA0 B2[13:6] C2[13:6] D2[13:6] A3[13:6] B3[13:6] C3[13:6] D3[13:6] A0[13:6] A0[5:0], 00 A1[13:6] A1[5:0], 00 A2[13:6] A2[5:0], 00 B0[13:6] B0[5:0], 00 B1[13:6] B1[5:0], 00 B2[13:6] B2[5:0], 00 C0[13:6] C0[5:0], 00 C1[13:6] C1[5:0], 00 C2[13:6] C2[5:0], 00 D0[13:6] D0[5:0], 00 D1[13:6] D1[5:0], 00 D2[13:6] D2[5:0], 00 7.3.4 SYSREF Clocking Schemes Periodic: The SYSREF signal is always on. This mode is supported, but not recommended as the continuous SYSREF signal appears like an additional clock input, which can cause clock mixing spurs in the channel output spectrum. Gapped-Periodic (recommended): A periodic SYSREF signal is presented to the ADS54J54 SYSREF inputs for a very short period of time. This configuration requires a DC-coupled SYSREF connection for proper operation. Most of the time the SYSREF signal is in a logic-low state, and thus cannot cause any glitches and spurs in the channel output spectrum. Pulse/One Shot (recommended): A single SYSREF reset pulse is used to synchronize the ADS54J54. The ADS54J54 device requires a minimum of 3 SYSREF pulses to complete the synchronization phase. The SYSREF signal is in a logic-low state most of the time, and thus cannot cause any glitches and spurs in the channel output spectrum. Special attention should be given to ensure the single pulse meets required the SYSREF input setup and hold time. 7.3.5 Split-Mode Operation The ADS54J54 provides several different options to interface it to the digital processor or processors. If the ADS54J54 device is operated in split sampling rate (2 channels at 500-MSPS output rate and 2 channels at 250MSPS output rate), then it requires dual SYSREF (SYSREFAB and SYSREFCD) and dual SYNC (SYNCbAB and SYNCbCD). Subclass 1 – Deterministic Latency: The device clock and synchronous SYSREF signal are provided by the timing unit to the ADS54J54 and the processor. The processor controls the SYNCb input signals for the JESD204B state machine for all four channels. In case the ADS54J54 is connected to two different processors, the differential SYNCb inputs of the ADS54J54 can be configured to two single-ended inputs where each pin controls the JESD204B state machine of the two corresponding channels. 28 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 CLKIN SYSREF JESD204B D0/D1 JESD204B D0/D1 INA JESD 204B INA JESD 204B INB JESD 204B INB JESD 204B SYSREFAB SYSREFAB SYNCbAB SYNCbAB ADS54J54 ADS54J54 SYNCbCD CLKIN INC JESD 204B IND JESD 204B FPGA ASIC DSP FPGA ASIC DSP SYNCbCD CLKIN INC JESD 204B IND JESD 204B CLKIN Timing Unit For Example LMK04828 CLKIN Timing Unit For Example LMK04828 SYSREF FPGA ASIC DSP SYSREF Figure 62. Four Channel and Dual Two Channel Usage Split Mode Operation: If the ADS54J54 device is operated with 2-channel output at 500 MSPS and 2-channel output at 250 MSPS, then dual SYSREF (SYSREFAB for channel A and B, SYSREFCD for channel C and D) as well as dual SYNC (SYNCbAB for channel A and B, SYNCbCD for channel C and D) is required to ensure normal operation because the JESD204B link configuration is different for the two channel pairs. JESD204B D0/D1 INA JESD 204B INB JESD 204B SYSREFAB SYNCbAB FPGA ASIC DSP ADS54J54 SYSREFCD CLKIN SYNCbCD INC JESD 204B IND JESD 204B SYSREF Timing Unit For Example LMK04828 CLKIN Figure 63. Dual SYSREF Usage Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 29 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 7.3.6 Eye Diagram Information Figure 64 and Figure 65 is the measured eye diagram at 2.5 and 5 Gbps output data rate, respectively. These are overlaid with the JESD204B LV-OIF-6G-SR specification. 800 mV 800 mV 0 mV 0 mV ±800 mV ±800 mV 0 ps 133.33 ps 266.67 ps 400 ps 533.33 ps 666.67 ps 0 ps 66.67 ps Figure 64. 2.5 Gbps Eye Diagram 133.33 ps 200 ps 266.67 ps 333.33 ps Figure 65. 5.0 Gbps Eye Diagram 7.3.7 Analog Inputs The ADS54J54 analog signal inputs are designed to be driven differentially. The analog input pins have internal analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a highimpedance input across a wide frequency range to the external driving source, which enables great flexibility in the external analog filter design as well as excellent 50-Ω matching for RF applications. The buffer also helps isolate the external driving circuit from the internal switching currents of the sampling circuit, which results in a more constant SFDR performance across input frequencies. The common-mode voltage of the signal inputs is internally biased to 2 V using 500-Ω resistors, which allows for AC coupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM + 0.3125 V) and (VCM – 0.3125 V), resulting in a 1.25-Vpp (default) differential input swing. The input sampling circuit has a 3-dB bandwidth that extends up to 900 MHz. 2 1 nH 0.1 30 INxP 0 360 fF 500 Gain (dB) -2 3.4 pF Vcm 1 nH -4 0.1 30 500 INxM -6 360 fF 3.4 pF -8 -10 -12 1E+7 2E+7 5E+7 1E+8 2E+8 5E+8 1E+9 2E+9 Input Frequency (Hz) Figure 66. Normalized Input Bandwidth 30 5E+9 D00E Figure 67. Equivalent Analog Input Circuit Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.3.8 Clock Inputs The ADS54J54 clock input can be driven differentially with a sine wave or LVPECL source with little or no difference in performance. The common mode voltage of the clock input is set to 0.9 V using internal 2-kΩ resistors. This allows for AC coupling of the clock inputs. The termination resistors should be placed as close as possible to the clock inputs in order to minimize signal reflections and jitter degradation. CLKINP 2k 0.9 V 2k CLKINN Figure 68. Equivalent Clock Input Circuit 7.3.9 Input Clock Divider The ADS54J54 is equipped with two internal dividers on the clock input – one on channel AB and one on channel CD. The clock divider allows operation with a faster input clock simplifying the system clock distribution design. The clock dividers can be bypassed (/1) for operation with a 500-MHz clock while /2 option supports a maximum input clock of 1 GHz and the /4 option a maximum input clock frequency of 2 GHz. Different divider options can be selected for channel AB and channel CD clock output. By default the divider output of channel AB block is routed to all 4 channels but the configuration can be customized with different SPI register settings to use either the channel AB or CD divider blocks for any two channels. ChAB Divide by 1, 2, 4 Phase Select ADC A ADC B CLKIN Divide by 1, 2, 4 Phase Select ADC C ADC D ChCD Figure 69. Input Clock Divider 7.3.10 Power-Down Control The power down functions of the ADS54J54 can be controlled either through the parallel control pin (ENABLE) or through a SPI register setting. Power-down modes for the different channels as well as for the JESD204B interface are supported. The ADS54J54 supports the following power-down modes. The analog sleep mode configurations are in register 0x05/06 and the JESD204b sleep mode configurations are in register 0x1E and 0x1F. Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 31 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Table 4. Low-Power Mode Power Consumption and Wake-Up Times Configuration Power Consumption Wake-Up Time Global power down 24 mW Needs JESD resynch Standby 31 mW Needs JESD resynch Deep sleep 791 mW 1.4 ms Light sleep 1.68 W 8 µs Control power-down function through ENABLE pin: 1. Configure power-down mode in register 0x05 and 0x1E 2. Normal operation: ENABLE pin high 3. Power-down mode: ENABLE pin low Control power-down function through SPI (ENABLE pin always high): 1. Assign power-down mode in register 0x06 and 0x1F 2. Normal operation: 0x06 and 0x1F are 0xFFFF 3. Power-down mode: configure power down mode in register 0x06 and 0x1F 7.3.11 Device Configuration The serial interface (SIF) included in the ADS54J54 is a simple 3- or 4-pin interface. In normal mode, 3 pins are used to communicate with the device. There is an enable (SDENb), a clock (SCLK), and a bidirectional IO port (SDATA). If the user would like to use the 4-pin interface, one write must be implemented in the 3-pin mode to enable 4-pin communications. In this mode, the SDOUT pin becomes the dedicated output. The serial interface has an 8-bit address word and a 16-bit data word. The first rising edge of SCLK after SDENb goes low will latch the read or write bit. If a high is registered, then a read is requested, if it is low, then a write is requested. SDENb must be brought high again before another transfer can be requested. 7.3.12 JESD204B Interface Initialization Sequence After power-up, the internal JESD204B digital block must be initialized with the following sequence of steps: 1. Set JESD RESET AB/CD and JESD INIT AB/CD to 0 (address 0x0D, value 0x0000) 2. Set JESD INIT AB/CD to 1 (0x0D, 0x0202) 3. Set JESD RESET AB/CD to 1 (0x0D, 0x0303) 4. Configure all other JESD register and clock settings. If those settings change later on, this initialization sequence must be repeated. 5. Set JESD RESET AB/CD to 0 (0x0D, 0x0202) 6. Set JESD RESET AB/CD to 1 (0x0D, 0x0303) 7. Wait for two SYSREF pulses 8. Set JESD INIT AB/CD to 0 (0x0D, 0x0101) 32 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.3.13 Device and Register Initialization After power-up, the internal registers must be initialized to their default values through a hardware reset by applying a low pulse on the SRESETb pin (of width greater than 10 ns), as shown in Figure 1. If required later during operation, the serial interface registers can be cleared by applying: • Another hardware reset using the SRESETb pin • A software reset (bit D0 in register 0x00). This setting resets the internal registers to the default values and then self-resets the RESET bit (D0) back to 0. In this case, the RESET pin is kept high. • Write the data in Table 5 to the following registers after every device power-up or reset for optimum AC performance: Table 5. AC Performance ADDRESS DATA REASON 0x06 0xFFDF turn off fuse logic for power savings - not required 0x44 0x0074 trim value - required 0x47 0x0074 trim value - required 0x4C 0x4000 trim value - required 0x50 0x0800 trim value - required 0x51 0x0074 trim value - required 0x54 0x0074 trim value - required 0x59 0x4000 trim value - required 0x5D 0x0800 trim value - required 7.4 Device Functional Modes 7.4.1 Operating Modes Table 6 details the five different operating modes. A pair of channels (channel A and B and channel C and D) can be configured in the same operating mode. Table 6. Operating Modes Information Channel Sampling Rate (MSPS) Digital Feature Output Data Rate (MSPS) Output Resolution Output SerDes Rate (GSPS) Number of Lanes per Channel 500 Decimation by 2 250 14 bit 5.0 1 500 Bypass digital logic mode 500 14 bit 5.0 2 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 33 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 7.4.2 Output Format Table 7 provides detailed information on how the MSB or LSB get aligned for the different output data rates and resolution in the different operating modes. Table 7. Output Data Formats Output Rate Mode Resolution Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 250 MSPS Decimate by 2 14 bit D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 OVR 0 500 MSPS Bypass digital logic mode 14 bit D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 OVR 0 34 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.5 Programming 7.5.1 Serial Register Write The internal register of the ADS54J54 can be programmed following these steps: 1. Drive SDENb pin low. 2. Set the R/W bit to ‘0’ (bit A7 of the 8 bit address). 3. Initiate a serial interface cycle specifying the address of the register (A6 to A0) whose content has to be written. 4. Write 16-bit data which is latched on the rising edge of SCLK. Table 8. Serial Register Read or Write Timing (1) PARAMETER MIN TYP MAX UNIT 10 MHz ƒSCLK SCLK frequency (equal to 1 / tSCLK) tSLOADS SDENb to SCLK setup time 50 ns tSLOADH SCLK to SDENb hold time 50 ns tDSU SDATA setup time 50 ns tDH SDATA hold time 50 ns (1) >DC Typical values at 25°C; minimum and maximum values across the full temperature range: TMIN = –40°C to TMAX = 85°C, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, unless otherwise noted. SCLK SDENb SDATA RWB A6 A5 Read = 1 Write = 0 A4 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 7-bit address space 16-bit data: D15 is MSB, D0 is LSB Figure 70. Serial Register Write Timing Diagram 7.5.2 Serial Register Readout The device includes a mode where the contents of the internal registers can be read back using the SDOUT and SDATA pins. This read-back mode may be useful as a diagnostic check to verify the serial interface communication between the external controller and the channel. 