0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AM6422BSDGHAALV

AM6422BSDGHAALV

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    BFBGA441

  • 描述:

    ARM® Cortex®-A53,ARM® Cortex®-M5F,ARM® Cortex®-R5F 微处理器 IC Sitara™ 5 核,64 位 1GHz,400MHz,800MHz 441-F...

  • 数据手册
  • 价格&库存
AM6422BSDGHAALV 数据手册
AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 AM64x Sitara™ Processors • 1 Features Processor cores: • • • 1× Dual 64-bit Arm® Cortex®-A53 microprocessor subsystem at up to 1.0 GHz – Dual-core Cortex-A53 cluster with 256KB L2 shared cache with SECDED ECC – Each A53 Core has 32KB L1 DCache with SECDED ECC and 32KB L1 ICache with Parity protection Up to 2× Dual-core Arm® Cortex®-R5F MCU subsystems at up to 800 MHz, integrated for realtime processing – Dual-core Arm® Cortex®-R5F supports dualcore and single-core modes – 32KB ICache, 32KB DCache and 64KB TCM per each R5F core for a total of 256KB TCM with SECDED ECC on all memories 1× Single-core Arm® Cortex®-M4F MCU at up to 400 MHz – 256KB SRAM with SECDED ECC • • • • Memory subsystem: • • Industrial subsystem: • 2× gigabit Industrial Communication Subsystems (PRU_ICSSG) – Supports Profinet IRT, Profinet RT, EtherNet/IP, EtherCAT, Time-Sensitive Networking (TSN), and more – Backward compatibility with 10/100Mb PRU_ICSS – Each PRU_ICSSG contains: • 2× Ethernet ports – MII (10/100) – RGMII (10/100/1000) • 6 PRU RISC cores per PRU_ICSSG each core having: – Instruction RAM with ECC – Broadside RAM – Multiplier with optional accumulator (MAC) – CRC16/32 hardware accelerator – Byte swap for Big/Little Endian conversion – SUM32 hardware accelerator for UDP checksum – Task Manager for preemption support • Three Data RAMs with ECC • 8 banks of 30 × 32-bit register scratchpad memory • Interrupt controller and task manager Two 64-bit Industrial Ethernet Peripherals (IEPs) for time stamping and other time synchronization functions 18× Sigma-Delta filters – Short circuit logic – Over-current logic 6× Multi-protocol position encoder interfaces One Enhanced Capture Module (ECAP) 16550-compatible UART with a dedicated 192-MHz clock to support 12-Mbps PROFIBUS • Up to 2MB of On-chip RAM (OCSRAM) with SECDED ECC: – Can be divided into smaller banks in increments of 256KB for as many as 8 separate memory banks – Each memory bank can be allocated to a single core to facilitate software task partitioning DDR Subsystem (DDRSS) – Supports LPDDR4, DDR4 memory types – 16-Bit data bus with inline ECC – Supports speeds up to 1600 MT/s 1× General-Purpose Memory Controller (GPMC) – 16-Bit parallel bus with 133 MHz clock or – 32-Bit parallel bus with 100 MHz clock – Error Location Module (ELM) support System on Chip (SoC) Services: • • Device Management Security Controller (DMSC-L) – Centralized SoC system controller – Manages system services including initial boot, security, and clock/reset/power management – Communication with various processing units over message manager – Simplified interface for optimizing unused peripherals Data Movement Subsystem (DMSS) – – – – Block Copy DMA (BCDMA) Packet DMA (PKTDMA) Secure Proxy (SEC_PROXY) Ring Accelerator (RINGACC) Security: • Secure boot supported – Hardware-enforced Root-of-Trust (RoT) – Support to switch RoT via backup key – Support for takeover protection, IP protection, and anti-roll back protection An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 • • • • Trusted Execution Environment (TEE) supported – Arm TrustZone® based TEE – Secure watchdog/timer/IPC – Extensive firewall support for isolation – Secure storage support – Replay Protected Memory Block (RPMB) support Security co-processor (DMSC-L) for key and security management, with dedicated device level interconnect for security Cryptographic acceleration supported – Session-aware cryptographic engine with ability to auto-switch key-material based on incoming data stream • Supports cryptographic cores – AES – 128-/192-/256-Bit key sizes – SHA2 – 224-/256-/384-/512-Bit key sizes – DRBG with true random number generator – PKA (Public Key Accelerator) to Assist in RSA/ECC processing for secure boot Debugging security – Secure software controlled debug access – Security aware debugging High-speed interfaces: • • • 2 General connectivity: • • • • • • • • Control interfaces: • • • • 1× Integrated Ethernet switch (CPSW3G) supporting: – Up to 2 Ethernet ports • RMII (10/100) • RGMII (10/100/1000) – IEEE 1588 (2008 Annex D, Annex E, Annex F) with 802.1AS PTP – Clause 45 MDIO PHY management – Energy efficient Ethernet (802.3az) 1× PCI-Express® Gen2 controller (PCIE) – Supports Gen2 operation – Supports Single Lane operation 1× USB 3.1 Dual-Role Device (DRD) Subsystem (USBSS) – Port configurable as USB host, USB device, or USB Dual-Role device – USB device: High-speed (480 Mbps), and Full-speed (12Mbps) – USB host: SuperSpeed Gen 1 (5 Gbps), High-speed (480 Mbps), Full-speed (12 Mbps), and Low-speed (1.5 Mbps) Submit Document Feedback 6× Inter-Integrated Circuit (I2C) ports 9× configurable Universal Asynchronous Receive/ Transmit (UART) modules 1× Flash Subsystem (FSS) that can be configured as Octal SPI (OSPI) flash interfaces or one Quad SPI (QSPI) 1× 12-Bit Analog-to-Digital Converters (ADC) – Up to 4 MSPS – 8× multiplexed analog inputs 7× Multichannel Serial Peripheral Interfaces (MCSPI) controllers 6× Fast Serial Interface Receiver (FSI_RX) cores 2× Fast Serial Interface Transmitter (FSI_TX) cores 3× General-Purpose I/O (GPIO) modules 9x Enhanced Pulse-Width Modulator (EPWM) modules 3× Enhanced Capture (ECAP) modules 3× Enhanced Quadrature Encoder Pulse (EQEP) modules 2× Modular Controller Area Network (MCAN) modules with or without full CAN-FD support Media and data storage: • 2× Multi-Media Card/Secure Digital (MMC/SD/ SDIO) interfaces – One 4-bit for SD/SDIO; – One 8-bit for eMMC – Integrated analog switch for voltage switching between 3.3V to 1.8V for high-speed cards Power management: • • • • Simplified power sequence Integrated SDIO LDO for handling automatic voltage transition for SD interface Integrated voltage supervisor for safety monitoring of over-under voltage conditions Integrated power supply glitch detector for detecting fast supply transients Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Functional Safety: • Functional Safety-Compliant targeted – Developed for functional safety applications – Documentation will be available to aid IEC 61508 functional safety system design – Systematic capability up to SIL 3 targeted – Hardware integrity up to SIL 2 targeted – Safety-related certification • IEC 61508 certification planned • Functional Safety Features – ECC or parity on calculation-critical memories – ECC and parity on select internal bus interconnect – Built-In Self-Test (BIST) for CPU and on-chip RAM – Error Signaling Module (ESM) with error pin – Runtime safety diagnostics, voltage, temperature, and clock monitoring, windowed watchdog timers, CRC engine for memory integrity checks – Dedicated MCU domain memory, interfaces, and M4F core capable of being isolated from the larger SoC with Freedom From Interference (FFI) features • Separate interconnect • Firewalls and timeout gaskets • Dedicated PLL • Dedicated I/O supply • Separate reset Copyright © 2023 Texas Instruments Incorporated SoC architecture: • • • Supports primary boot from UART, I2C, OSPI/ QSPI Flash, SPI Flash, parallel NOR Flash, parallel NAND Flash, SD, eMMC, USB, PCIe, and Ethernet interfaces 16-nm FinFET technology 17.2 mm × 17.2 mm, 0.8-mm pitch, 441-pin BGA package Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 3 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 2 Applications • • • • • Programmable Logic Controller (PLC) Motor Drives Remote I/O Industrial Robots Condition-Monitoring Gateway 3 Description AM64x is an extension of the Sitara™ Industrial-grade family of heterogeneous Arm® processors. AM64x is built for industrial applications, such as motor drives and Programmable Logic Controllers (PLCs), which require a unique combination of real-time processing and communications with applications processing. AM64x combines two instances of the Sitara device's gigabit TSN-enabled PRU-ICSSG with up to two Arm® Cortex®-A53 cores, up to four Cortex-R5F MCUs, and a Cortex-M4F MCU. AM64x is architected to provide real-time performance through the high-performance R5Fs, Tightly-Coupled Memory banks, configurable SRAM partitioning, and dedicated low-latency paths to and from peripherals for rapid data movement in and out of the SoC. This deterministic architecture allows for AM64x to handle the tight control loops found in servo drives while the peripherals like FSI, GPMC, PWMs, sigma delta decimation filters, and absolute encoder interfaces help enable a number of different architectures found in these systems. The Cortex-A53s provide the powerful computing elements necessary for Linux applications. Linux, and Realtime (RT) Linux, is provided through TI’s Processor SDK Linux which stays updated to the latest Long Term Support (LTS) Linux kernel, bootloader and Yocto file system on an annual basis. AM64x helps bridge the Linux world with the real-time world by enabling isolation between Linux applications and real-time streams through configurable memory partitioning. The Cortex-A53s can be assigned to work strictly out of DDR for Linux, and the internal SRAM can be broken up into various sizes for the Cortex-R5Fs to use together or independently. The AM64x provides flexible industrial communications capability including full protocol stacks for EtherCAT SubDevice, PROFINET device, EtherNet/IP adapter, and IO-Link Master. The PRU-ICSSG further provides capability for gigabit and TSN based protocols. In addition, the PRU-ICSSG also enables additional interfaces in the SoC including sigma delta decimation filters and absolute encoder interfaces. Functional safety features can be enabled through the integrated Cortex-M4F along with dedicated peripherals which can all be isolated from the rest of the SoC. AM64x also supports secure boot. Package Information (1) (2) 4 PART NUMBER PACKAGE(1) PACKAGE SIZE(2) AM6442 ALV (FCBGA, 441) 17.2 mm × 17.2 mm AM6441 ALV (FCBGA, 441) 17.2 mm × 17.2 mm AM6422 ALV (FCBGA, 441) 17.2 mm × 17.2 mm AM6421 ALV (FCBGA, 441) 17.2 mm × 17.2 mm AM6412 ALV (FCBGA, 441) 17.2 mm × 17.2 mm AM6411 ALV (FCBGA, 441) 17.2 mm × 17.2 mm For more information, see Mechanical, Packaging, and Orderable Information. The package size (length × width) is a nominal value and includes pins, where applicable. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 3.1 Functional Block Diagram Figure 3-1 is functional block diagram for the device. Note To understand what device features are currently supported by TI Software Development Kits (SDKs), search for the AM64x Software Build Sheet located in the Downloads tab option provided at Processor-SDK-AM64x. AM64x Application cores ® ® 2x Arm Arm ® ® Cortex -A53 -A53 Cortex Real-time cores ® Arm ® Cortex -A53 ® ® Arm ® Cortex -R5F 256KB L2 with ECC Arm ® Cortex -R5F Isolated core ® Arm ® Cortex -R5F 128KB TCM ® Arm ® Cortex -R5F 128KB TCM (A) ® Arm ® Cortex -M4F 256KB SRAM System Memory 2 MB SRAM with ECC 2x MMCSD DDR4/LPDDR4 with inline ECC Security SHA Secure Boot System Services PKA DRBG 12x GP Timers MD5 3DES 4x WWDT AES Industrial Connectivity Sync Manager Isolated Connectivity General Connectivity (A) (for use with Cortex-M4F) PRU-ICSS(Gb) 2x GMAC Encoder with 9x ∑∆ PRU-ICSS(Gb) 2x GMAC Encoder with 9x ∑∆ GPMC / ELM GPIO 8x FSI 5x MCSPI 9x EPWM 4x I2C 3x ECAP 7x UART 3x EQEP OSPI or QSPI 2x CAN-FD 1x ADC PCIe(C) 1x Single lane Gen 2 3-port Gb Ethernet(B) 1x USB 3.1 DRD(C) GPIO 2x MCSPI 2x I2C 2x UART intro_001 A. B. C. Isolation of peripherals and M4F core is an optional feature. One port is internally connected only; not connected to any pins. USB SuperSpeed and PCIe share a common SerDes PHY. Therefore, USB will be limited to non-SuperSpeed modes when using the SerDes PHY for PCIe. Figure 3-1. Functional Block Diagram Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 5 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 4 3 Description.......................................................................4 3.1 Functional Block Diagram........................................... 5 4 Revision History.............................................................. 7 5 Device Comparison....................................................... 10 5.1 Related Products...................................................... 12 6 Terminal Configuration and Functions........................13 6.1 Pin Diagrams............................................................ 13 6.2 Pin Attributes.............................................................14 6.3 Signal Descriptions................................................... 59 6.4 Pin Connectivity Requirements.................................94 7 Specifications................................................................ 99 7.1 Absolute Maximum Ratings...................................... 99 7.2 ESD Ratings........................................................... 101 7.3 Power-On Hours (POH).......................................... 101 7.4 Recommended Operating Conditions.....................102 7.5 Operating Performance Points................................103 7.6 Power Consumption Summary............................... 103 7.7 Electrical Characteristics.........................................104 7.8 VPP Specifications for One-Time Programmable (OTP) eFuses............................................................ 110 7.9 Thermal Resistance Characteristics........................111 6 Submit Document Feedback 7.10 Timing and Switching Characteristics................... 112 8 Detailed Description....................................................232 8.1 Overview................................................................. 232 8.2 Processor Subsystems........................................... 233 8.3 Accelerators and Coprocessors..............................235 8.4 Other Subsystems.................................................. 235 9 Applications, Implementation, and Layout............... 243 9.1 Device Connection and Layout Fundamentals....... 243 9.2 Peripheral- and Interface-Specific Design Information................................................................ 244 9.3 Clock Routing Guidelines........................................251 10 Device and Documentation Support........................252 10.1 Device Nomenclature............................................252 10.2 Tools and Software............................................... 255 10.3 Documentation Support........................................ 255 10.4 Support Resources............................................... 255 10.5 Trademarks........................................................... 255 10.6 Electrostatic Discharge Caution............................256 10.7 Glossary................................................................256 11 Mechanical, Packaging, and Orderable Information.................................................................. 257 11.1 Packaging Information.......................................... 257 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 4 Revision History Changes from September 22, 2022 to October 31, 2023 (from Revision E (SEPTEMBER 2022) to Revision F (OCTOBER 2023)) Page • (Features): Updated the Security features to clarify what is supported..............................................................1 • (Package Information): Updated the table to match the new content standard..................................................4 • (Functional Block Diagram): Updated URL for Software Build Sheet.................................................................5 • (Device Comparison): Updated URL for Software Build Sheet........................................................................ 10 • (Device Comparison): Corrected the name of the JTAG User ID register........................................................ 10 • (Device Comparison): Defined the R5F cores enabled in each device and changed the R5F TCM memory size from "256KB" to "4 x 64KB" in the 2 x Dual Core devices, and "2 x 128KB" in the 2 x Single Core devices..............................................................................................................................................................10 • (Device Comparison): Added Functional Safety Optional for AM6422.............................................................10 • (Device Comparison): Changed General-Purpose Memory Controller (GPMC) address range from 1GB to 128MB.............................................................................................................................................................. 10 • (GPMC0 Signal Descriptions): Moved the GPMC0_FCLK_MUX signal from System Signal Descriptions to GPMC0 Signal Descriptions............................................................................................................................. 59 • (System Signal Descriptions): Moved the GPMC0_FCLK_MUX signal from System Signal Descriptions to GPMC0 Signal Descriptions............................................................................................................................. 59 • (Pin Connectivity Requirements): Updated the second paragraph of the note following the Connectivity Requirements table. The update clarifies the operation of configurable device IOs and includes precautions that must be taken to prevent floating signals from damaging device input buffers......................................... 94 • (Specifications): Remove note that says specifications are preliminary .......................................................... 99 • (Power-On Hours): Updated the table to match the new content standard....................................................101 • (Recommended Operating Conditions): Added the Automotive temperature range...................................... 102 • (I2C OD FS Electrical Characteristics): Changed the IOL minimum value from 20 to 10 for both 1.8 V and 3.3 V modes..........................................................................................................................................................104 • (DDR Electrical Characteristics): Added references to the respective JEDEC standards..............................109 • (System Timing): Removed the Timing Conditions table from this section and added separate Timing Conditions tables to each of the Reset Timing, Safety Signal Timing, and Clock Timing sections................. 118 • (Reset Timing): Added Timing Conditions table to define conditions specific to reset inputs and outputs..... 118 • (MCU_RESETSTATz, and RESETSTATz Switching Characteristics): Changed the minimum value of parameter RST8 from "4040*S" to "966*S" and the minimum value of parameter RST9 from "301200" to "4040*S"..........................................................................................................................................................118 • (MCU_RESETSTATz, and RESETSTATz Switching Characteristics): Changed the minimum value of parameter RST13 from "0" to "960"................................................................................................................ 118 • (RESETSTATz Switching Characteristics): Changed the minimum value of parameter RST16 from "T" to "900*T", the minimum value of parameter RST17 from "W" to "4040*S", and replaced the contents of table note 2.............................................................................................................................................................. 118 • (PORz_OUT Switching Characteristics): Changed the minimum value of parameter RST26 from "0" to "1840"..............................................................................................................................................................118 • (Safety Signal Timing): Added Timing Conditions table to define conditions specific to MCU_SAFETY_ERRORn output....................................................................................................................123 • (MCU_ERRORn Switching Characteristics): Changed "RST22" to "SFTY3" in table note 5......................... 123 • (Clock Timing): Added Timing Conditions table to define conditions specific to clock inputs and outputs..... 124 • (Clock Timing Requirements): Updated the Timing Requirements figure with a single generic waveform and updated the parameter numbers in the Timing Requirements table to reference the generic clock waveform.... ........................................................................................................................................................................124 • (Clock Switching Characteristics): Updated the Switching Characteristics figure with a single generic waveform and updated the parameter numbers in the Switching Characteristics table to reference the generic clock waveform............................................................................................................................................... 124 • (MCU_OSC0 Crystal Implementation): Changing the crystal oscillator circuit diagram back to the original version used in previous revisions of this document...................................................................................... 127 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 7 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 • • • • • • • • • • • • • • • • • • • • • • • • 8 (CPSW3G MDIO Timing): Included PCB Connectivity Requirements in the Timing Conditions table, changed the minimum setup time value (parameter MDIO1) from "90" to "45", and changed the minimum and maximum output delay time values (parameter MDIO7) from "-150" and "150" to "-10" and "10" respectively.....................................................................................................................................................133 (GPMC0 IOSETs): Removed GPMC0_CLKLB since there is no pin with this name .....................................171 (MCSPI Switching Characteristics - Controller Mode): Replaced previous table notes 2 and 3 with new table notes 2, 3, 4, and 5.........................................................................................................................................176 (MMC0 Timing Requirements – Legacy SDR Mode): Changed the minimum values for LSDR1 and LSDR3 from 9.69 to 1.56, and the minimum values for LSDR2 and LSDR4 from 27.97 to 5.44................................183 (MMC0 Switching Characteristics – Legacy SDR Mode): Changed the minimum values for LSDR8 and LSDR9 from -16.1 to -2.3, and the maximum values for HSSDR8 and HSSDR9 from 16.1 to 2.9................183 (MMC0 Timing Requirements – High Speed SDR Mode): Changed the minimum values for HSSDR1 and HSSDR3 from 2.99 to 2.55.............................................................................................................................184 (MMC0 Switching Characteristics – High Speed SDR Mode): Changed the minimum values for HSSDR8 and HSSDR9 from -6.35 to -2.3, and the maximum values for HSSDR8 and HSSDR9 from 6.35 to 2.9.............184 (MMC0 Timing Requirements – High Speed DDR Mode): Changed the minimum values for HSDDR1 from 3.88 to 1.62, and the minimum values for HSDDR2 from 2.67 to 2.52.......................................................... 185 (MMC0 Switching Characteristics – High Speed DDR Mode): Changed the maximum value for HSDDR8 from 16.19 to 7.65...................................................................................................................................................185 (MMC1 DLL Delay Mapping for All Timing Modes): Changed the value of OTAPDLYENA from 0x0 to 0x1 for Default Speed and High Speed modes. Also changed UHS-I DR50 to UHS-I DDR50 to correct a typographical error in the mode name............................................................................................................187 (Timing Requirements for MMC1 – Default Speed Mode): Changed the minimum values for DS1 and DS3 from 2.55 to 2.15, and the minimum values for DS2 and DS2 from 19.67 to 1.67.........................................189 (Switching Characteristics for MMC1 – Default Speed Mode): Changed the minimum values for DS8 and DS9 from -14.1 to -1.8, and the maximum values for DS8 and DS9 from 14.1 to 1.8........................................... 189 (Timing Requirements for MMC1 – High Speed Mode): Changed the minimum values for HS1 and HS3 from 2.55 to 2.15, and the minimum values for HS2 and HS2 from 2.67 to 1.67................................................... 190 (Switching Characteristics for MMC1 – High Speed Mode): Changed the minimum values for HS8 and HS9 from -7.35 to -1.8, and the maximum values for HS8 and HS9 from 3.35 to 1.8........................................... 190 (Timing Requirements for MMC1 – UHS-I SDR12 Mode): Changed the minimum values for SDR121 and SDR123 from 21.65 to 2.35............................................................................................................................191 (Switching Characteristics for MMC1 – UHS-I SDR12 Mode): Changed the minimum values for SDR128 and SDR129 from -13.6 to 1.2, and the maximum values for SDR128 and SDR129 from 13.6 to 8....................191 (Timing Requirements for MMC1 – UHS-I SDR25 Mode): Changed the minimum values for SDR251 and SDR253 from 2.15 to 1.95..............................................................................................................................192 (Switching Characteristics for MMC1 – UHS-I SDR25 Mode): Changed the minimum values for SDR258 and SDR259 from -7.1 to 2.4, and the maximum values for SDR258 and SDR259 from 3.1 to 8........................192 (Timing Requirements for MMC1 – UHS-I DDR50 Mode): Removed Timing Requirements since the UHS-I DDR50 mode requires a tuning algorithm to be used for optimal input timing............................................... 194 (Switching Characteristics for MMC1 – UHS-I DDR50 Mode): Changed the maximum value for DDR508 from 13.1 to 6.35.....................................................................................................................................................194 (Switching Characteristics for MMC1 – UHS-I SDR104 Mode): Changed the minimum values for SDR1046 and SDR1047 from 2.08 to 2.12, the minimum values for SDR1048 and SDR1049 from 1.12 to 1.08, and maximum values for SDR1048 and SDR1049 from 3.16 to 3.2..................................................................... 195 (OSPI Switching Characteristics – PHY Data Training): Added maximum values to the OSPI0_CLK Cycle Time parameter (O1) to define a minimum operating frequency of 133MHz. Also updated Note 1 and Note 4, where "in ns" was added to the OSPI_CLK cycle time reference in Note 1 and "refclk" was changed to "reference clock" in Note 4 so it matches the clock name used in the TRM.................................................. 199 (OSPI0 Switching Characteristics – PHY SDR Mode): Updated Note 1 and Note 4, where "in ns" was added to the OSPI_CLK cycle time reference in Note 1 and "refclk" was changed to "reference clock" in Note 4 so it matches the clock name used in the TRM..................................................................................................... 201 (OSPI0 Switching Characteristics – PHY DDR Mode): Updated Note 1 and Note 4, where "in ns" was added to the OSPI_CLK cycle time reference in Note 1 and "refclk" was changed to "reference clock" in Note 4 so it matches the clock name used in the TRM..................................................................................................... 203 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com • • • • • • • • • • • • • SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 (OSPI0 Timing Requirements – Tap SDR Mode): Updated the constant values associated with the minimum setup and minimum hold formulas in parameters O19 and O20. Note 2 was also updated to change "refclk" to "reference clock" so it matches the clock name used in the TRM..................................................................205 (OSPI0 Switching Characteristics – Tap SDR Mode): Updated Note 1 and Note 4, where "in ns" was added to the OSPI_CLK cycle time reference in Note 1 and "refclk" was changed to "reference clock" in Note 4 so it matches the clock name used in the TRM..................................................................................................... 205 (OSPI0 Timing Requirements – Tap DDR Mode): Updated the constant values associated with the minimum setup and minimum hold formulas in parameters O13 and O14. Note 2 was also updated to change "refclk" to "reference clock" so it matches the clock name used in the TRM..................................................................207 (OSPI0 Switching Characteristics – Tap DDR Mode): Changed the "OSPI_RD_DATA_CAPTURE_REG" bit field from "DELAY_FLD" to "DDR_READ_DELAY_FLD" in the note associated with parameter O6.............207 (OSPI0 Switching Characteristics – Tap DDR Mode): Updated the minimum data output delay and maximum data output delay formulas in parameter O6. Also updated Note 1 and Note 5, where "in ns" was added to the OSPI_CLK cycle time reference in Note 1 and "refclk" was changed to "reference clock" in Note 5 so it matches the clock name used in the TRM..................................................................................................... 207 (PCIe): Updated the "For more details about features and ..." paragraph......................................................208 (PRUSS PRU Switching Characteristics – Direct Output Mode): Changed the maximum skew value for the GPO to GPO parameter (PRDO1) from 3ns to 2ns........................................................................................209 (PRU_ICSSG UART Switching Characteristics): Added the TRM UART baud rate settings reference to Note 1......................................................................................................................................................................218 (USB): Updated the "For more details about features and ..." paragraph...................................................... 229 (Power Supply Designs): Updated recommended PMIC from LP8733xx to TPS65220 or TPS65219.......... 243 (USB VBUS Design Guidelines): Changed the 3.5 kΩ resistor value to 3.48kΩ since 3.5kΩ is not a standard value for 1% resistors..................................................................................................................................... 248 (Clock Routing Guidelines): Added new section............................................................................................ 