1. Drive SDENb pin low. 2. Set the RW bit (A7) to 1. This setting disables any further writes to the registers. 3. Initiate a serial interface cycle specifying the address of the register (A6 to A0) whose content has to be read. 4. The device outputs the contents (D15 to D0) of the selected register on the SDOUT/SDATA pin. 5. The external controller can latch the contents at the SCLK rising edge. 6. To enable register writes, reset the RW register bit to 0. SCLK SDENb SDATA RWB Read = 1 Write = 0 A6 A5 A4 A3 A2 A1 A0 7-bit address space D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 16-bit data: D15 is MSB, D0 is LSB Figure 71. Serial Register Read Timing Diagram Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 35 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 7.6 Register Maps Register Address Register Data A7 to A0 in hex D15 D14 D13 D12 D11 0 3/4 WIRE FORMAT DEC EN AB HP/LP AB 0 1 MODE 1 0 1 0 2 0 1 3 0 CLK SEL CD 4 OVRA OUT EN OVRB OUT EN 0 D9 DEC EN CD HP/LP CD FOVR THRESH AB 0 CLK DIV CD OVRC OUT EN D10 0 0 OVRD OUT EN D7 D6 0 0 0 FOVR LENGTH AB 0 0 CLK PHASE SELECT CD SYSREF AB DELAY SYSREF CD DELAY 5 D5 D4 0 0 FOVR THRESH CD 0 0 SYSREF SEL CD CLK SEL AB 0 0 0 D2 D1 D0 0 0 0 RESET 1 0 0 0 FOVR LENGTH CD 0 0 0 SYNCb AB EN CLK DIV AB 0 D3 0 0 CLK PHASE SELECT AB SYNCb CD EN 1 1 ANALOG SLEEP MODES – ENABLE PIN 6 SYSREFCD EN ANALOG SLEEP MODES – SPI 7 0 0 0 0 0 0 CLK SW AB 1 0 1 0 0 0 1 0 0 8 0 0 0 0 0 0 CLK SW CD 1 0 1 0 0 0 1 0 0 C 0 0 1 1 0 0 0 1 1 1 D 0 0 0 0 0 0 JESD INIT CD JESD RESET CD 0 0 E 0 0 0 0 0 0 0 0 F 0 0 0 0 0 0 CTRL F AB 10 0 0 0 0 0 0 CTRL K AB 13 0 0 0 0 0 0 16 0 0 0 0 0 0 17 0 0 0 0 0 0 1A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CTRL M AB 0 0 0 CTRL L AB TX LANE EN AB 0 HD AB SCR EN AB 0 0 0 0 0 0 0 0 CTRL M CD 0 0 0 CTRL L CD 0 0 HD CD SCR EN CD 0 0 0 0 0 TEST PATTERN EN CD TEST PATTERN EN AB 0 TEST PATTERN 0 0 0 0 0 0 0 1E 0 0 0 0 0 0 JESD SLEEP MODES – ENABLE PIN 1F 1 1 1 1 1 1 JESD SLEEP MODES – SPI JESD LANE POLARITY INVERT PRBS EN 21 0 PRBS SEL 0 0 0 0 0 63 0 0 0 0 0 0 0 0 0 0 0 0 VREF SEL TEMP SENSOR PRE EMP EN AB 67 DCC EN AB 0 0 0 0 DCC EN CD 0 0 0 0 0 0 JESD PLL CD JESD PLL AB OUTPUT CURRENT CONTROL AB 68 PRE EMP SEL CD PRE EMP EN CD 6B 6C 0 INV SYNCb CD 0 PRE EMP SEL AB JESD RESET AB 0 0 64 0 JESD INIT AB 0 INV SYNCb AB CTRL K CD 0 SYSREF JESD MODE AB TX LANE EN CD 0 CTRL F CD SYSREF JESD MODE CD 1D 20 36 D8 OUTPUT CURRENT CONTROL CD 0 0 0 0 0 0 0 0 0 Submit Documentation Feedback 0 0 0 Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.6.1 Register Descriptions 7.6.1.1 Register Address 0 Figure 72. Register Address 0, Reset 0x0000, Hex = 0 D15 3/4 WIRE D14 FORM AT D13 DEC EN AB D12 D11 HP/LP AB 0 D10 DEC EN CD D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HP/LP CD 0 0 0 0 0 0 0 0 RESET LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9. Register Address 0 Field Descriptions Bit Field Type Reset Description D15 3/4 WIRE R/W 0 Enables 4-bit serial interface when set 0 = 3-wire SPI (SDATA is bidirectional) 1 = 4-wire SPI (SDOUT is data output) D14 FORMAT R/W 0 Selects digital output format 0 = Output is 2s complement 1 = Offset binary D13 DEC EN AB R/W 0 Enables decimation filter for channel AB 0 = Normal operation 1 = Decimation filter enabled D12 HP/LP AB R/W 0 Determines high-pass or low-pass configuration of decimation filter for channel AB 0 = Low pass 1 = High pass D10 DEC EN CD R/W 0 Enables decimation filter for channel CD 0 = Normal operation 1 = Decimation filter enabled D9 HP/LP CD R/W 0 Determines high-pass or low-pass configuration of decimation filter for channel CD 0 = Low pass 1 = High pass D0 RESET R/W 0 Software reset, self clears to 0 0 = Normal operation 1 = Execute software reset Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 37 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 7.6.1.2 Register Address 1 Figure 73. Register Address 1, Reset 0xAF7A, Hex = 1 D15 MODE 1 D14 D13 D12 0 1 0 D11 D10 D9 FOVR THRESH AB D8 D7 FOVR LENGTH AB D6 D5 D4 FOVR THRESH CD D3 D2 FOVR LENGTH CD D1 D0 1 0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 10. Register Address 1 Field Descriptions Bit Field Type Reset D15 MODE 1 R/W 1 Set bit D15 to 0 for optimum performance R 1 Reads back 1 D13 Description Sets fast OVR thresholds for channel A and B The fast over-range detection is triggered 6 output clock cycles after the overload condition occurs. The threshold at which the OVR is triggered is: Input full scale × [decimal value of ] / 8. After power-up or reset, the default value is 7 (decimal), which corresponds to an OVR threshold of 1.16-dB below full scale (20 × log(7/8)). 0 -2 D11:D9 FOVR THRESH AB R/W 111 Threshold Set to dBFS -4 -6 -8 -10 -12 -14 -16 -18 -20 0 1 2 3 4 5 6 Programmed Decimal Value 7 8 D00F Figure 74. OVR Detection Threshold D8:D7 FOVR LENGTH AB R/W 10 Determines minimum pulse length for FOVR output 00 = 1 clock cycle 01 = 2 clock cycles 10 = 4 clock cycles 11 = 8 clock cycles D6:D4 FOVR THRESH CD R/W 111 Sets fast OVR thresholds for channel C and D See description for channel A and B R/W 10 Determines minimum pulse length for FOVR output 00 = 1 clock cycle 01 = 2 clock cycles 10 = 4 clock cycles 11 = 8 clock cycles R 1 Reads back 1 D3:D2 FOVR LENGTH CD D1 38 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.6.1.3 Register Address 3 Figure 75. Register Address 3, Reset: 0x4040, Hex = 3 D15 0 D14 CLK SEL CD D13 D12 D11 CLK DIV CD 0 D10 D9 D8 CLK PHASE SELECT CD D7 SYSREF SEL CD D6 CLK SEL AB D5 D4 CLK DIV AB D3 0 D2 D1 D0 CLK PHASE SELECT AB LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 11. Register Address 3 Field Descriptions Bit Field Type Reset D14 CLK SEL CD R/W 1 Clock source selection for channel C and D 0 = Channel CD clock output divider 1 = Channel AB clock output divider (default) 00 Channel CD clock divider setting 00 = Clock input is up to 500 MHz. Input clock is not divided (default) 01 = /2 10 = /4 11 = Not used Selects phase of channel divided clock, but depends on clock divider setting. When clock CD divider is set to: /1 = 2 phases are available (0º or 180º) /2 = 4 phases are available (0º, 90º, 180º or 270º) /4 = 8 phases are available (0º, 45º, 90º, 135º, 180º, 225º, 270º or 315º) When switching clock phases, register 0x08, D9 must be enabled first and then disabled after the switch to ensure glitchfree operation. D13:D12 D10:D8 CLK DIV CD R/W Description CLK PHASE SELECT CD R/W 000 D7 SYSREF SEL CD R/W 0 SYSREF Input selection for channel C and D 0 = Use SYSREFAB inputs (default) 1 = Use SYSREFCD inputs D6 CLK SEL AB R/W 1 Clock source selection for channel A and B 0 = Channel CD clock output divider 1 = Channel AB clock output divider (default) 00 Channel AB clock divider setting 00 = Clock input is up to 500 MHz. Input clock is not divided (default) 01 = /2 10 = /4 11 = Not used 000 Selects phase of channel AB divided clock, but depends on clock divider setting. When clock divider is set to: /1 = 2 phases are available (0º or 180º) /2 = 4 phases are available (0º, 90º, 180º or 270º) /4 = 8 phases are available (0º, 45º, 90º, 135º, 180º, 225º, 270º or 315º) When switching clock phases, register 0x07, D9 must be enabled first and then disabled after the switch to ensure glitchfree operation. D5:D4 D2:D0 CLK DIV AB CLK PHASE SELECT AB R/W R/W Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 39 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 7.6.1.4 Register Address 4 Figure 76. Register Address 4, Reset: 0x000F, Hex = 4 D15 OVRA OUT EN D14 OVRB OUT EN D13 OVRC OUT EN D12 OVRD OUT EN D11 D10 SYSREF AB DELAY D9 D8 SYSREF CD DELAY D7 D6 D5 D4 0 0 0 0 D3 SYNCb AB EN D2 SYNCb CD EN D1 D0 1 1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 12. Register Address 4 Field Descriptions Bit Field Type Reset D15 OVRA OUT EN R/W 0 OVRA pin output enable 0 = Not used (default) 1 = OVRA is an output D14 OVRB OUT EN R/W 0 OVRB pin output enable 0 = Not used (default) 1 = OVRB is an output D13 OVRC OUT EN R/W 0 OVRC pin output enable 0 = Not used (default) 1 = OVRC is an output D12 OVRD OUT EN R/W 0 OVRD pin output enable 0 = Not used (default) 1 = OVRD is an output 00 Programmable input delay on SYSREFAB input 00 = 0-ps delay (default) 01 = 200-ps delay 10 = 100-ps delay 11 = 300-ps delay D11:D10 R/W SYSREF CD DELAY R/W 00 Programmable input delay on SYSREFCD input 00 = 0-ps delay (default) 01 = 200-ps delay 10 = 100-ps delay 11 = 300-ps delay D3 SYNCb AB EN R/W 1 SYNCbAB input buffer enable 0 = Input buffer disabled 1 = Input buffer enabled (default) D2 SYNCb CD EN R/W 1 SYNCbCD input buffer enable 0 = Input buffer disabled 1 = Input buffer enabled (default) D1 R 1 Reads back 1 D0 R 1 Reads back 1 D9:D8 40 SYSREF AB DELAY Description Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.6.1.5 Register Address 5 Figure 77. Register Address 5, Reset: 0x0000, Hex = 5 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 ANALOG SLEEP MODES – ENABLE pin D4 D3 D2 D1 D0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 13. Register Address 5 Field Descriptions Bit D15:D0 Field Type ANALOG SLEEP MODES – ENABLE pin R/W Reset Description Power-down function assigned to ENABLE pin. When any bit is set, the corresponding function is always enabled regardless of status of the ENABLE pin. This assumes address 0x06 is in default configuration. D13 R/W 0 Light sleep channel A D11 R/W 0 Light sleep channel B D9 R/W 0 Light sleep channel C D7 R/W 0 Light sleep channel D D6 R/W 0 Temperature sensor D4 R/W 0 Clock buffer D3 R/W 0 Clock divider channel AB D2 R/W 0 Clock divider channel CD D1 R/W 0 Buffer SYSREFAB D0 R/W 0 Buffer SYSREFCD spacer Table 14. Configurations When ENABLE Pin is Low Description 0000 0000 0000 0000 Global power down 1000 0000 0000 0000 Standby 1000 0000 0001 1111 Deep sleep 1010 1010 1001 1111 Light sleep (if unused, clock divider CD and SYSREFCD can be set to 0 also) Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 41 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 7.6.1.6 Register Address 6 Figure 78. Register Address 6, Reset: 0xFFFF, Hex = 6 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 ANALOG SLEEP MODES – SPI D5 D4 D3 D2 D1 D0 1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 15. Register Address 6 Field Descriptions Bit Field D15:D1 Type Reset Description Power-down function controlled via SPI. When a bit is set to 0, the function is powered down when ENABLE pin is high. However, register 0x05 has higher priority. For example, if D13 (deep sleep channel A) in 0x05 is enabled, it cannot be powered down with the SPI. ANALOG SLEEP MODES – SPI D13 R/W 1 Light sleep channel A D11 R/W 1 Light sleep channel B D9 R/W 1 Light sleep channel C D7 R/W 1 Light sleep channel D D6 R/W 1 Temperature sensor D4 R/W 1 Clock buffer D3 R/W 1 Clock divider channel AB D2 R/W 1 Clock divider channel CD D1 R/W 1 Buffer SYSREFAB D0 R/W 1 Should be left set to 1 spacer Table 16. Configurations When ENABLE Pin is High Description 0000 0000 0000 000 Global power down 1000 0000 0000 000 Standby 1000 0000 0001 111 Deep sleep 1010 1010 1001 111 Light sleep 1111 1111 1111 111 Normal operation Control power down function through ENABLE pin: 1. Configure power-down mode in register 0x05 2. Normal operation: ENABLE pin high 3. Power-down mode: ENABLE pin low Control power down function through SPI (ENABLE pin always high): 1. Assign power-down mode in register 0x06 2. Normal operation 0x06 is 0xFFFF 3. Power-down mode: configure power down mode in register 0x06 42 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.6.1.7 Register Address 7 Figure 79. Register Address 7, Reset: 0x0144, Hex = 7 D15 0 D14 0 D13 0 D12 0 D11 0 D10 0 D9 CLK SW AB D8 1 D7 0 D6 1 D5 0 D4 0 D3 0 D2 1 D1 0 D0 0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 17. Register Address 7 Field Descriptions Bit Field Type Reset Description D9 CLK SW AB R/W 0 User should set this bit to 1 when changing the clock phase of the clock divider AB. After the change is complete user needs to write this bit back to 0. D8 R 1 Reads back 1 D6 R 1 Reads back 1 D2 R 1 Reads back 1 7.6.1.8 Register Address 8 Figure 80. Register Address 8, Reset: 0x0144, Hex = 8 D15 0 D14 0 D13 0 D12 0 D11 0 D10 0 D9 CLK SW CD D8 1 D7 0 D6 1 D5 0 D4 0 D3 0 D2 1 D1 0 D0 0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18. Register Address 8 Field Descriptions Bit Field Type Reset Description D9 CLK SW CD R/W 0 User should set this bit to 1 when changing the clock phase of the clock divider CD. After the change is complete user