251 (Device Naming Convention): Added the Automotive temperature range......................................................254 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 9 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 5 Device Comparison Table 5-1 shows a comparison between devices, highlighting the differences. Note Availability of features listed in this table are a function of shared IO pins, where IO signals associated with many of the features are multiplexed to a limited number of pins. The SysConfig tool should be used to assign signal functions to pins. This will provide a better understanding of limitations associated with pin multiplexing. Note To understand what device features are currently supported by TI Software Development Kits (SDKs), search for the AM64x Software Build Sheet located in the Downloads tab option provided at Processor-SDK-AM64x. Table 5-1. Device Comparison REFERENCE NAME FEATURES AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 CTRL_MMR_CFG0_JTAG_USER_ID[31:13](1) Register bit values by device "Features" code (See Nomenclature Description table for more information on device features) C: – – – – 0x19403 0x19203 D: 0x19464 0x19264 0x19424 0x19224 – – E: 0x19465 0x19265 – 0x19225 – – F: 0x19466 0x19266 – 0x19226 – – Dual Core Single Core Dual Core Single Core Dual Core PROCESSORS AND ACCELERATORS Speed Grades (See Table 7-1) S Arm Cortex-A53 Microprocessor Subsystem Arm A53 2 × Dual Core R5FSS0_CORE0 R5FSS0_CORE1 R5FSS1_CORE0 R5FSS1_CORE1 S, K 2 × Single Core R5FSS0_CORE0 R5FSS1_CORE0 Arm Cortex-R5F Arm R5F Arm Cortex-M4F Arm M4F Device Management Security Controller DMSC-L Yes Crypto Accelerators Security Yes Single Core Single Core R5FSS0_CORE0 Single Core Functional Safety Optional(4) Single Core PROGRAM AND DATA STORAGE On-Chip Shared Memory (RAM) in MAIN Domain OCSRAM 2MB R5F Tightly Coupled Memory (TCM) TCM 4 x 64KB 2 x 128KB On-Chip Shared Memory (RAM) in M4F Domain MCU_MSRAM DDR4/LPDDR4 DDR Subsystem DDRSS Up to 2GB (16-bit data) with inline ECC General-Purpose Memory Controller GPMC Up to 128MB with ECC 1 x 128KB 256KB PERIPHERALS Modular Controller Area Network Interface MCAN Full CAN-FD Support(2) MCAN General-Purpose I/O GPIO Inter-Integrated Circuit Interface I2C Analog-to-Digital Converter ADC Multichannel Serial Peripheral Interface MCSPI Multi-Media Card/ Secure Digital Interface Fast Serial Interface Flash Subsystem 10 (FSS)(3) Optional No Optional No No Up to 198 6 1 No 7 MMCSD0 eMMC (8-bits) MMCSD1 SD/SDIO (4-bits) FSI_TX 2 FSI_RX 6 OSPI0/QSPI0 Submit Document Feedback 2 Optional Yes Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 5-1. Device Comparison (continued) REFERENCE NAME FEATURES AM6442 AM6441 AM6422 AM6421 PCI Express Port with Integrated SerDes PHY PCIE0 Programmable Real-Time Unit Subsystem(5) PRU_ICSSG PRU_ICSSG Industrial Communication Support(6) PRU_ICSSG Gigabit Ethernet Interface CPSW3G General-Purpose Timers TIMER 16 (4 in MCU Channel) Enhanced Pulse-Width Modulator Module EPWM 9 Enhanced Capture Module ECAP 3 Enhanced Quadrature Encoder Pulse Module EQEP 3 Universal Asynchronous Receiver and Transmitter UART 9 Universal Serial Bus (USB3.1 Gen1) SuperSpeed Dual-Role-Device (DRD) Ports with SS SerDes USB0 PHY and USB 2.0 PHY (1) (2) (3) (4) (5) (6) (7) Single AM6412 AM6411 No No Lane(7) 2 Optional Optional Yes Optional Yes Yes(7) For more details about the CTRL_MMR_CFG0_JTAG_USER_ID register and DEVICE_ID bit field, see the device TRM. Full CAN-FD Support is available when selecting an orderable part number that includes a feature code of E or F. Refer to Nomenclature Description table for the definition of feature codes. One flash interface, configured as OSPI0 or QSPI0. Functional Safety is available when selecting an orderable part number that includes a feature code of F. Refer to Nomenclature Description table for the definition of feature codes. Orderable part numbers with a feature code of C support using PRU_ICSSG for use cases other than industrial communication. Refer to Nomenclature Description table for the definition of feature codes. PRU_ICSSG industrial communication includes Ethernet networking (MII/RGMII, MDIO), Sigma-Delta (SD) decimation, and three channel peripheral interface (EnDat 2.2 and BiSS). PRU_ICSSG industrial communication support is available when selecting an orderable part number that includes a feature code of D, E, or F. Refer to Nomenclature Description table for the definition of feature codes. USB SuperSpeed and PCIe share a common SerDes PHY. Therefore, USB will be limited to non-SuperSpeed modes when using the SerDes PHY for PCIe. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 11 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 5.1 Related Products Sitara™ processors Broad family of scalable processors based on Arm® Cortex®-A cores with flexible accelerators, peripherals, connectivity and unified software support – perfect for sensors to servers. Sitara processors have the reliability needed for use in industrial applications. AM64x Sitara™ processors AM6x processors enable gigabit industrial Ethernet networks, robust operation with extensive ECC on memories, and enhanced security features. Additional features such as an integrated lockstep MCU subsystem and diagnostic libraries help enable functional safety systems. Sitara™ processors - Applications Sitara™ processors provide scalable solutions for a wide range of applications from HMIs and gateways to more complex equipment such as drives and substation automation equipment. Sitara processors also offer multi-protocol support for industrial communication protocols such as EtherCAT®, Ethernet/IP, and Profinet. Sitara™ processors - Reference designs TI provides many reference designs containing ‘building block’ solutions to enable customers to rapidly develop their own unique products and solutions. Companion Products for AM64x Review products that are frequently purchased or used in conjunction with this product to complete your design. 12 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 6 Terminal Configuration and Functions 6.1 Pin Diagrams Note The terms "ball", "pin", and "terminal" are used interchangeably throughout the document. An attempt is made to use "ball" only when referring to the physical package. Figure 6-1 shows the ball locations for the 441-ball flip chip ball grid array (FCBGA) package to quickly locate signal names and ball grid numbering. This figure is used in conjunction with Table 6-1 through Table 6-80 (Pin Attributes table and all Signal Descriptions tables, including the Connectivity Requirements table). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 PRG1_PRU0 _GPO6 PRG1_PRU0 _GPO11 PRG1_PRU0 _GPO14 PRG1_PRU1 _GPO11 PRG1_PRU1 _GPO14 PRG1_PRU1 _GPO2 PRG1_PRU1 _GPO5 PRG1_PRU1 _GPO17 VSS SERDES0 _TX0_N SERDES0 _TX0_P VSS USB0_DP USB0_DM VSS VSS PRG0_PRU0 _GPO4 PRG0_PRU0 _GPO12 PRG0_PRU1 _GPO16 PRG0_PRU0 _GPO10 PRG1 _MDIO0 _MDIO Y PRG0_PRU0 _GPO0 PRG0_PRU1 _GPO0 PRG0_PRU0 _GPO11 PRG0_PRU1 _GPO12 PRG0_PRU1 _GPO9 PRG1 _MDIO0 _MDC PRG1_PRU0 _GPO0 PRG1_PRU0 _GPO4 PRG1_PRU0 _GPO15 PRG1_PRU1 _GPO16 PRG1_PRU1 _GPO15 PRG1_PRU1 _GPO3 PRG1_PRU1 _GPO18 VSS SERDES0 _RX0_N SERDES0 _RX0_P VSS GPMC0 _WAIT1 VSS GPMC0 _AD15 GPMC0 _AD14 W PRG0_PRU0 _GPO19 PRG0_PRU1 _GPO1 PRG0_PRU1 _GPO4 PRG0_PRU1 _GPO11 PRG0_PRU1 _GPO7 PRG0_PRU0 _GPO9 PRG1_PRU0 _GPO19 PRG1_PRU0 _GPO2 PRG1_PRU0 _GPO13 VSS PRG1_PRU1 _GPO0 PRG1_PRU1 _GPO4 PRG1_PRU0 _GPO8 PRG1_PRU1 _GPO10 RSVD4 SERDES0 _REFCLK0N SERDES0 _REFCLK0P VSS GPMC0 _WAIT0 GPMC0 _AD11 GPMC0 _AD12 V PRG0_PRU0 _GPO18 PRG0_PRU0 _GPO3 PRG0_PRU1 _GPO2 PRG0_PRU0 _GPO14 PRG0_PRU1 _GPO17 PRG0_PRU1 _GPO10 PRG1_PRU0 _GPO18 PRG1_PRU0 _GPO3 PRG1_PRU0 _GPO16 PRG1_PRU1 _GPO12 PRG1_PRU1 _GPO1 PRG1_PRU1 _GPO19 PRG1_PRU0 _GPO5 PRG1_PRU1 _GPO9 PRG1_PRU1 _GPO7 RSVD5 VSS GPMC0 _AD13 GPMC0_AD8 GPMC0_AD6 GPMC0_AD7 U PRG0_PRU0 _GPO17 PRG0_PRU0 _GPO2 VSS PRG0_PRU0 _GPO16 PRG0_PRU1 _GPO15 PRG0_PRU1 _GPO14 PRG1_PRU0 _GPO17 PRG1_PRU0 _GPO1 PRG1_PRU0 _GPO12 PRG1_PRU1 _GPO13 PRG1_PRU1 _GPO6 PRG1_PRU1 _GPO8 PRG1_PRU0 _GPO7 PRG1_PRU0 _GPO10 PRG1_PRU0 _GPO9 USB0_ID USB0 _RCALIB GPMC0_AD4 GPMC0_AD5 GPMC0_AD3 GPMC0_AD1 T PRG0_PRU0 _GPO7 PRG0_PRU0 _GPO8 PRG0_PRU0 _GPO6 PRG0_PRU1 _GPO3 PRG0_PRU0 _GPO15 PRG0_PRU1 _GPO13 CAP_VDDS1 VSS VDDSHV2 VSS VSS VDDA_0P85 _USB0 SERDES0 _REXT USB0_VBUS VSS VSS GPMC0_AD9 GPMC0_AD2 GPMC0 _BE1n R PRG0_PRU1 _GPO8 PRG0_PRU1 _GPO19 PRG0_PRU0 _GPO5 PRG0_PRU0 _GPO1 PRG0_PRU1 _GPO6 PRG0_PRU0 _GPO13 VSS VDDSHV2 VSS VDDSHV2 CAP_VDDS2 VSS VDDA_3P3 _USB0 VDDA_1P8 _SERDES0 VDDA_1P8 _USB0 GPMC0 _AD10 GPMC0_CLK GPMC0_OEn _REn GPMC0 _CSn0 GPMC0 _CSn1 GPMC0 _CSn3 P VSS PRG0 _MDIO0 _MDIO PRG0 _MDIO0 _MDC PRG0_PRU1 _GPO5 PRG0_PRU1 _GPO18 VSS VDDSHV1 VSS VDD_CORE VSS VDDA_0P85 _SERDES0 _C VDDA_0P85 _SERDES0 VDDA_0P85 _SERDES0 VDDSHV3 VDDSHV3 GPMC0 _ADVn_ALE GPMC0 _BE0n_CLE VSS GPMC0 _CSn2 OSPI0_D5 OSPI0_D4 N DDR0_DQS1 DDR0_DQ15 DDR0_DQ13 DDR0_DQ12 DDR0_DQ8 VDDSHV1 VSS VDD_CORE VSS VDD_CORE VSS VDDA_PLL0 VSS CAP_VDDS3 VSS GPMC0_WPn GPMC0_DIR OSPI0_D6 OSPI0_DQS OSPI0_CLK OSPI0 _LBCLKO M DDR0_DQS1 _n DDR0_DM1 DDR0_DQ11 DDR0_DQ14 DDR0_A12 VSS VDDSHV1 VSS VDD_CORE VSS VDD_CORE VSS VDDR_CORE VDDSHV4 VDDSHV4 CAP_VDDS4 OSPI0_D7 OSPI0_D1 OSPI0_D0 OSPI0_D2 OSPI0_D3 L VSS DDR0_DQ10 VSS DDR0_DQ9 DDR0_A7 VDDS_DDR VSS VDD_CORE VSS VDDR_CORE VDDA _TEMP1 VDD_CORE CAP_VDDS5 VDDSHV5 VDDSHV5 VSS OSPI0 _CSn3 OSPI0 _CSn1 OSPI0 _CSn0 MMC1_CLK MMC1_DAT1 K RSVD7 RSVD6 DDR0_A10 DDR0_A13 DDR0_PAR VSS VDDS_DDR VSS VDD_CORE VMON_VSYS VDD_CORE VDDA_MCU VDD_MMC0 VDDS_MMC0 CAP _VDDSHV _MMC1 VMON_1P8 _MCU OSPI0 _CSn2 MMC1_DAT3 MMC1_DAT2 MMC0_DAT0 MMC1_DAT0 J DDR0_A11 DDR0_A6 DDR0_A8 DDR0_A9 DDR0_CAS _n VDDS_DDR VSS VDDS_DDR _C VSS VDD_CORE VDDA_PLL2 VDD_CORE VDDA_ADC VSS ADC0_REFP ADC0_REFN MMC0_DAT3 MMC0_DAT2 MMC1_CMD MMC0_DAT1 MMC0_CMD H DDR0 _ALERT_n DDR0_ACT _n DDR0_BG1 DDR0_WE_n DDR0_CAL0 VSS VDDS_DDR VSS VDDA_PLL1 CAP_VDDS _MCU VSS CAP_VDDS0 VDDS_OSC VDD_DLL _MMC0 VDDA_3P3 _SDIO RSVD0 MMC0_DAT4 MMC0_DAT6 MMC0_DAT5 VSS VSS G VSS DDR0_BG0 VSS DDR0_BA0 DDR0_BA1 VDDS_DDR VSS VDDSHV _MCU VSS VDDSHV _MCU VDDA _TEMP0 VDDSHV0 RSVD2 VDDSHV0 VPP VSS MMC0_DAT7 MMC0_CLK MMC0_DS ADC0_AIN0 ADC0_AIN4 F DDR0_CK0 DDR0_A5 DDR0_CKE1 DDR0_CKE0 DDR0_ODT1 DDR0_RAS _n VDDS_DDR VSS VDDSHV _MCU VSS VDDSHV0 RSVD8 VMON_3P3 _MCU VMON_3P3 _SOC VSS RESETSTA Tz RSVD3 MMC0 _CALPAD ADC0_AIN6 ADC0_AIN1 ADC0_AIN5 E DDR0_CK0 _n DDR0_A2 DDR0_CS0 _n DDR0_CS1 _n DDR0_ODT0 MCU_SPI0 _CLK MCU_SPI0 _D0 MCU_UART0 _RTSn MCU_I2C0 _SCL EMU1 VSS VMON_1P8 _SOC VSS UART1_TXD UART1_RXD UART1 _RTSn PORz_OUT RESET _REQz USB0 _DRVVBUS ADC0_AIN7 ADC0_AIN2 D VSS DDR0_A0 DDR0_A4 DDR0_A3 DDR0 _RESET0_n MCU_SPI0 _CS0 MCU_SPI1 _CLK MCU_UART0 _CTSn MCU_UART1 _TXD EMU0 TRSTn SPI0_CS0 SPI0_CLK SPI1_CS1 UART0_RXD UART1 _CTSn MCAN1_RX ADC0_AIN3 RSVD1 C DDR0_DQS0 DDR0_DQ6 VSS DDR0_DQ5 DDR0_A1 MCU_SPI0 _CS1 MCU_SPI1 _D0 MCU_SPI1 _D1 MCU_UART1 _RXD VSS TDI TMS SPI0_CS1 SPI1_CLK VSS UART0_TXD MCAN1_TX I2C1_SCL EXTINTn MMC1_SDWP MCU_OSC0 _XI B DDR0_DQS0 _n DDR0_DM0 DDR0_DQ4 DDR0_DQ7 DDR0_DQ2 MCU_SPI0 _D1 MCU_SPI1 _CS1 MCU_UART1 _CTSn MCU_UART1 _RTSn MCU_I2C1 _SDA TCK MCU _RESETz MCU_RESETS TATz SPI1_CS0 SPI1_D0 UART0 _CTSn MCAN0_RX I2C0_SDA I2C1_SDA MCU_OSC0 _XO MCU_PORz A VSS DDR0_DQ1 DDR0_DQ0 DDR0_DQ3 VSS VSS MCU_SPI1 _CS0 MCU_UART0 _TXD MCU_UART0 _RXD MCU_I2C0 _SDA MCU_I2C1 _SCL TDO SPI0_D0 SPI0_D1 SPI1_D1 UART0 _RTSn MCAN0_TX I2C0_SCL EXT _REFCLK1 MCU _SAFETY _ERRORn VSS AA ECAP0_IN MMC1_SDCD _APWM_OUT GPMC0_AD0 GPMC0_WEn Not to scale Figure 6-1. ALV FCBGA-N441 Pin Diagram (Bottom View) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 13 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 6.2 Pin Attributes The following list describes the contents of each column in Table 6-1, Pin Attributes: 1. BALL NUMBER: Ball numbers assigned to each terminal of the Ball Grid Array package.   2. BALL NAME: Ball name assigned to each terminal of the Ball Grid Array package (this name is typically taken from the primary MUXMODE 0 signal function).   3. SIGNAL NAME: Signal name(s) of all dedicated and pin multiplexed signal functions associated with a ball. Note Many device pins support multiple signal functions. Some signal functions are selected via a single layer of multiplexers associated with pins. Other signal functions are selected via two or more layers of multiplexers, where one layer is associated with the pins and other layers are associated with peripheral logic functions. Table 6-1, Pin Attributes only defines signal multiplexing at the pins. For more information, related to signal multiplexing at the pins, see the Pad Configuration Registers section in the Device Configuration chapter of the device TRM. For information associated with peripheral signal multiplexing, see the respective peripheral chapter in the device TRM. 4. MUX MODE: The MUXMODE value associated with each pin multiplexed signal function: a. MUXMODE 0 is the primary pin multiplexed signal function. However, the primary pin multiplexed signal function is not necessarily the default pin multiplexed signal function. Note The value found in the MUX MODE AFTER RESET column defines the default pin multiplexed signal function selected when MCU_PORz is deasserted. b. MUXMODE values 1 through 15 are possible for pin multiplexed signal functions. However, not all MUXMODE values have been implemented. The only valid MUXMODE values are those defined as pin multiplexed signal functions within the Pin Attributes table. Only valid values of MUXMODE should be used. c. Bootstrap defines SOC configuration pins, where the logic state applied to each pin is latched on the rising edge of PORz_OUT. These input signal functions are fixed to their respective pins and are not programmable via MUXMODE. d. An empty box means Not Applicable. Note The following configurations of MUXMODE must be avoided for proper device operation. • Configuring multiple pins operating as inputs to the same pin multiplexed signal function is not supported as it can yield unexpected results. • Configuring a pin to an undefined pin multiplexing mode will cause the pin behavior to be undefined. 14 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 5. TYPE: Signal type and direction: • I = Input • O = Output • OD = Output, with open-drain output function • IO = Input, Output, or simultaneously Input and Output • IOD = Input, Output, or simultaneously Input and Output, with open-drain output function • IOZ = Input, Output, or simultaneously Input and Output, with three-state output function • OZ = Output with three-state output function • A = Analog • PWR = Power • GND = Ground • CAP = LDO Capacitor. 6. DSIS: The deselected input state (DSIS) indicates the state driven to the subsystem input (logic "0", logic "1", or "pad" level) when the pin multiplexed signal function is not selected by MUXMODE. • 0: Logic 0 driven to the subsystem input. • 1: Logic 1 driven to the subsystem input. • pad: Logic state of the pad is driven to the subsystem input. • An empty box means Not Applicable. 7. BALL STATE DURING RESET RX/TX/PULL: State of the terminal while MCU_PORz is asserted, where RX defines the state of the input buffer, TX defines the state of the output buffer, and PULL defines the state of internal pull resistors: • RX (Input buffer) – Off: The input buffer is disabled. – On: The input buffer is enabled. • TX (Output buffer) – Off: The output buffer is disabled. – Low: The output buffer is enabled and drives VOL. • PULL (Internal pull resistors) – Off: Internal pull resistors are turned off. – Up: Internal pull-up resistor is turned on. – Down: Internal pull-down resistor is turned on. – NA: Not Applicable. • An empty box means Not Applicable. 8. BALL STATE AFTER RESET RX/TX/PULL: State of the terminal after MCU_PORz is deasserted, where RX defines the state of the input buffer, TX defines the state of the output buffer, and PULL defines the state of internal pull resistors: • RX (Input buffer) – Off: The input buffer is disabled. – On: The input buffer is enabled. • TX (Output buffer) – Off: The output buffer is disabled. – SS: The subsystem selected with MUXMODE determines the output buffer state. • PULL (Internal pull resistors) – Off: Internal pull resistors are turned off. – Up: Internal pull-up resistor is turned on. – Down: Internal pull-down resistor is turned on. – NA: Not Applicable. • An empty box means Not Applicable. 9. MUX MODE AFTER RESET: The value found in this column defines the default pin multiplexed signal function after MCU_PORz is deasserted. An empty box means Not Applicable. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 15 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 10. I/O OPERATING VOLTAGE: This column describes I/O operating voltage options of the respective power supply, when applicable. An empty box means Not Applicable. For more information, see valid operating voltage range(s) defined for each power supply in Section 7.4, Recommended Operating Conditions. 11. POWER: The power supply of the associated I/O, when applicable. An empty box means Not Applicable. 12. HYS: Indicates if the input buffer associated with this I/O has hysteresis: • Yes: With hysteresis • No: Without hysteresis • An empty box means Not Applicable. For more information, see the hysteresis values in Section 7.7, Electrical Characteristics. 13. BUFFER TYPE: This column defines the buffer type associated with a terminal. This information can be used to determine which Electrical Characteristics table is applicable. An empty box means Not Applicable. For electrical characteristics, refer to the appropriate buffer type table in Section 7.7, Electrical Characteristics. 14. PULL UP/DOWN TYPE: Indicates the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled via software. • PU: Internal pull-up • PD: Internal pull-down • PU/PD: Internal pull-up and pull-down • An empty box means No internal pull. 15. PADCONFIG Register:Name of the IO pad configuration register associated with Ball.   16. PADCONFIG Address:Physical address of the IO pad configuration register associated with Ball. 16 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] SIGNAL NAME [3] MUX MODE [4] TYPE [5] DSIS [6] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] J16 ADC0_REFN ADC0_REFN A 1.8 V VDDA_ADC0 J15 ADC0_REFP ADC0_REFP A 1.8 V VDDA_ADC0 G20 ADC0_AIN0 ADC0_AIN0 A 1.8 V VDDA_ADC0 Yes ADC12B F20 ADC0_AIN1 ADC0_AIN1 A 1.8 V VDDA_ADC0 Yes ADC12B E21 ADC0_AIN2 ADC0_AIN2 A 1.8 V VDDA_ADC0 Yes ADC12B D20 ADC0_AIN3 ADC0_AIN3 A 1.8 V VDDA_ADC0 Yes ADC12B G21 ADC0_AIN4 ADC0_AIN4 A 1.8 V VDDA_ADC0 Yes ADC12B F21 ADC0_AIN5 ADC0_AIN5 A 1.8 V VDDA_ADC0 Yes ADC12B F19 ADC0_AIN6 ADC0_AIN6 A 1.8 V VDDA_ADC0 Yes ADC12B E20 ADC0_AIN7 ADC0_AIN7 A 1.8 V VDDA_ADC0 Yes ADC12B H12 CAP_VDDS0 CAP_VDDS0 CAP ADC12B ADC12B T7 CAP_VDDS1 CAP_VDDS1 CAP R11 CAP_VDDS2 CAP_VDDS2 CAP N14 CAP_VDDS3 CAP_VDDS3 CAP M16 CAP_VDDS4 CAP_VDDS4 CAP L13 CAP_VDDS5 CAP_VDDS5 CAP K15 CAP_VDDSHV_MMC1 CAP_VDDSHV_MMC1 CAP H10 CAP_VDDS_MCU CAP_VDDS_MCU CAP H2 DDR0_ACT_n DDR0_ACT_n O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR H1 DDR0_ALERT_n DDR0_ALERT_n IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR J5 DDR0_CAS_n DDR0_CAS_n O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR K5 DDR0_PAR DDR0_PAR O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR F6 DDR0_RAS_n DDR0_RAS_n O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR H4 DDR0_WE_n DDR0_WE_n O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR D2 DDR0_A0 DDR0_A0 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR DDR C5 DDR0_A1 DDR0_A1 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C E2 DDR0_A2 DDR0_A2 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR D4 DDR0_A3 DDR0_A3 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR D3 DDR0_A4 DDR0_A4 O PULL UP/DOWN TYPE [14] Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 17 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] 18 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] SIGNAL NAME [3] MUX MODE [4] TYPE [5] DSIS [6] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] F2 DDR0_A5 DDR0_A5 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR J2 DDR0_A6 DDR0_A6 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR L5 DDR0_A7 DDR0_A7 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR J3 DDR0_A8 DDR0_A8 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR J4 DDR0_A9 DDR0_A9 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR K3 DDR0_A10 DDR0_A10 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR J1 DDR0_A11 DDR0_A11 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR DDR M5 DDR0_A12 DDR0_A12 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C K4 DDR0_A13 DDR0_A13 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR G4 DDR0_BA0 DDR0_BA0 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR DDR G5 DDR0_BA1 DDR0_BA1 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C G2 DDR0_BG0 DDR0_BG0 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR H3 DDR0_BG1 DDR0_BG1 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR DDR H5 DDR0_CAL0 DDR0_CAL0 A 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C F1 DDR0_CK0 DDR0_CK0 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR E1 DDR0_CK0_n DDR0_CK0_n O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR F4 DDR0_CKE0 DDR0_CKE0 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR F3 DDR0_CKE1 DDR0_CKE1 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR E3 DDR0_CS0_n DDR0_CS0_n O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR E4 DDR0_CS1_n DDR0_CS1_n O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR B2 DDR0_DM0 DDR0_DM0 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR M2 DDR0_DM1 DDR0_DM1 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR Submit Document Feedback PULL UP/DOWN TYPE [14] Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] SIGNAL NAME [3] MUX MODE [4] TYPE [5] DSIS [6] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] A3 DDR0_DQ0 DDR0_DQ0 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR A2 DDR0_DQ1 DDR0_DQ1 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR B5 DDR0_DQ2 DDR0_DQ2 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR A4 DDR0_DQ3 DDR0_DQ3 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR B3 DDR0_DQ4 DDR0_DQ4 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR C4 DDR0_DQ5 DDR0_DQ5 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR C2 DDR0_DQ6 DDR0_DQ6 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR DDR B4 DDR0_DQ7 DDR0_DQ7 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C N5 DDR0_DQ8 DDR0_DQ8 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR L4 DDR0_DQ9 DDR0_DQ9 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR DDR L2 DDR0_DQ10 DDR0_DQ10 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C M3 DDR0_DQ11 DDR0_DQ11 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR N4 DDR0_DQ12 DDR0_DQ12 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR DDR N3 DDR0_DQ13 DDR0_DQ13 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C M4 DDR0_DQ14 DDR0_DQ14 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR N2 DDR0_DQ15 DDR0_DQ15 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR C1 DDR0_DQS0 DDR0_DQS0 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR B1 DDR0_DQS0_n DDR0_DQS0_n IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR N1 DDR0_DQS1 DDR0_DQS1 IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR M1 DDR0_DQS1_n DDR0_DQS1_n IO 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR E5 DDR0_ODT0 DDR0_ODT0 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR F5 DDR0_ODT1 DDR0_ODT1 O 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C DDR PULL UP/DOWN TYPE [14] Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 19 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] D5 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] DDR0_RESET0_n DDR0_RESET0_n TYPE [5] DSIS [6] 0 IO SYNC0_OUT 1 O CPTS0_RFT_CLK 2 I 0 CP_GEMAC_CPTS0_RFT_CLK 5 I 0 SPI4_CS3 6 IO 1 GPIO1_68 7 IO pad PADCONFIG: MCU_PADCONFIG31 0x0408407C EMU0 0 IO 1 EMU1 EMU1 0 IO 1 PADCONFIG: MCU_PADCONFIG32 0x04084080 MCU_OBSCLK0 15 O EXTINTn EXTINTn 0 I 1 PADCONFIG: PADCONFIG158 0x000F4278 GPIO1_70 7 IOD pad 0 PADCONFIG: PADCONFIG156 0x000F4270 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] 1.1 V/1.2 V VDDS_DDR, VDDS_DDR_C O ECAP0_IN_APWM_OUT ECAP0_IN_APWM_OUT D18 SIGNAL NAME [3] MUX MODE [4] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] DDR 0 Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD On / Off / Up On / Off / Up 0 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD On / Off / Up On / Off / Up 0 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / NA Off / Off / NA 7 1.8 V/3.3 V VDDSHV0 Yes I2C OD FS Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD EMU0 D10 E10 C19 A19 P16 EXT_REFCLK1 0 I EXT_REFCLK1 SYNC1_OUT 1 O PADCONFIG: PADCONFIG157 0x000F4274 SPI2_CS3 2 IO CLKOUT0 5 O GPIO1_69 7 IO GPMC0_ADVn_ALE 0 O 20 pad FSI_RX5_CLK 1 I 0 GPMC0_ADVn_ALE UART5_RXD 2 I 1 PADCONFIG: PADCONFIG33 0x000F4084 EHRPWM_TZn_IN3 3 I 0 TRC_DATA15 6 O GPIO0_32 7 IO pad PRG0_PWM3_TZ_IN 9 I 0 GPMC0_CLK 0 O 0 FSI_RX4_CLK 1 I 0 UART4_RTSn 2 O EHRPWM3_SYNCO 3 O GPMC0_FCLK_MUX 4 O TRC_DATA14 6 O GPIO0_31 7 IO PRG0_PWM3_TZ_OUT 9 O GPMC0_CLK R17 1 PADCONFIG: PADCONFIG31 0x000F407C pad Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] N17 R18 T21 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] T20 TYPE [5] O DSIS [6] GPMC0_DIR 0 GPMC0_DIR EQEP0_B 3 I 0 PADCONFIG: PADCONFIG41 0x000F40A4 GPIO0_40 7 IO pad EHRPWM6_B 8 IO 0 PRG1_PWM2_B0 9 IO 1 GPMC0_OEn_REn 0 O FSI_RX5_D0 1 I GPMC0_OEn_REn UART5_TXD 2 O PADCONFIG: PADCONFIG34 0x000F4088 EHRPWM4_A 3 IO TRC_DATA16 6 O GPIO0_33 7 IO pad PRG0_PWM3_A1 9 IO 0 GPMC0_WEn 0 O 0 FSI_RX5_D1 1 I UART5_RTSn 2 O PADCONFIG: PADCONFIG35 0x000F408C EHRPWM4_B 3 IO TRC_DATA17 6 O GPIO0_34 7 IO pad PRG0_PWM3_B1 9 IO 1 GPMC0_WPn 0 O FSI_TX1_CLK 1 O EQEP0_A 3 I GPMC0_A22 4 OZ TRC_DATA22 6 O GPIO0_39 7 IO pad EHRPWM6_A 8 IO 0 PRG1_PWM2_A0 9 IO 0 GPMC0_AD0 0 IO 0 FSI_RX2_CLK 1 I 0 GPMC0_AD0 UART2_RXD 2 I 1 PADCONFIG: PADCONFIG15 0x000F403C EHRPWM0_SYNCI 3 I 0 TRC_CLK 6 O 7 IO Bootstrap I PADCONFIG: PADCONFIG40 0x000F40A0 GPIO0_15 BOOTMODE00 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD 0 GPMC0_WEn GPMC0_WPn N16 SIGNAL NAME [3] MUX MODE [4] 0 0 0 pad Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 21 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] GPMC0_AD1 U21 PADCONFIG: PADCONFIG16 0x000F4040 MUX MODE [4] TYPE [5] DSIS [6] GPMC0_AD1 0 IO 0 FSI_RX2_D0 1 I 0 UART2_TXD 2 O EHRPWM0_SYNCO 3 O TRC_CTL 6 O GPIO0_16 7 IO PRG0_PWM2_TZ_OUT 9 O SIGNAL NAME [3] BOOTMODE01 GPMC0_AD2 T18 PADCONFIG: PADCONFIG17 0x000F4044 GPMC0_AD3 U20 PADCONFIG: PADCONFIG18 0x000F4048 Bootstrap I 0 IO 0 FSI_RX2_D1 1 I 0 UART2_RTSn 2 O EHRPWM_TZn_IN0 3 I TRC_DATA0 6 O GPIO0_17 7 IO pad PRG0_PWM2_TZ_IN 9 I 0 Bootstrap I GPMC0_AD3 0 IO 0 FSI_RX3_CLK 1 I 0 UART3_RXD 2 I 1 EHRPWM0_A 3 IO 0 TRC_DATA1 6 O GPIO0_18 7 IO pad PRG0_PWM2_A0 9 IO 0 Bootstrap I GPMC0_AD4 0 IO 0 FSI_RX3_D0 1 I 0 UART3_TXD 2 O EHRPWM0_B 3 IO TRC_DATA2 6 O GPIO0_82 7 IO pad PRG0_PWM2_B0 9 IO 1 Bootstrap I BOOTMODE03 GPMC0_AD4 U18 PADCONFIG: PADCONFIG19 0x000F404C BOOTMODE04 22 BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD pad GPMC0_AD2 BOOTMODE02 BALL STATE DURING RESET RX/TX/PULL [7] 0 0 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] GPMC0_AD5 0 IO 0 FSI_RX3_D1 1 I 0 UART3_RTSn 2 O EHRPWM1_A 3 IO TRC_DATA3 6 O GPIO0_83 7 IO pad PRG0_PWM2_A1 9 IO 0 Bootstrap I GPMC0_AD6 0 IO 0 FSI_RX4_D0 1 I 0 UART4_RXD 2 I 1 EHRPWM1_B 3 IO 0 TRC_DATA4 6 O GPIO0_21 7 IO pad PRG0_PWM2_B1 9 IO 1 Bootstrap I GPMC0_AD7 0 IO 0 FSI_RX4_D1 1 I 0 UART4_TXD 2 O GPMC0_AD7 EHRPWM_TZn_IN1 3 I 0 PADCONFIG: PADCONFIG22 0x000F4058 EHRPWM8_A 4 IO 0 TRC_DATA5 6 O GPIO0_22 7 IO pad PRG1_PWM2_A2 9 IO 0 Bootstrap I GPMC0_AD8 0 IO 0 FSI_RX0_CLK 1 I 0 UART2_CTSn 2 I 1 EHRPWM2_A 3 IO 0 TRC_DATA6 6 O GPIO0_23 7 IO pad PRG0_PWM2_A2 9 IO 0 Bootstrap I GPMC0_AD5 U19 PADCONFIG: PADCONFIG20 0x000F4050 SIGNAL NAME [3] BOOTMODE05 GPMC0_AD6 V20 PADCONFIG: PADCONFIG21 0x000F4054 BOOTMODE06 V21 BOOTMODE07 GPMC0_AD8 V19 PADCONFIG: PADCONFIG23 0x000F405C BOOTMODE08 0 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 23 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] GPMC0_AD9 0 IO 0 FSI_RX0_D0 1 I 0 UART3_CTSn 2 I 1 EHRPWM2_B 3 IO 0 TRC_DATA7 6 O GPIO0_24 7 IO pad PRG0_PWM2_B2 9 IO 1 BOOTMODE09 Bootstrap I GPMC0_AD10 0 IO 0 FSI_RX0_D1 1 I 0 UART4_CTSn 2 I 1 GPMC0_AD10 EHRPWM_TZn_IN2 3 I 0 PADCONFIG: PADCONFIG25 0x000F4064 EHRPWM8_B 4 IO 0 TRC_DATA8 6 O GPIO0_25 7 IO pad PRG1_PWM2_B2 9 IO 1 BOOTMODE10 Bootstrap I GPMC0_AD11 0 IO 0 FSI_RX1_CLK 1 I 0 UART5_CTSn 2 I 1 EQEP1_A 3 I 0 TRC_DATA9 6 O GPIO0_26 7 IO pad EHRPWM7_A 8 IO 0 BOOTMODE11 Bootstrap I GPMC0_AD12 0 IO 0 FSI_RX1_D0 1 I 0 UART6_CTSn 2 I 1 EQEP1_B 3 I 0 TRC_DATA10 6 O GPIO0_27 7 IO pad EHRPWM7_B 8 IO 0 Bootstrap I GPMC0_AD9 T17 R16 PADCONFIG: PADCONFIG24 0x000F4060 GPMC0_AD11 W20 PADCONFIG: PADCONFIG26 0x000F4068 GPMC0_AD12 W21 PADCONFIG: PADCONFIG27 0x000F406C SIGNAL NAME [3] BOOTMODE12 24 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] V18 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] GPMC0_AD13 0 IO 0 FSI_RX1_D1 1 I 0 GPMC0_AD13 EHRPWM3_A 3 IO 0 PADCONFIG: PADCONFIG28 0x000F4070 TRC_DATA11 6 O GPIO0_28 7 IO pad 0 SIGNAL NAME [3] PRG0_PWM3_A0 9 IO BOOTMODE13 Bootstrap I GPMC0_AD14 0 IO FSI_TX0_D0 1 O UART6_RXD 2 I 1 EHRPWM3_B 3 IO 0 TRC_DATA12 6 O GPIO0_29 7 IO pad PRG0_PWM3_B0 9 IO 1 BOOTMODE14 Bootstrap I GPMC0_AD15 0 IO FSI_TX0_D1 1 O GPMC0_AD15 UART6_TXD 2 O PADCONFIG: PADCONFIG30 0x000F4078 EHRPWM3_SYNCI 3 I TRC_DATA13 6 O GPMC0_AD14 Y21 Y20 PADCONFIG: PADCONFIG29 0x000F4074 GPIO0_30 GPMC0_BE0n_CLE P17 PADCONFIG: PADCONFIG36 0x000F4090 GPMC0_BE1n T19 PADCONFIG: PADCONFIG37 0x000F4094 BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD On / Off / Off On / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD 0 0 0 7 IO Bootstrap I GPMC0_BE0n_CLE 0 O FSI_TX1_D0 1 O UART6_RTSn 2 O EHRPWM_TZn_IN4 3 I 0 EHRPWM7_A 5 IO 0 TRC_DATA18 6 O GPIO0_35 7 IO pad PRG1_PWM2_A1 9 IO 0 GPMC0_BE1n 0 O FSI_TX0_CLK 1 O EHRPWM5_A 3 IO TRC_DATA19 6 O GPIO0_36 7 IO pad PRG0_PWM3_A2 9 IO 0 BOOTMODE15 BALL STATE DURING RESET RX/TX/PULL [7] pad 0 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 25 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] R19 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] P19 R21 W19 26 TYPE [5] DSIS [6] GPMC0_CSn0 0 O GPMC0_CSn0 EQEP0_S 3 IO PADCONFIG: PADCONFIG42 0x000F40A8 TRC_DATA23 6 O GPIO0_41 7 IO pad EHRPWM6_SYNCI 8 I 0 GPMC0_CSn1 0 O EQEP0_I 3 IO EHRPWM_TZn_IN2 5 I 0 GPIO0_42 7 IO pad EHRPWM6_SYNCO 8 O PRG1_PWM2_TZ_OUT 9 O GPMC0_CSn2 0 O I2C2_SCL 1 IOD 1 GPMC0_CSn2 TIMER_IO8 2 IO 0 PADCONFIG: PADCONFIG44 0x000F40B0 EQEP1_S 3 IO 0 EHRPWM_TZn_IN4 