needs to write this bit back to 0. D8 R 1 Reads back 1 D6 R 1 Reads back 1 D2 R 1 Reads back 1 7.6.1.9 Register Address 12 Figure 81. Register Address 12, Reset: 0x31E4, Hex = C D15 0 D14 0 D13 1 D12 1 D11 0 D10 0 D9 0 D8 1 D7 1 D6 1 D5 D4 D3 SYSREF JESD MODE CD D2 D1 D0 SYSREF JESD MODE AB LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19. Register Address 12 Field Descriptions Bit Field Type Reset Description D13 R 1 Reads back 1 D12 R 1 Reads back 1 D8 R 1 Reads back 1 D7 R 1 Reads back 1 D6 R 1 Reads back 1 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 43 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Table 19. Register Address 12 Field Descriptions (continued) Bit Field Type Reset Description D5:D3 SYSREF JESD MODE CD R/W 100 Determines how SYSREF is used in the JESD block for channel CD 000 = Ignore SYSREF input 001 = Use all SYSREF pulses 010 = Use only the next SYSREF pulse 011 = Skip one SYSREF pulse then use only the next one 100 = Skip one SYSREF pulse then use all pulses (default) 101 = Skip two SYSREF pulses and then use one 111 = Skip two SYSREF pulses and then use all D2:D0 SYSREF JESD MODE AB R/W 100 Determines how SYSREF is used in the JESD block for channel AB. Same functionality as SYSREF JESD MODE CD 7.6.1.10 Register Address 13 Figure 82. Register Address 13, Reset: 0x0202, Hex = D D15 D14 D13 D12 D11 D10 0 0 0 0 0 0 D9 JESD INIT CD D8 JESD RESET CD D7 D6 D5 D4 D3 D2 0 0 0 0 0 0 D1 JESD INIT AB D0 JESD RESET AB LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20. Register Address 13 Field Descriptions Bit Field Type Reset Description D9 JESD INIT CD R/W 1 Puts the JESD block in INITIALIZATION state when set high. In this state the JESD parameters can be programmed and the outputs will stay at 0. See also JESD start-up sequence. D8 JESD RESET CD R/W 0 Resets the JESD block when low D1 JESD INIT AB R/W 1 Puts the JESD block in initialization state when set high. In this state the JESD parameters can be programmed and the outputs will stay at 0. D0 JESD RESET AB R/W 0 Resets the JESD block when low 7.6.1.11 Register Address 14 Figure 83. Register Address 14, Reset: 0x00FF, Hex = E D15 0 D14 0 D13 0 D12 0 D11 0 D10 0 D9 0 D8 0 D7 D6 D5 TX LANE EN CD D4 D3 D2 D1 TX LANE EN AB D0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 21. Register Address 14 Field Descriptions Bit Field D7:D4 D3:D0 44 TX LANE EN CD TX LANE EN AB Type R/W R/W Reset Description 1111 Enables JESD204B transmitter for channel C and D. Set to 1 to enable. D7 = Lane DD1 D6 = Lane DD0 D5 = Lane DC1 D4 = Lane DC0 1111 Enables JESD204B transmitter for channel A and B. Set to 1 to enable. D3 = Lane DB1 D2 = Lane DB0 D1 = Lane DA1 D0 = Lane DA0 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.6.1.12 Register Address 15 Figure 84. Register Address 15, Reset: 0x0001, Hex = F D15 0 D14 0 D13 0 D12 0 D11 0 D10 0 D9 D8 CTRL F AB D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 D0 CTRL M AB LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22. Register Address 15 Field Descriptions Bit Field Type Reset Description D9:D8 CTRL F AB R/W 00 Controls number of octets per frame for channel AB. 00 = F = 1 (default) 01 = F = 2 D1:D0 CTRL M AB R/W 01 Controls number of converters per link for channel AB. 01 = M = 2. This is the only valid option (default) 7.6.1.13 Register Address 16 Figure 85. Register Address 16, Reset: 0x03E3, Hex = 10 D15 0 D14 0 D13 0 D12 0 D11 0 D10 0 D9 D8 D7 D6 CTRL K AB D5 D4 0 D3 0 D2 0 D1 D0 CTRL L AB LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23. Register Address 16 Field Descriptions Bit Field Type Reset Description Controls number of frames per multi-frame for channel AB. 0: K = 1 30 K = 31 1: K = 2 31 K = 32 (default) And so forth D9:D5 CTRL K AB R/W 11111 D1:D0 CTRL L AB R/W 11 Controls number of lanes for channel AB. 01: L = 2 11: L = 4 (default) 7.6.1.14 Register Address 19 Figure 86. Register Address 19, Reset: 0x0020, Hex = 13 D15 D14 D13 D12 D11 D10 D9 D8 D7 0 0 0 0 0 0 0 0 0 D6 INV SYNCb AB D5 HD AB D4 SCR EN AB D3 D2 D1 D0 0 0 0 0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 24. Register Address 19 Field Descriptions Bit Field Type Reset Description D6 INV SYNCb AB R/W 0 Inverts polarity of SYNCbAB input 0 = Normal operation 1 = Polarity inverted D5 HD AB R/W 1 Enables high density mode for channel AB. This mode is needed for LMFS = 4221. 0 = High-density mode disabled for mode LMFS = 2221 1 = High-density mode enabled for mode LMFS = 4221 (default) D4 SCR EN AB R/W 0 Enables scramble mode for channel AB 0 = Scramble mode disabled (default) 1 = Scramble mode enabled Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 45 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 7.6.1.15 Register Address 22 Figure 87. Register Address 22, Reset: 0x0001, Hex = 16 D15 0 D14 0 D13 0 D12 0 D11 0 D10 0 D9 D8 CTRL F CD D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 D0 CTRL M CD LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25. Register Address 22 Field Descriptions Bit Field Type Reset Description D9:D8 CTRL F CD R/W 00 Controls number of octets per frame for channel CD. 00: F = 1 (default) 01: F = 2 D1:D0 CTRL M CD R/W 01 Controls number of converters per link for channel CD. 01: M = 2. This is the only valid option (default) 7.6.1.16 Register Address 23 Figure 88. Register Address 23, Reset: 0x03E3, Hex = 17 D15 0 D14 0 D13 0 D12 0 D11 0 D10 0 D9 D8 D7 D6 CTRL K CD D5 D4 0 D3 0 D2 0 D1 D0 CTRL L CD LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26. Register Address 23 Field Descriptions Bit Field Type Reset Description Controls number of frames per multi-frame for channel CD 0: K = 1 30 K = 31 1: K = 2 31 K = 32 (default) And so forth D9:D5 CTRL K CD R/W 11111 D1:D0 CTRL L CD R/W 11 Controls number of lanes for channel CD 01: L = 2 11: L = 4 (default) 7.6.1.17 Register Address 26 Figure 89. Register Address 26, Reset: 0x0020, Hex = 1A D15 D14 D13 D12 D11 D10 D9 D8 D7 0 0 0 0 0 0 0 0 0 D6 D5 INV SYNCb HD CD CD D4 SCR EN CD D3 D2 D1 D0 0 0 0 0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 27. Register Address 26 Field Descriptions 46 Bit Field Type Reset Description D6 INV SYNCb CD R/W 0 Inverts polarity of SYNCbCD input 0 = Normal operation 1 = Polarity inverted D5 HD CD R/W 1 Enables high density mode for channel CD. This mode is needed for LMFS = 4221. 0 = High density mode disabled for mode LMFS = 2221 1 = High density mode enabled for mode LMFS = 4221 (default) D4 SCR EN CD R/W 0 Enables scramble mode for channel CD 0 = Scramble mode disabled (default) 1 = Scramble mode enabled Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.6.1.18 Register Address 29 Figure 90. Register Address 29, Reset: 0x0000, Hex = 1D D15 D14 D13 D12 D11 D10 D9 D8 D7 0 0 0 0 0 0 0 0 0 D6 TEST PATTERN EN CD D5 TEST PATTERN EN AB D4 D3 D2 D1 D0 0 TEST PATTERN 0 0 0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28. Register Address 29 Field Descriptions Bit Field Type Reset Description D6 TEST PATTERN EN CD R/W 0 Enables test pattern output for channel C and D 0 = Normal operation 1 = Test pattern output enabled D5 TEST PATTERN EN AB R/W 0 Enables test pattern output for channel A and B 0 = Normal operation 1 = Test pattern output enabled D4 TEST PATTERN R/W 0 Selects test pattern 0 = RAMP pattern 1 = Output alternates between 0x1555 and 0x2AAA 7.6.1.19 Register Address 30 Figure 91. Register Address 30, Reset: 0x0000, Hex = 1E D15 0 D14 0 D13 0 D12 0 D11 0 D10 0 D9 D8 D7 D6 D5 D4 D3 JESD SLEEP MODES – ENABLE pin D2 D1 D0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 29. Register Address 30 Field Descriptions Bit D9:D0 Field Type JESD SLEEP MODES – ENABLE pin R/W Reset Description 0 0000 0000 Power-down function assigned to ENABLE pin. When any bit is set, the corresponding function is always enabled regardless of status of the ENABLE pin. D9 = JESD PLL channel CD D8 = JESD PLL channel AB D7 = Lane DD1 D6 = Lane DD0 D5 = Lane DC1 D4 = Lane DC0 D3 = Lane DB1 D2 = Lane DB0 D1 = Lane DA1 D0 = Lane DA0 SPACE Table 30. Configurations Description 00 0000 0000 Global power down (default) 00 0000 0000 Standby 11 0000 0000 Deep sleep 11 0000 0000 Light sleep Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 47 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 7.6.1.20 Register Address 31 Figure 92. Register Address 31, Reset: 0xFFFF, Hex = 1F D15 1 D14 1 D13 1 D12 1 D11 1 D10 1 D9 D8 D7 D6 D5 D4 D3 JESD SLEEP MODES – SPI D2 D1 D0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31. Register Address 31 Field Descriptions Bit Field D15:D0 Type JESD SLEEP MODES – SPI R/W Reset Description 11 1111 1111 Power-down function controlled via SPI. When a bit is set to 0, the function is powered down when ENABLE pin is high. However register 0x1E has higher priority. For example, if D9 (JESD PLL channel CD) in 0x1E is enabled, it cannot be powered down with the ENABLE pin. D9 = JESD PLL channel CD D8 = JESD PLL channel AB D7 = Lane DD1 D6 = Lane DD0 D5 = Lane DC1 D4 = Lane DC0 D3 = Lane DB1 D2 = Lane DB0 D1 = Lane DA1 D0 = Lane DA0 SPACE Table 32. Configurations Description 00 0000 0000 Global power down 00 0000 0000 Standby 11 0000 0000 Deep sleep 11 0000 0000 Light sleep 11 1111 1111 Normal operation (default) Control power down function through ENABLE pin: 1. Configure power down mode in register 0x1E 2. Normal operation: ENABLE pin high 3. Power down mode: ENABLE pin low Control power down function through SPI (ENABLE pin always high): 1. Assign power down mode in register 0x1F 2. Normal operation 0x1F is 0xFFFF 3. Power-down mode: configure power down mode in register 0x1F 48 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.6.1.21 Register Address 32 Figure 93. Register Address 32, Reset: 0x0000, Hex = 20 D15 D14 D13 D12 D11 D10 JESD LANE POLARITY INVERT D9 D8 D7 D6 D5 D4 D3 PRBS EN D2 D1 D0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 33. Register Address 32 Field Descriptions Bit D15:D8 D7:D0 Field Type JESD LANE POLARITY INVERT R/W PRBS EN R/W Reset Description 0000 0000 Set to 1 for polarity inversion D15 = Lane DD1 D14 = Lane DD0 D13 = Lane DC1 D12 = Lane DC0 D11 = Lane DB1 D10 = Lane DB0 D9 = Lane DA1 D8 = Lane DA0 0000 0000 Outputs PRBS pattern selected in address 0x21 on the selected serial output lanes D7 = Lane DD1 D6 = Lane DD0 D5 = Lane DC1 D4 = Lane DC0 D3 = Lane DB1 D2 = Lane DB0 D1 = Lane DA1 D0 = Lane DA0 7.6.1.22 Register Address 33 Figure 94. Register Address 33, Reset: 0x0000, Hex = 21 D15 D14 D13 PRBS SEL D12 0 D11 0 D10 0 D9 0 D8 0 D7 0 D6 0 D5 0 D4 0 D3 0 D2 D1 D0 VREF SEL LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 34. Register Address 33 Field Descriptions Bit D14:D13 D2:D0 Field PRBS SEL VREF SEL Type R/W R/W Reset Description 00 Selects different PRBS output pattern (these are not 8b/10b encoded) 000 = 231 – 1 001 = 27 – 1 010 = 215 – 1 011 = 223 – 1 000 Selects different input full-scale amplitude by adjusting voltage reference setting 000 = Full scale is 1.25 Vpp (default) 001 = Full scale is 1.35 Vpp 010 = Full scale is 1.5 Vpp 011 = External 100 = Full scale is 1.15 Vpp 101 = Full scale is 1.0 Vpp Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 49 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 7.6.1.23 Register Address 99 Figure 95. Register Address 99,Reset: 0x0000, Hex = 63 D15 0 D14 0 D13 0 D12 0 D11 0 D10 0 D9 0 D8 D7 D6 D5 D4 D3 TEMP SENSOR D2 D1 D0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35. Register Address 99 Field Descriptions Bit D8:D0 Field Type TEMP SENSOR R Reset undefined Description Value of on chip temperature sensor (read only). Value is 2s complement of die temperature sensor in °C For example: 0x0032 equals 50°C 7.6.1.24 Register Address 100 Figure 96. Register Address 100, Reset: 0x0000, Hex = 64 D15 D14 D13 D12 PRE EMP SEL AB D11 D10 D9 PRE EMP EN AB D8 D7 D6 D5 DCC EN AB D4 D3 0 D2 0 D1 0 D0 0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 36. Register Address 100 Field Descriptions Bit D15:D12 D11:D8 D7:D4 50 Field Type Reset Description PRE EMP SEL AB R/W 0000 Selects pre-emphasis of serializers for channel A and B 0 = Pre-emphasis 1 = De-emphasis 0000 Enables pre-emphasis, 0 = disabled, 1 = enabled D11 = Lane DB1 D10 = Lane DB0 D9 = Lane DA1 D8 = Lane DA0 0000 Enables the duty cycle correction circuit for each of the serializers D7 = Lane DB1 D6 = Lane DB0 D5 = Lane DA1 D4 = Lane DA0 PRE EMP EN AB DCC EN AB R/W R/W Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 7.6.1.25 Register Address 103 Figure 97. Register Address 103, Reset: 0x0000, Hex = 67 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 