5 I 0 GPIO0_43 7 IO pad PRG1_PWM2_TZ_IN 9 I 0 GPMC0_CSn3 0 O GPMC0_CSn1 R20 SIGNAL NAME [3] MUX MODE [4] PADCONFIG: PADCONFIG43 0x000F40AC BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD 0 0 I2C2_SDA 1 IOD 1 GPMC0_CSn3 TIMER_IO9 2 IO 0 PADCONFIG: PADCONFIG45 0x000F40B4 EQEP1_I 3 IO 0 GPMC0_A20 4 OZ EHRPWM_TZn_IN5 5 I 0 GPIO0_44 7 IO pad GPMC0_WAIT0 0 I 1 GPMC0_WAIT0 EHRPWM5_B 3 IO 0 PADCONFIG: PADCONFIG38 0x000F4098 TRC_DATA20 6 O GPIO0_37 7 IO pad PRG0_PWM3_B2 9 IO 1 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] A18 B18 C18 B19 DSIS [6] 1 0 I FSI_TX1_D1 1 O EHRPWM_TZn_IN5 3 I GPMC0_A21 4 OZ EHRPWM7_B 5 IO TRC_DATA21 6 O GPIO0_38 7 IO pad PRG1_PWM2_B1 9 IO 1 I2C0_SCL I2C0_SCL 0 IOD 1 PADCONFIG: PADCONFIG152 0x000F4260 GPIO1_64 7 IOD pad I2C0_SDA I2C0_SDA 0 IOD 1 PADCONFIG: PADCONFIG153 0x000F4264 GPIO1_65 7 IOD pad PADCONFIG: PADCONFIG39 0x000F409C 0 I2C1_SCL 0 IOD 1 CPTS0_HW1TSPUSH 1 I 0 PADCONFIG: PADCONFIG154 0x000F4268 TIMER_IO0 2 IO 0 SPI2_CS1 3 IO 1 GPIO1_66 7 IO pad I2C1_SDA 0 IOD 1 I2C1_SDA CPTS0_HW2TSPUSH 1 I 0 PADCONFIG: PADCONFIG155 0x000F426C TIMER_IO1 2 IO 0 SPI2_CS2 3 IO 1 GPIO1_67 7 IO pad MCAN0_RX 0 I 1 UART4_TXD 1 O TIMER_IO3 2 IO SYNC3_OUT 3 O SPI4_CS2 6 IO 1 GPIO1_61 7 IO pad EQEP2_S 8 IO 0 UART0_RIn 9 I 1 PADCONFIG: PADCONFIG149 0x000F4254 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV3 Yes LVCMOS PU/PD Off / Off / NA On / SS / NA 7 1.8 V/3.3 V VDDSHV0 Yes I2C OD FS Off / Off / NA On / SS / NA 7 1.8 V/3.3 V VDDSHV0 Yes I2C OD FS Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD 0 I2C1_SCL MCAN0_RX B17 TYPE [5] GPMC0_WAIT1 GPMC0_WAIT1 Y18 SIGNAL NAME [3] MUX MODE [4] 0 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 27 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] MCAN0_TX 0 O UART4_RXD 1 I 1 TIMER_IO2 2 IO 0 SYNC2_OUT 3 O SPI4_CS1 6 IO 1 GPIO1_60 7 IO pad EQEP2_I 8 IO 0 UART0_DTRn 9 O MCAN1_RX 0 I 1 I2C3_SDA 1 IOD 1 ECAP2_IN_APWM_OUT 2 IO 0 OBSCLK0 3 O MCAN1_RX TIMER_IO5 4 IO PADCONFIG: PADCONFIG151 0x000F425C UART5_TXD 5 O EHRPWM_SOCB 6 O GPIO1_63 7 IO pad EQEP2_B 8 I 0 UART0_DSRn 9 I 1 OBSCLK0 15 O MCAN1_TX 0 O I2C3_SCL 1 IOD 1 ECAP1_IN_APWM_OUT 2 IO 0 SYSCLKOUT0 3 O TIMER_IO4 4 IO 0 UART5_RXD 5 I 1 EHRPWM_SOCA 6 O GPIO1_62 7 IO pad EQEP2_A 8 I 0 UART0_DCDn 9 I 1 MCU_I2C0_SCL MCU_I2C0_SCL 0 IOD 1 PADCONFIG: MCU_PADCONFIG18 0x04084048 MCU_GPIO0_18 7 IOD pad MCU_I2C0_SDA MCU_I2C0_SDA 0 IOD 1 PADCONFIG: MCU_PADCONFIG19 0x0408404C MCU_GPIO0_19 7 IOD pad MCAN0_TX A17 D17 PADCONFIG: PADCONFIG148 0x000F4250 MCAN1_TX C17 E9 A10 28 PADCONFIG: PADCONFIG150 0x000F4258 SIGNAL NAME [3] DSIS [6] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / NA On / SS / NA 7 1.8 V/3.3 V VDDSHV_MCU Yes I2C OD FS Off / Off / NA On / SS / NA 7 1.8 V/3.3 V VDDSHV_MCU Yes I2C OD FS 0 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] A11 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] SIGNAL NAME [3] MUX MODE [4] TYPE [5] DSIS [6] MCU_I2C1_SCL MCU_I2C1_SCL 0 IOD 1 PADCONFIG: MCU_PADCONFIG20 0x04084050 MCU_GPIO0_20 7 IO pad BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD MCU_I2C1_SDA MCU_I2C1_SDA 0 IOD 1 B10 PADCONFIG: MCU_PADCONFIG21 0x04084054 MCU_GPIO0_21 7 IO pad C21 MCU_OSC0_XI MCU_OSC0_XI I 1.8 V VDDS_OSC Yes HFOSC B20 MCU_OSC0_XO MCU_OSC0_XO O 1.8 V VDDS_OSC Yes HFOSC 0 1.8 V VDDS_OSC Yes FS RESET MCU_PORz B21 B13 PADCONFIG: MCU_PADCONFIG23 0x0408405C MCU_PORz 0 I MCU_RESETSTATz MCU_RESETSTATz 0 O PADCONFIG: MCU_PADCONFIG24 0x04084060 MCU_GPIO0_22 7 IO MCU_RESETz 0 PADCONFIG: MCU_PADCONFIG25 0x04084064 MCU_SAFETY_ERRORn MCU_SPI0_CLK PADCONFIG: MCU_PADCONFIG2 0x04084008 Off / Low / Off Off / SS / Off 0 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD I On / Off / Up On / Off / Up 0 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD 0 IO Off / Off / Down On / SS / Down 0 1.8 V VDDS_OSC Yes LVCMOS PU/PD MCU_SPI0_CLK 0 IO 0 MCU_GPIO0_11 7 IO pad Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD MCU_SPI1_CLK MCU_SPI1_CLK 0 IO 0 PADCONFIG: MCU_PADCONFIG7 0x0408401C MCU_GPIO0_7 7 IO pad Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD MCU_SPI0_CS0 MCU_SPI0_CS0 0 IO 1 PADCONFIG: MCU_PADCONFIG0 0x04084000 MCU_GPIO0_13 7 IO pad Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD MCU_SPI0_CS1 0 IO 1 MCU_OBSCLK0 1 O MCU_SYSCLKOUT0 2 O Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD MCU_GPIO0_12 7 IO pad MCU_RESETz B12 PADCONFIG: MCU_PADCONFIG22 0x04084058 MCU_SAFETY_ERRORn A20 E6 D7 D6 MCU_SPI0_CS1 C6 PADCONFIG: MCU_PADCONFIG1 0x04084004 pad Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 29 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] E7 B6 A7 B7 C7 C8 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] A9 A8 30 DSIS [6] MCU_SPI0_D0 0 IO 0 PADCONFIG: MCU_PADCONFIG3 0x0408400C MCU_GPIO0_10 7 IO pad MCU_SPI0_D1 MCU_SPI0_D1 0 IO 0 PADCONFIG: MCU_PADCONFIG4 0x04084010 MCU_GPIO0_4 7 IO pad MCU_SPI1_CS0 MCU_SPI1_CS0 0 IO 1 PADCONFIG: MCU_PADCONFIG5 0x04084014 MCU_GPIO0_5 7 IO pad MCU_SPI1_CS1 MCU_SPI1_CS1 0 IO 1 PADCONFIG: MCU_PADCONFIG6 0x04084018 MCU_EXT_REFCLK0 1 I 0 MCU_GPIO0_6 7 IO pad MCU_SPI1_D0 MCU_SPI1_D0 0 IO 0 PADCONFIG: MCU_PADCONFIG8 0x04084020 MCU_GPIO0_8 7 IO pad MCU_SPI1_D1 MCU_SPI1_D1 0 IO 0 PADCONFIG: MCU_PADCONFIG9 0x04084024 MCU_GPIO0_9 7 IO pad MCU_UART0_CTSn 0 I 1 MCU_TIMER_IO0 1 IO 0 MCU_SPI0_CS2 2 IO 1 MCU_GPIO0_1 7 IO pad MCU_UART0_RTSn 0 O MCU_TIMER_IO1 1 IO 0 MCU_SPI1_CS2 2 IO 1 PADCONFIG: MCU_PADCONFIG12 0x04084030 MCU_UART0_RTSn E8 TYPE [5] MCU_SPI0_D0 MCU_UART0_CTSn D8 SIGNAL NAME [3] MUX MODE [4] PADCONFIG: MCU_PADCONFIG13 0x04084034 MCU_GPIO0_0 7 IO pad MCU_UART0_RXD MCU_UART0_RXD 0 I 1 PADCONFIG: MCU_PADCONFIG10 0x04084028 MCU_GPIO0_3 7 IO pad MCU_UART0_TXD MCU_UART0_TXD 0 O PADCONFIG: MCU_PADCONFIG11 0x0408402C MCU_GPIO0_2 7 IO pad BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MCU_UART1_CTSn B8 PADCONFIG: MCU_PADCONFIG16 0x04084040 MCU_UART1_RTSn B9 C9 PADCONFIG: MCU_PADCONFIG17 0x04084044 SIGNAL NAME [3] MUX MODE [4] TYPE [5] DSIS [6] MCU_UART1_CTSn 0 I 1 MCU_TIMER_IO2 1 IO 0 MCU_SPI0_CS3 2 IO 1 MCU_GPIO0_16 7 IO pad MCU_UART1_RTSn 0 O MCU_TIMER_IO3 1 IO 0 MCU_SPI1_CS3 2 IO 1 MCU_GPIO0_17 7 IO pad MCU_UART1_RXD MCU_UART1_RXD 0 I 1 PADCONFIG: MCU_PADCONFIG14 0x04084038 MCU_GPIO0_14 7 IO pad BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY MCU_UART1_TXD MCU_UART1_TXD 0 O D9 PADCONFIG: MCU_PADCONFIG15 0x0408403C MCU_GPIO0_15 7 IO F18 MMC0_CALPAD MMC0_CALPAD A G18 MMC0_CLK MMC0_CLK IO On / Low / Off On / SS / Off 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY PU/PD J21 MMC0_CMD MMC0_CMD IO On / Off / Up On / SS / Up 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY PU/PD G19 MMC0_DS MMC0_DS IO On / Off / Down On / Off / Down 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV5 Yes SDIO PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV5 Yes SDIO PU/PD L20 J19 pad MMC1_CLK 0 MMC1_CLK UART2_CTSn 1 IO I 1 PADCONFIG: PADCONFIG163 0x000F428C TIMER_IO4 2 IO 0 UART4_RXD 3 I 1 GPIO1_75 7 IO pad MMC1_CMD 0 IO 1 MMC1_CMD UART2_RTSn 1 O PADCONFIG: PADCONFIG165 0x000F4294 TIMER_IO5 2 IO UART4_TXD 3 O GPIO1_76 7 IO 0 pad Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 31 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] D19 C20 SIGNAL NAME [3] MUX MODE [4] TYPE [5] DSIS [6] MMC1_SDCD 0 I 0 MMC1_SDCD UART3_CTSn 1 I 1 PADCONFIG: PADCONFIG166 0x000F4298 TIMER_IO6 2 IO 0 UART5_RXD 3 I 1 GPIO1_77 7 IO pad MMC1_SDWP 0 I 0 MMC1_SDWP UART3_RTSn 1 O PADCONFIG: PADCONFIG167 0x000F429C TIMER_IO7 2 IO UART5_TXD 3 O GPIO1_78 7 IO 0 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD pad K20 MMC0_DAT0 MMC0_DAT0 IO On / Off / Up On / SS / Up 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY PU/PD J20 MMC0_DAT1 MMC0_DAT1 IO On / Off / Up On / SS / Up 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY PU/PD J18 MMC0_DAT2 MMC0_DAT2 IO On / Off / Up On / SS / Up 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY PU/PD J17 MMC0_DAT3 MMC0_DAT3 IO On / Off / Up On / SS / Up 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY PU/PD H17 MMC0_DAT4 MMC0_DAT4 IO On / Off / Up On / SS / Up 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY PU/PD H19 MMC0_DAT5 MMC0_DAT5 IO On / Off / Up On / SS / Up 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY PU/PD H18 MMC0_DAT6 MMC0_DAT6 IO On / Off / Up On / SS / Up 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY PU/PD G17 MMC0_DAT7 MMC0_DAT7 IO On / Off / Up On / SS / Up 1.8 V VDDS_MMC0, VDD_MMC0, VDD_DLL_MMC0 eMMCPHY PU/PD Off / Off / Off Off / Off / Off 1.8 V/3.3 V VDDSHV5 SDIO PU/PD K21 32 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MMC1_DAT0 0 IO 1 MMC1_DAT0 CP_GEMAC_CPTS0_HW2TSPUSH 1 I 0 PADCONFIG: PADCONFIG162 0x000F4288 TIMER_IO3 2 IO 0 UART3_TXD 3 O GPIO1_74 7 IO 7 Yes pad Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] L21 K19 K18 N20 N19 N21 L19 L18 K17 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] SIGNAL NAME [3] MUX MODE [4] TYPE [5] DSIS [6] MMC1_DAT1 0 IO 1 MMC1_DAT1 CP_GEMAC_CPTS0_HW1TSPUSH 1 I 0 PADCONFIG: PADCONFIG161 0x000F4284 TIMER_IO2 2 IO 0 UART3_RXD 3 I 1 GPIO1_73 7 IO pad MMC1_DAT2 0 IO 1 MMC1_DAT2 CP_GEMAC_CPTS0_TS_SYNC 1 O PADCONFIG: PADCONFIG160 0x000F4280 TIMER_IO1 2 IO UART2_TXD 3 O GPIO1_72 7 IO pad MMC1_DAT3 0 IO 1 MMC1_DAT3 CP_GEMAC_CPTS0_TS_COMP 1 O PADCONFIG: PADCONFIG159 0x000F427C TIMER_IO0 2 IO 0 UART2_RXD 3 I 1 pad 0 GPIO1_71 7 IO OSPI0_CLK OSPI0_CLK 0 O PADCONFIG: PADCONFIG0 0x000F4000 GPIO0_0 7 IO pad OSPI0_DQS OSPI0_DQS 0 I 0 PADCONFIG: PADCONFIG2 0x000F4008 GPIO0_2 7 IO pad OSPI0_LBCLKO OSPI0_LBCLKO 0 IO 0 PADCONFIG: PADCONFIG1 0x000F4004 GPIO0_1 7 IO pad OSPI0_CSn0 OSPI0_CSn0 0 O PADCONFIG: PADCONFIG11 0x000F402C GPIO0_11 7 IO OSPI0_CSn1 OSPI0_CSn1 0 O PADCONFIG: PADCONFIG12 0x000F4030 GPIO0_12 7 IO OSPI0_CSn2 OSPI0_CSn2 0 O PADCONFIG: PADCONFIG13 0x000F4034 OSPI0_RESET_OUT1 2 O GPIO0_13 7 IO pad pad BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV5 Yes SDIO PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV5 Yes SDIO PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV5 Yes SDIO PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD pad Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 33 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] OSPI0_CSn3 L17 M19 M18 M20 M21 P21 P20 N18 M17 PADCONFIG: PADCONFIG14 0x000F4038 MUX MODE [4] TYPE [5] OSPI0_CSn3 0 O OSPI0_RESET_OUT0 1 O OSPI0_ECC_FAIL 2 I 1 SIGNAL NAME [3] DSIS [6] GPIO0_14 7 IO pad OSPI0_D0 OSPI0_D0 0 IO 0 PADCONFIG: PADCONFIG3 0x000F400C GPIO0_3 7 IO pad OSPI0_D1 OSPI0_D1 0 IO 0 PADCONFIG: PADCONFIG4 0x000F4010 GPIO0_4 7 IO pad OSPI0_D2 OSPI0_D2 0 IO 0 PADCONFIG: PADCONFIG5 0x000F4014 GPIO0_5 7 IO pad OSPI0_D3 OSPI0_D3 0 IO 0 PADCONFIG: PADCONFIG6 0x000F4018 GPIO0_6 7 IO pad OSPI0_D4 OSPI0_D4 0 IO 0 PADCONFIG: PADCONFIG7 0x000F401C GPIO0_7 7 IO pad OSPI0_D5 OSPI0_D5 0 IO 0 PADCONFIG: PADCONFIG8 0x000F4020 GPIO0_8 7 IO pad OSPI0_D6 OSPI0_D6 0 IO 0 PADCONFIG: PADCONFIG9 0x000F4024 GPIO0_9 7 IO pad OSPI0_D7 OSPI0_D7 0 IO 0 PADCONFIG: PADCONFIG10 0x000F4028 GPIO0_10 7 IO pad PADCONFIG: PADCONFIG171 0x000F42AC PORz_OUT 0 O PRG0_MDIO0_MDC PRG0_MDIO0_MDC 0 O PADCONFIG: PADCONFIG129 0x000F4204 GPIO1_41 7 IO GPMC0_A13 9 OZ BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV4 Yes LVCMOS PU/PD Off / Low / Off Off / SS / Off 0 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD PORz_OUT E17 P3 34 pad Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] P2 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] U2 PRG0_MDIO0_MDIO 0 IO 0 GPIO1_40 7 IO pad GPMC0_A12 9 OZ PRG0_PRU0_GPO0 0 IO 0 PRG0_PRU0_GPI0 1 I 0 PRG0_RGMII1_RD0 2 I 0 PRG0_PWM3_A0 3 IO 0 GPIO1_0 7 IO pad UART2_CTSn 10 I 1 PRG0_PRU0_GPO1 0 IO 0 PRG0_PRU0_GPI1 1 I 0 PRG0_RGMII1_RD1 2 I 0 PRG0_PWM3_B0 3 IO 1 GPIO1_1 7 IO pad UART2_TXD 10 O PRG0_PRU0_GPO2 0 IO 0 PRG0_PRU0_GPI2 1 I 0 PRG0_PRU0_GPO2 PRG0_RGMII1_RD2 2 I 0 PADCONFIG: PADCONFIG90 0x000F4168 PRG0_PWM2_A0 3 IO 0 GPIO1_2 7 IO pad GPMC0_A0 9 OZ UART2_RTSn 10 O PRG0_PRU0_GPO3 0 IO 0 PRG0_PRU0_GPI3 1 I 0 PRG0_RGMII1_RD3 2 I 0 PRG0_PWM3_A2 3 IO 0 GPIO1_3 7 IO pad UART3_CTSn 10 I 1 PRG0_PRU0_GPO4 0 IO 0 PRG0_PRU0_GPI4 1 I 0 PRG0_PRU0_GPO4 PRG0_RGMII1_RX_CTL 2 I 0 PADCONFIG: PADCONFIG92 0x000F4170 PRG0_PWM2_B0 3 IO 1 GPIO1_4 7 IO pad GPMC0_A1 9 OZ UART3_TXD 10 O PADCONFIG: PADCONFIG88 0x000F4160 PADCONFIG: PADCONFIG89 0x000F4164 PRG0_PRU0_GPO3 V2 AA2 DSIS [6] PADCONFIG: PADCONFIG128 0x000F4200 PRG0_PRU0_GPO1 R4 TYPE [5] PRG0_MDIO0_MDIO PRG0_PRU0_GPO0 Y1 SIGNAL NAME [3] MUX MODE [4] PADCONFIG: PADCONFIG91 0x000F416C BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 35 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] R3 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] T1 W6 36 DSIS [6] PRG0_PRU0_GPO5 0 IO 0 PRG0_PRU0_GPI5 1 I 0 PADCONFIG: PADCONFIG93 0x000F4174 PRG0_PWM3_B2 3 IO 1 GPIO1_5 7 IO pad UART3_RTSn 10 O PRG0_PRU0_GPO6 0 IO 0 PRG0_PRU0_GPI6 1 I 0 PRG0_RGMII1_RXC 2 I 0 PRG0_PWM3_A1 3 IO 0 GPIO1_6 7 IO pad UART4_CTSn 10 I 1 PRG0_PRU0_GPO7 0 IO 0 PRG0_PRU0_GPI7 1 I 0 PRG0_IEP0_EDC_LATCH_IN1 2 I 0 PRG0_PRU0_GPO7 PRG0_PWM3_B1 3 IO 1 PADCONFIG: PADCONFIG95 0x000F417C CPTS0_HW2TSPUSH 4 I 0 CP_GEMAC_CPTS0_HW2TSPUSH 5 I 0 TIMER_IO6 6 IO 0 GPIO1_7 7 IO pad UART4_TXD 10 O PRG0_PRU0_GPO8 0 IO 0 PRG0_PRU0_GPI8 1 I 0 PRG0_PWM2_A1 3 IO 0 GPIO1_8 7 IO pad GPMC0_A2 9 OZ UART4_RTSn 10 O PRG0_PRU0_GPO9 0 IO 0 PRG0_PRU0_GPI9 1 I 0 PRG0_UART0_CTSn 2 I 1 PRG0_PRU0_GPO9 PRG0_PWM3_TZ_IN 3 I 0 PADCONFIG: PADCONFIG97 0x000F4184 RGMII1_RX_CTL 4 I 0 RMII1_RX_ER 5 I 0 PRG0_IEP0_EDIO_DATA_IN_OUT28 6 IO 0 GPIO1_9 7 IO pad UART2_RXD 10 I 1 PADCONFIG: PADCONFIG94 0x000F4178 PRG0_PRU0_GPO8 T2 TYPE [5] PRG0_PRU0_GPO5 PRG0_PRU0_GPO6 T3 SIGNAL NAME [3] MUX MODE [4] PADCONFIG: PADCONFIG96 0x000F4180 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] AA5 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] PRG0_PRU0_GPO10 0 IO 0 PRG0_PRU0_GPI10 1 I 0 PRG0_UART0_RTSn 2 O PRG0_PRU0_GPO10 PRG0_PWM2_B1 3 IO 1 PADCONFIG: PADCONFIG98 0x000F4188 RGMII1_RXC 4 I 0 RMII_REF_CLK 5 I 0 PRG0_IEP0_EDIO_DATA_IN_OUT29 6 IO 0 GPIO1_10 7 IO pad UART3_RXD 10 I 1 PRG0_PRU0_GPO11 0 IO 0 PRG0_PRU0_GPI11 1 I 0 PRG0_RGMII1_TD0 2 O PRG0_PWM3_TZ_OUT 3 O GPIO1_11 7 IO pad UART4_RXD 10 I 1 PRG0_PRU0_GPO12 0 IO 0 PRG0_PRU0_GPI12 1 I 0 PRG0_RGMII1_TD1 2 O PRG0_PWM0_A0 3 IO 0 GPIO1_12 7 IO pad GPMC0_A14 9 OZ PRG0_PRU0_GPO13 0 IO 0 PRG0_PRU0_GPI13 1 I 0 PRG0_PRU0_GPO13 PRG0_RGMII1_TD2 2 O PADCONFIG: PADCONFIG101 0x000F4194 PRG0_PWM0_B0 3 IO 1 SPI3_D0 6 IO 0 GPIO1_13 7 IO pad GPMC0_A15 9 OZ PRG0_PRU0_GPO14 0 IO 0 PRG0_PRU0_GPI14 1 I 0 PRG0_PRU0_GPO14 PRG0_RGMII1_TD3 2 O PADCONFIG: PADCONFIG102 0x000F4198 PRG0_PWM0_A1 3 IO 0 SPI3_D1 6 IO 0 GPIO1_14 7 IO pad GPMC0_A3 9 OZ PRG0_PRU0_GPO11 Y3 PADCONFIG: PADCONFIG99 0x000F418C PRG0_PRU0_GPO12 AA3 R6 V4 PADCONFIG: PADCONFIG100 0x000F4190 SIGNAL NAME [3] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 37 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] T5 U4 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] PRG0_PRU0_GPO15 0 IO 0 PRG0_PRU0_GPI15 1 I 0 PRG0_PRU0_GPO15 PRG0_RGMII1_TX_CTL 2 O PADCONFIG: PADCONFIG103 0x000F419C PRG0_PWM0_B1 3 IO 1 SPI3_CS1 6 IO 1 GPIO1_15 7 IO pad GPMC0_A16 9 OZ PRG0_PRU0_GPO16 0 IO 0 PRG0_PRU0_GPI16 1 I 0 PRG0_PRU0_GPO16 PRG0_RGMII1_TXC 2 IO 0 PADCONFIG: PADCONFIG104 0x000F41A0 PRG0_PWM0_A2 3 IO 0 SPI3_CLK 6 IO 0 GPIO1_16 7 IO pad GPMC0_A4 9 OZ PRG0_PRU0_GPO17 0 IO 0 PRG0_PRU0_GPI17 1 I 0 PRG0_IEP0_EDC_SYNC_OUT1 2 O PRG0_PWM0_B2 3 IO CPTS0_TS_SYNC 4 O CP_GEMAC_CPTS0_TS_SYNC 5 O SPI3_CS0 6 IO 1 GPIO1_17 7 IO pad TIMER_IO11 8 IO 0 GPMC0_A17 9 OZ PRG0_PRU0_GPO18 0 IO 0 PRG0_PRU0_GPI18 1 I 0 PRG0_IEP0_EDC_LATCH_IN0 2 I 0 PRG0_PWM0_TZ_IN 3 I 0 PRG0_PRU0_GPO18 CPTS0_HW1TSPUSH 4 I 0 PADCONFIG: PADCONFIG106 0x000F41A8 CP_GEMAC_CPTS0_HW1TSPUSH 5 I 0 EHRPWM8_A 6 IO 0 GPIO1_18 7 IO pad UART4_CTSn 8 I 1 GPMC0_A5 9 OZ UART2_RXD 10 I PRG0_PRU0_GPO17 U1 V1 38 PADCONFIG: PADCONFIG105 0x000F41A4 SIGNAL NAME [3] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD 1 1 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] W1 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] V3 T4 DSIS [6] PRG0_PRU0_GPO19 0 IO 0 PRG0_PRU0_GPI19 1 I 0 PRG0_IEP0_EDC_SYNC_OUT0 2 O SIGNAL NAME [3] PRG0_PWM0_TZ_OUT 3 O CPTS0_TS_COMP 4 O PADCONFIG: PADCONFIG107 0x000F41AC CP_GEMAC_CPTS0_TS_COMP 5 O EHRPWM8_B 6 IO 0 GPIO1_19 7 IO pad UART4_RTSn 8 O GPMC0_A6 9 OZ UART3_RXD 10 I 1 PRG0_PRU1_GPO0 0 IO 0 PRG0_PRU1_GPI0 1 I 0 PRG0_RGMII2_RD0 2 I 0 GPIO1_20 7 IO pad EQEP0_A 8 I 0 UART5_CTSn 10 I 1 PRG0_PRU1_GPO1 0 IO 0 PRG0_PRU1_GPI1 1 I 0 PRG0_RGMII2_RD1 2 I 0 GPIO1_21 7 IO pad 0 PADCONFIG: PADCONFIG108 0x000F41B0 PRG0_PRU1_GPO1 W2 TYPE [5] PRG0_PRU0_GPO19 PRG0_PRU1_GPO0 Y2 MUX MODE [4] PADCONFIG: PADCONFIG109 0x000F41B4 EQEP0_B 8 I UART5_TXD 10 O PRG0_PRU1_GPO2 0 IO 0 PRG0_PRU1_GPI2 1 I 0 PRG0_PRU1_GPO2 PRG0_RGMII2_RD2 2 I 0 PADCONFIG: PADCONFIG110 0x000F41B8 PRG0_PWM2_A2 3 IO 0 GPIO1_22 7 IO pad EQEP0_S 8 IO 0 UART5_RTSn 10 O PRG0_PRU1_GPO3 0 IO 0 PRG0_PRU1_GPI3 1 I 0 PRG0_PRU1_GPO3 PRG0_RGMII2_RD3 2 I 0 PADCONFIG: PADCONFIG111 0x000F41BC GPIO1_23 7 IO pad EQEP1_A 8 I 0 GPMC0_A18 9 OZ UART6_CTSn 10 I BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD 1 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 39 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] W3 P4 R5 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] PRG0_PRU1_GPO4 0 IO 0 PRG0_PRU1_GPI4 1 I 0 PRG0_PRU1_GPO4 PRG0_RGMII2_RX_CTL 2 I 0 PADCONFIG: PADCONFIG112 0x000F41C0 PRG0_PWM2_B2 3 IO 1 GPIO1_24 7 IO pad 0 40 8 I UART6_TXD 10 O PRG0_PRU1_GPO5 0 IO PRG0_PRU1_GPI5 1 I 0 PADCONFIG: PADCONFIG113 0x000F41C4 GPIO1_25 7 IO pad EQEP1_S 8 IO 0 UART6_RTSn 10 O PRG0_PRU1_GPO6 0 IO 0 PRG0_PRU1_GPI6 1 I 0 PRG0_PRU1_GPO6 PRG0_RGMII2_RXC 2 I 0 PADCONFIG: PADCONFIG114 0x000F41C8 GPIO1_26 7 IO pad EQEP2_A 8 I 0 GPMC0_A19 9 OZ UART4_CTSn 10 I 1 PRG0_PRU1_GPO7 0 IO 0 PRG0_PRU1_GPI7 1 I 0 PRG0_IEP1_EDC_LATCH_IN1 2 I 0 RGMII1_RD0 4 I 0 RMII1_RXD0 5 I 0 GPIO1_27 7 IO pad EQEP2_B 8 I 0 UART4_TXD 10 O PRG0_PRU1_GPO8 0 IO 0 PRG0_PRU1_GPI8 1 I 0 PRG0_PWM2_TZ_OUT 3 O GPIO1_28 7 IO pad EQEP2_S 8 IO 0 UART4_RTSn 10 O PADCONFIG: PADCONFIG115 0x000F41CC PRG0_PRU1_GPO8 R1 EQEP1_B PRG0_PRU1_GPO5 PRG0_PRU1_GPO7 W5 SIGNAL NAME [3] PADCONFIG: PADCONFIG116 0x000F41D0 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD 0 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] Y5 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] PRG0_PRU1_GPO9 0 IO 0 PRG0_PRU1_GPI9 1 I 0 PRG0_UART0_RXD 2 I 1 PRG0_PRU1_GPO9 RGMII1_RD1 4 I 0 PADCONFIG: PADCONFIG117 0x000F41D4 RMII1_RXD1 5 I 0 PRG0_IEP0_EDIO_DATA_IN_OUT30 6 IO 0 GPIO1_29 7 IO pad EQEP0_I 8 IO 0 UART5_RXD 10 I 1 PRG0_PRU1_GPO10 0 IO 0 PRG0_PRU1_GPI10 1 I 0 PRG0_UART0_TXD 2 O PRG0_PWM2_TZ_IN 3 I 0 RGMII1_RD2 4 I 0 RMII1_TXD0 5 O PRG0_IEP0_EDIO_DATA_IN_OUT31 6 IO 0 GPIO1_30 7 IO pad EQEP1_I 8 IO 0 UART6_RXD 10 I 1 PRG0_PRU1_GPO11 0 IO 0 PRG0_PRU1_GPI11 1 I 0 PRG0_RGMII2_TD0 2 O GPIO1_31 7 IO pad EQEP2_I 8 IO 0 UART4_RXD 10 I 1 PRG0_PRU1_GPO12 0 IO 0 PRG0_PRU1_GPI12 1 I 0 PRG0_RGMII2_TD1 2 O PRG0_PWM1_A0 3 IO 0 GPIO1_32 7 IO pad EQEP2_B 8 I 0 GPMC0_A7 9 OZ UART4_TXD 10 O PRG0_PRU1_GPO10 V6 PADCONFIG: PADCONFIG118 0x000F41D8 PRG0_PRU1_GPO11 W4 PADCONFIG: PADCONFIG119 0x000F41DC PRG0_PRU1_GPO12 Y4 PADCONFIG: PADCONFIG120 0x000F41E0 SIGNAL NAME [3] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 41 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] PRG0_PRU1_GPO13 0 IO 0 PRG0_PRU1_GPI13 1 I 0 PRG0_RGMII2_TD2 2 O PRG0_PWM1_B0 3 IO 1 GPIO1_33 7 IO pad EQEP0_I 8 IO 0 GPMC0_A8 9 OZ UART5_RXD 10 I 1 PRG0_PRU1_GPO14 0 IO 0 PRG0_PRU1_GPI14 1 I 0 PRG0_RGMII2_TD3 2 O PRG0_PWM1_A1 3 IO 0 GPIO1_34 7 IO pad EQEP1_I 8 IO 0 GPMC0_A9 9 OZ UART6_RXD 10 I 1 PRG0_PRU1_GPO15 0 IO 0 PRG0_PRU1_GPI15 1 I 0 PRG0_PRU1_GPO15 PRG0_RGMII2_TX_CTL 2 O PADCONFIG: PADCONFIG123 0x000F41EC PRG0_PWM1_B1 3 IO 1 GPIO1_35 7 IO pad GPMC0_A10 9 OZ PRG0_ECAP0_IN_APWM_OUT 10 IO 0 PRG0_PRU1_GPO16 0 IO 0 PRG0_PRU1_GPI16 1 I 0 PRG0_PRU1_GPO16 PRG0_RGMII2_TXC 2 IO 0 PADCONFIG: PADCONFIG124 0x000F41F0 PRG0_PWM1_A2 3 IO 0 GPIO1_36 7 IO pad GPMC0_A11 9 OZ PRG0_ECAP0_SYNC_OUT 10 O PRG0_PRU1_GPO13 T6 PADCONFIG: PADCONFIG121 0x000F41E4 PRG0_PRU1_GPO14 U6 U5 AA4 42 PADCONFIG: PADCONFIG122 0x000F41E8 SIGNAL NAME [3] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] V5 P5 R2 Y6 AA6 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] PRG0_PRU1_GPO17 0 IO 0 PRG0_PRU1_GPI17 1 I 0 PRG0_IEP1_EDC_SYNC_OUT1 2 O PRG0_PRU1_GPO17 PRG0_PWM1_B2 3 IO 1 PADCONFIG: PADCONFIG125 0x000F41F4 RGMII1_RD3 4 I 0 RMII1_TXD1 5 O GPIO1_37 7 IO PRG0_ECAP0_SYNC_OUT 8 O PRG0_ECAP0_SYNC_IN 10 I 0 PRG0_PRU1_GPO18 0 IO 0 PRG0_PRU1_GPI18 1 I 0 PRG0_IEP1_EDC_LATCH_IN0 2 I 0 PRG0_PRU1_GPO18 PRG0_PWM1_TZ_IN 3 I 0 PADCONFIG: PADCONFIG126 0x000F41F8 MDIO0_MDIO 4 IO 0 RMII1_TX_EN 5 O EHRPWM7_A 6 IO 0 GPIO1_38 7 IO pad PRG0_ECAP0_SYNC_IN 8 I 0 PRG0_PRU1_GPO19 0 IO 0 PRG0_PRU1_GPI19 1 I 0 PRG0_IEP1_EDC_SYNC_OUT0 2 O PRG0_PRU1_GPO19 PRG0_PWM1_TZ_OUT 3 O PADCONFIG: PADCONFIG127 0x000F41FC MDIO0_MDC 4 O RMII1_CRS_DV 5 I EHRPWM7_B 6 IO 0 GPIO1_39 7 IO pad 0 SIGNAL NAME [3] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV1 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD pad 0 PRG0_ECAP0_IN_APWM_OUT 8 IO PRG1_MDIO0_MDC PRG1_MDIO0_MDC 0 O PADCONFIG: PADCONFIG87 0x000F415C MDIO0_MDC 4 O GPIO0_86 7 IO pad PRG1_MDIO0_MDIO PRG1_MDIO0_MDIO 0 IO 0 PADCONFIG: PADCONFIG86 0x000F4158 MDIO0_MDIO 4 IO 0 GPIO0_85 7 IO pad Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 43 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] PRG1_PRU0_GPO0 Y7 PADCONFIG: PADCONFIG46 0x000F40B8 PRG1_PRU0_GPO1 U8 PADCONFIG: PADCONFIG47 0x000F40BC PRG1_PRU0_GPO2 W8 PADCONFIG: PADCONFIG48 0x000F40C0 PRG1_PRU0_GPO3 V8 PADCONFIG: PADCONFIG49 0x000F40C4 PRG1_PRU0_GPO4 Y8 PADCONFIG: PADCONFIG50 0x000F40C8 PRG1_PRU0_GPO5 V13 44 PADCONFIG: PADCONFIG51 0x000F40CC MUX MODE [4] TYPE [5] DSIS [6] PRG1_PRU0_GPO0 0 IO 0 PRG1_PRU0_GPI0 1 I 0 PRG1_RGMII1_RD0 2 I 0 PRG1_PWM3_A0 3 IO 0 GPIO0_45 7 IO pad GPMC0_AD16 8 IO 0 PRG1_PRU0_GPO1 0 IO 0 PRG1_PRU0_GPI1 1 I 0 PRG1_RGMII1_RD1 2 I 0 PRG1_PWM3_B0 3 IO 1 GPIO0_46 7 IO pad GPMC0_AD17 8 IO 0 PRG1_PRU0_GPO2 0 IO 0 PRG1_PRU0_GPI2 1 I 0 PRG1_RGMII1_RD2 2 I 0 PRG1_PWM2_A0 3 IO 0 GPIO0_47 7 IO pad GPMC0_AD18 8 IO 0 PRG1_PRU0_GPO3 0 IO 0 PRG1_PRU0_GPI3 1 I 0 PRG1_RGMII1_RD3 2 I 0 PRG1_PWM3_A2 3 IO 0 GPIO0_48 7 IO pad GPMC0_AD19 8 IO 0 PRG1_PRU0_GPO4 0 IO 0 PRG1_PRU0_GPI4 1 I 0 PRG1_RGMII1_RX_CTL 2 I 0 PRG1_PWM2_B0 3 IO 1 GPIO0_49 7 IO pad GPMC0_AD20 8 IO 0 PRG1_PRU0_GPO5 0 IO 0 PRG1_PRU0_GPI5 1 I 0 PRG1_PWM3_B2 3 IO 1 RGMII1_RX_CTL 4 I 0 GPIO0_50 7 IO pad GPMC0_AD21 8 IO 0 SIGNAL NAME [3] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] PRG1_PRU0_GPO6 0 IO 0 PRG1_PRU0_GPI6 1 I 0 PRG1_RGMII1_RXC 2 I 0 PRG1_PWM3_A1 3 IO 0 GPIO0_51 7 IO pad GPMC0_AD22 8 IO 0 PRG1_PRU0_GPO7 0 IO 0 PRG1_PRU0_GPI7 1 I 0 PRG1_IEP0_EDC_LATCH_IN1 2 I 0 PRG1_PRU0_GPO7 PRG1_PWM3_B1 3 IO 1 PADCONFIG: PADCONFIG53 0x000F40D4 CPTS0_HW2TSPUSH 4 I 0 CLKOUT0 5 O TIMER_IO10 6 IO 0 GPIO0_52 7 IO pad GPMC0_AD23 8 IO 0 PRG1_PRU0_GPO8 0 IO 0 PRG1_PRU0_GPI8 1 I 0 PRG1_PWM2_A1 3 IO 0 RGMII1_RXC 4 I 0 GPIO0_53 7 IO pad GPMC0_AD24 8 IO 0 PRG1_PRU0_GPO9 0 IO 0 PRG1_PRU0_GPI9 1 I 0 PRG1_UART0_CTSn 2 I 1 PRG1_PRU0_GPO9 PRG1_PWM3_TZ_IN 3 I 0 PADCONFIG: PADCONFIG55 0x000F40DC RGMII1_TX_CTL 4 O RMII1_RX_ER 5 I PRG1_IEP0_EDIO_DATA_IN_OUT28 6 IO 0 GPIO0_54 7 IO pad GPMC0_AD25 8 IO 0 PRG1_PRU0_GPO6 AA7 U13 PADCONFIG: PADCONFIG52 0x000F40D0 PRG1_PRU0_GPO8 W13 U15 PADCONFIG: PADCONFIG54 0x000F40D8 SIGNAL NAME [3] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD 0 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 45 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] U14 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] PRG1_PRU0_GPO10 0 IO 0 PRG1_PRU0_GPI10 1 I 0 PRG1_UART0_RTSn 2 O PRG1_PRU0_GPO10 PRG1_PWM2_B1 3 IO 1 PADCONFIG: PADCONFIG56 0x000F40E0 RGMII1_TXC 4 IO 0 RMII_REF_CLK 5 I 0 PRG1_IEP0_EDIO_DATA_IN_OUT29 6 IO 0 GPIO0_55 7 IO pad GPMC0_AD26 8 IO 0 PRG1_PRU0_GPO11 0 IO 0 PRG1_PRU0_GPI11 1 I 0 PRG1_RGMII1_TD0 2 O PRG1_PWM3_TZ_OUT 3 O GPIO0_56 7 IO pad GPMC0_AD27 8 IO 0 PRG1_PRU0_GPO12 0 IO 0 PRG1_PRU0_GPI12 1 I 0 PRG1_RGMII1_TD1 2 O PRG1_PWM0_A0 3 IO 0 GPIO0_57 7 IO pad GPMC0_AD28 8 IO 0 PRG1_PRU0_GPO13 0 IO 0 PRG1_PRU0_GPI13 1 I 0 PRG1_RGMII1_TD2 2 O PRG1_PWM0_B0 3 IO 1 GPIO0_58 7 IO pad GPMC0_AD29 8 IO 0 PRG1_PRU0_GPO14 0 IO 0 PRG1_PRU0_GPI14 1 I 0 PRG1_RGMII1_TD3 2 O PRG1_PWM0_A1 3 IO 0 GPIO0_59 7 IO pad GPMC0_AD30 8 IO 0 PRG1_PRU0_GPO11 AA8 PADCONFIG: PADCONFIG57 0x000F40E4 PRG1_PRU0_GPO12 U9 PADCONFIG: PADCONFIG58 0x000F40E8 PRG1_PRU0_GPO13 W9 PADCONFIG: PADCONFIG59 0x000F40EC PRG1_PRU0_GPO14 AA9 46 PADCONFIG: PADCONFIG60 0x000F40F0 SIGNAL NAME [3] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] PRG1_PRU0_GPO15 Y9 PADCONFIG: PADCONFIG61 0x000F40F4 PRG1_PRU0_GPO16 V9 PADCONFIG: PADCONFIG62 0x000F40F8 PRG1_PRU0_GPO17 U7 PADCONFIG: PADCONFIG63 0x000F40FC PRG1_PRU0_GPO18 V7 PADCONFIG: PADCONFIG64 0x000F4100 PRG1_PRU0_GPO19 W7 PADCONFIG: PADCONFIG65 0x000F4104 MUX MODE [4] TYPE [5] DSIS [6] PRG1_PRU0_GPO15 0 IO 0 PRG1_PRU0_GPI15 1 I 0 PRG1_RGMII1_TX_CTL 2 O PRG1_PWM0_B1 3 IO 1 GPIO0_60 7 IO pad GPMC0_AD31 8 IO 0 PRG1_PRU0_GPO16 0 IO 0 PRG1_PRU0_GPI16 1 I 0 PRG1_RGMII1_TXC 2 IO 0 PRG1_PWM0_A2 3 IO 0 GPIO0_61 7 IO pad GPMC0_BE2n 8 O PRG1_PRU0_GPO17 0 IO 0 PRG1_PRU0_GPI17 1 I 0 PRG1_IEP0_EDC_SYNC_OUT1 2 O PRG1_PWM0_B2 3 IO CPTS0_TS_SYNC 4 O TIMER_IO7 6 IO 0 GPIO0_62 7 IO pad GPMC0_A0 8 OZ PRG1_PRU0_GPO18 0 IO 0 PRG1_PRU0_GPI18 1 I 0 PRG1_IEP0_EDC_LATCH_IN0 2 I 0 PRG1_PWM0_TZ_IN 3 I 0 CPTS0_HW1TSPUSH 4 I 0 TIMER_IO8 6 IO 0 GPIO0_63 7 IO pad GPMC0_A1 8 OZ PRG1_PRU0_GPO19 0 IO 0 PRG1_PRU0_GPI19 1 I 0 PRG1_IEP0_EDC_SYNC_OUT0 2 O PRG1_PWM0_TZ_OUT 3 O CPTS0_TS_COMP 4 O TIMER_IO9 6 IO 0 GPIO0_64 7 IO pad GPMC0_A2 8 OZ SIGNAL NAME [3] 1 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 47 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] W11 V11 AA12 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] PRG1_PRU1_GPO0 0 IO 0 PRG1_PRU1_GPI0 1 I 0 PRG1_PRU1_GPO0 PRG1_RGMII2_RD0 2 I 0 PADCONFIG: PADCONFIG66 0x000F4108 RGMII2_RD0 4 I 0 RMII2_RXD0 5 I 0 GPIO0_65 7 IO pad GPMC0_A3 8 OZ PRG1_PRU1_GPO1 0 IO 0 PRG1_PRU1_GPI1 1 I 0 PRG1_PRU1_GPO1 PRG1_RGMII2_RD1 2 I 0 PADCONFIG: PADCONFIG67 0x000F410C RGMII2_RD1 4 I 0 RMII2_RXD1 5 I 0 GPIO0_66 7 IO pad GPMC0_A4 8 OZ PRG1_PRU1_GPO2 0 IO 0 PRG1_PRU1_GPI2 1 I 0 PRG1_PRU1_GPO2 PRG1_RGMII2_RD2 2 I 0 PADCONFIG: PADCONFIG68 0x000F4110 PRG1_PWM2_A2 3 IO 0 RGMII2_RD2 4 I 0 GPIO0_67 7 IO pad GPMC0_A5 8 OZ PRG1_PRU1_GPO3 0 IO 0 PRG1_PRU1_GPI3 1 I 0 PRG1_RGMII2_RD3 2 I 0 RGMII2_RD3 4 I 0 GPIO0_68 7 IO pad GPMC0_A6 8 OZ PRG1_PRU1_GPO4 0 IO 0 PRG1_PRU1_GPI4 1 I 0 PRG1_RGMII2_RX_CTL 2 I 0 PRG1_PWM2_B2 3 IO 1 RGMII2_RX_CTL 4 I 0 RMII2_RX_ER 5 I 0 GPIO0_69 7 IO pad GPMC0_A7 8 OZ PRG1_PRU1_GPO3 Y12 PADCONFIG: PADCONFIG69 0x000F4114 PRG1_PRU1_GPO4 W12 48 PADCONFIG: PADCONFIG70 0x000F4118 SIGNAL NAME [3] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] AA13 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] 0 IO 0 PRG1_PRU1_GPI5 1 I 0 PADCONFIG: PADCONFIG71 0x000F411C RGMII1_RD0 4 I 0 GPIO0_70 7 IO pad GPMC0_A8 8 OZ PRG1_PRU1_GPO6 0 IO 0 PRG1_PRU1_GPI6 1 I 0 PRG1_RGMII2_RXC 2 I 0 RGMII2_RXC 4 I 0 GPIO0_71 7 IO pad GPMC0_A9 8 OZ PRG1_PRU1_GPO7 0 IO 0 PRG1_PRU1_GPI7 1 I 0 PRG1_IEP1_EDC_LATCH_IN1 2 I 0 RGMII1_TD0 4 O RMII1_RXD0 5 I SPI3_CS3 6 IO 1 GPIO0_72 7 IO pad GPMC0_A10 8 OZ PRG1_PRU1_GPO8 0 IO 0 PRG1_PRU1_GPI8 1 I 0 PRG1_PWM2_TZ_OUT 3 O RGMII1_RD1 4 I 0 GPIO0_73 7 IO pad GPMC0_A11 8 OZ PRG1_PRU1_GPO9 0 IO 0 PRG1_PRU1_GPI9 1 I 0 PRG1_UART0_RXD 2 I 1 RGMII1_TD1 4 O RMII1_RXD1 5 I PRG1_IEP0_EDIO_DATA_IN_OUT30 6 IO 0 GPIO0_74 7 IO pad GPMC0_A12 8 OZ PADCONFIG: PADCONFIG72 0x000F4120 PADCONFIG: PADCONFIG73 0x000F4124 PRG1_PRU1_GPO8 U12 PADCONFIG: PADCONFIG74 0x000F4128 PRG1_PRU1_GPO9 V14 DSIS [6] PRG1_PRU1_GPO5 PRG1_PRU1_GPO7 V15 TYPE [5] PRG1_PRU1_GPO5 PRG1_PRU1_GPO6 U11 SIGNAL NAME [3] MUX MODE [4] PADCONFIG: PADCONFIG75 0x000F412C 0 0 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 49 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] W14 AA10 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] PRG1_PRU1_GPO10 0 IO 0 PRG1_PRU1_GPI10 1 I 0 PRG1_UART0_TXD 2 O PRG1_PRU1_GPO10 PRG1_PWM2_TZ_IN 3 I PADCONFIG: PADCONFIG76 0x000F4130 RGMII1_TD2 4 O RMII1_TXD0 5 O PRG1_IEP0_EDIO_DATA_IN_OUT31 6 IO 0 GPIO0_75 7 IO pad GPMC0_A13 8 OZ PRG1_PRU1_GPO11 0 IO 0 PRG1_PRU1_GPI11 1 I 0 PRG1_PRU1_GPO11 PRG1_RGMII2_TD0 2 O PADCONFIG: PADCONFIG77 0x000F4134 RGMII2_TD0 4 O RMII2_TXD0 5 O GPIO0_76 7 IO GPMC0_A14 8 OZ PRG1_PRU1_GPO12 0 IO 0 PRG1_PRU1_GPI12 1 I 0 PRG1_RGMII2_TD1 2 O PRG1_PWM1_A0 3 IO RGMII2_TD1 4 O RMII2_TXD1 5 O GPIO0_77 7 IO GPMC0_A15 8 OZ PRG1_PRU1_GPO13 0 IO 0 PRG1_PRU1_GPI13 1 I 0 PRG1_RGMII2_TD2 2 O PRG1_PWM1_B0 3 IO RGMII2_TD2 4 O RMII2_CRS_DV 5 I 0 GPIO0_78 7 IO pad GPMC0_A16 8 OZ PRG1_PRU1_GPO12 V10 PADCONFIG: PADCONFIG78 0x000F4138 PRG1_PRU1_GPO13 U10 50 PADCONFIG: PADCONFIG79 0x000F413C SIGNAL NAME [3] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD 0 pad 0 pad 1 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] AA11 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] DSIS [6] PRG1_PRU1_GPO14 0 IO 0 PRG1_PRU1_GPI14 1 I 0 PRG1_PRU1_GPO14 PRG1_RGMII2_TD3 2 O PADCONFIG: PADCONFIG80 0x000F4140 PRG1_PWM1_A1 3 IO RGMII2_TD3 4 O GPIO0_79 7 IO GPMC0_A17 8 OZ PRG1_PRU1_GPO15 0 IO 0 PRG1_PRU1_GPI15 1 I 0 PRG1_RGMII2_TX_CTL 2 O PRG1_PWM1_B1 3 IO RGMII2_TX_CTL 4 O RMII2_TX_EN 5 O GPIO0_80 7 IO GPMC0_A18 8 OZ PRG1_PRU1_GPO16 0 IO 0 PRG1_PRU1_GPI16 1 I 0 PRG1_PRU1_GPO16 PRG1_RGMII2_TXC 2 IO 0 PADCONFIG: PADCONFIG82 0x000F4148 PRG1_PWM1_A2 3 IO 0 RGMII2_TXC 4 IO 0 GPIO0_81 7 IO pad GPMC0_A19 8 OZ PRG1_PRU1_GPO17 0 IO 0 PRG1_PRU1_GPI17 1 I 0 PRG1_IEP1_EDC_SYNC_OUT1 2 O PRG1_PRU1_GPO17 PRG1_PWM1_B2 3 IO PADCONFIG: PADCONFIG83 0x000F414C RGMII1_TD3 4 O RMII1_TXD1 5 O GPIO0_19 7 IO GPMC0_BE3n 8 O PRG1_ECAP0_SYNC_OUT 9 O PRG1_PRU1_GPO15 Y11 Y10 AA14 PADCONFIG: PADCONFIG81 0x000F4144 SIGNAL NAME [3] 0 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD pad 1 pad 1 pad Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 51 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] Y13 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV2 Yes LVCMOS PU/PD O Off / Low / Off Off / SS / Off 0 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD I On / Off / Up On / Off / Up 0 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD TYPE [5] DSIS [6] PRG1_PRU1_GPO18 0 IO 0 PRG1_PRU1_GPI18 1 I 0 PRG1_IEP1_EDC_LATCH_IN0 2 I 0 PRG1_PRU1_GPO18 PRG1_PWM1_TZ_IN 3 I 0 PADCONFIG: PADCONFIG84 0x000F4150 RGMII1_RD2 4 I 0 RMII1_TX_EN 5 O GPIO0_20 7 IO pad UART5_CTSn 8 I 1 PRG1_ECAP0_SYNC_IN 9 I 0 PRG1_PRU1_GPO19 0 IO 0 PRG1_PRU1_GPI19 1 I 0 PRG1_IEP1_EDC_SYNC_OUT0 2 O PRG1_PWM1_TZ_OUT 3 O RGMII1_RD3 4 I 0 RMII1_CRS_DV 5 I 0 SPI3_CS2 6 IO 1 GPIO0_84 7 IO pad UART5_RTSn 8 O PRG1_ECAP0_IN_APWM_OUT 9 IO RESETSTATz 0 0 PRG1_PRU1_GPO19 V12 BALL STATE DURING RESET RX/TX/PULL [7] MUX MODE [4] PADCONFIG: PADCONFIG85 0x000F4154 SIGNAL NAME [3] 0 RESETSTATz F16 PADCONFIG: PADCONFIG169 0x000F42A4 RESET_REQz 52 E18 PADCONFIG: PADCONFIG168 0x000F42A0 RESET_REQz H16 RSVD0 RSVD0 N/A D21 RSVD1 RSVD1 N/A G13 RSVD2 RSVD2 N/A F17 RSVD3 RSVD3 N/A W15 RSVD4 RSVD4 N/A V16 RSVD5 RSVD5 N/A K2 RSVD6 RSVD6 N/A K1 RSVD7 RSVD7 N/A F12 RSVD8 RSVD8 N/A Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] T13 W16 W17 Y15 Y16 AA16 AA17 D13 C14 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] SERDES0_REXT SERDES0_REFCLK0N SERDES0_REFCLK0P SERDES0_RX0_N SERDES0_RX0_P SERDES0_TX0_N SIGNAL NAME [3] MUX MODE [4] SERDES0_REXT TYPE [5] DSIS [6] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] 1.8 V VDDA_1P8_SERDES0 , VDDA_0P85_SERDES 0, VDDA_0P85_SERDES 0_C SERDES 1.8 V VDDA_1P8_SERDES0 , VDDA_0P85_SERDES 0, VDDA_0P85_SERDES 0_C SERDES 1.8 V VDDA_1P8_SERDES0 , VDDA_0P85_SERDES 0, VDDA_0P85_SERDES 0_C SERDES 1.8 V VDDA_1P8_SERDES0 , VDDA_0P85_SERDES 0, VDDA_0P85_SERDES 0_C SERDES 1.8 V VDDA_1P8_SERDES0 , VDDA_0P85_SERDES 0, VDDA_0P85_SERDES 0_C SERDES 1.8 V VDDA_1P8_SERDES0 , VDDA_0P85_SERDES 0, VDDA_0P85_SERDES 0_C SERDES 1.8 V VDDA_1P8_SERDES0 , VDDA_0P85_SERDES 0, VDDA_0P85_SERDES 0_C SERDES A SERDES0_REFCLK0N IO SERDES0_REFCLK0P IO SERDES0_RX0_N I SERDES0_RX0_P I SERDES0_TX0_N O SERDES0_TX0_P SERDES0_TX0_P O SPI0_CLK SPI0_CLK 0 IO 0 PADCONFIG: PADCONFIG132 0x000F4210 GPIO1_44 7 IO pad SPI1_CLK SPI1_CLK 0 IO 0 PADCONFIG: PADCONFIG137 0x000F4224 EHRPWM6_SYNCI 3 I 0 GPIO1_49 7 IO pad HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 53 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] D12 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] A13 A14 B14 B15 A15 54 DSIS [6] SPI0_CS0 0 IO 1 PADCONFIG: PADCONFIG130 0x000F4208 GPIO1_42 7 IO pad SPI0_CS1 0 IO 1 CPTS0_TS_COMP 1 O I2C2_SCL 2 IOD 1 TIMER_IO10 3 IO 0 PRG0_IEP0_EDIO_OUTVALID 4 O UART6_RXD 5 I ADC_EXT_TRIGGER0 6 I 0 GPIO1_43 7 IO pad SPI0_D0 SPI0_D0 0 IO 0 PADCONFIG: PADCONFIG133 0x000F4214 GPIO1_45 7 IO pad SPI0_D1 SPI0_D1 0 IO 0 PADCONFIG: PADCONFIG134 0x000F4218 GPIO1_46 7 IO pad SPI1_CS0 SPI1_CS0 0 IO 1 PADCONFIG: PADCONFIG135 0x000F421C EHRPWM6_A 3 IO 0 GPIO1_47 7 IO pad SPI1_CS1 0 IO 1 CPTS0_TS_SYNC 1 O I2C2_SDA 2 IOD PRG1_IEP0_EDIO_OUTVALID 4 O UART6_TXD 5 O ADC_EXT_TRIGGER1 6 I 0 GPIO1_48 7 IO pad PADCONFIG: PADCONFIG131 0x000F420C SPI1_CS1 D14 TYPE [5] SPI0_CS0 SPI0_CS1 C13 SIGNAL NAME [3] MUX MODE [4] PADCONFIG: PADCONFIG136 0x000F4220 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD 1 1 TIMER_IO11 8 IO 0 SPI1_D0 SPI1_D0 0 IO 0 PADCONFIG: PADCONFIG138 0x000F4228 EHRPWM6_SYNCO 3 O GPIO1_50 7 IO pad SPI1_D1 SPI1_D1 0 IO 0 PADCONFIG: PADCONFIG139 0x000F422C EHRPWM6_B 3 IO 0 GPIO1_51 7 IO pad Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] I On / Off / Up On / Off / Up 0 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD 0 I On / Off / Up On / Off / Up 0 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD TDO 0 OZ Off / Off / Up Off / SS / Up 0 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD TMS 0 I On / Off / Up On / Off / Up 0 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD TRSTn 0 I On / Off / Down On / Off / Down 0 1.8 V/3.3 V VDDSHV_MCU Yes LVCMOS PU/PD UART0_CTSn 0 I 1 SPI0_CS2 1 IO 1 ADC_EXT_TRIGGER0 2 I 0 UART0_CTSn UART2_RXD 3 I 1 PADCONFIG: PADCONFIG142 0x000F4238 TIMER_IO6 4 IO 0 Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD SPI4_CLK 6 IO 0 GPIO1_54 7 IO pad EQEP0_S 8 IO 0 CP_GEMAC_CPTS0_TS_SYNC 9 O UART0_RTSn 0 O SPI0_CS3 1 IO UART0_RTSn UART2_TXD 3 O PADCONFIG: PADCONFIG143 0x000F423C TIMER_IO7 4 IO 0 Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD SPI4_D0 6 IO 0 GPIO1_55 7 IO pad EQEP0_I 8 IO 0 UART0_RXD 0 I 1 SPI2_D0 2 IO 0 GPIO1_52 7 IO pad Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD EQEP0_A 8 I 0 BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] MUX MODE [4] TYPE [5] TCK 0 TDI SIGNAL NAME [3] DSIS [6] TCK B11 PADCONFIG: MCU_PADCONFIG26 0x04084068 TDI C11 PADCONFIG: MCU_PADCONFIG28 0x04084070 TDO A12 PADCONFIG: MCU_PADCONFIG29 0x04084074 TMS C12 PADCONFIG: MCU_PADCONFIG30 0x04084078 TRSTn D11 B16 A16 PADCONFIG: MCU_PADCONFIG27 0x0408406C UART0_RXD D15 PADCONFIG: PADCONFIG140 0x000F4230 1 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 55 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] D16 E16 E15 E14 56 TYPE [5] DSIS [6] UART0_TXD 0 O SPI2_D1 2 IO 0 GPIO1_53 7 IO pad EQEP0_B 8 I 0 UART1_CTSn 0 I 1 SPI1_CS2 1 IO 1 ADC_EXT_TRIGGER1 2 I 0 UART1_CTSn PCIE0_CLKREQn 3 IO 0 PADCONFIG: PADCONFIG146 0x000F4248 UART3_RXD 4 I 1 CP_GEMAC_CPTS0_TS_SYNC 5 O SPI4_D1 6 IO 0 GPIO1_58 7 IO pad EQEP1_S 8 IO 0 UART1_RTSn 0 O UART0_TXD C16 SIGNAL NAME [3] MUX MODE [4] PADCONFIG: PADCONFIG141 0x000F4234 SPI1_CS3 1 IO UART1_RTSn UART3_TXD 4 O PADCONFIG: PADCONFIG147 0x000F424C CP_GEMAC_CPTS0_HW2TSPUSH 5 I 0 SPI4_CS0 6 IO 1 GPIO1_59 7 IO pad EQEP1_I 8 IO 0 UART1_RXD 0 I 1 UART1_RXD SPI2_CS0 2 IO 1 PADCONFIG: PADCONFIG144 0x000F4240 CP_GEMAC_CPTS0_TS_COMP 5 O GPIO1_56 7 IO pad EQEP1_A 8 I 0 UART1_TXD 0 O UART1_TXD SPI2_CLK 2 IO PADCONFIG: PADCONFIG145 0x000F4244 CP_GEMAC_CPTS0_HW1TSPUSH 5 I 0 GPIO1_57 7 IO pad EQEP1_B 8 I 0 BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD Off / Off / Off Off / Off / Off 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD 1 0 AA20 USB0_DM USB0_DM IO 1.8 V/3.3 V VDDA_3P3_USB0, VDDA_1P8_USB0, VDDA_0P85_USB0 USB2PHY AA19 USB0_DP USB0_DP IO 1.8 V/3.3 V VDDA_3P3_USB0, VDDA_1P8_USB0, VDDA_0P85_USB0 USB2PHY Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] SIGNAL NAME [3] MUX MODE [4] TYPE [5] DSIS [6] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Off / Off / Down Off / Off / Down 7 1.8 V/3.3 V VDDSHV0 Yes LVCMOS PU/PD USB0_DRVVBUS USB0_DRVVBUS 0 O E19 PADCONFIG: PADCONFIG170 0x000F42A8 GPIO1_79 7 IO U16 USB0_ID USB0_ID A 1.8 V/3.3 V VDDA_3P3_USB0, VDDA_1P8_USB0, VDDA_0P85_USB0 USB2PHY U17 USB0_RCALIB USB0_RCALIB A 1.8 V/3.3 V VDDA_3P3_USB0, VDDA_1P8_USB0, VDDA_0P85_USB0 USB2PHY T14 USB0_VBUS USB0_VBUS A 1.8 V/3.3 V VDDA_3P3_USB0, VDDA_1P8_USB0, VDDA_0P85_USB0 USB2PHY P12, P13 VDDA_0P85_SERDES0 VDDA_0P85_SERDES0 PWR P11 VDDA_0P85_SERDES0_C VDDA_0P85_SERDES0_C PWR T12 VDDA_0P85_USB0 VDDA_0P85_USB0 PWR R14 VDDA_1P8_SERDES0 VDDA_1P8_SERDES0 PWR R15 VDDA_1P8_USB0 VDDA_1P8_USB0 PWR H15 VDDA_3P3_SDIO VDDA_3P3_SDIO PWR R13 VDDA_3P3_USB0 VDDA_3P3_USB0 PWR J13 VDDA_ADC VDDA_ADC PWR K12 VDDA_MCU VDDA_MCU PWR N12 VDDA_PLL0 VDDA_PLL0 PWR H9 VDDA_PLL1 VDDA_PLL1 PWR J11 VDDA_PLL2 VDDA_PLL2 PWR G11 VDDA_TEMP0 VDDA_TEMP0 PWR L11 VDDA_TEMP1 VDDA_TEMP1 PWR L10, M13 VDDR_CORE VDDR_CORE PWR F11, G12, G14 VDDSHV0 VDDSHV0 PWR M7, N6, P7 VDDSHV1 VDDSHV1 PWR R10, R8, T9 VDDSHV2 VDDSHV2 PWR P14, P15 VDDSHV3 VDDSHV3 PWR M14, M15 VDDSHV4 VDDSHV4 PWR L14, L15 VDDSHV5 VDDSHV5 PWR F9, G10, G8 VDDSHV_MCU VDDSHV_MCU PWR F7, G6, H7, J6, K7, L6 VDDS_DDR VDDS_DDR PWR J8 VDDS_DDR_C VDDS_DDR_C PWR K14 VDDS_MMC0 VDDS_MMC0 PWR H13 VDDS_OSC VDDS_OSC PWR pad Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 57 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-1. Pin Attributes (ALV Package) (continued) BALL NUMBER [1] BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16] J10, J12, K11, K9, L12, VDD_CORE L8, M11, M9, N10, N8, P9 SIGNAL NAME [3] MUX MODE [4] TYPE [5] VDD_CORE PWR H14 VDD_DLL_MMC0 VDD_DLL_MMC0 PWR K13 VDD_MMC0 VDD_MMC0 PWR K16 VMON_1P8_MCU VMON_1P8_MCU A E12 VMON_1P8_SOC VMON_1P8_SOC A F13 VMON_3P3_MCU VMON_3P3_MCU A F14 VMON_3P3_SOC VMON_3P3_SOC A K10 VMON_VSYS VMON_VSYS G15 VPP VPP PWR A1, A21, A5, A6, AA1, AA15, AA18, AA21, C10, C15, C3, D1, E11, E13, F10, F15, F8, G1, G16, G3, G7, G9, H11, H20, H21, H6, H8, J14, J7, J9, K6, K8, L1, L16, VSS L3, L7, L9, M10, M12, M6, M8, N11, N13, N15, N7, N9, P1, P10, P18, P6, P8, R12, R7, R9, T10, T11, T15, T16, T8, U3, V17, W10, W18, Y14, Y17, Y19 VSS GND 58 DSIS [6] BALL STATE DURING RESET RX/TX/PULL [7] BALL STATE AFTER RESET RX/TX/PULL [8] MUX MODE AFTER RESET [9] I/O OPERATING VOLTAGE [10] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] A Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 6.3 Signal Descriptions Many signals are available on multiple pins, according to the software configuration of the pin multiplexing options. The following list describes the column headers: 1. SIGNAL NAME: The name of the signal passing through the pin. Note Signal names and descriptions provided in each Signal Descriptions table, represent the pin multiplexed signal function which is implemented at the pin and selected via PADCONFIG registers. Device subsystems may provide secondary multiplexing of signal functions, which are not described in these tables. For more information on secondary multiplexed signal functions, see the respective peripheral chapter of the device TRM. 2. PIN TYPE: Signal direction and type: • I = Input • O = Output • OD = Output, with open-drain output function • IO = Input, Output, or simultaneously Input and Output • IOD = Input, Output, or simultaneously Input and Output with open-drain output function • IOZ = Input, Output, or simultaneously Input and Output with three-state output function • OZ = Output with three-state output function • A = Analog • PWR = Power • GND = Ground • CAP = LDO Capacitor 3. DESCRIPTION: Description of the signal   4. BALL: Ball number(s) associated with signal For more information on the IO cell configurations, see the Pad Configuration Registers section in Device Configuration chapter of the device TRM. 6.3.1 ADC Note The ADC can be configured to operate as eight general-purpose digital inputs. For more information, see Analog-to-Digital Converter (ADC) section in Peripherals chapter in the device TRM. 6.3.1.1 MAIN Domain Table 6-2. ADC0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] (4) A ADC0 Negative Reference J16 ADC0_REFP (4) A ADC0 Positive Reference J15 (1) (2) (3) A ADC Analog Input 0 / GPIO1_80 (Input Only) G20 ADC0_AIN1 (1) (2) (3) A ADC Analog Input 1 / GPIO1_81 (Input Only) F20 (1) (2) (3) A ADC Analog Input 2 / GPIO1_82 (Input Only) E21 ADC0_AIN3 (1) (2) (3) A ADC Analog Input 3 / GPIO1_83 (Input Only) D20 ADC0_AIN4 (1) (2) (3) A ADC Analog Input 4 / GPIO1_84 (Input Only) G21 ADC0_AIN5 (1) (2) (3) A ADC Analog Input 5 / GPIO1_85 (Input Only) F21 (1) (2) (3) A ADC Analog Input 6 / GPIO1_86 (Input Only) F19 ADC0_REFN ADC0_AIN0 ADC0_AIN2 ADC0_AIN6 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 59 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-2. ADC0 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] ADC0_AIN7 (1) (2) (3) A ADC Analog Input 7 / GPIO1_87 (Input Only) ADC_EXT_TRIGGER0 I ADC Trigger Input B16, C13 ADC_EXT_TRIGGER1 I ADC Trigger Input D14, D16 (1) (2) (3) (4) E20 The General Purpose Input signal associated with this ADC0_AIN input has a debounce function when ADC0 is configured to operate in GPI mode. For more information on configuring ADC0 to operate in GPI mode, see the TRM Analog-to-Digital Converter (ADC) section in the Peripherals chapter. For more information on I/O Debounce configuration, see the TRM Device Configuration chapter. The ADC0_AIN[7:0] inputs only have hysterisis when ADC0 is configured to operate in GPI mode. Any unused ADC0_AIN inputs must be pulled to VSS through a resistor or connected directly to VSS when VDDA_ADC is connected to a power source. The ADC0_REFP and ADC0_REFN reference inputs are analog inputs which must be treated like high transient power supply rails, where ADC0_REFN is expected to be connected directly to the PCB ground plane along with all other VSS pins, and ADC0_REFP is connected to a power source capable of providing at least 4mA of current. ADC0_REFP may be connected to the same power source as VDDA_ADC0 if the voltage tolerance of the supply provides an acceptable accuracy for the ADC reference. A high frequency decoupling capacitor must be connected directly between ADC0_REFP and ADC0_REFN. The high frequency decoupling capacitor should be placed in the ball array on the back side of the PCB and connected directly to the ADC0_REFP and ADC0_REFN pins with vias. ADC0_REFP may be connected to VSS if ADC0 is not used and VDDA_ADC0 has been connected to VSS. The high frequency decoupling capacitor described above will not be required if ADC0 is not used and ADC0_REFP is connected to VSS. See the Pin Connectivity Requirements section for more information on ADC0 connectivity. 6.3.2 CPSW3G 6.3.2.1 MAIN Domain Table 6-3. CPSW3G0 RGMII1 Signal Descriptions SIGNAL NAME [1] RGMII1_RXC RGMII1_RX_CTL PIN TYPE [2] DESCRIPTION [3] I RGMII Receive Clock ALV PIN [4] AA5, W13 I RGMII Receive Control V13, W6 RGMII1_TXC IO RGMII Transmit Clock U14 RGMII1_TX_CTL O RGMII Transmit Control U15 RGMII1_RD0 I RGMII Receive Data 0 AA13, W5 RGMII1_RD1 I RGMII Receive Data 1 U12, Y5 RGMII1_RD2 I RGMII Receive Data 2 V6, Y13 RGMII1_RD3 I RGMII Receive Data 3 V12, V5 RGMII1_TD0 O RGMII Transmit Data 0 V15 RGMII1_TD1 O RGMII Transmit Data 1 V14 RGMII1_TD2 O RGMII Transmit Data 2 W14 RGMII1_TD3 O RGMII Transmit Data 3 AA14 Table 6-4. CPSW3G0 RGMII2 Signal Descriptions SIGNAL NAME [1] RGMII2_RXC RGMII2_RX_CTL PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] I RGMII Receive Clock U11 I RGMII Receive Control W12 RGMII2_TXC IO RGMII Transmit Clock Y10 RGMII2_TX_CTL O RGMII Transmit Control Y11 RGMII2_RD0 I RGMII Receive Data 0 W11 RGMII2_RD1 I RGMII Receive Data 1 V11 RGMII2_RD2 I RGMII Receive Data 2 AA12 RGMII2_RD3 I RGMII Receive Data 3 Y12 RGMII2_TD0 O RGMII Transmit Data 0 AA10 RGMII2_TD1 O RGMII Transmit Data 1 V10 RGMII2_TD2 O RGMII Transmit Data 2 U10 60 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-4. CPSW3G0 RGMII2 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] RGMII2_TD3 O DESCRIPTION [3] ALV PIN [4] RGMII Transmit Data 3 AA11 Table 6-5. CPSW3G0 RMII1 and RMII2 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] RMII1_CRS_DV DESCRIPTION [3] ALV PIN [4] I RMII Carrier Sense / Data Valid R2, V12 RMII1_RX_ER I RMII Receive Data Error U15, W6 RMII1_TX_EN O RMII Transmit Enable P5, Y13 RMII2_CRS_DV I RMII Carrier Sense / Data Valid U10 RMII2_RX_ER I RMII Receive Data Error W12 RMII2_TX_EN O RMII Transmit Enable Y11 RMII1_RXD0 I RMII Receive Data 0 V15, W5 RMII1_RXD1 I RMII Receive Data 1 V14, Y5 RMII1_TXD0 O RMII Transmit Data 0 V6, W14 RMII1_TXD1 O RMII Transmit Data 1 AA14, V5 RMII2_RXD0 I RMII Receive Data 0 W11 RMII2_RXD1 I RMII Receive Data 1 V11 RMII2_TXD0 O RMII Transmit Data 0 AA10 RMII2_TXD1 O RMII Transmit Data 1 V10 I RMII Reference Clock AA5, U14 RMII_REF_CLK (1) (1) RMII_REF_CLK is common to both RMII1 and RMII2. 6.3.3 CPTS 6.3.3.1 MAIN Domain Table 6-6. CP GEMAC CPTS0 Signal Descriptions SIGNAL NAME [1] CP_GEMAC_CPTS0_RFT_CLK CP_GEMAC_CPTS0_TS_COMP CP_GEMAC_CPTS0_TS_SYNC CP_GEMAC_CPTS0_HW1TSPUSH CP_GEMAC_CPTS0_HW2TSPUSH PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] I CPTS Reference Clock Input to CPSW3G0 CPTS D18 O CPTS Time Stamp Counter Compare Output from CPSW3G0 CPTS E15, K18, W1 O CPTS Time Stamp Counter Bit Output from CPSW3G0 CPTS B16, D16, K19, U1 I CPTS Hardware Time Stamp Push Input to CPSW3G0 CPTS E14, L21, V1 I CPTS Hardware Time Stamp Push Input to CPSW3G0 CPTS E16, K21, T1 Table 6-7. CPTS0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] CPTS0_RFT_CLK I CPTS Reference Clock Input CPTS0_TS_COMP O CPTS Time Stamp Counter Compare Output C13, W1, W7 CPTS0_TS_SYNC O CPTS Time Stamp Counter Bit Output D14, U1, U7 I CPTS Hardware Time Stamp Push Input to Time Sync Router C18, V1, V7 I CPTS Hardware Time Stamp Push Input to Time Sync Router B19, T1, U13 O CPTS Time Stamp Generator Bit 0 Output from Time Sync Router D18 O CPTS Time Stamp Generator Bit 1 Output from Time Sync Router A19 CPTS0_HW1TSPUSH CPTS0_HW2TSPUSH SYNC0_OUT SYNC1_OUT Copyright © 2023 Texas Instruments Incorporated D18 Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 61 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-7. CPTS0 Signal Descriptions (continued) SIGNAL NAME [1] SYNC2_OUT SYNC3_OUT PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] O CPTS Time Stamp Generator Bit 2 Output from Time Sync Router A17 O CPTS Time Stamp Generator Bit 3 Output from Time Sync Router B17 6.3.4 DDRSS 6.3.4.1 MAIN Domain Table 6-8. DDRSS0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] DDR0_ACT_n O DDRSS Activation Command H2 DDR0_ALERT_n IO DDRSS Alert H1 DDR0_CAS_n O DDRSS Column Address Strobe J5 DDR0_PAR O DDRSS Command and Address Parity K5 DDR0_RAS_n O DDRSS Row Address Strobe F6 DDR0_WE_n O DDRSS Write Enable H4 DDR0_A0 O DDRSS Address Bus D2 DDR0_A1 O DDRSS Address Bus C5 DDR0_A2 O DDRSS Address Bus E2 DDR0_A3 O DDRSS Address Bus D4 DDR0_A4 O DDRSS Address Bus D3 DDR0_A5 O DDRSS Address Bus F2 DDR0_A6 O DDRSS Address Bus J2 DDR0_A7 O DDRSS Address Bus L5 DDR0_A8 O DDRSS Address Bus J3 DDR0_A9 O DDRSS Address Bus J4 DDR0_A10 O DDRSS Address Bus K3 DDR0_A11 O DDRSS Address Bus J1 DDR0_A12 O DDRSS Address Bus M5 DDR0_A13 O DDRSS Address Bus K4 DDR0_BA0 O DDRSS Bank Address G4 DDR0_BA1 O DDRSS Bank Address G5 DDR0_BG0 O DDRSS Bank Group G2 DDR0_BG1 O DDRSS Bank Group H3 DDR0_CAL0 (1) A IO Pad Calibration Resistor H5 DDR0_CK0 O DDRSS Clock F1 DDR0_CK0_n O DDRSS Negative Clock E1 DDR0_CKE0 O DDRSS Clock Enable F4 DDR0_CKE1 O DDRSS Clock Enable F3 DDR0_CS0_n O DDRSS Chip Select 0 E3 DDR0_CS1_n O DDRSS Chip Select 1 E4 DDR0_DM0 IO DDRSS Data Mask B2 DDR0_DM1 IO DDRSS Data Mask M2 DDR0_DQ0 IO DDRSS Data A3 DDR0_DQ1 IO DDRSS Data A2 DDR0_DQ2 IO DDRSS Data B5 DDR0_DQ3 IO DDRSS Data A4 62 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-8. DDRSS0 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] DDR0_DQ4 IO DDRSS Data B3 DDR0_DQ5 IO DDRSS Data C4 DDR0_DQ6 IO DDRSS Data C2 DDR0_DQ7 IO DDRSS Data B4 DDR0_DQ8 IO DDRSS Data N5 DDR0_DQ9 IO DDRSS Data L4 DDR0_DQ10 IO DDRSS Data L2 DDR0_DQ11 IO DDRSS Data M3 DDR0_DQ12 IO DDRSS Data N4 DDR0_DQ13 IO DDRSS Data N3 DDR0_DQ14 IO DDRSS Data M4 DDR0_DQ15 IO DDRSS Data N2 DDR0_DQS0 IO DDRSS Data Strobe 0 C1 DDR0_DQS0_n IO DDRSS Complimentary Data Strobe 0 B1 DDR0_DQS1 IO DDRSS Data Strobe 1 N1 DDR0_DQS1_n IO DDRSS Complimentary Data Strobe 1 M1 DDR0_ODT0 O DDRSS On-Die Termination for Chip Select 0 E5 DDR0_ODT1 O DDRSS On-Die Termination for Chip Select 1 F5 DDR0_RESET0_n O DDRSS Reset D5 (1) An external 240 Ω ±1% resistor must be connected between this pin and VSS. The maximum power dissipation for the resistor is 5.2mW. No external voltage should be applied to this pin. 6.3.5 ECAP 6.3.5.1 MAIN Domain Table 6-9. ECAP0 Signal Descriptions SIGNAL NAME [1] ECAP0_IN_APWM_OUT PIN TYPE [2] IO DESCRIPTION [3] ALV PIN [4] Enhanced Capture (ECAP) Input or Auxiliary PWM (APWM) Output D18 Table 6-10. ECAP1 Signal Descriptions SIGNAL NAME [1] ECAP1_IN_APWM_OUT PIN TYPE [2] IO DESCRIPTION [3] ALV PIN [4] Enhanced Capture (ECAP) Input or Auxiliary PWM (APWM) Output C17 Table 6-11. ECAP2 Signal Descriptions SIGNAL NAME [1] ECAP2_IN_APWM_OUT PIN TYPE [2] IO DESCRIPTION [3] ALV PIN [4] Enhanced Capture (ECAP) Input or Auxiliary PWM (APWM) Output D17 6.3.6 Emulation and Debug 6.3.6.1 MAIN Domain Table 6-12. Trace Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] TRC_CLK O Trace Clock T20 TRC_CTL O Trace Control U21 TRC_DATA0 O Trace Data 0 T18 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 63 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-12. Trace Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] TRC_DATA1 O Trace Data 1 U20 TRC_DATA2 O Trace Data 2 U18 TRC_DATA3 O Trace Data 3 U19 TRC_DATA4 O Trace Data 4 V20 TRC_DATA5 O Trace Data 5 V21 TRC_DATA6 O Trace Data 6 V19 TRC_DATA7 O Trace Data 7 T17 TRC_DATA8 O Trace Data 8 R16 TRC_DATA9 O Trace Data 9 W20 TRC_DATA10 O Trace Data 10 W21 TRC_DATA11 O Trace Data 11 V18 TRC_DATA12 O Trace Data 12 Y21 TRC_DATA13 O Trace Data 13 Y20 TRC_DATA14 O Trace Data 14 R17 TRC_DATA15 O Trace Data 15 P16 TRC_DATA16 O Trace Data 16 R18 TRC_DATA17 O Trace Data 17 T21 TRC_DATA18 O Trace Data 18 P17 TRC_DATA19 O Trace Data 19 T19 TRC_DATA20 O Trace Data 20 W19 TRC_DATA21 O Trace Data 21 Y18 TRC_DATA22 O Trace Data 22 N16 TRC_DATA23 O Trace Data 23 R19 6.3.6.2 MCU Domain Table 6-13. JTAG Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EMU0 IO Emulation Control 0 D10 EMU1 IO Emulation Control 1 E10 TCK I JTAG Test Clock Input B11 TDI I JTAG Test Data Input C11 TDO OZ JTAG Test Data Output A12 TMS I JTAG Test Mode Select Input C12 TRSTn I JTAG Reset D11 6.3.7 EPWM 6.3.7.1 MAIN Domain Table 6-14. EPWM Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EHRPWM_SOCA O EHRPWM Start of Conversion A C17 EHRPWM_SOCB O EHRPWM Start of Conversion B D17 EHRPWM_TZn_IN0 I EHRPWM Trip Zone Input 0 (active low) T18 EHRPWM_TZn_IN1 I EHRPWM Trip Zone Input 1 (active low) V21 EHRPWM_TZn_IN2 I EHRPWM Trip Zone Input 2 (active low) R16, R20 EHRPWM_TZn_IN3 I EHRPWM Trip Zone Input 3 (active low) P16 64 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-14. EPWM Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EHRPWM_TZn_IN4 I EHRPWM Trip Zone Input 4 (active low) P17, P19 EHRPWM_TZn_IN5 I EHRPWM Trip Zone Input 5 (active low) R21, Y18 Table 6-15. EPWM0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EHRPWM0_A IO EHRPWM Output A U20 EHRPWM0_B IO EHRPWM Output B U18 EHRPWM0_SYNCI I Sync Input to EHRPWM module from an external pin T20 EHRPWM0_SYNCO O Sync Output to EHRPWM module to an external pin U21 Table 6-16. EPWM1 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EHRPWM1_A IO EHRPWM Output A U19 EHRPWM1_B IO EHRPWM Output B V20 Table 6-17. EPWM2 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EHRPWM2_A IO EHRPWM Output A V19 EHRPWM2_B IO EHRPWM Output B T17 Table 6-18. EPWM3 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EHRPWM3_A IO EHRPWM Output A V18 EHRPWM3_B IO EHRPWM Output B Y21 EHRPWM3_SYNCI I Sync Input to EHRPWM module from an external pin Y20 EHRPWM3_SYNCO O Sync Output to EHRPWM module to an external pin R17 Table 6-19. EPWM4 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EHRPWM4_A IO EHRPWM Output A R18 EHRPWM4_B IO EHRPWM Output B T21 Table 6-20. EPWM5 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EHRPWM5_A IO EHRPWM Output A T19 EHRPWM5_B IO EHRPWM Output B W19 Table 6-21. EPWM6 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] EHRPWM6_A IO EHRPWM Output A EHRPWM6_B IO ALV PIN [4] B14, N16 EHRPWM Output B A15, N17 EHRPWM6_SYNCI I Sync Input to EHRPWM module from an external pin C14, R19 EHRPWM6_SYNCO O Sync Output to EHRPWM module to an external pin B15, R20 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 65 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-22. EPWM7 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EHRPWM7_A IO EHRPWM Output A P17, P5, W20 EHRPWM7_B IO EHRPWM Output B R2, W21, Y18 Table 6-23. EPWM8 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EHRPWM8_A IO EHRPWM Output A V1, V21 EHRPWM8_B IO EHRPWM Output B R16, W1 6.3.8 EQEP 6.3.8.1 MAIN Domain Table 6-24. EQEP0 Signal Descriptions SIGNAL NAME [1] EQEP0_A (1) PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] I EQEP Quadrature Input A EQEP0_B (1) I EQEP Quadrature Input B EQEP0_I (1) IO EQEP Index A16, R20, T6, Y5 EQEP0_S (1) IO EQEP Strobe B16, R19, V3 (1) D15, N16, Y2 C16, N17, W2 This EQEP input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device Configuration chapter. Table 6-25. EQEP1 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] EQEP1_A (1) I EQEP Quadrature Input A E15, T4, W20 EQEP1_B (1) I EQEP Quadrature Input B E14, W21, W3 EQEP Index E16, R21, U6, V6 EQEP Strobe D16, P19, P4 EQEP1_I (1) IO EQEP1_S (1) (1) IO This EQEP input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device Configuration chapter. Table 6-26. EQEP2 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] (1) I EQEP Quadrature Input A C17, R5 EQEP2_B (1) I EQEP Quadrature Input B D17, W5, Y4 EQEP2_I (1) IO EQEP Index A17, W4 EQEP2_S (1) IO EQEP Strobe B17, R1 EQEP2_A (1) This EQEP input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device Configuration chapter. 6.3.9 FSI 6.3.9.1 MAIN Domain Table 6-27. FSI0 RX Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] FSI_RX0_CLK I FSI Clock FSI_RX0_D0 I FSI Data T17 FSI_RX0_D1 I FSI Data R16 66 Submit Document Feedback V19 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-28. FSI0 TX Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] FSI_TX0_CLK O FSI Clock T19 FSI_TX0_D0 O FSI Data Y21 FSI_TX0_D1 O FSI Data Y20 Table 6-29. FSI1 RX Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] FSI_RX1_CLK I FSI Clock W20 FSI_RX1_D0 I FSI Data W21 FSI_RX1_D1 I FSI Data V18 Table 6-30. FSI1 TX Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] FSI_TX1_CLK O FSI Clock N16 FSI_TX1_D0 O FSI Data P17 FSI_TX1_D1 O FSI Data Y18 Table 6-31. FSI2 RX Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] FSI_RX2_CLK I FSI Clock T20 FSI_RX2_D0 I FSI Data U21 FSI_RX2_D1 I FSI Data T18 Table 6-32. FSI3 RX Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] FSI_RX3_CLK I FSI Clock U20 FSI_RX3_D0 I FSI Data U18 FSI_RX3_D1 I FSI Data U19 Table 6-33. FSI4 RX Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] FSI_RX4_CLK I FSI Clock R17 FSI_RX4_D0 I FSI Data V20 FSI_RX4_D1 I FSI Data V21 Table 6-34. FSI5 RX Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] FSI_RX5_CLK I FSI Clock P16 FSI_RX5_D0 I FSI Data R18 FSI_RX5_D1 I FSI Data T21 6.3.10 GPIO 6.3.10.1 MAIN Domain Table 6-35. GPIO0 Signal Descriptions SIGNAL NAME [1] GPIO0_0 PIN TYPE [2] IO Copyright © 2023 Texas Instruments Incorporated DESCRIPTION [3] ALV PIN [4] General Purpose Input/Output N20 Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 67 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-35. GPIO0 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] GPIO0_1 IO General Purpose Input/Output GPIO0_2 IO General Purpose Input/Output N19 GPIO0_3 IO General Purpose Input/Output M19 GPIO0_4 IO General Purpose Input/Output M18 GPIO0_5 IO General Purpose Input/Output M20 GPIO0_6 IO General Purpose Input/Output M21 GPIO0_7 IO General Purpose Input/Output P21 GPIO0_8 IO General Purpose Input/Output P20 GPIO0_9 IO General Purpose Input/Output N18 GPIO0_10 IO General Purpose Input/Output M17 GPIO0_11 IO General Purpose Input/Output L19 GPIO0_12 IO General Purpose Input/Output L18 GPIO0_13 IO General Purpose Input/Output K17 GPIO0_14 IO General Purpose Input/Output L17 GPIO0_15 IO General Purpose Input/Output T20 GPIO0_16 IO General Purpose Input/Output U21 GPIO0_17 IO General Purpose Input/Output T18 GPIO0_18 IO General Purpose Input/Output U20 GPIO0_19 IO General Purpose Input/Output AA14 GPIO0_20 IO General Purpose Input/Output Y13 GPIO0_21 IO General Purpose Input/Output V20 GPIO0_22 IO General Purpose Input/Output V21 GPIO0_23 IO General Purpose Input/Output V19 GPIO0_24 IO General Purpose Input/Output T17 GPIO0_25 IO General Purpose Input/Output R16 GPIO0_26 IO General Purpose Input/Output W20 GPIO0_27 IO General Purpose Input/Output W21 GPIO0_28 IO General Purpose Input/Output V18 GPIO0_29 IO General Purpose Input/Output Y21 GPIO0_30 IO General Purpose Input/Output Y20 GPIO0_31 IO General Purpose Input/Output R17 GPIO0_32 IO General Purpose Input/Output P16 GPIO0_33 IO General Purpose Input/Output R18 GPIO0_34 IO General Purpose Input/Output T21 GPIO0_35 IO General Purpose Input/Output P17 GPIO0_36 IO General Purpose Input/Output T19 GPIO0_37 IO General Purpose Input/Output W19 GPIO0_38 IO General Purpose Input/Output Y18 GPIO0_39 IO General Purpose Input/Output N16 GPIO0_40 IO General Purpose Input/Output N17 GPIO0_41 IO General Purpose Input/Output R19 GPIO0_42 IO General Purpose Input/Output R20 (1) IO General Purpose Input/Output P19 GPIO0_44 (1) IO General Purpose Input/Output R21 GPIO0_45 IO General Purpose Input/Output Y7 GPIO0_43 68 Submit Document Feedback N21 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-35. GPIO0 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] GPIO0_46 IO General Purpose Input/Output U8 GPIO0_47 IO General Purpose Input/Output W8 GPIO0_48 IO General Purpose Input/Output V8 GPIO0_49 IO General Purpose Input/Output Y8 GPIO0_50 IO General Purpose Input/Output V13 GPIO0_51 IO General Purpose Input/Output AA7 GPIO0_52 IO General Purpose Input/Output U13 GPIO0_53 IO General Purpose Input/Output W13 GPIO0_54 IO General Purpose Input/Output U15 GPIO0_55 IO General Purpose Input/Output U14 GPIO0_56 IO General Purpose Input/Output AA8 GPIO0_57 IO General Purpose Input/Output U9 GPIO0_58 IO General Purpose Input/Output W9 GPIO0_59 IO General Purpose Input/Output AA9 GPIO0_60 IO General Purpose Input/Output Y9 GPIO0_61 IO General Purpose Input/Output V9 GPIO0_62 IO General Purpose Input/Output U7 GPIO0_63 IO General Purpose Input/Output V7 GPIO0_64 IO General Purpose Input/Output W7 GPIO0_65 IO General Purpose Input/Output W11 GPIO0_66 IO General Purpose Input/Output V11 GPIO0_67 IO General Purpose Input/Output AA12 GPIO0_68 IO General Purpose Input/Output Y12 GPIO0_69 IO General Purpose Input/Output W12 GPIO0_70 IO General Purpose Input/Output AA13 GPIO0_71 IO General Purpose Input/Output U11 GPIO0_72 IO General Purpose Input/Output V15 GPIO0_73 IO General Purpose Input/Output U12 GPIO0_74 IO General Purpose Input/Output V14 GPIO0_75 IO General Purpose Input/Output W14 GPIO0_76 IO General Purpose Input/Output AA10 GPIO0_77 IO General Purpose Input/Output V10 GPIO0_78 IO General Purpose Input/Output U10 GPIO0_79 IO General Purpose Input/Output AA11 GPIO0_80 IO General Purpose Input/Output Y11 GPIO0_81 IO General Purpose Input/Output Y10 GPIO0_82 IO General Purpose Input/Output U18 GPIO0_83 IO General Purpose Input/Output U19 GPIO0_84 IO General Purpose Input/Output V12 GPIO0_85 IO General Purpose Input/Output AA6 GPIO0_86 IO General Purpose Input/Output Y6 (1) This GPIO input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device Configuration chapter. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 69 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-36. GPIO1 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] GPIO1_0 IO General Purpose Input/Output Y1 GPIO1_1 IO General Purpose Input/Output R4 GPIO1_2 IO General Purpose Input/Output U2 GPIO1_3 IO General Purpose Input/Output V2 GPIO1_4 IO General Purpose Input/Output AA2 GPIO1_5 IO General Purpose Input/Output R3 GPIO1_6 IO General Purpose Input/Output T3 GPIO1_7 IO General Purpose Input/Output T1 GPIO1_8 IO General Purpose Input/Output T2 GPIO1_9 IO General Purpose Input/Output W6 GPIO1_10 IO General Purpose Input/Output AA5 GPIO1_11 IO General Purpose Input/Output Y3 GPIO1_12 IO General Purpose Input/Output AA3 GPIO1_13 IO General Purpose Input/Output R6 GPIO1_14 IO General Purpose Input/Output V4 GPIO1_15 IO General Purpose Input/Output T5 GPIO1_16 IO General Purpose Input/Output U4 GPIO1_17 IO General Purpose Input/Output U1 GPIO1_18 IO General Purpose Input/Output V1 GPIO1_19 IO General Purpose Input/Output W1 GPIO1_20 IO General Purpose Input/Output Y2 GPIO1_21 IO General Purpose Input/Output W2 GPIO1_22 IO General Purpose Input/Output V3 GPIO1_23 IO General Purpose Input/Output T4 GPIO1_24 IO General Purpose Input/Output W3 GPIO1_25 IO General Purpose Input/Output P4 GPIO1_26 IO General Purpose Input/Output R5 GPIO1_27 IO General Purpose Input/Output W5 GPIO1_28 IO General Purpose Input/Output R1 GPIO1_29 IO General Purpose Input/Output Y5 GPIO1_30 IO General Purpose Input/Output V6 GPIO1_31 IO General Purpose Input/Output W4 GPIO1_32 IO General Purpose Input/Output Y4 GPIO1_33 IO General Purpose Input/Output T6 GPIO1_34 IO General Purpose Input/Output U6 GPIO1_35 IO General Purpose Input/Output U5 GPIO1_36 IO General Purpose Input/Output AA4 GPIO1_37 IO General Purpose Input/Output V5 GPIO1_38 IO General Purpose Input/Output P5 GPIO1_39 IO General Purpose Input/Output R2 GPIO1_40 IO General Purpose Input/Output P2 GPIO1_41 IO General Purpose Input/Output P3 GPIO1_42 IO General Purpose Input/Output D12 GPIO1_43 IO General Purpose Input/Output C13 GPIO1_44 IO General Purpose Input/Output D13 70 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-36. GPIO1 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] GPIO1_45 IO General Purpose Input/Output A13 GPIO1_46 IO General Purpose Input/Output A14 GPIO1_47 IO General Purpose Input/Output B14 GPIO1_48 IO General Purpose Input/Output D14 GPIO1_49 IO General Purpose Input/Output C14 GPIO1_50 IO General Purpose Input/Output B15 GPIO1_51 IO General Purpose Input/Output A15 GPIO1_52 IO General Purpose Input/Output D15 GPIO1_53 IO General Purpose Input/Output C16 GPIO1_54 IO General Purpose Input/Output B16 GPIO1_55 IO General Purpose Input/Output A16 GPIO1_56 IO General Purpose Input/Output E15 GPIO1_57 IO General Purpose Input/Output E14 GPIO1_58 IO General Purpose Input/Output D16 GPIO1_59 IO General Purpose Input/Output E16 GPIO1_60 IO General Purpose Input/Output A17 GPIO1_61 IO General Purpose Input/Output B17 GPIO1_62 IO General Purpose Input/Output C17 GPIO1_63 IO General Purpose Input/Output D17 GPIO1_64 IOD General Purpose Input/Output A18 GPIO1_65 IOD General Purpose Input/Output B18 GPIO1_66 IO General Purpose Input/Output C18 GPIO1_67 IO General Purpose Input/Output B19 IO General Purpose Input/Output D18 IO General Purpose Input/Output A19 GPIO1_68 (1) GPIO1_69 GPIO1_70 (1) IOD General Purpose Input/Output C19 GPIO1_71 (1) IO General Purpose Input/Output K18 (1) IO General Purpose Input/Output K19 GPIO1_73 (1) IO General Purpose Input/Output L21 GPIO1_74 (1) IO General Purpose Input/Output K21 GPIO1_75 (1) IO General Purpose Input/Output L20 GPIO1_76 (1) IO General Purpose Input/Output J19 (1) IO General Purpose Input/Output D19 GPIO1_78 (1) IO General Purpose Input/Output C20 GPIO1_79 IO General Purpose Input/Output E19 GPIO1_72 GPIO1_77 (1) This GPIO input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device Configuration chapter. 6.3.10.2 MCU Domain Table 6-37. MCU_GPIO0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MCU_GPIO0_0 (1) IO General Purpose Input/Output E8 MCU_GPIO0_1 (1) IO General Purpose Input/Output D8 MCU_GPIO0_2 IO General Purpose Input/Output A8 MCU_GPIO0_3 IO General Purpose Input/Output A9 MCU_GPIO0_4 IO General Purpose Input/Output B6 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 71 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-37. MCU_GPIO0 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] MCU_GPIO0_5 (1) IO General Purpose Input/Output (1) MCU_GPIO0_6 ALV PIN [4] A7 IO General Purpose Input/Output B7 MCU_GPIO0_7 IO General Purpose Input/Output D7 MCU_GPIO0_8 IO General Purpose Input/Output C7 MCU_GPIO0_9 IO General Purpose Input/Output C8 MCU_GPIO0_10 IO General Purpose Input/Output E7 MCU_GPIO0_11 IO General Purpose Input/Output E6 (1) IO General Purpose Input/Output C6 MCU_GPIO0_13 (1) IO General Purpose Input/Output D6 MCU_GPIO0_14 IO General Purpose Input/Output C9 MCU_GPIO0_15 IO General Purpose Input/Output D9 (1) IO General Purpose Input/Output B8 MCU_GPIO0_17 (1) IO General Purpose Input/Output B9 MCU_GPIO0_18 IOD General Purpose Input/Output E9 MCU_GPIO0_19 IOD General Purpose Input/Output A10 MCU_GPIO0_20 (1) IO General Purpose Input/Output A11 MCU_GPIO0_21 (1) IO General Purpose Input/Output B10 MCU_GPIO0_22 IO General Purpose Input/Output B13 MCU_GPIO0_12 MCU_GPIO0_16 (1) This GPIO input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device Configuration chapter. 6.3.11 GPMC 6.3.11.1 MAIN Domain Table 6-38. GPMC0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] O GPMC Address Valid (active low) or Address Latch Enable GPMC0_CLK (1) O GPMC clock R17 GPMC0_DIR O GPMC Data Bus Signal Direction Control N17 O GPMC functional clock output selected through a mux logic R17 R18 GPMC0_ADVn_ALE GPMC0_FCLK_MUX P16 O GPMC Output Enable (active low) or Read Enable (active low) GPMC0_WEn O GPMC Write Enable (active low) T21 GPMC0_WPn O GPMC Flash Write Protect (active low) N16 GPMC0_OEn_REn GPMC0_A0 GPMC0_A1 GPMC0_A2 GPMC0_A3 GPMC0_A4 GPMC0_A5 GPMC0_A6 72 Submit Document Feedback OZ GPMC Address 0 Output. Only used to effectively address 8-bit data non-multiplexed memories U2, U7 OZ GPMC address 1 Output in A/D non-multiplexed mode and Address 17 in A/D multiplexed mode AA2, V7 OZ GPMC address 2 Output in A/D non-multiplexed mode and Address 18 in A/D multiplexed mode T2, W7 OZ GPMC address 3 Output in A/D non-multiplexed mode and Address 19 in A/D multiplexed mode V4, W11 OZ GPMC address 4 Output in A/D non-multiplexed mode and Address 20 in A/D multiplexed mode U4, V11 OZ GPMC address 5 Output in A/D non-multiplexed mode and Address 21 in A/D multiplexed mode AA12, V1 OZ GPMC address 6 Output in A/D non-multiplexed mode and Address 22 in A/D multiplexed mode W1, Y12 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-38. GPMC0 Signal Descriptions (continued) SIGNAL NAME [1] GPMC0_A7 GPMC0_A8 GPMC0_A9 GPMC0_A10 GPMC0_A11 GPMC0_A12 GPMC0_A13 GPMC0_A14 GPMC0_A15 GPMC0_A16 GPMC0_A17 GPMC0_A18 GPMC0_A19 GPMC0_A20 GPMC0_A21 GPMC0_A22 PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] OZ GPMC address 7 Output in A/D non-multiplexed mode and Address 23 in A/D multiplexed mode W12, Y4 OZ GPMC address 8 Output in A/D non-multiplexed mode and Address 24 in A/D multiplexed mode AA13, T6 OZ GPMC address 9 Output in A/D non-multiplexed mode and Address 25 in A/D multiplexed mode U11, U6 OZ GPMC address 10 Output in A/D non-multiplexed mode and Address 26 in A/D multiplexed mode U5, V15 OZ GPMC address 11 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode AA4, U12 OZ GPMC address 12 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode P2, V14 OZ GPMC address 13 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode P3, W14 OZ GPMC address 14 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode AA10, AA3 OZ GPMC address 15 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode R6, V10 OZ GPMC address 16 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode T5, U10 OZ GPMC address 17 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode AA11, U1 OZ GPMC address 18 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode T4, Y11 OZ GPMC address 19 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode R5, Y10 OZ GPMC address 20 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode R21 OZ GPMC address 21 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode Y18 OZ GPMC address 22 Output in A/D non-multiplexed mode and unused in A/D multiplexed mode N16 IO GPMC Data 0 Input/Output in A/D non-multiplexed mode and additionally Address 1 Output in A/D multiplexed mode T20 IO GPMC Data 1 Input/Output in A/D non-multiplexed mode and additionally Address 2 Output in A/D multiplexed mode U21 IO GPMC Data 2 Input/Output in A/D non-multiplexed mode and additionally Address 3 Output in A/D multiplexed mode T18 IO GPMC Data 3 Input/Output in A/D non-multiplexed mode and additionally Address 4 Output in A/D multiplexed mode U20 IO GPMC Data 4 Input/Output in A/D non-multiplexed mode and additionally Address 5 Output in A/D multiplexed mode U18 IO GPMC Data 5 Input/Output in A/D non-multiplexed mode and additionally Address 6 Output in A/D multiplexed mode U19 IO GPMC Data 6 Input/Output in A/D non-multiplexed mode and additionally Address 7 Output in A/D multiplexed mode V20 GPMC0_AD0 GPMC0_AD1 GPMC0_AD2 GPMC0_AD3 GPMC0_AD4 GPMC0_AD5 GPMC0_AD6 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 73 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-38. GPMC0 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] V21 IO GPMC Data 8 Input/Output in A/D non-multiplexed mode and additionally Address 9 Output in A/D multiplexed mode V19 IO GPMC Data 9 Input/Output in A/D non-multiplexed mode and additionally Address 10 Output in A/D multiplexed mode T17 IO GPMC Data 10 Input/Output in A/D non-multiplexed mode and additionally Address 11 Output in A/D multiplexed mode R16 IO GPMC Data 11 Input/Output in A/D non-multiplexed mode and additionally Address 12 Output in A/D multiplexed mode W20 IO GPMC Data 12 Input/Output in A/D non-multiplexed mode and additionally Address 13 Output in A/D multiplexed mode W21 IO GPMC Data 13 Input/Output in A/D non-multiplexed mode and additionally Address 14 Output in A/D multiplexed mode V18 IO GPMC Data 14 Input/Output in A/D non-multiplexed mode and additionally Address 15 Output in A/D multiplexed mode Y21 IO GPMC Data 15 Input/Output in A/D non-multiplexed mode and additionally Address 16 Output in A/D multiplexed mode Y20 IO GPMC Data 16 Input/Output in A/D non-multiplexed mode and additionally Address 17 Output in A/D multiplexed mode Y7 IO GPMC Data 17 Input/Output in A/D non-multiplexed mode and additionally Address 18 Output in A/D multiplexed mode U8 IO GPMC Data 18 Input/Output in A/D non-multiplexed mode and additionally Address 19 Output in A/D multiplexed mode W8 IO GPMC Data 19 Input/Output in A/D non-multiplexed mode and additionally Address 20 Output in A/D multiplexed mode V8 IO GPMC Data 20 Input/Output in A/D non-multiplexed mode and additionally Address 21 Output in A/D multiplexed mode Y8 IO GPMC Data 21 Input/Output in A/D non-multiplexed mode and additionally Address 22 Output in A/D multiplexed mode V13 IO GPMC Data 22 Input/Output in A/D non-multiplexed mode and additionally Address 23 Output in A/D multiplexed mode AA7 IO GPMC Data 23 Input/Output in A/D non-multiplexed mode and additionally Address 24 Output in A/D multiplexed mode U13 IO GPMC Data 24 Input/Output in A/D non-multiplexed mode and additionally Address 25 Output in A/D multiplexed mode W13 IO GPMC Data 25 Input/Output in A/D non-multiplexed mode and additionally Address 26 Output in A/D multiplexed mode U15 GPMC0_AD8 GPMC0_AD9 GPMC0_AD10 GPMC0_AD11 GPMC0_AD12 GPMC0_AD13 GPMC0_AD14 GPMC0_AD15 GPMC0_AD16 GPMC0_AD17 GPMC0_AD18 GPMC0_AD19 GPMC0_AD20 GPMC0_AD21 GPMC0_AD22 GPMC0_AD23 GPMC0_AD24 GPMC0_AD25 Submit Document Feedback ALV PIN [4] IO GPMC0_AD7 74 DESCRIPTION [3] GPMC Data 7 Input/Output in A/D non-multiplexed mode and additionally Address 8 Output in A/D multiplexed mode Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-38. GPMC0 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] IO GPMC Data 26 Input/Output in A/D non-multiplexed mode and additionally Address 27 Output in A/D multiplexed mode U14 IO GPMC Data 27 Input/Output in A/D non-multiplexed mode and additionally Address 28 Output in A/D multiplexed mode AA8 IO GPMC Data 28 Input/Output in A/D non-multiplexed mode and additionally Address 29 Output in A/D multiplexed mode U9 IO GPMC Data 29 Input/Output in A/D non-multiplexed mode and additionally Address 30 Output in A/D multiplexed mode W9 IO GPMC Data 30 Input/Output in A/D non-multiplexed mode and additionally Address 31 Output in A/D multiplexed mode AA9 IO GPMC Data 31 Input/Output in A/D non-multiplexed mode and additionally Address 0 Output in A/D multiplexed mode Y9 O GPMC Lower-Byte Enable (active low) or Command Latch Enable P17 GPMC0_BE1n O GPMC Upper-Byte Enable (active low) T19 GPMC0_BE2n O GPMC Upper-Byte Enable (active low) V9 GPMC0_BE3n O GPMC Upper-Byte Enable (active low) AA14 GPMC0_CSn0 O GPMC Chip Select 0 (active low) R19 GPMC0_CSn1 O GPMC Chip Select 1 (active low) R20 GPMC0_CSn2 O GPMC Chip Select 2 (active low) P19 GPMC0_CSn3 O GPMC Chip Select 3 (active low) R21 GPMC0_WAIT0 I GPMC External Indication of Wait W19 GPMC0_WAIT1 I GPMC External Indication of Wait Y18 GPMC0_AD26 GPMC0_AD27 GPMC0_AD28 GPMC0_AD29 GPMC0_AD30 GPMC0_AD31 GPMC0_BE0n_CLE (1) The RXACTIVE bit of the CTRLMMR_PADCONFIG32 register must be set to 0x1 and the TX_DIS bit of the CTRLMMR_PADCONFIG32 register must be reset to 0x0 when GPMC0 is operating in synchronous mode. 6.3.12 I2C 6.3.12.1 MAIN Domain Table 6-39. I2C0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] I2C0_SCL IOD I2C Clock A18 I2C0_SDA IOD I2C Data B18 Table 6-40. I2C1 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] I2C1_SCL IOD I2C Clock C18 I2C1_SDA IOD I2C Data B19 Table 6-41. I2C2 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] I2C2_SCL IOD I2C Clock C13, P19 I2C2_SDA IOD I2C Data D14, R21 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 75 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-42. I2C3 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] I2C3_SCL IOD I2C Clock C17 I2C3_SDA IOD I2C Data D17 6.3.12.2 MCU Domain Table 6-43. MCU_I2C0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MCU_I2C0_SCL IOD I2C Clock E9 MCU_I2C0_SDA IOD I2C Data A10 Table 6-44. MCU_I2C1 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MCU_I2C1_SCL IOD I2C Clock A11 MCU_I2C1_SDA IOD I2C Data B10 6.3.13 MCAN 6.3.13.1 MAIN Domain Table 6-45. MCAN0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MCAN0_RX I MCAN Receive Data B17 MCAN0_TX O MCAN Transmit Data A17 Table 6-46. MCAN1 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MCAN1_RX I MCAN Receive Data D17 MCAN1_TX O MCAN Transmit Data C17 6.3.14 MCSPI 6.3.14.1 MAIN Domain Table 6-47. MCSPI0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] SPI0_CLK IO SPI Clock D13 SPI0_CS0 IO SPI Chip Select 0 D12 SPI0_CS1 IO SPI Chip Select 1 C13 SPI0_CS2 IO SPI Chip Select 2 B16 SPI0_CS3 IO SPI Chip Select 3 A16 SPI0_D0 IO SPI Data 0 A13 SPI0_D1 IO SPI Data 1 A14 Table 6-48. MCSPI1 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] SPI1_CLK IO SPI Clock SPI1_CS0 IO SPI Chip Select 0 B14 SPI1_CS1 IO SPI Chip Select 1 D14 SPI1_CS2 IO SPI Chip Select 2 D16 SPI1_CS3 IO SPI Chip Select 3 E16 76 Submit Document Feedback C14 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-48. MCSPI1 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] SPI1_D0 IO SPI Data 0 B15 SPI1_D1 IO SPI Data 1 A15 Table 6-49. MCSPI2 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] SPI2_CLK IO SPI Clock E14 SPI2_CS0 IO SPI Chip Select 0 E15 SPI2_CS1 IO SPI Chip Select 1 C18 SPI2_CS2 IO SPI Chip Select 2 B19 SPI2_CS3 IO SPI Chip Select 3 A19 SPI2_D0 IO SPI Data 0 D15 SPI2_D1 IO SPI Data 1 C16 Table 6-50. MCSPI3 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] SPI3_CLK IO SPI Clock U4 SPI3_CS0 IO SPI Chip Select 0 U1 SPI3_CS1 IO SPI Chip Select 1 T5 SPI3_CS2 IO SPI Chip Select 2 V12 SPI3_CS3 IO SPI Chip Select 3 V15 SPI3_D0 IO SPI Data 0 R6 SPI3_D1 IO SPI Data 1 V4 Table 6-51. MCSPI4 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] SPI4_CLK IO SPI Clock B16 SPI4_CS0 IO SPI Chip Select 0 E16 SPI4_CS1 IO SPI Chip Select 1 A17 SPI4_CS2 IO SPI Chip Select 0 B17 SPI4_CS3 IO SPI Chip Select 2 D18 SPI4_D0 IO SPI Data 0 A16 SPI4_D1 IO SPI Data 1 D16 6.3.14.2 MCU Domain Table 6-52. MCU_MCSPI0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MCU_SPI0_CLK IO SPI Clock E6 MCU_SPI0_CS0 IO SPI Chip Select 0 D6 MCU_SPI0_CS1 IO SPI Chip Select 1 C6 MCU_SPI0_CS2 IO SPI Chip Select 2 D8 MCU_SPI0_CS3 IO SPI Chip Select 3 B8 MCU_SPI0_D0 IO SPI Data 0 E7 MCU_SPI0_D1 IO SPI Data 1 B6 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 77 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-53. MCU_MCSPI1 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MCU_SPI1_CLK IO SPI Clock D7 MCU_SPI1_CS0 IO SPI Chip Select 0 A7 MCU_SPI1_CS1 IO SPI Chip Select 1 B7 MCU_SPI1_CS2 IO SPI Chip Select 2 E8 MCU_SPI1_CS3 IO SPI Chip Select 3 B9 MCU_SPI1_D0 IO SPI Data 0 C7 MCU_SPI1_D1 IO SPI Data 1 C8 6.3.15 MDIO 6.3.15.1 MAIN Domain Table 6-54. MDIO0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MDIO0_MDC O MDIO Clock R2, Y6 MDIO0_MDIO IO MDIO Data AA6, P5 6.3.16 MMC 6.3.16.1 MAIN Domain Table 6-55. MMC0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MMC0_CALPAD (1) A MMC/SD/SDIO Calibration Resistor F18 MMC0_CLK IO MMC/SD/SDIO Clock G18 MMC0_CMD IO MMC/SD/SDIO Command J21 MMC0_DS IO MMC Data Strobe G19 MMC0_DAT0 IO MMC/SD/SDIO Data K20 MMC0_DAT1 IO MMC/SD/SDIO Data J20 MMC0_DAT2 IO MMC/SD/SDIO Data J18 MMC0_DAT3 IO MMC/SD/SDIO Data J17 MMC0_DAT4 IO MMC/SD/SDIO Data H17 MMC0_DAT5 IO MMC/SD/SDIO Data H19 MMC0_DAT6 IO MMC/SD/SDIO Data H18 MMC0_DAT7 IO MMC/SD/SDIO Data G17 (1) An external 10 kΩ ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin. Table 6-56. MMC1 Signal Descriptions SIGNAL NAME [1] MMC1_CLK (1) PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] IO MMC/SD/SDIO Clock L20 MMC1_CMD IO MMC/SD/SDIO Command J19 MMC1_SDCD I SD Card Detect D19 MMC1_SDWP I SD Write Protect C20 MMC1_DAT0 IO MMC/SD/SDIO Data K21 MMC1_DAT1 IO MMC/SD/SDIO Data L21 MMC1_DAT2 IO MMC/SD/SDIO Data K19 MMC1_DAT3 IO MMC/SD/SDIO Data K18 (1) 78 For MMC1_CLK signal to work properly, the RXACTIVE bit of the CTRLMMR_PADCONFIG164 register must remain in its default state of 0x1 because of retiming purposes. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 6.3.17 OSPI 6.3.17.1 MAIN Domain Table 6-57. OSPI0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] OSPI0_CLK O OSPI Clock N20 OSPI0_DQS I OSPI Data Strobe (DQS) or Loopback Clock Input N19 OSPI0_ECC_FAIL I OSPI ECC Status L17 OSPI0_LBCLKO IO OSPI Loopback Clock Output N21 OSPI0_CSn0 O OSPI Chip Select 0 (active low) L19 OSPI0_CSn1 O OSPI Chip Select 1 (active low) L18 OSPI0_CSn2 O OSPI Chip Select 2 (active low) K17 OSPI0_CSn3 O OSPI Chip Select 3 (active low) L17 OSPI0_D0 IO OSPI Data 0 M19 OSPI0_D1 IO OSPI Data 1 M18 OSPI0_D2 IO OSPI Data 2 M20 OSPI0_D3 IO OSPI Data 3 M21 OSPI0_D4 IO OSPI Data 4 P21 OSPI0_D5 IO OSPI Data 5 P20 OSPI0_D6 IO OSPI Data 6 N18 OSPI0_D7 IO OSPI Data 7 M17 OSPI0_RESET_OUT0 O OSPI Reset L17 OSPI0_RESET_OUT1 O OSPI Reset K17 6.3.18 Power Supply Table 6-58. Power Supply Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] CAP_VDDS0 (1) CAP External capacitor connection for IO group 0 (1) CAP External capacitor connection for IO group 1 T7 CAP_VDDS2 (1) CAP External capacitor connection for IO group 2 R11 CAP_VDDS3 (1) CAP External capacitor connection for IO group 3 N14 CAP_VDDS4 (1) CAP External capacitor connection for IO group 4 M16 CAP_VDDS5 (1) CAP External capacitor connection for IO group 5 L13 CAP_VDDSHV_MMC1 (2) CAP External capacitor connection for MMC1 K15 CAP_VDDS_MCU (1) CAP External capacitor connection for IO MCU VDDA_0P85_SERDES0 PWR SERDES0 0.85 V analog supply VDDA_0P85_SERDES0_C PWR SERDES0 clock 0.85 V analog supply P11 VDDA_0P85_USB0 PWR USB0 0.85 V analog supply T12 VDDA_1P8_SERDES0 PWR SERDES0 1.8 V analog supply R14 VDDA_1P8_USB0 PWR USB0 1.8 V analog supply R15 VDDA_3P3_SDIO PWR SDIO 3.3 V analog supply H15 VDDA_3P3_USB0 PWR USB0 3.3 V analog supply R13 VDDA_ADC PWR ADC0 analog supply J13 VDDA_MCU PWR POR and MCU PLL analog supply K12 VDDA_PLL0 PWR Main, PER1, and R5F PLL analog supply N12 VDDA_PLL1 PWR ARM and DDR PLL analog supply H9 VDDA_PLL2 PWR PER0 PLL analog supply J11 VDDA_TEMP0 PWR TEMP0 analog supply G11 CAP_VDDS1 Copyright © 2023 Texas Instruments Incorporated H12 H10 P12, P13 Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 79 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-58. Power Supply Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] VDDA_TEMP1 PWR TEMP1 analog supply VDDR_CORE PWR RAM supply VDDSHV0 PWR IO supply for IO group 0 VDDSHV1 PWR IO supply for IO group 1 M7, N6, P7 VDDSHV2 PWR IO supply for IO group 2 R10, R8, T9 VDDSHV3 PWR IO supply for IO group 3 P14, P15 VDDSHV4 PWR IO supply for IO group 4 M14, M15 VDDSHV5 PWR IO supply for IO group 5 VDDSHV_MCU PWR IO supply for IO MCU F9, G10, G8 DDR PHY IO supply F7, G6, H7, J6, K7, L6 VDDS_DDR PWR L11 L10, M13 F11, G12, G14 L14, L15 VDDS_DDR_C PWR DDR clock IO supply J8 VDDS_MMC0 PWR MMC0 PHY IO supply K14 VDDS_OSC PWR MCU_OSC0 supply VDD_CORE H13 J10, J12, K11, K9, L12, L8, M11, M9, N10, N8, P9 Core supply PWR VDD_DLL_MMC0 PWR MMC0 PLL analog supply H14 VDD_MMC0 PWR MMC0 PHY core supply K13 VPP PWR eFuse ROM programming supply VSS Ground GND (1) (2) G15 A1, A21, A5, A6, AA1, AA15, AA18, AA21, C10, C15, C3, D1, E11, E13, F10, F15, F8, G1, G16, G3, G7, G9, H11, H20, H21, H6, H8, J14, J7, J9, K6, K8, L1, L16, L3, L7, L9, M10, M12, M6, M8, N11, N13, N15, N7, N9, P1, P10, P18, P6, P8, R12, R7, R9, T10, T11, T15, T16, T8, U3, V17, W10, W18, Y14, Y17, Y19 This pin must always be connected via a 1-μF capacitor to VSS. This pin must always be connected via a 3.3-μF ±20% capacitor to VSS when the SDIO_LDO is being used to source VDDSHV5. Otherwise, this pin may be connected directly to VSS when the VDDA_3P3_SDIO pin is also connected directly to VSS. 6.3.19 PRU_ICSSG Note The PRU_ICSSG contains a second layer of multiplexing to enable additional functionality on the PRU GPO and GPI signals. This internal wrapper multiplexing is described in the PRU_ICSSG chapter in the device TRM. 80 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 6.3.19.1 MAIN Domain Table 6-59. PRU_ICSSG0 Signal Descriptions SIGNAL NAME [1] PRG0_ECAP0_IN_APWM_OUT PIN TYPE [2] IO DESCRIPTION [3] ALV PIN [4] PRU-ICSSG Enhanced Capture (ECAP) Input or Auxiliary PWM (APWM) Output R2, U5 P5, V5 PRG0_ECAP0_SYNC_IN I PRU-ICSSG ECAP Sync Input PRG0_ECAP0_SYNC_OUT O PRU-ICSSG ECAP Sync Output PRG0_IEP0_EDIO_OUTVALID O PRU_ICSSG Industrial Ethernet Digital I/O Outvalid I PRU_ICSSG Industrial Ethernet Distributed Clock Latch Input V1 I PRU_ICSSG Industrial Ethernet Distributed Clock Latch Input T1 O PRU_ICSSG Industrial Ethernet Distributed Clock Sync Output W1 O PRU_ICSSG Industrial Ethernet Distributed Clock Sync Output U1 IO PRU_ICSSG Industrial Ethernet Digital I/O Data Input/ Output W6 IO PRU_ICSSG Industrial Ethernet Digital I/O Data Input/ Output AA5 IO PRU_ICSSG Industrial Ethernet Digital I/O Data Input/ Output Y5 IO PRU_ICSSG Industrial Ethernet Digital I/O Data Input/ Output V6 I PRU_ICSSG Industrial Ethernet Distributed Clock Latch Input P5 I PRU_ICSSG Industrial Ethernet Distributed Clock Latch Input W5 O PRU_ICSSG Industrial Ethernet Distributed Clock Sync Output R2 O PRU_ICSSG Industrial Ethernet Distributed Clock Sync Output V5 PRG0_MDIO0_MDC O PRU-ICSSG MDIO Clock P3 PRG0_MDIO0_MDIO IO PRU-ICSSG MDIO Data P2 PRG0_IEP0_EDC_LATCH_IN0 PRG0_IEP0_EDC_LATCH_IN1 PRG0_IEP0_EDC_SYNC_OUT0 PRG0_IEP0_EDC_SYNC_OUT1 PRG0_IEP0_EDIO_DATA_IN_OUT28 PRG0_IEP0_EDIO_DATA_IN_OUT29 PRG0_IEP0_EDIO_DATA_IN_OUT30 PRG0_IEP0_EDIO_DATA_IN_OUT31 PRG0_IEP1_EDC_LATCH_IN0 PRG0_IEP1_EDC_LATCH_IN1 PRG0_IEP1_EDC_SYNC_OUT0 PRG0_IEP1_EDC_SYNC_OUT1 AA4, V5 C13 PRG0_PRU0_GPI0 I PRU-ICSSG PRU Data Input Y1 PRG0_PRU0_GPI1 I PRU-ICSSG PRU Data Input R4 PRG0_PRU0_GPI2 I PRU-ICSSG PRU Data Input U2 PRG0_PRU0_GPI3 I PRU-ICSSG PRU Data Input V2 PRG0_PRU0_GPI4 I PRU-ICSSG PRU Data Input AA2 PRG0_PRU0_GPI5 I PRU-ICSSG PRU Data Input R3 PRG0_PRU0_GPI6 I PRU-ICSSG PRU Data Input T3 PRG0_PRU0_GPI7 I PRU-ICSSG PRU Data Input T1 PRG0_PRU0_GPI8 I PRU-ICSSG PRU Data Input T2 PRG0_PRU0_GPI9 I PRU-ICSSG PRU Data Input W6 PRG0_PRU0_GPI10 I PRU-ICSSG PRU Data Input AA5 PRG0_PRU0_GPI11 I PRU-ICSSG PRU Data Input Y3 PRG0_PRU0_GPI12 I PRU-ICSSG PRU Data Input AA3 PRG0_PRU0_GPI13 I PRU-ICSSG PRU Data Input R6 PRG0_PRU0_GPI14 I PRU-ICSSG PRU Data Input V4 PRG0_PRU0_GPI15 I PRU-ICSSG PRU Data Input T5 PRG0_PRU0_GPI16 I PRU-ICSSG PRU Data Input U4 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 81 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-59. PRU_ICSSG0 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] PRG0_PRU0_GPI17 I PRU-ICSSG PRU Data Input U1 PRG0_PRU0_GPI18 I PRU-ICSSG PRU Data Input V1 PRG0_PRU0_GPI19 I PRU-ICSSG PRU Data Input W1 PRG0_PRU0_GPO0 IO PRU-ICSSG PRU Data Output Y1 PRG0_PRU0_GPO1 IO PRU-ICSSG PRU Data Output R4 PRG0_PRU0_GPO2 IO PRU-ICSSG PRU Data Output U2 PRG0_PRU0_GPO3 IO PRU-ICSSG PRU Data Output V2 PRG0_PRU0_GPO4 IO PRU-ICSSG PRU Data Output AA2 PRG0_PRU0_GPO5 IO PRU-ICSSG PRU Data Output R3 PRG0_PRU0_GPO6 IO PRU-ICSSG PRU Data Output T3 PRG0_PRU0_GPO7 IO PRU-ICSSG PRU Data Output T1 PRG0_PRU0_GPO8 IO PRU-ICSSG PRU Data Output T2 PRG0_PRU0_GPO9 IO PRU-ICSSG PRU Data Output W6 PRG0_PRU0_GPO10 IO PRU-ICSSG PRU Data Output AA5 PRG0_PRU0_GPO11 IO PRU-ICSSG PRU Data Output Y3 PRG0_PRU0_GPO12 IO PRU-ICSSG PRU Data Output AA3 PRG0_PRU0_GPO13 IO PRU-ICSSG PRU Data Output R6 PRG0_PRU0_GPO14 IO PRU-ICSSG PRU Data Output V4 PRG0_PRU0_GPO15 IO PRU-ICSSG PRU Data Output T5 PRG0_PRU0_GPO16 IO PRU-ICSSG PRU Data Output U4 PRG0_PRU0_GPO17 IO PRU-ICSSG PRU Data Output U1 PRG0_PRU0_GPO18 IO PRU-ICSSG PRU Data Output V1 PRG0_PRU0_GPO19 IO PRU-ICSSG PRU Data Output W1 PRG0_PRU1_GPI0 I PRU-ICSSG PRU Data Input Y2 PRG0_PRU1_GPI1 I PRU-ICSSG PRU Data Input W2 PRG0_PRU1_GPI2 I PRU-ICSSG PRU Data Input V3 PRG0_PRU1_GPI3 I PRU-ICSSG PRU Data Input T4 PRG0_PRU1_GPI4 I PRU-ICSSG PRU Data Input W3 PRG0_PRU1_GPI5 I PRU-ICSSG PRU Data Input P4 PRG0_PRU1_GPI6 I PRU-ICSSG PRU Data Input R5 PRG0_PRU1_GPI7 I PRU-ICSSG PRU Data Input W5 PRG0_PRU1_GPI8 I PRU-ICSSG PRU Data Input R1 PRG0_PRU1_GPI9 I PRU-ICSSG PRU Data Input Y5 PRG0_PRU1_GPI10 I PRU-ICSSG PRU Data Input V6 PRG0_PRU1_GPI11 I PRU-ICSSG PRU Data Input W4 PRG0_PRU1_GPI12 I PRU-ICSSG PRU Data Input Y4 PRG0_PRU1_GPI13 I PRU-ICSSG PRU Data Input T6 PRG0_PRU1_GPI14 I PRU-ICSSG PRU Data Input U6 PRG0_PRU1_GPI15 I PRU-ICSSG PRU Data Input U5 PRG0_PRU1_GPI16 I PRU-ICSSG PRU Data Input AA4 PRG0_PRU1_GPI17 I PRU-ICSSG PRU Data Input V5 PRG0_PRU1_GPI18 I PRU-ICSSG PRU Data Input P5 PRG0_PRU1_GPI19 I PRU-ICSSG PRU Data Input R2 PRG0_PRU1_GPO0 IO PRU-ICSSG PRU Data Output Y2 PRG0_PRU1_GPO1 IO PRU-ICSSG PRU Data Output W2 82 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-59. PRU_ICSSG0 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] PRG0_PRU1_GPO2 IO PRU-ICSSG PRU Data Output PRG0_PRU1_GPO3 IO PRU-ICSSG PRU Data Output T4 PRG0_PRU1_GPO4 IO PRU-ICSSG PRU Data Output W3 PRG0_PRU1_GPO5 IO PRU-ICSSG PRU Data Output P4 PRG0_PRU1_GPO6 IO PRU-ICSSG PRU Data Output R5 PRG0_PRU1_GPO7 IO PRU-ICSSG PRU Data Output W5 PRG0_PRU1_GPO8 IO PRU-ICSSG PRU Data Output R1 PRG0_PRU1_GPO9 IO PRU-ICSSG PRU Data Output Y5 PRG0_PRU1_GPO10 IO PRU-ICSSG PRU Data Output V6 PRG0_PRU1_GPO11 IO PRU-ICSSG PRU Data Output W4 PRG0_PRU1_GPO12 IO PRU-ICSSG PRU Data Output Y4 PRG0_PRU1_GPO13 IO PRU-ICSSG PRU Data Output T6 PRG0_PRU1_GPO14 IO PRU-ICSSG PRU Data Output U6 PRG0_PRU1_GPO15 IO PRU-ICSSG PRU Data Output U5 PRG0_PRU1_GPO16 IO PRU-ICSSG PRU Data Output AA4 PRG0_PRU1_GPO17 IO PRU-ICSSG PRU Data Output V5 PRG0_PRU1_GPO18 IO PRU-ICSSG PRU Data Output P5 PRG0_PRU1_GPO19 IO PRU-ICSSG PRU Data Output R2 PRG0_PWM0_TZ_IN I PRU_ICSSG PWM Trip Zone Input V1 PRG0_PWM0_TZ_OUT O PRU_ICSSG PWM Trip Zone Output W1 PRG0_PWM1_TZ_IN I PRU_ICSSG PWM Trip Zone Input P5 PRG0_PWM1_TZ_OUT O PRU_ICSSG PWM Trip Zone Output PRG0_PWM2_TZ_IN I PRU_ICSSG PWM Trip Zone Input PRG0_PWM2_TZ_OUT O PRU_ICSSG PWM Trip Zone Output R1, U21 PRG0_PWM3_TZ_IN I PRU_ICSSG PWM Trip Zone Input P16, W6 PRG0_PWM3_TZ_OUT O PRU_ICSSG PWM Trip Zone Output R17, Y3 PRG0_PWM0_A0 IO PRU_ICSSG PWM Output A PRG0_PWM0_A1 IO PRU_ICSSG PWM Output A V4 PRG0_PWM0_A2 IO PRU_ICSSG PWM Output A U4 PRG0_PWM0_B0 IO PRU_ICSSG PWM Output B R6 PRG0_PWM0_B1 IO PRU_ICSSG PWM Output B T5 PRG0_PWM0_B2 IO PRU_ICSSG PWM Output B U1 PRG0_PWM1_A0 IO PRU_ICSSG PWM Output A Y4 PRG0_PWM1_A1 IO PRU_ICSSG PWM Output A U6 PRG0_PWM1_A2 IO PRU_ICSSG PWM Output A AA4 PRG0_PWM1_B0 IO PRU_ICSSG PWM Output B T6 PRG0_PWM1_B1 IO PRU_ICSSG PWM Output B U5 PRG0_PWM1_B2 IO PRU_ICSSG PWM Output B V5 PRG0_PWM2_A0 IO PRU_ICSSG PWM Output A U2, U20 PRG0_PWM2_A1 IO PRU_ICSSG PWM Output A T2, U19 PRG0_PWM2_A2 IO PRU_ICSSG PWM Output A V19, V3 PRG0_PWM2_B0 IO PRU_ICSSG PWM Output B AA2, U18 PRG0_PWM2_B1 IO PRU_ICSSG PWM Output B AA5, V20 PRG0_PWM2_B2 IO PRU_ICSSG PWM Output B T17, W3 PRG0_PWM3_A0 IO PRU_ICSSG PWM Output A V18, Y1 Copyright © 2023 Texas Instruments Incorporated V3 R2 T18, V6 AA3 Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 83 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-59. PRU_ICSSG0 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] PRG0_PWM3_A1 IO PRU_ICSSG PWM Output A R18, T3 PRG0_PWM3_A2 IO PRU_ICSSG PWM Output A T19, V2 PRG0_PWM3_B0 IO PRU_ICSSG PWM Output B R4, Y21 PRG0_PWM3_B1 IO PRU_ICSSG PWM Output B T1, T21 PRG0_PWM3_B2 IO PRU_ICSSG PWM Output B R3, W19 PRG0_RGMII1_RXC I PRU_ICSSG RGMII Receive Clock PRG0_RGMII1_RX_CTL I PRU_ICSSG RGMII Receive Control AA2 T3 PRG0_RGMII1_TXC IO PRU_ICSSG RGMII Transmit Clock U4 PRG0_RGMII1_TX_CTL O PRU_ICSSG RGMII Transmit Control T5 PRG0_RGMII2_RXC I PRU_ICSSG RGMII Receive Clock R5 PRG0_RGMII2_RX_CTL I PRU_ICSSG RGMII Receive Control W3 PRG0_RGMII2_TXC IO PRU_ICSSG RGMII Transmit Clock AA4 PRG0_RGMII2_TX_CTL O PRU_ICSSG RGMII Transmit Control PRG0_RGMII1_RD0 I PRU_ICSSG RGMII Receive Data Y1 PRG0_RGMII1_RD1 I PRU_ICSSG RGMII Receive Data R4 PRG0_RGMII1_RD2 I PRU_ICSSG RGMII Receive Data U2 PRG0_RGMII1_RD3 I PRU_ICSSG RGMII Receive Data V2 PRG0_RGMII1_TD0 O PRU_ICSSG RGMII Transmit Data Y3 PRG0_RGMII1_TD1 O PRU_ICSSG RGMII Transmit Data AA3 PRG0_RGMII1_TD2 O PRU_ICSSG RGMII Transmit Data R6 PRG0_RGMII1_TD3 O PRU_ICSSG RGMII Transmit Data V4 PRG0_RGMII2_RD0 I PRU_ICSSG RGMII Receive Data Y2 PRG0_RGMII2_RD1 I PRU_ICSSG RGMII Receive Data W2 PRG0_RGMII2_RD2 I PRU_ICSSG RGMII Receive Data V3 PRG0_RGMII2_RD3 I PRU_ICSSG RGMII Receive Data T4 PRG0_RGMII2_TD0 O PRU_ICSSG RGMII Transmit Data W4 PRG0_RGMII2_TD1 O PRU_ICSSG RGMII Transmit Data Y4 PRG0_RGMII2_TD2 O PRU_ICSSG RGMII Transmit Data T6 PRG0_RGMII2_TD3 O PRU_ICSSG RGMII Transmit Data U6 PRG0_UART0_CTSn I PRU-ICSSG UART Clear to Send (active low) W6 PRG0_UART0_RTSn O PRU-ICSSG UART Request to Send (active low) AA5 PRG0_UART0_RXD I PRU-ICSSG UART Receive Data Y5 PRG0_UART0_TXD O PRU-ICSSG UART Transmit Data V6 U5 Table 6-60. PRU_ICSSG1 Signal Descriptions SIGNAL NAME [1] PRG1_ECAP0_IN_APWM_OUT PIN TYPE [2] IO DESCRIPTION [3] PRU-ICSSG Enhanced Capture (ECAP) Input or Auxiliary PWM (APWM) Output ALV PIN [4] V12 PRG1_ECAP0_SYNC_IN I PRU-ICSSG ECAP Sync Input PRG1_ECAP0_SYNC_OUT O PRU-ICSSG ECAP Sync Output PRG1_IEP0_EDIO_OUTVALID O PRU_ICSSG Industrial Ethernet Digital I/O Outvalid I PRU_ICSSG Industrial Ethernet Distributed Clock Latch Input V7 I PRU_ICSSG Industrial Ethernet Distributed Clock Latch Input U13 PRG1_IEP0_EDC_LATCH_IN0 