OUTPUT CURRENT CONTROL AB D5 D4 D3 D2 D1 D0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 37. Register Address 103 Field Descriptions Bit Field D15:D0 Type OUTPUT CURRENT CONTROL AB R/W Reset Description spacer 0000 0000 0000 0000 Selects pre-emphasis current for the serializers. There are 4 bit per serializer of channel A and B. D15:D12 = Lane DB1 D11:D8 = Lane DB0 D7:D4 = Lane DA1 D3:D0 = Lane DA0 Table 38. Pre-Emphasis Level is: Decimal Value / 30 Description 0000 Normal operation 0001 1 / 30 0010 2 / 30 and so forth 7.6.1.26 Register Address 104 Figure 98. Register Address 104, Reset: 0x0000, Hex = 68 D15 D14 D13 D12 PRE EMP SEL CD D11 D10 D9 PRE EMP EN CD D8 D7 D6 D5 DCC EN CD D4 D3 0 D2 0 D1 0 D0 0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 39. Register Address 104 Field Descriptions Bit D15:D12 D11:D8 D7:D4 Field PRE EMP SEL CD PRE EMP EN CD DCC EN CD Type Reset Description 0000 Selects pre-emphasis of serializers for channel C and D 0 = Pre-emphasis 1 = De-emphasis 0000 Enables pre-emphasis, 0 = disabled, 1 = enabled D11 = Lane DD1 D10 = Lane DD0 D9 = Land DC1 D8 = Lane DC0 0000 Enables the duty cycle correction circuit for each of the serializers D7 = Lane DD1 D6 = Lane DD0 D5 = Land DC1 D4 = Lane DC0 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 51 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 7.6.1.27 Register Address 107 Figure 99. Register Address 107, Reset: 0x0000, Hex = 6B D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 OUTPUT CURRENT CONTROL CD D5 D4 D3 D2 D1 D0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 40. Register Address 107 Field Descriptions Bit Field D15:D0 Type OUTPUT CURRENT CONTROL CD R/W Reset Description spacer 0000 0000 0000 0000 Selects pre-emphasis current for the serializers. There are 4 bit per serializer of channel C and D. D15:D12 = Lane DD1 D11:D8 = Lane DD0 D7:D4 = Land DC1 D3:D0 = Lane DC0 Table 41. Pre-Emphasis Level is: Decimal Value / 30 Description 0000 Normal operation 0001 1 / 30 0010 2 / 30 And so forth 7.6.1.28 Register Address 108 Figure 100. Register Address 108, Hex = 3C D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D1 D0 JESD PLL JESD PLL CD AB LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 42. Register Address 108 Field Descriptions (1) (1) 52 Bit Field Type D1 JESD PLL CD R Reset 1 Description JESD PLL for channel CD lost lock when flag is set high D0 JESD PLL CD R 1 JESD PLL for channel AB lost lock when flag is set high Register values in address 0x6C are read only alarms Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information In the design of any application involving a high-speed data converter, particular attention should be paid the design of the analog input, the clocking solution, and careful layout of the clock and analog signals. In addition, the JESD204B interface means there now are high-speed serial lines that should be handled to preserve adequate signal integrity at the device that receives the sample data. The ADS54J54 evaluation module (EVM) is one practical example of the design of the analog input circuit and clocking solution, as well as a practical example of good circuit board layout practices around the ADC. 8.2 Typical Application The analog inputs of the ADS54J54 must be fully differential and biased to a desired common mode voltage, VCM. Therefore, there will be a signal conditioning circuit for each of the analog inputs. If the amplitude of the input circuit is such that no gain is needed to make full use of the full-scale range of the ADC, then a transformer coupled circuit as in Figure 101 may be used with good results. The transformer coupling is inherently low-noise, and inherently AC-coupled so that the signal may be biased to VCM after the transformer coupling. If signal gain is required, or the input bandwidth is to include the spectrum all the way down to DC such that AC coupling is not possible, then an amplifier-based signal conditioning circuit would be required. By using the simple drive circuit of Figure 101, uniform performance can be obtained over a wide frequency range. The buffers present at the analog inputs of the device help isolate the external drive source from the switching currents of the sampling circuit. 0.1 F T1 T2 0.1 F 5 CHx_INP 25 0.1 F RIN 0.1 F 1:1 CIN 25 5 CHx_INM 1:1 Device Figure 101. Input Drive Circuit Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 53 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com Typical Application (continued) 0.1 µF CLKINP RT 0.1 µF RT CLKINN 0.1 µF Figure 102. Recommended Differential Clock Driving Circuit 8.3 Design Requirements The ADS54J54 requires a fully differential analog input with a full-scale range not to exceed 1.25 V peak to peak, biased to a common mode voltage of 2.0 V. In addition the input circuit must provide proper transmission line termination (or proper load resistors in an amplifier-based solution) so the input of the impedance of the ADC analog inputs should be considered as well. The clocking solution will have a direct impact on performance in terms of SNR, as shown in Figure 103. The ADS54J54 is capable of a typical SNR of 66 dBFS for input frequencies of about 100 MHz (in 14-bit bypass digital mode), so we will want to have a clocking solution that can preserve this level of performance. 8.4 Detailed Design Procedure The ADS54J54 has an input bandwidth of approximately 900 MHz, but we will consider an application involving the first or second Nyquist zones, so we will limit the frequency bandwidth here to be under 250 MHz. We will also consider a 50-ohm signal source, so the proper termination would be 50-Ω differential. As seen in Figure 104 and Figure 105, the input impedance of the analog input at 250 MHz is large compared to 50 Ω, so the proper termination can be 50-Ω differential as shown in Figure 101. Splitting the termination into two 25-Ω resistors with an AC capacitor to ground provides a path to filter out any ripple on the common mode that may result from any amplitude or phase imbalance of the differential input, improving SFDR performance. The ADS54J54 provides a VCM output that may be used to bias the input to the desired level, but as seen in Figure 67 the signal is internally biased inside the ADC so an external biasing to VCM is not required. If an external biasing to VCM were to be employed, the VCM voltage may be applied to the mid-point of the two 25-Ω termination resistors in Figure 101. For the clock input, Figure 103 shows the SNR of the device above 100 MHz begins to degrade with external clock jitter of greater than 100 fs rms, so we will recommend the clock source be limited to approximately 100 fS of rms jitter. For the ADS54J54 EVM, the LMK04828 clock device is capable of providing a low-jitter sample clock as well as providing the SYSREF signal required as shown in Figure 62 and Figure 63, so that clocking device is one good choice for the clocking solution for the ADS54J54. 