PRG1_IEP0_EDC_LATCH_IN1 84 Submit Document Feedback Y13 AA14 D14 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-60. PRU_ICSSG1 Signal Descriptions (continued) SIGNAL NAME [1] PRG1_IEP0_EDC_SYNC_OUT0 PRG1_IEP0_EDC_SYNC_OUT1 PRG1_IEP0_EDIO_DATA_IN_OUT28 PRG1_IEP0_EDIO_DATA_IN_OUT29 PRG1_IEP0_EDIO_DATA_IN_OUT30 PRG1_IEP0_EDIO_DATA_IN_OUT31 PRG1_IEP1_EDC_LATCH_IN0 PRG1_IEP1_EDC_LATCH_IN1 PRG1_IEP1_EDC_SYNC_OUT0 PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] O PRU_ICSSG Industrial Ethernet Distributed Clock Sync Output W7 O PRU_ICSSG Industrial Ethernet Distributed Clock Sync Output U7 IO PRU_ICSSG Industrial Ethernet Digital I/O Data Input/ Output U15 IO PRU_ICSSG Industrial Ethernet Digital I/O Data Input/ Output U14 IO PRU_ICSSG Industrial Ethernet Digital I/O Data Input/ Output V14 IO PRU_ICSSG Industrial Ethernet Digital I/O Data Input/ Output W14 I PRU_ICSSG Industrial Ethernet Distributed Clock Latch Input Y13 I PRU_ICSSG Industrial Ethernet Distributed Clock Latch Input V15 O PRU_ICSSG Industrial Ethernet Distributed Clock Sync Output V12 AA14 O PRU_ICSSG Industrial Ethernet Distributed Clock Sync Output PRG1_MDIO0_MDC O PRU-ICSSG MDIO Clock Y6 PRG1_MDIO0_MDIO IO PRU-ICSSG MDIO Data AA6 PRG1_IEP1_EDC_SYNC_OUT1 PRG1_PRU0_GPI0 I PRU-ICSSG PRU Data Input PRG1_PRU0_GPI1 I PRU-ICSSG PRU Data Input U8 PRG1_PRU0_GPI2 I PRU-ICSSG PRU Data Input W8 PRG1_PRU0_GPI3 I PRU-ICSSG PRU Data Input V8 PRG1_PRU0_GPI4 I PRU-ICSSG PRU Data Input Y8 PRG1_PRU0_GPI5 I PRU-ICSSG PRU Data Input V13 PRG1_PRU0_GPI6 I PRU-ICSSG PRU Data Input AA7 PRG1_PRU0_GPI7 I PRU-ICSSG PRU Data Input U13 PRG1_PRU0_GPI8 I PRU-ICSSG PRU Data Input W13 PRG1_PRU0_GPI9 I PRU-ICSSG PRU Data Input U15 PRG1_PRU0_GPI10 I PRU-ICSSG PRU Data Input U14 PRG1_PRU0_GPI11 I PRU-ICSSG PRU Data Input AA8 PRG1_PRU0_GPI12 I PRU-ICSSG PRU Data Input U9 PRG1_PRU0_GPI13 I PRU-ICSSG PRU Data Input W9 PRG1_PRU0_GPI14 I PRU-ICSSG PRU Data Input AA9 PRG1_PRU0_GPI15 I PRU-ICSSG PRU Data Input Y9 PRG1_PRU0_GPI16 I PRU-ICSSG PRU Data Input V9 PRG1_PRU0_GPI17 I PRU-ICSSG PRU Data Input U7 PRG1_PRU0_GPI18 I PRU-ICSSG PRU Data Input V7 PRG1_PRU0_GPI19 I PRU-ICSSG PRU Data Input W7 PRG1_PRU0_GPO0 IO PRU-ICSSG PRU Data Output Y7 PRG1_PRU0_GPO1 IO PRU-ICSSG PRU Data Output U8 PRG1_PRU0_GPO2 IO PRU-ICSSG PRU Data Output W8 PRG1_PRU0_GPO3 IO PRU-ICSSG PRU Data Output V8 PRG1_PRU0_GPO4 IO PRU-ICSSG PRU Data Output Y8 PRG1_PRU0_GPO5 IO PRU-ICSSG PRU Data Output V13 Copyright © 2023 Texas Instruments Incorporated Y7 Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 85 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-60. PRU_ICSSG1 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] PRG1_PRU0_GPO6 IO PRU-ICSSG PRU Data Output AA7 PRG1_PRU0_GPO7 IO PRU-ICSSG PRU Data Output U13 PRG1_PRU0_GPO8 IO PRU-ICSSG PRU Data Output W13 PRG1_PRU0_GPO9 IO PRU-ICSSG PRU Data Output U15 PRG1_PRU0_GPO10 IO PRU-ICSSG PRU Data Output U14 PRG1_PRU0_GPO11 IO PRU-ICSSG PRU Data Output AA8 PRG1_PRU0_GPO12 IO PRU-ICSSG PRU Data Output U9 PRG1_PRU0_GPO13 IO PRU-ICSSG PRU Data Output W9 PRG1_PRU0_GPO14 IO PRU-ICSSG PRU Data Output AA9 PRG1_PRU0_GPO15 IO PRU-ICSSG PRU Data Output Y9 PRG1_PRU0_GPO16 IO PRU-ICSSG PRU Data Output V9 PRG1_PRU0_GPO17 IO PRU-ICSSG PRU Data Output U7 PRG1_PRU0_GPO18 IO PRU-ICSSG PRU Data Output V7 PRG1_PRU0_GPO19 IO PRU-ICSSG PRU Data Output W7 PRG1_PRU1_GPI0 I PRU-ICSSG PRU Data Input W11 PRG1_PRU1_GPI1 I PRU-ICSSG PRU Data Input V11 PRG1_PRU1_GPI2 I PRU-ICSSG PRU Data Input AA12 PRG1_PRU1_GPI3 I PRU-ICSSG PRU Data Input Y12 PRG1_PRU1_GPI4 I PRU-ICSSG PRU Data Input W12 PRG1_PRU1_GPI5 I PRU-ICSSG PRU Data Input AA13 PRG1_PRU1_GPI6 I PRU-ICSSG PRU Data Input U11 PRG1_PRU1_GPI7 I PRU-ICSSG PRU Data Input V15 PRG1_PRU1_GPI8 I PRU-ICSSG PRU Data Input U12 PRG1_PRU1_GPI9 I PRU-ICSSG PRU Data Input V14 PRG1_PRU1_GPI10 I PRU-ICSSG PRU Data Input W14 PRG1_PRU1_GPI11 I PRU-ICSSG PRU Data Input AA10 PRG1_PRU1_GPI12 I PRU-ICSSG PRU Data Input V10 PRG1_PRU1_GPI13 I PRU-ICSSG PRU Data Input U10 PRG1_PRU1_GPI14 I PRU-ICSSG PRU Data Input AA11 PRG1_PRU1_GPI15 I PRU-ICSSG PRU Data Input Y11 PRG1_PRU1_GPI16 I PRU-ICSSG PRU Data Input Y10 PRG1_PRU1_GPI17 I PRU-ICSSG PRU Data Input AA14 PRG1_PRU1_GPI18 I PRU-ICSSG PRU Data Input Y13 PRG1_PRU1_GPI19 I PRU-ICSSG PRU Data Input V12 PRG1_PRU1_GPO0 IO PRU-ICSSG PRU Data Output W11 PRG1_PRU1_GPO1 IO PRU-ICSSG PRU Data Output V11 PRG1_PRU1_GPO2 IO PRU-ICSSG PRU Data Output AA12 PRG1_PRU1_GPO3 IO PRU-ICSSG PRU Data Output Y12 PRG1_PRU1_GPO4 IO PRU-ICSSG PRU Data Output W12 PRG1_PRU1_GPO5 IO PRU-ICSSG PRU Data Output AA13 PRG1_PRU1_GPO6 IO PRU-ICSSG PRU Data Output U11 PRG1_PRU1_GPO7 IO PRU-ICSSG PRU Data Output V15 PRG1_PRU1_GPO8 IO PRU-ICSSG PRU Data Output U12 PRG1_PRU1_GPO9 IO PRU-ICSSG PRU Data Output V14 PRG1_PRU1_GPO10 IO PRU-ICSSG PRU Data Output W14 86 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-60. PRU_ICSSG1 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] PRG1_PRU1_GPO11 IO PRU-ICSSG PRU Data Output AA10 PRG1_PRU1_GPO12 IO PRU-ICSSG PRU Data Output V10 PRG1_PRU1_GPO13 IO PRU-ICSSG PRU Data Output U10 PRG1_PRU1_GPO14 IO PRU-ICSSG PRU Data Output AA11 PRG1_PRU1_GPO15 IO PRU-ICSSG PRU Data Output Y11 PRG1_PRU1_GPO16 IO PRU-ICSSG PRU Data Output Y10 PRG1_PRU1_GPO17 IO PRU-ICSSG PRU Data Output AA14 PRG1_PRU1_GPO18 IO PRU-ICSSG PRU Data Output Y13 PRG1_PRU1_GPO19 IO PRU-ICSSG PRU Data Output V12 PRG1_PWM0_TZ_IN I PRU_ICSSG PWM Trip Zone Input V7 PRG1_PWM0_TZ_OUT O PRU_ICSSG PWM Trip Zone Output W7 PRG1_PWM1_TZ_IN I PRU_ICSSG PWM Trip Zone Input Y13 PRG1_PWM1_TZ_OUT O PRU_ICSSG PWM Trip Zone Output V12 PRG1_PWM2_TZ_IN I PRU_ICSSG PWM Trip Zone Input P19, W14 PRG1_PWM2_TZ_OUT O PRU_ICSSG PWM Trip Zone Output R20, U12 PRG1_PWM3_TZ_IN I PRU_ICSSG PWM Trip Zone Input U15 PRG1_PWM3_TZ_OUT O PRU_ICSSG PWM Trip Zone Output AA8 PRG1_PWM0_A0 IO PRU_ICSSG PWM Output A U9 PRG1_PWM0_A1 IO PRU_ICSSG PWM Output A AA9 PRG1_PWM0_A2 IO PRU_ICSSG PWM Output A V9 PRG1_PWM0_B0 IO PRU_ICSSG PWM Output B W9 PRG1_PWM0_B1 IO PRU_ICSSG PWM Output B Y9 PRG1_PWM0_B2 IO PRU_ICSSG PWM Output B U7 PRG1_PWM1_A0 IO PRU_ICSSG PWM Output A V10 PRG1_PWM1_A1 IO PRU_ICSSG PWM Output A AA11 PRG1_PWM1_A2 IO PRU_ICSSG PWM Output A Y10 PRG1_PWM1_B0 IO PRU_ICSSG PWM Output B U10 PRG1_PWM1_B1 IO PRU_ICSSG PWM Output B Y11 PRG1_PWM1_B2 IO PRU_ICSSG PWM Output B AA14 PRG1_PWM2_A0 IO PRU_ICSSG PWM Output A N16, W8 PRG1_PWM2_A1 IO PRU_ICSSG PWM Output A P17, W13 PRG1_PWM2_A2 IO PRU_ICSSG PWM Output A AA12, V21 PRG1_PWM2_B0 IO PRU_ICSSG PWM Output B N17, Y8 PRG1_PWM2_B1 IO PRU_ICSSG PWM Output B U14, Y18 PRG1_PWM2_B2 IO PRU_ICSSG PWM Output B R16, W12 PRG1_PWM3_A0 IO PRU_ICSSG PWM Output A Y7 PRG1_PWM3_A1 IO PRU_ICSSG PWM Output A AA7 PRG1_PWM3_A2 IO PRU_ICSSG PWM Output A V8 PRG1_PWM3_B0 IO PRU_ICSSG PWM Output B U8 PRG1_PWM3_B1 IO PRU_ICSSG PWM Output B U13 PRG1_PWM3_B2 IO PRG1_RGMII1_RXC PRG1_RGMII1_RX_CTL PRU_ICSSG PWM Output B V13 I PRU_ICSSG RGMII Receive Clock AA7 I PRU_ICSSG RGMII Receive Control Y8 PRG1_RGMII1_TXC IO PRU_ICSSG RGMII Transmit Clock V9 PRG1_RGMII1_TX_CTL O PRU_ICSSG RGMII Transmit Control Y9 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 87 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-60. PRU_ICSSG1 Signal Descriptions (continued) SIGNAL NAME [1] PRG1_RGMII2_RXC PRG1_RGMII2_RX_CTL PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] I PRU_ICSSG RGMII Receive Clock U11 I PRU_ICSSG RGMII Receive Control W12 PRG1_RGMII2_TXC IO PRU_ICSSG RGMII Transmit Clock Y10 PRG1_RGMII2_TX_CTL O PRU_ICSSG RGMII Transmit Control Y11 PRG1_RGMII1_RD0 I PRU_ICSSG RGMII Receive Data Y7 PRG1_RGMII1_RD1 I PRU_ICSSG RGMII Receive Data U8 PRG1_RGMII1_RD2 I PRU_ICSSG RGMII Receive Data W8 PRG1_RGMII1_RD3 I PRU_ICSSG RGMII Receive Data V8 PRG1_RGMII1_TD0 O PRU_ICSSG RGMII Transmit Data AA8 PRG1_RGMII1_TD1 O PRU_ICSSG RGMII Transmit Data U9 PRG1_RGMII1_TD2 O PRU_ICSSG RGMII Transmit Data W9 PRG1_RGMII1_TD3 O PRU_ICSSG RGMII Transmit Data AA9 PRG1_RGMII2_RD0 I PRU_ICSSG RGMII Receive Data W11 PRG1_RGMII2_RD1 I PRU_ICSSG RGMII Receive Data V11 PRG1_RGMII2_RD2 I PRU_ICSSG RGMII Receive Data AA12 PRG1_RGMII2_RD3 I PRU_ICSSG RGMII Receive Data Y12 PRG1_RGMII2_TD0 O PRU_ICSSG RGMII Transmit Data AA10 PRG1_RGMII2_TD1 O PRU_ICSSG RGMII Transmit Data V10 PRG1_RGMII2_TD2 O PRU_ICSSG RGMII Transmit Data U10 PRG1_RGMII2_TD3 O PRU_ICSSG RGMII Transmit Data AA11 PRG1_UART0_CTSn I PRU-ICSSG UART Clear to Send (active low) U15 PRG1_UART0_RTSn O PRU-ICSSG UART Request to Send (active low) U14 PRG1_UART0_RXD I PRU-ICSSG UART Receive Data V14 PRG1_UART0_TXD O PRU-ICSSG UART Transmit Data W14 6.3.20 Reserved Table 6-61. Reserved Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] RSVD0 N/A Reserved, must be left unconnected H16 RSVD1 N/A Reserved, must be left unconnected D21 RSVD2 N/A Reserved, must be left unconnected G13 RSVD3 N/A Reserved, must be left unconnected F17 RSVD4 N/A Reserved, must be left unconnected W15 RSVD5 N/A Reserved, must be left unconnected V16 RSVD6 N/A Reserved, must be left unconnected K2 RSVD7 N/A Reserved, must be left unconnected K1 RSVD8 N/A Reserved, must be left unconnected F12 6.3.21 SERDES 6.3.21.1 MAIN Domain Table 6-62. SERDES0 Signal Descriptions SIGNAL NAME [1] ((2)) PCIE0_CLKREQn SERDES0_REXT (1) SERDES0_REFCLK0N 88 Submit Document Feedback PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] IO PCIE Clock Request Signal D16 A External SerDes PHY Calibration Resistor T13 IO SerDes PHY Reference Clock Input/Output (negative) W16 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-62. SERDES0 Signal Descriptions (continued) SIGNAL NAME [1] ((2)) PIN TYPE [2] SERDES0_REFCLK0P IO DESCRIPTION [3] ALV PIN [4] SerDes PHY Reference Clock Input/Output (positive) W17 SERDES0_RX0_N I SerDes PHY Differential Receive Data (negative) Y15 SERDES0_RX0_P I SerDes PHY Differential Receive Data (positive) Y16 SERDES0_TX0_N O SerDes PHY Differential Transmit Data (negative) AA16 SERDES0_TX0_P O SerDes PHY Differential Transmit Data (positive) AA17 (1) (2) An external 3.01 kΩ ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin. The functionality of these pins is controlled by SERDES0_LN0_CTRL_LANE_FUNC_SEL. 6.3.22 System and Miscellaneous 6.3.22.1 Boot Mode Configuration 6.3.22.1.1 MAIN Domain Table 6-63. Sysboot Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] BOOTMODE00 I Bootmode pin 0 T20 BOOTMODE01 I Bootmode pin 1 U21 BOOTMODE02 I Bootmode pin 2 T18 BOOTMODE03 I Bootmode pin 3 U20 BOOTMODE04 I Bootmode pin 4 U18 BOOTMODE05 I Bootmode pin 5 U19 BOOTMODE06 I Bootmode pin 6 V20 BOOTMODE07 I Bootmode pin 7 V21 BOOTMODE08 I Bootmode pin 8 V19 BOOTMODE09 I Bootmode pin 9 T17 BOOTMODE10 I Bootmode pin 10 R16 BOOTMODE11 I Bootmode pin 11 W20 BOOTMODE12 I Bootmode pin 12 W21 BOOTMODE13 I Bootmode pin 13 V18 BOOTMODE14 I Bootmode pin 14 Y21 BOOTMODE15 I Bootmode pin 15 Y20 6.3.22.2 Clock 6.3.22.2.1 MCU Domain Table 6-64. MCU Clock Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MCU_OSC0_XI I High frequency oscillator input C21 MCU_OSC0_XO O High frequency oscillator output B20 6.3.22.3 System 6.3.22.3.1 MAIN Domain Table 6-65. System Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] O RMII Clock Output (50 MHz). This pin is used for clock source to the external PHY and must be routed back to the RMII_REF_CLK pin for proper device operation. A19, U13 I External Interrupt CLKOUT0 EXTINTn Copyright © 2023 Texas Instruments Incorporated C19 Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 89 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-65. System Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] I External clock input to Main Domain, routed to Timer clock muxes as one of the selectable input clock sources for Timer/WDT modules, or as reference clock to MAIN_PLL2 (PER1 PLL) A19 O Observation clock output for test and debug purposes only D17 PORz_OUT O Main Domain POR status output E17 RESETSTATz O Main Domain warm reset status output F16 RESET_REQz I Main Domain external warm reset request input E18 O SYSCLK0 output from Main PLL controller (divided by 6) for test and debug purposes only C17 EXT_REFCLK1 OBSCLK0 SYSCLKOUT0 6.3.22.3.2 MCU Domain Table 6-66. MCU System Signal Descriptions SIGNAL NAME [1] MCU_EXT_REFCLK0 PIN TYPE [2] DESCRIPTION [3] I External system clock input ALV PIN [4] B7 O Observation clock output for test and debug purposes only MCU_PORz I MCU Domain cold reset B21 MCU_RESETSTATz O MCU Domain warm reset status output B13 MCU_RESETz I MCU Domain warm reset B12 IO Error signal output from MCU Domain ESM A20 O MCU Domain system clock output for test and debug purposes only C6 MCU_OBSCLK0 MCU_SAFETY_ERRORn MCU_SYSCLKOUT0 C6, E10 6.3.22.4 VMON Table 6-67. VMON Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] VMON_1P8_MCU A Voltage monitor input for 1.8 V MCU power supply K16 VMON_1P8_SOC A Voltage monitor input for 1.8 V SoC power supply E12 VMON_3P3_MCU A Voltage monitor input for 3.3 V MCU power supply F13 VMON_3P3_SOC A Voltage monitor input for 3.3 V SoC power supply F14 A Voltage monitor input, fixed 0.45 V (+/-3%) threshold. Use with external precision voltage divider to monitor a higher voltage rail such as the PMIC input supply. K10 VMON_VSYS 6.3.23 TIMER 6.3.23.1 MAIN Domain Table 6-68. TIMER Signal Descriptions SIGNAL NAME [1] TIMER_IO0 TIMER_IO1 TIMER_IO2 TIMER_IO3 90 Submit Document Feedback PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] IO Timer Inputs and Outputs (not tied to single timer instance) C18, K18 IO Timer Inputs and Outputs (not tied to single timer instance) B19, K19 IO Timer Inputs and Outputs (not tied to single timer instance) A17, L21 IO Timer Inputs and Outputs (not tied to single timer instance) B17, K21 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-68. TIMER Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] TIMER_IO4 TIMER_IO5 TIMER_IO6 TIMER_IO7 TIMER_IO8 TIMER_IO9 TIMER_IO10 TIMER_IO11 DESCRIPTION [3] ALV PIN [4] IO Timer Inputs and Outputs (not tied to single timer instance) C17, L20 IO Timer Inputs and Outputs (not tied to single timer instance) D17, J19 IO Timer Inputs and Outputs (not tied to single timer instance) B16, D19, T1 IO Timer Inputs and Outputs (not tied to single timer instance) A16, C20, U7 IO Timer Inputs and Outputs (not tied to single timer instance) P19, V7 IO Timer Inputs and Outputs (not tied to single timer instance) R21, W7 IO Timer Inputs and Outputs (not tied to single timer instance) C13, U13 IO Timer Inputs and Outputs (not tied to single timer instance) D14, U1 6.3.23.2 MCU Domain Table 6-69. MCU_TIMER Signal Descriptions SIGNAL NAME [1] MCU_TIMER_IO0 MCU_TIMER_IO1 MCU_TIMER_IO2 MCU_TIMER_IO3 PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] IO Timer Inputs and Outputs (not tied to single timer instance) D8 IO Timer Inputs and Outputs (not tied to single timer instance) E8 IO Timer Inputs and Outputs (not tied to single timer instance) B8 IO Timer Inputs and Outputs (not tied to single timer instance) B9 6.3.24 UART 6.3.24.1 MAIN Domain Table 6-70. UART0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] UART0_CTSn I UART Clear to Send (active low) B16 UART0_DCDn I UART Data Carrier Detect (active low) C17 UART0_DSRn I UART Data Set Ready (active low) D17 UART0_DTRn O UART Data Terminal Ready (active low) A17 UART0_RIn I UART Ring Indicator B17 UART0_RTSn O UART Request to Send (active low) A16 UART0_RXD I UART Receive Data D15 UART0_TXD O UART Transmit Data C16 Table 6-71. UART1 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] UART1_CTSn I UART Clear to Send (active low) D16 UART1_RTSn O UART Request to Send (active low) E16 UART1_RXD I UART Receive Data E15 UART1_TXD O UART Transmit Data E14 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 91 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-72. UART2 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] UART2_CTSn I UART Clear to Send (active low) UART2_RTSn O UART Request to Send (active low) UART2_RXD I UART2_TXD O ALV PIN [4] L20, V19, Y1 J19, T18, U2 UART Receive Data B16, K18, T20, V1, W6 UART Transmit Data A16, K19, R4, U21 Table 6-73. UART3 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] UART3_CTSn I UART Clear to Send (active low) UART3_RTSn O UART Request to Send (active low) UART3_RXD I UART3_TXD O ALV PIN [4] D19, T17, V2 C20, R3, U19 UART Receive Data AA5, D16, L21, U20, W1 UART Transmit Data AA2, E16, K21, U18 Table 6-74. UART4 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] UART4_CTSn I UART Clear to Send (active low) R16, R5, T3, V1 UART4_RTSn O UART Request to Send (active low) R1, R17, T2, W1 UART4_RXD I UART4_TXD O UART Receive Data A17, L20, V20, W4, Y3 UART Transmit Data B17, J19, T1, V21, W5, Y4 Table 6-75. UART5 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] UART5_CTSn I UART Clear to Send (active low) UART5_RTSn O UART Request to Send (active low) UART5_RXD I UART5_TXD O ALV PIN [4] W20, Y13, Y2 T21, V12, V3 UART Receive Data C17, D19, P16, T6, Y5 UART Transmit Data C20, D17, R18, W2 Table 6-76. UART6 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] UART6_CTSn I UART Clear to Send (active low) UART6_RTSn O UART Request to Send (active low) UART6_RXD I UART6_TXD O ALV PIN [4] T4, W21 P17, P4 UART Receive Data C13, U6, V6, Y21 UART Transmit Data D14, W3, Y20 6.3.24.2 MCU Domain Table 6-77. MCU_UART0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MCU_UART0_CTSn I UART Clear to Send (active low) D8 MCU_UART0_RTSn O UART Request to Send (active low) E8 MCU_UART0_RXD I UART Receive Data A9 92 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-77. MCU_UART0 Signal Descriptions (continued) SIGNAL NAME [1] PIN TYPE [2] MCU_UART0_TXD O DESCRIPTION [3] ALV PIN [4] UART Transmit Data A8 Table 6-78. MCU_UART1 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] MCU_UART1_CTSn I UART Clear to Send (active low) B8 MCU_UART1_RTSn O UART Request to Send (active low) B9 MCU_UART1_RXD I UART Receive Data C9 MCU_UART1_TXD O UART Transmit Data D9 6.3.25 USB 6.3.25.1 MAIN Domain Table 6-79. USB0 Signal Descriptions SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ALV PIN [4] USB0_DM IO USB 2.0 Differential Data (negative) AA20 USB0_DP IO USB 2.0 Differential Data (positive) AA19 USB0_DRVVBUS O USB VBUS control output (active high) E19 USB0_ID A USB 2.0 Dual-Role Device Role Select U16 USB0_RCALIB (1) A Pin to connect to calibration resistor U17 USB0_VBUS (2) A USB Level-shifted VBUS Input T14 (1) (2) An external 499 Ω ±1% resistor must be connected between this pin and VSS. The maximum power dissipation for the resistor is 7.2mW. No external voltage should be applied to this pin. An external resistor divider is required to limit the voltage applied to the device pin. For more information, see Section 9.2.3, USB VBUS Design Guidelines. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 93 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 6.4 Pin Connectivity Requirements This section describes connectivity requirements for package balls that have specific connectivity requirements and unused package balls. Note All power balls must be supplied with the voltages specified in the Recommended Operating Conditions section, unless otherwise specified. Note For additional clarification, "leave unconnected" or "no connect" (NC) means no signal traces can be connected to these device ball numbers. Table 6-80. Connectivity Requirements BALL NUMBER BALL NAME CONNECTION REQUIREMENTS A20 D11 MCU_SAFETY_ERRORn TRSTn Each of these balls must be connected to VSS through separate external pull resistors to ensure the inputs associated with these balls are held to a valid logic low level if a PCB signal trace is connected and not actively driven by an attached device. The internal pull-down can be used to hold a valid logic low level if no PCB signal trace is connected to the ball. D10 E10 B12 E18 B11 C11 C12 EMU0 EMU1 MCU_RESETz RESET_REQz TCK TDI TMS Each of these balls must be connected to the corresponding power supply(1) through separate external pull resistors to ensure the inputs associated with these balls are held to a valid logic high level if a PCB signal trace is connected and not actively driven by an attached device. The internal pull-up can be used to hold a valid logic high level if no PCB signal trace is connected to the ball. A18 B18 E9 A10 I2C0_SCL I2C0_SDA MCU_I2C0_SCL MCU_I2C0_SDA Each of these balls must be connected to the corresponding power supply(1) through separate external pull resistors to ensure the inputs associated with these balls are held to a valid logic high level. T20 U21 T18 U20 U18 U19 V20 V21 V19 T17 R16 W20 W21 V18 Y21 Y20 GPMC0_AD0 GPMC0_AD1 GPMC0_AD2 GPMC0_AD3 GPMC0_AD4 GPMC0_AD5 GPMC0_AD6 GPMC0_AD7 GPMC0_AD8 GPMC0_AD9 GPMC0_AD10 GPMC0_AD11 GPMC0_AD12 GPMC0_AD13 GPMC0_AD14 GPMC0_AD15 Each of these balls must be connected to the corresponding power supply(1) or VSS through separate external pull resistors to ensure the inputs associated with these balls are held to a valid logic high or low level as appropriate to select the desired device boot mode. J13 G20 F20 E21, D20 G21 F21 F19 E20 J15 J16 VDDA_ADC ADC0_AIN0 ADC0_AIN1 ADC0_AIN2 ADC0_AIN3 ADC0_AIN4 ADC0_AIN5 ADC0_AIN6 ADC0_AIN7 ADC0_REFP ADC0_REFN If the entire ADC0 is not used, each of these balls must be connected directly to VSS. 94 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-80. Connectivity Requirements (continued) BALL NUMBER BALL NAME CONNECTION REQUIREMENTS G20 F20 E21, D20 G21 F21 F19 E20 ADC0_AIN0 ADC0_AIN1 ADC0_AIN2 ADC0_AIN3 ADC0_AIN4 ADC0_AIN5 ADC0_AIN6 ADC0_AIN7 Any unused ADC0_AIN[7:0] ball must be pulled to VSS through a resistor or connected directly to VSS when VDDA_ADC is connected to a power source. F7 G6 H7 J6, K7 L6 J8 VDDS_DDR VDDS_DDR VDDS_DDR VDDS_DDR VDDS_DDR VDDS_DDR VDDS_DDR_C If DDRSS0 is not used, each of these balls must be connected directly to VSS. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 95 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-80. Connectivity Requirements (continued) BALL NUMBER BALL NAME CONNECTION REQUIREMENTS H2 H1 J5 K5 F6 H4 D2 C5 E2 D4 D3 F2 J2 L5 J3 J4 K3 J1 M5 K4 G4 G5 G2 H3 H5 F1 E1 F4 F3 E3 E4 B2 M2 A3 A2 B5 A4 B3 C4 C2 B4 N5 L4 L2 M3 N4 N3 M4 N2 C1 B1 N1 M1 E5 F5 D5 DDR0_ACT_n DDR0_ALERT_n DDR0_CAS_n DDR0_PAR DDR0_RAS_n DDR0_WE_n DDR0_A0 DDR0_A1 DDR0_A2 DDR0_A3 DDR0_A4 DDR0_A5 DDR0_A6 DDR0_A7 DDR0_A8 DDR0_A9 DDR0_A10 DDR0_A11 DDR0_A12 DDR0_A13 DDR0_BA0 DDR0_BA1 DDR0_BG0 DDR0_BG1 DDR0_CAL0 DDR0_CK0 DDR0_CK0_n DDR0_CKE0 DDR0_CKE1 DDR0_CS0_n DDR0_CS1_n DDR0_DM0 DDR0_DM1 DDR0_DQ0 DDR0_DQ1 DDR0_DQ2 DDR0_DQ3 DDR0_DQ4 DDR0_DQ5 DDR0_DQ6 DDR0_DQ7 DDR0_DQ8 DDR0_DQ9 DDR0_DQ10 DDR0_DQ11 DDR0_DQ12 DDR0_DQ13 DDR0_DQ14 DDR0_DQ15 DDR0_DQS0 DDR0_DQS0_n DDR0_DQS1 DDR0_DQS1_n DDR0_ODT0 DDR0_ODT1 DDR0_RESET0_n K13 H14 VDD_MMC0 VDD_DLL_MMC0 If MMC0 is not used, each of these balls must be connected to the same power source as VDD_CORE. K14 VDDS_MMC0 If MMC0 is not used, each of these balls must be connected to any 1.8-V power source that does not violate device power supply sequencing requirements. 96 Submit Document Feedback If DDRSS0 is not used, leave unconnected. Note: The DDR0 pins in this list can only be left unconnected when VDDS_DDR and VDDS_DDR_C are connected to VSS. The DDR0 pins must be connected as defined in the AM64x\AM243x DDR Board Design and Layout Guidelines, when VDDS_DDR and VDDS_DDR_C are connected to a power source. Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 6-80. Connectivity Requirements (continued) BALL NUMBER BALL NAME CONNECTION REQUIREMENTS F18 G18 J21 G19 K20 J20 J18 J17 H17 H19 H18 G17 MMC0_CALPAD MMC0_CLK MMC0_CMD MMC0_DS MMC0_DAT0 MMC0_DAT1 MMC0_DAT2 MMC0_DAT3 MMC0_DAT4 MMC0_DAT5 MMC0_DAT6 MMC0_DAT7 If MMC0 is not used, each of these balls must be left unconnected. H15 K15 VDDA_3P3_SDIO CAP_VDDSHV_MMC1 If SDIO_LDO is not used to power VDDSHV5, each of these balls must be connected directly to VSS. P12 P13 P11 R14 VDDA_0P85_SERDES0 VDDA_0P85_SERDES0 VDDA_0P85_SERDES0_C VDDA_1P8_SERDES0 T13 W16 W17 Y15 Y16 AA16 AA17 SERDES0_REXT SERDES0_REFCLK0N SERDES0_REFCLK0P SERDES0_RX0_N SERDES0_RX0_P SERDES0_TX0_N SERDES0_TX0_P T12 R15 R13 VDDA_0P85_USB0 VDDA_1P8_USB0 VDDA_3P3_USB0 AA20 AA19 U16 U17 T14 USB0_DM USB0_DP USB0_ID USB0_RCALIB USB0_VBUS K10 VMON_VSYS If VMON_VSYS is not used, this ball must be connected directly to VSS. K16 E12 F13 F14 VMON_1P8_MCU VMON_1P8_SOC VMON_3P3_MCU VMON_3P3_SOC If VMON_1P8_MCU, VMON_1P8_SOC, VMON_3P3_MCU, and VMON_3P3_SOC are not used to monitor the MCU and SOC power rails, these balls must still be connected to their respective 1.8-V and 3.3-V power rails. If SERDES0 is not used and the device boundary scan function is required, each of these balls must be connected to valid power sources. If SERDES0 is not used and the device boundary scan function is not required, each of these balls can alternatively be connected directly to VSS. If SERDES0 is not used, leave unconnected. Note: The SERDES0_REXT pin can only be left unconnected when VDDA_0P85_SERDES0, VDDA_0P85_SERDES0_C, and VDDA_1P8_SERDES0 are connected to VSS. The SERDES0_REXT pin must be connected to VSS through the appropriate external resistor when VDDA_0P85_SERDES0, VDDA_0P85_SERDES0_C, and VDDA_1P8_SERDES0 are connected to power sources. If USB0 is not used, each of these balls must be connected directly to VSS. If USB0 is not used, leave unconnected. (1) Note: The USB0_RCALIB pin can only be left unconnected when VDDA_0P85_USB0, VDDA_1P8_USB0, and VDDA_3P3_USB0 are connected to VSS. The USB0_RCALIB pin must be connected to VSS through the appropriate external resistor when VDDA_0P85_USB0, VDDA_1P8_USB0, and VDDA_3P3_USB0 are connected to power sources. To determine which power supply is associated with any IO, see the POWER column of the Pin Attributes table. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 97 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Note Internal pull resistors are weak and may not source enough current to maintain a valid logic level for some operating conditions. This can be the case when connected to components with leakage to the opposite logic level, or when external noise sources couple to signal traces attached to balls which are only pulled to a valid logic level by the internal resistor. Therefore, external pull resistors are recommended to hold a valid logic level on balls with external connections. Many of the device IOs are turned off by default and external pull resistors may be required to hold inputs of any attached device in a valid logic state until software initializes the respective IOs. The state of configurable device IOs are defined in the BALL STATE DURING RESET RX/TX/PULL and BALL STATE AFTER RESET RX/TX/PULL columns of the Pin Attributes table. Any IO with its input buffer (RX) turned off is allowed to float without damaging the device. However, any IO with its input buffer (RX) turned on shall never be allowed to float to any potential between VILSS and VIHSS. The input buffer can enter a high-current state which could damage the IO cell if allowed to float between these levels. 98 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7 Specifications 7.1 Absolute Maximum Ratings over operating junction temperature range (unless otherwise noted) (1)(2) PARAMETER MIN MAX UNIT VDD_CORE Core supply -0.3 1.05 V VDDR_CORE RAM supply -0.3 1.05 V VDD_MMC0 MMC0 PHY core supply -0.3 1.05 V VDD_DLL_MMC0 MMC0 PLL analog supply -0.3 1.05 V VDDA_0P85_SERDES0 SERDES0 0.85-V analog supply -0.3 1.05 V VDDA_0P85_SERDES0_C SERDES0 clock 0.85-V analog supply -0.3 1.05 V VDDA_0P85_USB0 USB0 0.85-V analog supply -0.3 1.05 V VDDS_DDR DDR PHY IO supply -0.3 1.57 V VDDS_DDR_C DDR clock IO supply -0.3 1.57 V VDDS_MMC0 MMC0 PHY IO supply -0.3 1.98 V VDDS_OSC MCU_OSC0 supply -0.3 1.98 V VDDA_MCU POR and MCU PLL analog supply -0.3 1.98 V VDDA_ADC0 ADC0 analog supply -0.3 1.98 V VDDA_PLL0 Main, PER1, and R5F PLL analog supply -0.3 1.98 V VDDA_PLL1 ARM and DDR PLL analog supply -0.3 1.98 V VDDA_PLL2 PER0 PLL analog supply -0.3 1.98 V VDDA_1P8_SERDES0 SERDES0 1.8-V analog supply -0.3 1.98 V VDDA_1P8_USB0 USB0 1.8-V analog supply -0.3 1.98 V VDDA_TEMP0 TEMP0 analog supply -0.3 1.98 V VDDA_TEMP1 TEMP1 analog supply -0.3 1.98 V VPP eFuse ROM programming supply -0.3 1.98 V VDDSHV_MCU IO supply for IO MCU -0.3 3.63 V VDDSHV0 IO supply for IO group 0 -0.3 3.63 V VDDSHV1 IO supply for IO group 1 -0.3 3.63 V VDDSHV2 IO supply for IO group 2 -0.3 3.63 V VDDSHV3 IO supply for IO group 3 -0.3 3.63 V VDDSHV4 IO supply for IO group 4 -0.3 3.63 V VDDSHV5 IO supply for IO group 5 -0.3 3.63 V VDDA_3P3_USB0 USB0 3.3-V analog supply -0.3 3.63 V VDDA_3P3_SDIO SDIO 3.3-V analog supply Steady-state max voltage at all fail-safe IO pins Copyright © 2023 Texas Instruments Incorporated -0.3 3.63 V MCU_PORz -0.3 3.63 V MCU_I2C0_SCL, MCU_I2C0_SDA, I2C0_SCL, I2C0_SDA, and EXTINTn When operating at 1.8V -0.3 1.98(3) V MCU_I2C0_SCL, MCU_I2C0_SDA, I2C0_SCL, I2C0_SDA, and EXTINTn When operating at 3.3V -0.3 3.63(3) VMON_1P8_MCU, and VMON_1P8_SOC -0.3 1.98 V VMON_3P3_MCU, and VMON_3P3_SOC -0.3 3.63 V VMON_VSYS(4) -0.3 1.98 V Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 99 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 over operating junction temperature range (unless otherwise noted) (1)(2) PARAMETER Steady-state max voltage at all other IO pins(5) MIN MAX USB0_VBUS(6) -0.3 3.6 USB0_ID(7) -0.3 3.6 -0.3 IO supply voltage + 0.3 V 0.2 × VDD(8) V All other IO pins 20% of IO supply voltage for up to 20% of the signal period (see Figure 7-1, IO Transient Voltage Ranges) Transient overshoot and undershoot at IO pin I-Test Latch-up performance(9) Over-Voltage (OV) Test TSTG (1) (2) (3) (4) (5) (6) (7) (8) (9) -100 +100 1.5 x Storage temperature -55 UNIT V mA VDD(8) V +150 °C Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Section 7.4, Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. All voltage values are with respect to VSS, unless otherwise noted. The absolute maximum ratings for these fail-safe pins depends on their IO supply operating voltage. Therefore, this value is also defined by the maximum VIH value found in the I2C Open-Drain, and Fail-Safe (I2C OD FS) Electrical Characteristics section, where the electrical characteristics table has separate parameter values for 1.8-V mode and 3.3-V mode. The VMON_VSYS pin provides a way to monitor the system power supply. For more information, see Section 9.2.4, System Power Supply Monitor Design Guidelines. This parameter applies to all IO pins which are not fail-safe and the requirement applies to all values of IO supply voltage. For example, if the voltage applied to a specific IO supply is 0 volts the valid input voltage range for any IO powered by that supply will be –0.3 to +0.3 volts. Special attention should be applied anytime peripheral devices are not powered from the same power sources used to power the respective IO supply. It is important the attached peripheral never sources a voltage outside the valid input voltage range, including power supply ramp-up and ramp-down sequences. An external resistor divider is required to limit the voltage applied to this device pin. For more information, see Section 9.2.3, USB Design Guidelines. The USB0_ID pin is connected to analog circuits in the USB0 PHY. The analog circuits source a known current while measuring voltage, to determine the resistance value (RID), if connected to VSS through a resistor. This pin should be connected to VSS for USB host operation, or left unconnected for USB device operation, and should never be connected to any external voltage source. VDD is the voltage on the corresponding power-supply pin(s) for the IO. For current pulse injection (I-Test): • Pins stressed per JEDEC JESD78 (Class II) and passed with specified I/O pin injection current and clamp voltage of 1.5 times maximum recommended I/O voltage and negative 0.5 times maximum recommended I/O voltage. For over-voltage performance (Over-Voltage (OV) Test): • Supplies stressed per JEDEC JESD78 (Class II) and passed specified voltage injection. Fail-safe IO terminals are designed such they do not have dependencies on the respective IO power supply voltage. This allows external voltage sources to be connected to these IO terminals when the respective IO power supplies are turned off. The MCU_I2C0_SCL, MCU_I2C0_SDA, I2C0_SCL, I2C0_SDA, EXTINTn, VMON_1P8_MCU, VMON_1P8_SOC, VMON_3P3_MCU, VMON_3P3_SOC, VMON_VSYS, and MCU_PORz are the only fail-safe IO terminals. All other IO terminals are not fail-safe and the voltage applied to them should be limited to the value defined by the Steady State Max. Voltage at all IO pins parameter in Section 7.1. Overshoot = 20% of nominal IO supply voltage Tovershoot Tperiod Tundershoot Undershoot = 20% of nominal IO supply voltage A. Tovershoot + Tundershoot < 20% of Tperiod Figure 7-1. IO Transient Voltage Ranges 100 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2) ±250 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Power-On Hours (POH) POWER ON HOURS (POH)(1) (2) (3) JUNCTION TEMPERATURE RANGE (TJ) Extended Industrial (1) (2) (3) LIFETIME (POH) –40°C to 105°C 100000 This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products. Unless specified in the table above, all voltage domains and operating conditions are supported in the device at the noted temperatures. POH is a function of voltage, temperature and time. Usage at higher voltages and temperatures will result in a reduction in POH. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 101 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.4 Recommended Operating Conditions over operating junction temperature range (unless otherwise noted) SUPPLY NAME MIN(1) NOM 0.75-V operation 0.715 0.75 0.79 V 0.85-V operation 0.81 0.85 0.895 V DESCRIPTION MAX(1) UNIT VDD_CORE Core supply VDDR_CORE RAM supply 0.81 0.85 0.895 V VDD_MMC0(2) MMC0 PHY core supply 0.81 0.85 0.895 V VDD_DLL_MMC0(2) MMC0 PLL analog supply 0.81 0.85 0.895 V VDDA_0P85_SERDES0 SERDES0 0.85 V analog supply 0.81 0.85 0.895 V VDDA_0P85_SERDES0_C SERDES0 clock 0.85 V analog supply 0.81 0.85 0.895 V VDDA_0P85_USB0 USB0 0.85 V analog supply 0.81 0.85 0.895 V VDDS_DDR(3) DDR PHY IO supply DDR clock IO supply 1.1-V operation 1.06 1.1 1.17 V VDDS_DDR_C(3) 1.2-V operation 1.14 1.2 1.26 V VDDS_MMC0 MMC0 PHY IO supply 1.71 1.8 1.89 V VDDS_OSC MCU_OSC0 supply 1.71 1.8 1.89 V VDDA_MCU POR and MCU PLL analog supply 1.71 1.8 1.89 V VDDA_ADC0 ADC0 analog supply 1.71 1.8 1.89 V VDDA_PLL0 Main, PER and R5F PLL analog supply 1.71 1.8 1.89 V VDDA_PLL1 ARM and DDR PLL analog supply 1.71 1.8 1.89 V VDDA_PLL2 PER0 PLL analog supply 1.71 1.8 1.89 V VDDA_1P8_SERDES0 SERDES0 1.8 V analog supply 1.71 1.8 1.89 V VDDA_1P8_USB0 USB0 1.8 V analog supply 1.71 1.8 1.89 V VDDA_TEMP0 TEMP0 analog supply 1.71 1.8 1.89 V VDDA_TEMP1 TEMP1 analog supply 1.71 1.8 1.89 V VPP eFuse ROM programming supply 1.71 1.8 1.89 V VMON_1P8_MCU Voltage monitor for 1.8 V MCU power supply 1.71 1.8 1.89 V VMON_1P8_SOC Voltage monitor for 1.8 V SoC power supply 1.71 1.8 1.89 V VDDA_3P3_USB0 USB0 3.3 V analog supply 3.135 3.3 3.465 V VDDA_3P3_SDIO SDIO 3.3 V analog supply 3.135 3.3 3.465 V VMON_3P3_MCU Voltage monitor for 3.3 V MCU power supply 3.135 3.3 3.465 V VMON_3P3_SOC Voltage monitor for 3.3 V SoC power supply 3.135 3.3 3.465 V VMON_VSYS Voltage monitor pin 0 see(4) 1 V 0 see(5) 3.465 V USB0_VBUS USB Level-shifted VBUS Input USB0_ID USB0 analog I/O for RID detection VDDSHV_MCU Dual-voltage IO supply VDDSHV0 Dual-voltage IO supply VDDSHV1 Dual-voltage IO supply VDDSHV2 Dual-voltage IO supply VDDSHV3 Dual-voltage IO supply VDDSHV4 Dual-voltage IO supply 102 Submit Document Feedback see(6) V 1.8-V operation 1.71 1.8 1.89 V 3.3-V operation 3.135 3.3 3.465 V 1.8-V operation 1.71 1.8 1.89 V 3.3-V operation 3.135 3.3 3.465 V 1.8-V operation 1.71 1.8 1.89 V 3.3-V operation 3.135 3.3 3.465 V 1.8-V operation 1.71 1.8 1.89 V 3.3-V operation 3.135 3.3 3.465 V 1.8-V operation 1.71 1.8 1.89 V 3.3-V operation 3.135 3.3 3.465 V 1.8-V operation 1.71 1.8 1.89 V 3.3-V operation 3.135 3.3 3.465 V Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 over operating junction temperature range (unless otherwise noted) SUPPLY NAME VDDSHV5 Dual-voltage IO supply TJ (1) (2) (3) (4) (5) (6) MIN(1) NOM MAX(1) 1.8-V operation 1.71 1.8 1.89 V 3.3-V operation 3.135 3.3 3.465 V DESCRIPTION Operating junction temperature range Automotive –40 125 Extended Industrial –40 105 UNIT °C The voltage at the device ball must never drop below the MIN voltage or rise above the MAX voltage for any amount of time during normal device operation. VDD_MMC0 and VDD_DLL_MMC0 must be connected to the same power source as VDD_CORE when MMC0 is not used. In this case, VDD_MMC0 and VDD_DLL_MMC0 may be operated at a nominal voltage of 0.75 or 0.85. VDDS_DDR and VDDS_DDR_C shall be sourced from the same power source. The VMON_VSYS pin provides a way to monitor the system power supply. For more information, see Section 9.2.4, System Power Supply Monitor Design Guidelines. An external resistor divider is required to limit the voltage applied to this device pin. For more information, see Section 9.2.3, USB Design Guidelines. The USB0_ID pin is connected to analog circuits in the USB0 PHY. The analog circuits source a known current while measuring voltage, to determine the resistance value (RID), if connected to VSS through a resistor. This pin should be connected to VSS for USB host operation, or left unconnected for USB device operation, and should never be connected to any external voltage source. 7.5 Operating Performance Points This section describes the operating conditions of the device. This section also contains the description of each Operating Performance Point (OPP) for processor clocks and device core clocks. Table 7-1 describes the maximum supported frequency per speed grade for the device. Table 7-1. Speed Grade Maximum Frequency MAXIMUM FREQUENCY (MHz) (1) DEVICE SPEED GRADE A53SS R5FSS M4FSS CBASS0 ICSSG DMSC-L DDR4(1) LPDDR4(1) AM64x S 1000 800 400 250 333 250 800 (DDR-1600) 800 (LPDDR-1600) AM64x K 800 400 400 250 250 250 800 (DDR-1600) 800 (LPDDR-1600) Maximum DDR Frequency will be limited based on the specific memory type (vendor) used in a system and by PCB implementation. Refer to AM64x\AM243x DDR Board Design and Layout Guidelines for the proper PCB implementation to achieve maximum DDR frequency. 7.6 Power Consumption Summary For information on the device power consumption, see the AM64x/AM243x Power Estimation Tool application note. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 103 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.7 Electrical Characteristics Note The interfaces or signals described in Section 7.7.1 through Section 7.7.10 correspond to the interfaces or signals available in multiplexing mode 0 (Primary Function). All interfaces or signals multiplexed on the balls described in these tables have the same DC electrical characteristics, unless multiplexing involves a PHY and GPIO combination, in which case different DC electrical characteristics are specified for the different multiplexing modes (Functions). 7.7.1 I2C Open-Drain, and Fail-Safe (I2C OD FS) Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 1.8 V MODE VIL Input Low Voltage VILSS Input Low Voltage Steady State VIH Input High Voltage (1) 0.7 × VDD IIN Input Leakage Current. VOL Output Low Voltage VI = 1.8 V or VI = 0 V ±10 VOL(MAX) Input Low Voltage VILSS Input Low Voltage Steady State 10 mA V/s (1) Input High Voltage 0.7 × VDD VIHSS Input High Voltage Steady State 0.7 × VDD Input Hysteresis Voltage IIN Input Leakage Current. VOL Output Low Voltage IOL (3) Low Level Output Current SRI (5) Input Slew Rate (2) (3) (4) (5) (6) 104 V 18f(4) or 1.8E+6 VIH (1) (1) µA (6) VIL VHYS V 0.2 × VDD Input Slew Rate 3.3 V MODE V 1.98(2) V 0.1 × VDD SRI (5) 0.3 × VDD mV 0.7 × VDD Input Hysteresis Voltage Low Level Output Current V (1) (1) Input High Voltage Steady State VHYS IOL (1) (1) VIHSS (3) 0.3 × VDD 0.3 × VDD (1) V 0.25 × VDD (1) V 3.63(2) V (1) V (1) mV 0.05 × VDD VI = 3.3 V or VI = 0 V ±10 0.4 VOL(MAX) 10 33f(4) or 3.3E+6 µA V mA 8E+7 V/s VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see POWER column of the Pin Attributes table. This value also defines the Absolute Maximum Ratings value the IO. The IOL parameter defines the minimum Low Level Output Current for which the device is able to maintain the specified VOL value. The value defined by this parameter should be considered the maximum current available to a system implementation which needs to maintain the specified VOL value for attached components. f = toggle frequency of the input signal in Hz. This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching Characteristics sections. Select the MIN parameter which results in the largest value. I2C Hs-mode is not supported when operating the IO in 3.3 V mode. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.7.2 Fail-Safe Reset (FS RESET) Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VIL Input Low Voltage 0.3 × VDDS_OSC VILSS Input Low Voltage Steady State 0.3 × VDDS_OSC VIH Input High Voltage 0.7 × VDDS_OSC V VIHSS Input High Voltage Steady State 0.7 × VDDS_OSC V VHYS Input Hysteresis Voltage IIN Input Leakage Current. SRI (2) Input Slew Rate (1) (2) 200 V V mV VI = 1.8 V or VI = 0 V ±10 µA 18f(1) or 1.8E+6 V/s f = toggle frequency of the input signal in Hz. This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching Characteristics sections. Select the MIN parameter which results in the largest value. 7.7.3 High-Frequency Oscillator (HFOSC) Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 0.35 × VDDS_OSC VIL Input Low Voltage VIH Input High Voltage VHYS Input Hysteresis Voltage IIN Input Leakage Current. V 0.65 × VDDS_OSC V 49 VI = 1.8 V or VI = 0.0 V mV ±10 µA MAX UNIT 7.7.4 eMMCPHY Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER VIL Input Low Voltage VILSS Input Low Voltage Steady State TEST CONDITIONS VIH Input High Voltage VIHSS Input High Voltage Steady State IIN Input Leakage Current. RPU Pull-up Resistor RPD Pull-down Resistor VOL Output Low Voltage IOL = 2 mA VOH Output High Voltage IOH = -2 mA SRI Input Slew Rate MIN TYP 0.35 × VDDS_MMC0 V 0.20 V 0.65 × VDDS_MMC0 V 1.4 V VI = 1.8 V or 0 V 15 20 15 20 ±10 µA 25 kΩ 25 kΩ 0.30 VDDS_MMC0 - 0.30 V 5E+8 Copyright © 2023 Texas Instruments Incorporated V V/s Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 105 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.7.5 SDIO Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 1.8 V MODE VIL Input Low Voltage 0.58 V VILSS Input Low Voltage Steady State 0.58 V VIH Input High Voltage VIHSS Input High Voltage Steady State VHYS Input Hysteresis Voltage 1.27 V 1.7 V 150 mV VI = 1.8 V or VI = 0 V IIN Input Leakage Current. RPU Pull-up Resistor 40 RPD Pull-down Resistor 40 VOL Output Low Voltage VOH Output High Voltage IOL (1) Low Level Output Current VOL(MAX) 4 mA IOH (1) High Level Output Current VOH(MIN) 4 mA SRI (3) ±10 µA 50 60 kΩ 50 60 kΩ 0.45 VDDSHV5 0.45 V V 18f(2) Input Slew Rate or 1.8E+6 V/s 3.3 V MODE VIL Input Low Voltage 0.25 × VDDSHV5 V VILSS Input Low Voltage Steady State 0.15 × VDDSHV5 V VIH Input High Voltage 0.625 × VDDSHV5 V VIHSS Input High Voltage Steady State 0.625 × VDDSHV5 V VHYS Input Hysteresis Voltage IIN Input Leakage Current. RPU Pull-up Resistor 40 RPD Pull-down Resistor 40 VOL Output Low Voltage VOH Output High Voltage IOL (1) Low Level Output Current VOL(MAX) 6 mA IOH (1) High Level Output Current VOH(MIN) 10 mA SRI (3) (1) (2) (3) 106 150 mV VI = 3.3 V or VI = 0 V ±10 µA 50 60 kΩ 50 60 kΩ 0.125 × VDDSHV5 0.75 × VDDSHV5 V V 33f(2) Input Slew Rate or 3.3E+6 V/s The IOL and IOH parameters define the minimum Low Level Output Current and High Level Output Current for which the device is able to maintain the specified VOL and VOH values. Values defined by these parameters should be considered the maximum current available to a system implementation which needs to maintain the specified VOL and VOH values for attached components. f = toggle frequency of the input signal in Hz. This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching Characteristics sections. Select the MIN parameter which results in the largest value. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.7.6 LVCMOS Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 1.8-V MODE VIL Input Low Voltage VILSS Input Low Voltage Steady State V 0.3 × VDD(1) V VDD(1) V V VIH Input High Voltage 0.65 × VIHSS Input High Voltage Steady State 0.85 × VDD(1) VHYS Input Hysteresis Voltage 150 mV VI = 1.8 V or VI = 0.0 V IIN Input Leakage Current. RPU Pull-up Resistor 15 RPD Pull-down Resistor 15 VOL Output Low Voltage VDD(1) VOH Output High Voltage IOL (2) Low Level Output Current VOL(MAX) IOH (2) High Level Output Current VOH(MIN) SRI (4) 0.35 × VDD(1) Input Slew Rate ±10 µA 22 30 kΩ 22 30 kΩ 0.45 V - 0.45 V 3 mA 3 mA 18f(3) or 1.8E+6 V/s 3.3-V MODE VIL Input Low Voltage 0.8 V VILSS Input Low Voltage Steady State VIH Input High Voltage 0.6 V VIHSS Input High Voltage Steady State 2.0 V VHYS Input Hysteresis Voltage 150 mV IIN Input Leakage Current. RPU Pull-up Resistor 15 RPD Pull-down Resistor 15 VOL Output Low Voltage VOH Output High Voltage 2.0 V VI = 3.3 V or VI = 0.0 V ±10 µA 22 30 kΩ 22 30 kΩ 0.4 V 2.4 V (2) Low Level Output Current VOL(MAX) 5 mA IOH (2) High Level Output Current VOH(MIN) 9 mA IOL SRI (4) (1) (2) (3) (4) 33f(3) Input Slew Rate or 3.3E+6 V/s VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see POWER column of the Pin Attributes table. The IOL and IOH parameters define the minimum Low Level Output Current and High Level Output Current for which the device is able to maintain the specified VOL and VOH values. Values defined by these parameters should be considered the maximum current available to a system implementation which needs to maintain the specified VOL and VOH values for attached components. f = toggle frequency of the input signal in Hz. This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching Characteristics sections. Select the MIN parameter which results in the largest value. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 107 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.7.7 ADC12B Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER VADC0_VREFP (1) Positive Reference Voltage, ADC0_VREFP VADC0_VREFN (1) Negative Reference Voltage, ADC0_VREFN TEST CONDITIONS MIN TYP 1.71 MAX UNIT 1.89 V VSS V VADC_AIN[7:0] Analog Input Voltage, ADC_AIN[7:0], Full-scale VSS VDDA_ADC0 DNL Differential Non-Linearity > -1 +1 LSB INL Integral Non-Linearity -2 +2 LSB V LSBGAIN-ERROR Gain Error ±10 LSB LSBOFFSET-ERROR Offset Error ±5 LSB SNR Signal-to-Noise Ratio Input Signal: 200 kHz sine wave at -0.5 dB Full Scale 70 dB THD Total Harmonic Distortion Input Signal: 200 kHz sine wave at -0.5 dB Full Scale -75 dB ZADC_AIN[0:7] Analog Input Impedance, ADC0_AIN[7:0] IIN CSMPL (2) Ω Input Leakage ±10 μA Sampling Capacitance 5.5 pF ADC0 SMPL_CLK Frequency 60 MHz 13 ADC0 SMPL_CLK Cycles Sampling Dynamics FSMPL_CLK tC Conversion Time tACQ Acquisition Time TR Sampling Rate ADC0 257 SMPL_CLK Cycles 2 ADC0 SMPL_CLK = 60 MHz 4 MSPS General Purpose Input Mode (3) VIL VILSS 108 V Input Low Voltage Steady State 0.35 × VDDA_ADC0 V 0.65 × VDDA_ADC0 V VIHSS Input High Voltage Steady State 0.65 × VDDA_ADC0 V VHYS Input Hysteresis Voltage II (2) 0.35 × VDDA_ADC0 Input High Voltage VIH (1) Input Low Voltage Input Leakage Current 200 mV ADC0_AIN[7:0] = VDDA_ADC0 or ADC0_AIN[7:0] = VSS 10 μA The ADC0_REFP and ADC0_REFN reference inputs are analog inputs which must be treated like high transient power supply rails. ADC0_REFN is expected to be connected directly to the PCB ground plane along with all other VSS pins, and ADC0_REFP is connected to a power source capable of providing at least 4 mA of current. ADC0_REFP can be connected to the same power source as VDDA_ADC0 if the voltage tolerance of the supply provides an acceptable accuracy for the ADC reference. A high frequency decoupling capacitor must be connected directly to the ADC0_REFP and ADC0_REFN pins with vias and be placed in the ball array on the back side of the PCB. The ADC0_AIN pins are connected to an internal sampling capacitor for a user configurable acquisition time and acquisition frequency. The input impedance of the ADC0_AIN pins is a function of the sampling capacitance along with user configurable acquisition time and Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com (3) SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 acquisition frequency. The designer must understand the time required for the source impedance of each ADC0_AIN pin to charge the internal sampling capacitor. The acquisition time must be set long enough for the internal sampling capacitor to settle to greater than 14 bits of accuracy. ADC0 can be configured to operate in General Purpose Input mode, where all ADC0_AIN[7:0] inputs are globally enabled to operate as digital inputs via the ADC0_CTRL register (gpi_mode_en = 1). 7.7.8 USB2PHY Electrical Characteristics Note USB0 interface is compliant with Universal Serial Bus Revision 2.0 Specification dated April 27, 2000 including ECNs and Errata as applicable. 7.7.9 SerDes PHY Electrical Characteristics Note The PCIe interface is compliant with the electrical parameters specified in PCI Express® Base Specification Revision 4.0, February 19, 2014. Note USB0 instance is compliant with the USB3.1 SuperSpeed Transmitter and Receiver Normative Electrical Parameters as defined in the Universal Serial Bus 3.1 Specification, Revision 1.0 , July 26, 2013. 7.7.10 DDR Electrical Characteristics Note The DDR interface is compatible with DDR4 devices that are JESD79-4B standard-compliant, and LPDDR4 devices that are JESD209-4B standard-compliant Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 109 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.8 VPP Specifications for One-Time Programmable (OTP) eFuses This section specifies the operating conditions required for programming the OTP eFuses.. 7.8.1 Recommended Operating Conditions for OTP eFuse Programming over operating junction temperature range (unless otherwise noted) PARAMETER DESCRIPTION VDD_CORE Supply voltage range for the core domain during OTP operation; OPP NOM (BOOT) VPP Supply voltage range for the eFuse ROM domain during normal operation without hardware support to program eFuse ROM MIN NOM See Recommended Operating Conditions I(VPP) VPP current SR(VPP) VPP Slew Rate TJ Operating junction temperature range while programming eFuse ROM. (1) (2) UNIT V NC(1) V 0 V Supply voltage range for the eFuse ROM domain during normal operation with hardware support to program eFuse ROM Supply voltage range for the eFuse ROM domain during OTP programming(2) MAX 1.71 1.8 0 25 1.89 V 400 mA 6E+4 V/s 85 °C NC stands for No Connect. Supply voltage range includes DC errors and peak-to-peak noise. 7.8.2 Hardware Requirements The following hardware requirements must be met when programming keys in the OTP eFuses: • The VPP power supply must be disabled when not programming OTP registers. • The VPP power supply must be ramped up after the proper device power-up sequence (for more details, see Section 7.10.2, Power Supply Sequencing). 7.8.3 Programming Sequence Programming sequence for OTP eFuses: • Power on the board per the power-up sequencing. No voltage should be applied on the VPP terminal during power up and normal operation. • Load the OTP write software required to program the eFuse (contact your local TI representative for the OTP software package). • Apply the voltage on the VPP terminal according to the specification in Section 7.8.1. • Run the software that programs the OTP registers. • After validating the content of the OTP registers, remove the voltage from the VPP terminal. 7.8.4 Impact to Your Hardware Warranty You accept that e-Fusing the TI Devices with security keys permanently alters them. You acknowledge that the e-Fuse can fail, for example, due to incorrect or aborted program sequence or if you omit a sequence step. Further the TI Device may fail to secure boot if the error code correction check fails for the Production Keys or if the image is not signed and optionally encrypted with the current active Production Keys. These types of situations will render the TI Device inoperable and TI will be unable to confirm whether the TI Devices conformed to their specifications prior to the attempted e-Fuse. CONSEQUENTLY, TI WILL HAVE NO LIABILITY (WARRANTY OR OTHERWISE) FOR ANY TI DEVICES THAT HAVE BEEN e-FUSED WITH SECURITY KEYS. 110 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.9 Thermal Resistance Characteristics For operation and reliability concerns, the maximum junction temperature of the device must be equal to or less than the TJ value identified in Recommended Operating Conditions. 7.9.1 Thermal Resistance Characteristics Table 7-2. Thermal Resistance Characteristics TI recommends performing system level thermal simulations with worst case device power consumption. °C/W(2) AIR FLOW (m/s)(3) Junction-to-case 0.98 N/A RΘJB Junction-to-board 3.87 N/A RΘJA Junction-to-free air 12.8 0 9.2 1 8.2 2 T6 7.6 3 T7 0.53 0 0.55 1 0.57 2 T10 0.58 3 T11 3.74 0 T12 3.5 1 3.4 2 3.3 3 NO. PARAMETER(1) T1 RΘJC T2 T3 DESCRIPTION ALV Package T4 T5 RΘJA T8 Junction-to-moving air ΨJT T9 T13 Junction-to-package top ΨJB Junction-to-board T14 (1) (2) (3) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC defined 1S0P system) and is subject to change based on environment as well as application. For more information, see the EIA/JEDEC standards. • JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions - Forced Convection (Moving Air) • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Packages °C/W = degrees Celsius per watt. m/s = meters per second. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 111 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10 Timing and Switching Characteristics Note The Timing Requirements and Switching Characteristics values may change following the silicon characterization result. Note The default SLEWRATE settings in each pad configuration register must be used to ensure timings, unless specific instructions are given otherwise. 7.10.1 Timing Parameters and Information The timing parameter symbols used in Timing and Switching Characteristics sections are created in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and other related terminologies have been abbreviated in Table 7-3: Table 7-3. Timing Parameters Subscripts 112 SYMBOL PARAMETER c Cycle time (period) d Delay time dis Disable time en Enable time h Hold time su Setup time START Start bit t Transition time v Valid time w Pulse duration (width) X Unknown, changing, or don't care level F Fall time H High L Low R Rise time V Valid IV Invalid AE Active Edge FE First Edge LE Last Edge Z High impedance Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.2 Power Supply Requirements This section describes the power supply requirements to ensure proper device operation. Note All power balls must be supplied with the voltages specified in the Recommended Operating Conditions section, unless otherwise specified in Signal Descriptions and Pin Connectivity Requirements. 7.10.2.1 Power Supply Slew Rate Requirement To maintain the safe operating range of the internal ESD protection devices, TI recommends limiting the maximum slew rate of supplies to be less than 18 mV/µs. For instance, as shown in Figure 7-2, TI recommends having the supply ramp slew for a 1.8-V supply of more than 100 µs. Figure 7-2 describes the Power Supply Slew Rate Requirement in the device. Supply value t slew rate < 18 mV/μs slew > (supply value) / (18 mV/μs) or supply value × 55.6 μs/V SPRT740_ELCH_06 Figure 7-2. Power Supply Slew and Slew Rate Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 113 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.2.2 Power Supply Sequencing This section describes power sequence requirements using power sequence diagrams and associated notes. Each power sequence diagram demonstrates the sequential order expected for each device power rail. This is done by assigning each device power rail to one or more waveform. A dual-voltage power rail may be associated with more than one waveform and the associated note will describe which waveform is applicable. Each waveform defines a transition region for the associated power rails and shows its sequential relationship to the transition regions of other power rails. The notes associated with the power sequence diagram provides further detail of these requirements. See the Power-up Sequence section for details on power-up requirements, and the Power-down Sequence section for details on power-down requirements. Two types of power supply transition regions are used to simplify the power supply sequencing diagrams. The legends shown in Figure 7-3 and Figure 7-4 along with their descriptions are provided to clarify what each transition regions represents. Figure 7-3 defines a transition region with multiple power rails which may be sourced from multiple power supplies or a single power supply. Transitions shown within the transition region represent a use case where multiple power supplies are used to source power rails associated with this waveform, and these power supplies are allowed to ramp at different times within the region since they do not have any specific sequence requirement relative to each other. Figure 7-3. Multiple Power Supply Transition Legend Figure 7-4 defines a transition region with one or more power rails which must be sourced from a single common power supply. No transitions are shown within the region to represent a single ramp within the transition region. Figure 7-4. Single Common Power Supply Transition Legend 114 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.2.2.1 Power-Up Sequencing Figure 7-5 describes the device power-up sequencing. VSYS, VMON_VSYS (3) (3) (3) (3) Note 1 VSYS Note 2 VMON_VSYS (3) VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3 , (3) VDDSHV4 , VDDA_3P3_SDIO, VDDA_3P3_USB0, (4) VMON_3P3_SOC , VMON_3P3_MCU (5) (5) (5) (5) (4) (5) VDDS_OSC, VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3 , (5) VDDSHV4 , VDDA_MCU, VDDA_ADC0, VDDA_PLL0, VDDA_PLL1, (6) VDDA_PLL2, VDDA_1P8_SERDES0, VDDA_1P8_USB0, VMON_1P8_MCU , (6) VMON_1P8_SOC , VDDA_TEMP0, VDDA_TEMP1, VDDS_MMC0 VDDSHV5 (12) (7) VDDS_DDR , VDDS_DDR_C VDD_CORE VDD_CORE (9)(10) (7) (8)(10) (10) , VDDR_CORE , VDDA_0P85_SERDES0_C, VDDA_0P85_SERDES0, VDDA_0P85_USB0, VDD_DLL_MMC0, VDD_MMC0 VPP (11) Hi-Z MCU_PORz MCU_OSC0_XI, MCU_OSC0_XO AM64x_ELCH_01 Figure 7-5. Power-Up Sequencing 1. VSYS represents the name of a supply which sources power to the entire system. This supply is expected to be a pre-regulated supply that sources power management devices which source all other supplies. 2. VMON_VSYS input is used to monitor VSYS via an external resistor divider circuit. For more information, see Section 9.2.4, System Power Supply Monitor Design Guidelines. 3. VDDSHV_MCU and VDDSHVx [x=0-5] are dual voltage IO supplies which can be operated at 1.8V or 3.3V depending on the application requirements. When any of the VDDSHV_MCU or VDDSHVx [x=0-5] IO supplies are operating at 3.3V, they shall be ramped up with other 3.3V supplies during the 3.3V ramp period defined by this waveform. 4. The VMON_3P3_MCU and VMON_3P3_SOC inputs are used to monitor supply voltage and shall be connected to the respective 3.3V supply source. 5. VDDSHV_MCU and VDDSHVx [x=0-5] are dual voltage IO supplies which can be operated at 1.8V or 3.3V depending on the application requirements. When any of the VDDSHV_MCU or VDDSHVx [x=0-5] IO supplies are operating at 1.8V, they shall be ramped up with other 1.8V supplies during the 1.8V ramp period defined by this waveform. 6. The VMON_1P8_MCU and VMON_1P8_SOC inputs are used to monitor supply voltage and shall be connected to the respective 1.8V supply source. 7. VDDS_DDR and VDDS_DDR_C are expected to be powered by the same source such that they ramp together. 8. VDD_CORE can be operated at 0.75V or 0.85V. When VDD_CORE is operating at 0.75V, it shall be ramped up prior to all 0.85V supplies as shown in this waveform. 9. VDD_CORE can be operated at 0.75V or 0.85V. When VDD_CORE is operating at 0.85V, it shall be ramped up with other 0.85V supplies during the 0.85V ramp period defined by this waveform. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 115 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 10. The potential applied to VDDR_CORE must never be greater than the potential applied to VDD_CORE + 0.18V during power-up or power-down. This requires VDD_CORE to ramp up before and ramp down after VDDR_CORE when VDD_CORE is operating at 0.75V. VDD_CORE does not have any ramp requirements beyond the one defined for VDDR_CORE. VDD_CORE and VDDR_CORE are expected to be powered by the same source so they ramp together when VDD_CORE is operating at 0.85V. 11. VPP is the 1.8V eFuse programming supply, which shall be left floating (HiZ) or grounded during power-up/ down sequences and during normal device operation. This supply shall only be sourced while programming eFuse. 12. VDDSHV5 was designed to support power-up, power-down, or dynamic voltage change without any dependency on other power rails. This capability is required to support UHS-I SD Cards. 