8.4.1 SNR and Clock Jitter The signal-to-noise ratio of the channel is limited by three different factors: the quantization noise is typically not noticeable in pipeline converters and is 84 dB for a 14-bit channel. The thermal noise limits the SNR at low input frequencies while the clock jitter sets the SNR for higher input frequencies. SNRADC [dBc] 54 § 20 ˜ log ¨¨10 ¨ © SNR Quantizatoin Noise 20 · ¸ ¸ ¸ ¹ 2 § ¨10 ¨ ¨ © SNR Thermal Noise 20 Submit Documentation Feedback · ¸ ¸ ¸ ¹ 2 § ¨10 ¨ ¨ © SNR Jitter 20 · ¸ ¸ ¸ ¹ 2 (1) Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 Detailed Design Procedure (continued) Calculate the SNR limitation due to sample clock jitter using the following: SNRJitter [dBc] 20 ˜ log(2S ˜ fin ˜ TJitter ) (2) The total clock jitter (tJitter) has two components – the internal aperture jitter (98 fs for ADS54J54), which is set by the noise of the clock input buffer, the external clock jitter, and the jitter from the analog input signal. Calculate total clock jitter using the following: TJitter (TJitter,Ext.Clock _ Input )2 (TAperture _ ADC )2 (3) External clock jitter can be minimized by using high quality clock sources and jitter cleaners, as well as bandpass filters at the clock input while a faster clock slew rate improves the channel aperture jitter. The ADS54J54 has a thermal noise of 66 dBFS and internal aperture jitter of 98 fs. The SNR depending on amount of external jitter for different input frequencies is shown in Figure 103. 67 35 fs 50 fs 100 fs 150 fs 200 fs SNR (dBFS) 66 65 64 63 62 61 10 20 30 40 50 60 70 80 100 Fin (MHz) 200 300 400 500 600 700800 1000 D00A Figure 103. SNR vs Input Frequency and External Clock Jitter 8.5 Application Curves Figure 104 and Figure 105 show the differential impedance between the channel INP and INM pins. The impedance is modeled as a parallel combination of RIN and CIN (RIN || 1 / jwCIN). 550 3.4E-12 500 3.3E-12 3.2E-12 400 Equivalent C (F) Equivalent R (Ohms) 450 350 300 250 200 3.1E-12 3E-12 2.9E-12 2.8E-12 150 2.7E-12 100 2.6E-12 50 2.5E-12 0 0 500 1000 1500 2000 2500 Frequency (MHz) 3000 3500 4000 0 D032 Figure 104. Equivalent R 500 1000 1500 2000 2500 Frequency (MHz) 3000 3500 4000 D033 Figure 105. Equivalent C Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 55 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 9 Power Supply Recommendations The device requires a 1.8-V nominal supply for AVDDC, IOVDD, PLLVDD, and DVDD. The device also requires a 1.9-V supply for AVDD18 and a 3.3-V supply for AVDD33. There are no specific sequence power-supply requirements during device power-up. AVDD, DVDD, IOVDD, PLLVDD, and AVDD33 can power up in any order. 10 Layout 10.1 Layout Guidelines The Device EVM layout can be used as a reference layout to obtain the best performance. A layout diagram of the EVM top layer is provided in Figure 107. Some important points to remember during laying out the board are: • Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package level. To minimize crosstalk on-board, the analog inputs should exit the pinout in opposite directions, as shown in the reference layout of Figure 107 as much as possible. • In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to minimize coupling between them. This configuration is also maintained on the reference layout of Figure 107 as much as possible. • Digital outputs should be kept away from the analog inputs. When these digital outputs exit the pinout, the digital output traces should not be kept parallel to the analog input traces because this configuration may result in coupling from digital outputs to analog inputs and degrade performance. The digital sample data rate can be as high as 5.0 Gsps, so care must be taken to maintain the signal integrity of these signals. A low-loss dielectric circuit board is recommended or else these traces should be kept as short as possible. These traces should be kept away from the analog inputs ad n clock input to the device as well. • At each power-supply pin, a 0.1-μF decoupling capacitor should be kept close to the device. A separate decoupling capacitor group consisting of a parallel combination of 10-μF, 1-μF, and 0.1-μF capacitors can be kept close to the supply source. 10.1.1 CML SerDes Transmitter Interface Each of the 5 Gbps SerDes CML transmitter outputs requires AC coupling between transmitter and receiver. The differential pair should be terminated with a 100-Ω resistor as close to the receiving device as possible to avoid unwanted reflections and signal degradation. 10.2 Layout Example Board Trace Board Trace Figure 106. Layout Example Schematic 56 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 ADS54J54 www.ti.com SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 Layout Example (continued) Figure 107. Top and Bottom Layers Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 57 ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019 www.ti.com 11 Device and Documentation Support 11.1 Trademarks PowerPAD is a trademark of Texas Instruments. 11.2 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 11.3 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 58 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Product Folder Links: ADS54J54 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) ADS54J54IRGCR ACTIVE VQFN RGC 64 2000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 AZ54J54 ADS54J54IRGCT ACTIVE VQFN RGC 64 250 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 AZ54J54 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
ADS54J54IRGCT 价格&库存

很抱歉,暂时无法提供与“ADS54J54IRGCT”相匹配的价格&库存,您可以联系我们找货

免费人工找货