116 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.2.2.2 Power-Down Sequencing Figure 7-6 describes the device power-down sequencing. VSYS VSYS, VMON_VSYS (1) (1) (1) (1) VMON_VSYS (1) VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3 , (1) VDDSHV4 , VDDA_3P3_SDIO, VDDA_3P3_USB0, VMON_3P3_SOC, VMON_3P3_MCU (2) (2) (2) (2) (2) VDDS_OSC, VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3 , (2) VDDSHV4 , VDDA_MCU, VDDA_ADC0, VDDA_PLL0, VDDA_PLL1, VDDA_PLL2, VDDA_1P8_SERDES0, VDDA_1P8_USB0, VMON_1P8_MCU, VMON_1P8_SOC, VDDA_TEMP0, VDDA_TEMP1, VDDS_MMC0 VDDSHV5 (6) VDDS_DDR, VDDS_DDR_C VDD_CORE VDD_CORE (4)(5) (3)(5) (5) , VDDR_CORE , VDDA_0P85_SERDES0_C, VDDA_0P85_SERDES0, VDDA_0P85_USB0, VDD_DLL_MMC0, VDD_MMC0 VPP Hi-Z MCU_PORz MCU_OSC0_XI, MCU_OSC0_XO AM64x_ELCH_02 Figure 7-6. Power-Down Sequencing 1. 2. 3. 4. 5. VDDSHV_MCU and VDDSHVx [x=0-5] when operating at 3.3V. VDDSHV_MCU and VDDSHVx [x=0-5] when operating at 1.8V. VDD_CORE when operating at 0.75V. VDD_CORE when operating at 0.85V. The potential applied to VDDR_CORE must never be greater than the potential applied to VDD_CORE + 0.18V during power-up or power-down. This requires VDD_CORE to ramp up before and ramp down after VDDR_CORE when VDD_CORE is operating at 0.75V. VDD_CORE does not have any ramp requirements beyond the one defined for VDDR_CORE. VDD_CORE and VDDR_CORE are expected to be powered by the same source so they ramp together when VDD_CORE is operating at 0.85V. 6. VDDSHV5 was designed to support power-up, power-down, or dynamic voltage change without any dependency on other power rails. This capability is required to support UHS-I SD Cards. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 117 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.3 System Timing For more details about features and additional description information on the subsystem multiplexing signals, see the corresponding subsections within Signal Descriptions and Detailed Description sections. 7.10.3.1 Reset Timing Tables and figures provided in this section define timing conditions, timing requirements, and switching characteristics for reset related signals. Table 7-4. Reset Timing Conditions PARAMETER MIN MAX UNIT INPUT CONDITIONS SRI Input slew rate VDD(1) = 1.8V 0.0018 V/ns VDD(1) = 3.3V 0.0033 V/ns OUTPUT CONDITIONS CL (1) Output load capacitance 30 pF VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see POWER column of the Pin Attributes table. Table 7-5. MCU_PORz Timing Requirements see Figure 7-7 NO. PARAMETER RST1 th(SUPPLIES_VALID - MCU_PORz) RST2 RST3 MIN Hold time, MCU_PORz active (low) at Power-up after supplies valid (using external crystal circuit) tw(MCU_PORzL) MAX UNIT 9500000 ns Hold time, MCU_PORz active (low) at Power-up after supplies valid and external clock stable (using external LVCMOS clock source) 1200 ns Pulse Width, MCU_PORz low after Power-up (without removal of Power or system reference clock MCU_OSC0_XI/XO) 1200 ns Figure 7-7. MCU_PORz Timing Requirements 118 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-6. MCU_RESETSTATz, and RESETSTATz Switching Characteristics see Figure 7-8 NO. PARAMETER RST4 td(MCU_PORzL-MCU_RESETSTATzL) Delay time, MCU_PORz active (low) to MCU_RESETSTATz active (low) RST5 td(MCU_PORzH-MCU_RESETSTATzH) Delay time, MCU_PORz inactive (high) to MCU_RESETSTATz inactive (high) RST6 td(MCU_PORzL-RESETSTATzL) Delay time, MCU_PORz active (low) to RESETSTATz active (low) RST7 td(MCU_PORzH-RESETSTATzH) Delay time, MCU_PORz inactive (high) to RESETSTATz inactive (high) RST8 tw(MCU_RESETSTATzL) Pulse Width, MCU_RESETSTATz low (SW_MCU_WARMRST) RST9 tw(RESETSTATzL) Pulse Width, RESETSTATz low (SW_MCU_WARMRST, SW_MAIN_PORz, or SW_MAIN_WARMRST) (1) MIN MAX UNIT 0 ns 6120*S(1) ns 0 ns 9195*S(1) ns 966*S(1) ns 4040*S ns S = MCU_OSC0_XI/XO clock period in ns. Figure 7-8. MCU_RESETSTATz, and RESETSTATz Switching Characteristics Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 119 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-7. MCU_RESETz Timing Requirements see Figure 7-9 NO. PARAMETER RST10 tw(MCU_RESETzL) (1) (1) MIN Pulse Width, MCU_RESETz active (low) MAX 1200 UNIT ns This timing parameter is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time. Table 7-8. MCU_RESETSTATz, and RESETSTATz Switching Characteristics see Figure 7-9 NO. PARAMETER RST11 td(MCU_RESETzL-MCU_RESETSTATzL) Delay time, MCU_RESETz active (low) to MCU_RESETSTATz active (low) RST12 td(MCU_RESETzH-MCU_RESETSTATzH) Delay time, MCU_RESETz inactive (high) to MCU_RESETSTATz inactive (high) RST13 td(MCU_RESETzL-RESETSTATzL) Delay time, MCU_RESETz active (low) to RESETSTATz active (low) RST14 td(MCU_RESETzH-RESETSTATzH) Delay time, MCU_RESETz inactive (high) to RESETSTATz inactive (high) (1) MIN MAX UNIT 0 ns 966*S(1) ns 960 ns 4040*S(1) ns S = MCU_OSC0_XI/XO clock period in ns. Figure 7-9. MCU_RESETz, MCU_RESETSTATz, and RESETSTATz Timing Requirements and Switching Characteristics 120 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-9. RESET_REQz Timing Requirements see Figure 7-10 NO. PARAMETER RST15 tw(RESET_REQzL) (1) (1) MIN Pulse Width, RESET_REQz active (low) MAX UNIT 1200 ns This timing parameter is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time. Table 7-10. RESETSTATz Switching Characteristics see Figure 7-10 NO. PARAMETER RST16 td(RESET_REQzL-RESETSTATzL) Delay time, RESET_REQz active (low) to RESETSTATz active (low) RST17 td(RESET_REQzH-RESETSTATzH) Delay time, RESET_REQz inactive (high) to RESETSTATz inactive (high) (1) (2) MIN MAX UNIT 900*T(1) ns 4040*S(2) ns T = Reset Isolation Time (Software Dependent) S = MCU_OSC0_XI/XO clock period in ns. Figure 7-10. RESET_REQz and RESETSTATz Timing Requirements and Switching Characteristics Table 7-11. EMUx Timing Requirements see Figure 7-11 NO. PARAMETER RST18 tsu(EMUx-MCU_PORz) Setup time, EMU[1:0] before MCU_PORz inactive (high) RST19 th(MCU_PORz - EMUx) Hold time, EMU[1:0] after MCU_PORz inactive (high) (1) MIN MAX UNIT 3*S(1) ns 10 ns S = MCU_OSC0_XI/XO clock period in ns. Figure 7-11. EMUx Timing Requirements Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 121 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-12. BOOTMODE Timing Requirements see Figure 7-12 NO. PARAMETER RST23 tsu(BOOTMODE-PORz_OUT) Setup time, BOOTMODE[15:00] before PORz_OUT high (External MCU PORz event or Software SW_MAIN_PORz) RST24 th(PORz_OUT - BOOTMODE) Hold time, BOOTMODE[15:00] after PORz_OUT high (External MCU PORz event, or Software SW_MAIN_PORz) (1) MIN MAX UNIT 3*S(1) ns 0 ns S = MCU_OSC0_XI/XO clock period in ns. Table 7-13. PORz_OUT Switching Characteristics see Figure 7-12 NO. PARAMETER RST25 td(MCU_PORzL-PORz_OUT) Delay time, MCU_PORz active (low) to PORz_OUT active (low) RST26 td(MCU_PORzH-PORz_OUT) RST27 tw(PORz_OUTL) MIN MAX UNIT 0 ns Delay time, MCU_PORz inactive (high) to PORz_OUT inactive (high) 1840 ns Pulse Width, PORz_OUT low (MCU_PORz or SW_MAIN_PORz) 1200 ns Figure 7-12. BOOTMODE Timing Requirements and PORz_OUT Switching Characteristics 122 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.3.2 Safety Signal Timing Tables and figures provided in this section define timing conditions and switching characteristics for MCU_SAFETY_ERRORn. Table 7-14. MCU_SAFETY_ERRORn Timing Conditions PARAMETER MIN MAX UNIT OUTPUT CONDITIONS CL Output load capacitance 30 pF Table 7-15. MCU_SAFETY_ERRORn Switching Characteristics see Figure 7-13 NO. PARAMETER SFTY1 tc(MCU_SAFETY_ERRORn) Cycle time minimum, MCU_SAFETY_ERRORn (PWM mode enabled) SFTY2 tw(MCU_SAFETY_ERRORn) Pulse width minimum, MCU_SAFETY_ERRORn active (PWM mode disabled)(5) SFTY3 (1) (2) (3) (4) (5) td (ERROR_CONDITIONMCU_SAFETY_ERRORnL) MIN MAX UNIT (P*H)+(P*L)(1) (3) (4) ns P*R(1) (2) ns 50*P(1) ns Delay time, ERROR CONDITION to MCU_SAFETY_ERRORn active(5) P = ESM functional clock R = Error Pin Counter Pre-Load Register count value H = Error Pin PWM High Pre-Load Register count value L = Error Pin PWM Low Pre-Load Register count value When PWM mode is enabled, MCU_SAFETY_ERRORn stops toggling after SFTY3 and will maintain its value (either high or low) until the error is cleared. When PWM mode is disabled, MCU_SAFETY_ERRORn is active low. Figure 7-13. MCU_SAFETY_ERRORn Timing Requirements and Switching Characteristics Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 123 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.3.3 Clock Timing Tables and figures provided in this section define timing conditions, timing requirements, and switching characteristics for clock signals. Table 7-16. Clock Timing Conditions PARAMETER MIN MAX UNIT INPUT CONDITIONS SRI Input slew rate 0.5 V/ns OUTPUT CONDITIONS CL Output load capacitance 10 ns ≤ tc < 20 ns 10 pF 20 ns ≤ tc 30 pF Table 7-17. Clock Timing Requirements see Figure 7-14 NO. CLK1 MIN tc(EXT_REFCLK1) MAX UNIT Cycle time minimum, EXT_REFCLK1 10 E*0.55(1) ns ns E*0.55(1) ns CLK2 tw(EXT_REFCLK1H) Pulse Duration, EXT_REFCLK1 high E*0.45(1) CLK3 tw(EXT_REFCLK1L) Pulse Duration, EXT_REFCLK1 low E*0.45(1) CLK1 tc(MCU_EXT_REFCLK0) Cycle time minimum, MCU_EXT_REFCLK0 10 CLK2 tw(MCU_EXT_REFCLK0H) Pulse Duration, MCU_EXT_REFCLK0 high F*0.45(2) F*0.55(2) ns Pulse Duration, MCU_EXT_REFCLK0 low F*0.45(2) F*0.55(2) ns CLK3 (1) (2) tw(MCU_EXT_REFCLK0L) ns E = EXT_REFCLK1 cycle time F = MCU_EXT_REFCLK0 cycle time CLK1 CLK2 CLK3 Input Clock Figure 7-14. Clock Timing Requirements 124 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-18. Clock Switching Characteristics see Figure 7-15 NO. CLK4 PARAMETER tc(SYSCLKOUT0) MIN MAX UNIT Cycle time minimum,SYSCLKOUT0 8 A*0.6(1) ns ns A*0.6(1) ns CLK5 tw(SYSCLKOUT0H) Pulse Duration, SYSCLKOUT0 high A*0.4(1) CLK6 tw(SYSCLKOUT0L) Pulse Duration, SYSCLKOUT0 low A*0.4(1) CLK4 tc(OBSCLK0) Cycle time minimum, OBSCLK0 5 CLK5 tw(OBSCLK0H) Pulse Duration, OBSCLK0 high B*0.45(2) B*0.55(2) ns CLK6 tw(OBSCLK0L) Pulse Duration,OBSCLK0 low B*0.45(2) B*0.55(2) ns CLK4 tc(CLKOUT0) Cycle time minimum, CLKOUT0 20 CLK5 tw(CLKOUT0H) Pulse Duration, CLKOUT0 high C*0.4(3) C*0.6(3) ns C*0.4(3) C*0.6(3) ns ns ns CLK6 tw(CLKOUT0L) Pulse Duration,CLKOUT0 low CLK4 tc(MCU_SYSCLKOUT0) Cycle time minimum, MCU_SYSCLKOUT0 10 G*0.6(4) ns G*0.6(4) ns ns CLK5 tw(MCU_SYSCLKOUT0H) Pulse Duration, MCU_SYSCLKOUT0 high G*0.4(4) CLK6 tw(MCU_SYSCLKOUT0L) Pulse Duration,MCU_SYSCLKOUT0 low G*0.4(4) CLK4 tc(MCU_OBSCLK0) Cycle time minimum, MCU_OBSCLK0 5 CLK5 tw(MCU_OBSCLK0H) Pulse Duration, MCU_OBSCLK0 high H*0.45(5) H*0.55(5) ns Pulse Duration,MCU_OBSCLK0 low H*0.45(5) H*0.55(5) ns CLK6 (1) (2) (3) (4) (5) tw(MCU_OBSCLK0L) ns A = SYSCLKOUT0 cycle time B = OBSCLK0 cycle time C = CLKOUT0 cycle time G = MCU_SYSCLKOUT0 cycle time H = MCU_OBSCLK0 cycle time CLK4 CLK5 CLK6 Output Clock Figure 7-15. Clock Switching Characteristics Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 125 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.4 Clock Specifications 7.10.4.1 Input Clocks / Oscillators Various external clock inputs/outputs are needed to drive the device. Summary of these input clock signals is as follows: • MCU_OSC0_XI/MCU_OSC0_XO — Еxternal main crystal interface pins connected to the internal highfrequency oscillator (MCU_HFOSC0), which is the default clock source for internal reference clock MCU_HFOSC0_CLKOUT. General purpose clock inputs – MCU_EXT_REFCLK0 — Optional external system clock input for MCU domain. – EXT_REFCLK1 — Optional external system clock input for MAIN domain. – SERDES0_REFCLK0P/N — Optional SERDES0 reference clock input for PCIe. External CPTS reference clock inputs – CP_GEMAC_CPTS0_RFT_CLK — CPTS reference clock input. – CPTS_RFT_CLK — CPTS reference clock input. • • Figure 7-16 shows the external input clock sources and the output clocks to peripherals. DEVICE CLKOUT Reference Clock Output SYSCLKOUT0 Main Domain System Clock (MAIN_SYSCLK0) divided-by-4 MCU_SYSCLKOUT0 MCU Domain System Clock (MCU_SYSCLK0) divided-by-4 MCU_OSC0_XI MCU_OSC0_XO TCK MCU_RESETz MCU_PORz BOOTMODE[15:00] DDR0_CK0/DDR0_CK0_n SERDES0_REFCLK0P/N External main crystal interface pins connected to internal oscillator which provides reference clock to PLLs within MCU domain and MAIN domain. JTAG Clock Input MCU Warm Reset Input / Device Warm Reset Input MCU Power ON Reset / Device Power ON Reset Boot Mode Configuration / Devices Select DDR Differential Clock Outputs Optional SERDES0 Reference Clock Input for PCIe MCU_OBSCLK0 / OBSCLK0 Observation Clock Outputs for MCU Domain Clock / MAIN Domain Clocks MCU_EXT_REFCLK0 / EXT_REFCLK1 Optional External System Clock Inputs - (MCU Domain) / (MAIN Domain) CP_GEMAC_CPTS0_RFT_CLK / CPTS0_RFT_CLK CPTS Reference Clock Inputs CP_GEMAC_CPTS0_RFT_CLK / CPTS0_RFT_CLK J7ES_CLOCK_01 Figure 7-16. Input Clocks Interface For more information about Input clock interfaces, see Clocking section in Device Configuration chapter in the device TRM. 126 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.4.1.1 MCU_OSC0 Internal Oscillator Clock Source Figure 7-17 shows the recommended crystal circuit. All discrete components used to implement the oscillator circuit must be placed as close as possible to the MCU_OSC0_XI and MCU_OSC0_XO pins. Device MCU_OSC0_XO MCU_OSC0_XI Crystal CL2 CL1 PCB Ground AM65x_MCU_OSC_INT_01 Figure 7-17. MCU_OSC0 Crystal Implementation The crystal must be in the fundamental mode of operation and parallel resonant. Table 7-19 summarizes the required electrical constraints. Table 7-19. MCU_OSC0 Crystal Circuit Requirements PARAMETER Fxtal MIN Crystal Parallel Resonance Frequency Fxtal Crystal Frequency Stability and Tolerance TYP MAX 25 UNIT MHz Ethernet RGMII and RMII not used ±100 Ethernet RGMII and RMII using derived clock ±50 ppm CL1+PCBXI Capacitance of CL1 + CPCBXI 12 24 pF CL2+PCBXO Capacitance of CL2 + CPCBXO 12 24 pF CL Crystal Load Capacitance 6 12 pF Cshunt Crystal Circuit Shunt Capacitance ESRxtal Crystal Effective Series Resistance (1) ESRxtal = 30 Ω 25 MHz 7 pF ESRxtal = 40 Ω 25 MHz 5 pF ESRxtal = 50 Ω 25 MHz 5 pF   (1) Ω The maximum ESR of the crystal is a function of the crystal frequency and shunt capacitance. See the Cshunt parameter. When selecting a crystal, the system design must consider temperature and aging characteristics of the crystal based on worst case environment and expected life expectancy of the system. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 127 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-20 details the switching characteristics of the oscillator. Table 7-20. MCU_OSC0 Switching Characteristics - Crystal Mode MAX UNIT CXI XI Capacitance PARAMETER MIN TYP 1.44 pF CXO XO Capacitance 1.52 pF CXIXO XI to XO Mutual Capacitance 0.01 pF ts Start-up Time 4 VDD_CORE (min.) ms VDD_CORE Voltage VSS VDDS_OSC (min.) VDDS_OSC MCU_OSC0_XO VSS tsX Time AM65x_MCU_OSC_STARTUP_02 Figure 7-18. MCU_OSC0 Start-up Time 7.10.4.1.1.1 Load Capacitance The crystal circuit must be designed such that it applies the appropriate capacitive load to the crystal, as defined by the crystal manufacturer. The capacitive load, CL, of this circuit is a combination of discrete capacitors CL1, CL2, and several parasitic contributions. PCB signal traces which connect crystal circuit components to MCU_OSC0_XI and MCU_OSC0_XO have parasitic capacitance to ground, CPCBXI and CPCBXO, where the PCB designer should be able to extract parasitic capacitance for each signal trace. The MCU_OSC0 circuits and device package have combined parasitic capacitance to ground, CPCBXI and CPCBXO, where these parasitic capacitance values are defined in Table 7-20. Crystal Circuit Components PCB Signal Traces Device MCU_OSC0_XI CL1 CPCBXI CXI CL2 CPCBXO CXO MCU_OSC0_XO AM65x_MCU_OSC_CC_05 Figure 7-19. Load Capacitance 128 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Load capacitors, CL1 and CL2 in Figure 7-17, should be chosen such that the below equation is satisfied. CL in the equation is the load specified by the crystal manufacturer. CL = [(CL1 + CPCBXI + CXI) × (CL2 + CPCBXO + CXO)] / [(CL1 + CPCBXI + CXI) + (CL2 + CPCBXO + CXO)] To determine the value of CL1 and CL2, multiply the capacitive load value CL by 2. Using this result, subtract the combined values of CPCBXI + CXI to determine the value of CL1 and the combined values of CPCBXO + CXO to determine the value of CL2. For example, if CL = 10 pF, CPCBXI = 2.9 pF, CXI = 0.5 pF, CPCBXO = 3.7 pF, CXO = 0.5 pF, the value of CL1 = [(2CL) - (CPCBXI + CXI)] = [(2 × 10 pF) - 2.9 pF - 0.5 pF)] = 16.6 pF and CL2 = [(2CL) (CPCBXO + CXO)] = [(2 × 10 pF) - 3.7 pF - 0.5 pF)] = 15.8 pF 7.10.4.1.1.2 Shunt Capacitance The crystal circuit must also be designed such that it does not exceed the maximum shunt capacitance for MCU_OSC0 operating conditions defined in Table 7-19. Shunt capacitance, Cshunt, of the crystal circuit is a combination of crystal shunt capacitance and parasitic contributions. PCB signal traces which connect crystal circuit components to MCU_OSC0 have mutual parasitic capacitance to each other, CPCBXIXO, where the PCB designer should be able to extract mutual parasitic capacitance between these signal traces. The device package also has mutual parasitic capacitance, CXIXO, where this mutual parasitic capacitance value is defined in Table 7-20. PCB routing should be designed to minimize mutual capacitance between XI and XO signal traces. This is typically done by keeping signal traces short and not routing them in close proximity. Mutual capacitance can also be minimized by placing a ground trace between these signals when the layout requires them to be routed in close proximity. It is important to minimize the mutual capacitance on the PCB to provide as much margin as possible when selecting a crystal. Crystal Circuit Components CO PCB Signal Traces Device MCU_OSC0_XI CPCBXIXO CXIXO MCU_OSC0_XO AM65x_MCU_OSC_SC_06 Figure 7-20. Shunt Capacitance A crystal should be chosen such that the below equation is satisfied. CO in the equation is the maximum shunt capacitance specified by the crystal manufacturer. Cshunt ≥ CO + CPCBXIXO + CXIXO For example, the equation would be satisfied when the crystal being used is 25 MHz with an ESR = 30 Ω, CPCBXIXO = 0.04 pF, CXIXO = 0.01 pF, and shunt capacitance of the crystal is less than or equal to 6.95 pF. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 129 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.4.1.2 MCU_OSC0 LVCMOS Digital Clock Source Figure 7-21 shows the recommended oscillator connections when MCU_OSC0_XI is connected to a 1.8-V LVCMOS square-wave digital clock source. Note A DC steady-state condition is not allowed on MCU_OSC0_XI when the oscillator is powered up. This is not allowed because MCU_OSC0_XI is internally AC coupled to a comparator that can enter an unknown state when DC is applied to the input. Therefore, application software must power down MCU_OSC0 any time MCU_OSC0_XI is not toggling between logic states. Device MCU_OSC0_XI MCU_OSC0_XO PCB Ground AM65x_MCU_OSC_EXT_CLK_03 Figure 7-21. 1.8-V LVCMOS-Compatible Clock Input 130 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.4.2 Output Clocks The device provides several system clock outputs. Summary of these output clocks are as follows: • • • • • • MCU_SYSCLKOUT0 – MCU_SYSCLKOUT0 is the MCU domain system clock (MCU_SYSCK0) divided-by-4. This clock output is provided for test and debug purposes only. MCU_OBSCLK0 – Observation clock output for test and debug purposes only. SYSCLKOUT0 – SYSCLKOUT0 is the MAIN domain system clock (MAIN_SYSCLK0) divided-by-4. This clock output is provided for test and debug purposes only. CLKOUT0 – CLKOUT0 is the Ethernet subsystem clock (MAIN_PLL0_HSDIV4_CLKOUT) divided-by-5 or dividedby-10. This clock output was provided to source to the external PHY. When configured to operate as the RMII Clock source (50 MHz) the signal must also be routed back to the RMII_REF_CLK pin for proper device operation. OBSCLK0 – Observation clock output for test and debug purposes only. GPMC_FCLK_MUX – GPMC_FCLK_MUX is the GPMC0 functional clock (GPMC_FCLK). This clock is provided as an alternative GPMC interface clock when attached devices require a continuous running clock. For more information, see Clock Outputs section in Clocking chapter and GPMC Clock Configuration section in Peripherals chapter in the device TRM. 7.10.4.3 PLLs Power is supplied to the Phase-Locked Loop circuits (PLLs) by internal regulators that derive their power from off-chip power-sources. There is one PLL in the MCU domain: • MCU0_PLL There are six PLLs in the MAIN domain: • • • • • • ARM0_PLL MAIN_PLL PER0_PLL PER1_PLL DDR PLL R5F PLL Note For more information, see: • Device Configuration / Clocking / PLLs section in the device TRM. • Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem - Gigabit (PRU_ICSSG) section in the device TRM. Note The input reference clock (MCU_OSC0_XI / MCU_OSC0_XO) is specified and the lock time is ensured by the PLL controller, as documented in the Device Configuration chapter in the device TRM. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 131 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.4.4 Recommended System Precautions for Clock and Control Signal Transitions All clock and strobe signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. Monotonic transitions are more likely to occur with fast signal transitions. It is easy for noise to create nonmonotonic events on a signal with slow transitions. Therefore, avoid slow signal transitions on all clock and control signals since they are more likely to generate glitches inside the device. 132 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5 Peripherals 7.10.5.1 CPSW3G For more details about features and additional description information on the device Gigabit Ethernet MAC, see the corresponding subsections within Signal Descriptions and Detailed Description sections. Note CPSW3G MDIO0, CPSW3G RMII1, CPSW3G RMII2, and CPSW3G RGMII1 have one or more signals which can be multiplexed to more than one pin. Timing requirements and switching characteristics defined in this section are only valid for specific pin combinations known as IOSETs. Valid pin combinations or IOSETs for these interfaces can be found in the tables of the CPSW3G IOSETs section. 7.10.5.1.1 CPSW3G MDIO Timing Table 7-21, Table 7-22, Table 7-23, and Figure 7-22 present timing conditions, requirements, and switching characteristics for CPSW3G MDIO. Table 7-21. CPSW3G MDIO Timing Conditions PARAMETER MIN MAX UNIT 0.9 3.6 V/ns 10 470 pF 0 5 ns 1 ns INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance PCB CONNECTIVITY REQUIREMENTS td(Trace Delay) Propagation delay of each trace td(Trace Mismatch Delay) Propagation delay mismatch across all traces Table 7-22. CPSW3G MDIO Timing Requirements see Figure 7-22 NO. PARAMETER MDIO1 tsu(MDIO_MDC) Setup time, MDIO[x]_MDIO valid before MDIO[x]_MDC high MDIO2 th(MDC_MDIO) Hold time, MDIO[x]_MDIO valid after MDIO[x]_MDC high MIN MAX UNIT 45 ns 0 ns Table 7-23. CPWS3G MDIO Switching Characteristics see Figure 7-22 NO. PARAMETER MIN MAX UNIT MDIO3 tc(MDC) Cycle time, MDIO[x]_MDC 400 ns MDIO4 tw(MDCH) Pulse Duration, MDIO[x]_MDC high 160 ns MDIO5 tw(MDCL) Pulse Duration, MDIO[x]_MDC low 160 MDIO7 td(MDC_MDIO) Delay time, MDIO[x]_MDC low to MDIO[x]_MDIO valid -10 Copyright © 2023 Texas Instruments Incorporated ns 10 ns Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 133 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 MDIO3 MDIO4 MDIO5 MDIO[x]_MDC MDIO1 MDIO2 MDIO[x]_MDIO (input) MDIO7 MDIO[x]_MDIO (output) CPSW2G_MDIO_TIMING_01 Figure 7-22. CPSW3G MDIO Timing Requirements and Switching Characteristics 134 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.1.2 CPSW3G RMII Timing Table 7-24, Table 7-25, Figure 7-23, Table 7-26, Figure 7-24 Table 7-27, and Figure 7-25 present timing conditions, requirements, and switching characteristics for CPSW3G RMII. Table 7-24. CPSW3G RMII Timing Conditions PARAMETER MIN MAX UNIT 0.18 0.54 V/ns 0.4 1.2 V/ns 3 25 pF INPUT CONDITIONS SRI VDD(1) = 1.8V Input slew rate VDD(1) = 3.3V OUTPUT CONDITIONS CL (1) Output load capacitance VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see POWER column of the Pin Attributes table. Table 7-25. RMII[x]_REF_CLK Timing Requirements – RMII Mode see Figure 7-23 NO. PARAMETER DESCRIPTION MIN MAX 19.999 20.001 ns Pulse Duration, RMII[x]_REF_CLK High 7 13 ns Pulse Duration, RMII[x]_REF_CLK Low 7 13 ns RMII1 tc(REF_CLK) Cycle time, RMII[x]_REF_CLK RMII2 tw(REF_CLKH) RMII3 tw(REF_CLKL) UNIT RMII1 RMII2 RMII[x]_REF_CLK RMII3 Figure 7-23. CPSW3G RMII[x]_REF_CLK Timing Requirements – RMII Mode Table 7-26. RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RX_ER Timing Requirements – RMII Mode see Figure 7-24 NO. RMII4 RMII5 PARAMETER DESCRIPTION MIN MAX UNIT tsu(RXD-REF_CLK) Setup time, RMII[x]_RXD[1:0] valid before RMII[x]_REF_CLK 4 ns tsu(CRS_DV-REF_CLK) Setup time, RMII[x]_CRS_DV valid before RMII[x]_REF_CLK 4 ns tsu(RX_ER-REF_CLK) Setup time, RMII[x]_RX_ER valid before RMII[x]_REF_CLK 4 ns th(REF_CLK-RXD) Hold time RMII[x]_RXD[1:0] valid after RMII[x]_REF_CLK 2 ns th(REF_CLK-CRS_DV) Hold time, RMII[x]_CRS_DV valid after RMII[x]_REF_CLK 2 ns th(REF_CLK-RX_ER) Hold time, RMII[x]_RX_ER valid after RMII[x]_REF_CLK 2 ns RMII4 RMII5 RMII[x]_REF_CLK RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RX_ER Figure 7-24. CPSW3G RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RX_ER Timing Requirements – RMII Mode Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 135 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-27. RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics – RMII Mode see Figure 7-25 NO. RMII6 MIN MAX td(REF_CLK-TXD) PARAMETER Delay time, RMII[x]_REF_CLK High to RMII[x]_ TXD[1:0] valid DESCRIPTION 2 10 UNIT ns td(REF_CLK-TX_EN) Delay time, RMII[x]_REF_CLK to RMII[x]_TX_EN valid 2 10 ns RMII6 RMII[x]_REF_CLK RMII[x]_TXD[1:0], RMII[x]_TX_EN Figure 7-25. RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics – RMII Mode 136 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.1.3 CPSW3G RGMII Timing Table 7-28, Table 7-29, Table 7-30, Figure 7-26, Table 7-31, Table 7-32, and Figure 7-27 present timing conditions, requirements, and switching characteristics for CPSW3G RGMII. Table 7-28. CPSW3G RGMII Timing Conditions PARAMETER MIN MAX UNIT 2.64 5 V/ns 2 20 pF RGMII[x]_RXC, RGMII[x]_RD[3:0], RGMII[x]_RX_CTL 50 ps RGMII[x]_TXC, RGMII[x]_TD[3:0], RGMII[x]_TX_CTL 50 ps INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance PCB CONNECTIVITY REQUIREMENTS td(Trace Mismatch Delay) Propagation delay mismatch across all traces Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 137 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-29. RGMII[x]_RXC Timing Requirements – RGMII Mode see Figure 7-26 NO. PARAMETER RGMII1 tc(RXC) DESCRIPTION Cycle time, RGMII[x]_RXC RGMII2 tw(RXCH) Pulse duration, RGMII[x]_RXC high RGMII3 tw(RXCL) Pulse duration, RGMII[x]_RXC low MODE MIN MAX UNIT 10Mbps 360 440 ns 100Mbps 36 44 ns 1000Mbps 7.2 8.8 ns 10Mbps 160 240 ns 100Mbps 16 24 ns 1000Mbps 3.6 4.4 ns 10Mbps 160 240 ns 100Mbps 16 24 ns 1000Mbps 3.6 4.4 ns Table 7-30. RGMII[x]_RD[3:0], and RGMII[x]_RX_CTL Timing Requirements – RGMII Mode see Figure 7-26 NO. PARAMETER RGMII4 tsu(RD-RXC) DESCRIPTION Setup time, RGMII[x]_RD[3:0] valid before RGMII[x]_RXC high/low tsu(RX_CTL-RXC) Setup time, RGMII[x]_RX_CTL valid before RGMII[x]_RXC high/low RGMII5 th(RXC-RD) Hold time, RGMII[x]_RD[3:0] valid after RGMII[x]_RXC high/low th(RXC-RX_CTL) Hold time, RGMII[x]_RX_CTL valid after RGMII[x]_RXC high/low MODE MIN MAX UNIT 10Mbps 1 ns 100Mbps 1 ns 1000Mbps 1 ns 10Mbps 1 ns 100Mbps 1 ns 1000Mbps 1 ns 10Mbps 1 ns 100Mbps 1 ns 1000Mbps 1 ns 10Mbps 1 ns 100Mbps 1 ns 1000Mbps 1 ns RGMII1 RGMII2 RGMII[x]_RXC RGMII3 (A) RGMII4 RGMII5 (B) RGMII[x]_RD[3:0] RGMII[x]_RX_CTL A. B. (B) 1st Half-byte 2nd Half-byte RXDV RXERR RGMII[x]_RXC must be externally delayed relative to the data and control pins. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the rising edge of RGMII[x]_RXC and data bits 7-4 on the falling edge of RGMII[x]_RXC. Similarly, RGMII[x]_RX_CTL carries RXDV on rising edge of RGMII[x]_RXC and RXERR on falling edge of RGMII[x]_RXC. Figure 7-26. CPSW3G RGMII[x]_RXC, RGMII[x]_RD[3:0], RGMII[x]_RX_CTL Timing Requirements - RGMII Mode 138 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-31. RGMII[x]_TXC Switching Characteristics – RGMII Mode see Figure 7-27 NO. PARAMETER RGMII6 tc(TXC) DESCRIPTION Cycle time, RGMII[x]_TXC RGMII7 tw(TXCH) Pulse duration, RGMII[x]_TXC high RGMII8 tw(TXCL) Pulse duration, RGMII[x]_TXC low MODE MIN MAX UNIT 10Mbps 360 440 ns 100Mbps 36 44 ns 1000Mbps 7.2 8.8 ns 10Mbps 160 240 ns 100Mbps 16 24 ns 1000Mbps 3.6 4.4 ns 10Mbps 160 240 ns 100Mbps 16 24 ns 1000Mbps 3.6 4.4 ns Table 7-32. RGMII[x]_TD[3:0] and RGMII[x]_TX_CTL Switching Characteristics – RGMII Mode see Figure 7-27 NO. PARAMETER RGMII9 tosu(TD-TXC) DESCRIPTION Output setup time, RGMII[x]_TD[3:0] valid to RGMII[x]_TXC high/low tosu(TX_CTL-TXC) Output setup time, RGMII[x]_TX_CTL valid to RGMII[x]_TXC high/low RGMII10 toh(TXC-TD) Output hold time, RGMII[x]_TD[3:0] valid after RGMII[x]_TXC high/low toh(TXC-TX_CTL) Output hold time, RGMII[x]_TX_CTL valid after RGMII[x]_TXC high/low MODE MIN MAX UNIT 10Mbps 1.2 ns 100Mbps 1.2 ns 1000Mbps 1.2 ns 10Mbps 1.2 ns 100Mbps 1.2 ns 1000Mbps 1.2 ns 10Mbps 1.2 ns 100Mbps 1.2 ns 1000Mbps 1.2 ns 10Mbps 1.2 ns 100Mbps 1.2 ns 1000Mbps 1.2 ns RGMII6 RGMII7 RGMII8 (A) RGMII[x]_TXC RGMII9 (B) 1st Half-byte RGMII[x]_TD[3:0] 2nd Half-byte RGMII10 RGMII[x]_TX_CTL A. B. (B) TXEN TXERR TXC is delayed internally before being driven to the RGMII[x]_TXC pin. This internal delay is always enabled. Data and control information is received using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on the rising edge of RGMII[x]_TXC and data bits 7-4 on the falling edge of RGMII[x]_TXC. Similarly, RGMII[x]_TX_CTL carries TXEN on rising edge of RGMII[x]_TXC and TXERR on falling edge of RGMII[x]_TXC. Figure 7-27. CPSW3G RGMII[x]_TXC, RGMII[x]_TD[3:0], and RGMII[x]_TX_CTL Switching Characteristics - RGMII Mode Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 139 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.1.4 CPSW3G IOSETs Table 7-33 defines valid pin combinations of each CPSW3G MDIO0 IOSET. Table 7-33. CPSW3G MDIO0 IOSETs SIGNALS IOSET1 BALL NAME IOSET2 MUXMODE BALL NAME MUXMODE MDIO0_MDIO PRG0_PRU1_GPO18 4 PRG1_MDIO0_MDIO 4 MDIO0_MDC PRG0_PRU1_GPO19 4 PRG1_MDIO0_MDC 4 Table 7-34 defines valid pin combinations of each CPSW3G RMII1 and RMII2 IOSET. Table 7-34. CPSW3G RMII1 and RMII2 IOSETs SIGNALS IOSET1 BALL NAME IOSET2 MUXMODE BALL NAME MUXMODE RMII_REF_CLK(1) PRG1_PRU0_GPO10 5 PRG0_PRU0_GPO10 5 RMII1_CRS_DV PRG1_PRU1_GPO19 5 PRG0_PRU1_GPO19 5 RMII1_RX_ER PRG1_PRU0_GPO9 5 PRG0_PRU0_GPO9 5 RMII1_RXD0 PRG1_PRU1_GPO7 5 PRG0_PRU1_GPO7 5 RMII1_RXD1 PRG1_PRU1_GPO9 5 PRG0_PRU1_GPO9 5 RMII1_TXD0 PRG1_PRU1_GPO10 5 PRG0_PRU1_GPO10 5 RMII1_TXD1 PRG1_PRU1_GPO17 5 PRG0_PRU1_GPO17 5 RMII1_TX_EN PRG1_PRU1_GPO18 5 PRG0_PRU1_GPO18 5 RMII2_CRS_DV PRG1_PRU1_GPO13 5 PRG1_PRU1_GPO13 5 RMII2_RX_ER PRG1_PRU1_GPO4 5 PRG1_PRU1_GPO4 5 RMII2_RXD0 PRG1_PRU1_GPO0 5 PRG1_PRU1_GPO0 5 RMII2_RXD1 PRG1_PRU1_GPO1 5 PRG1_PRU1_GPO1 5 RMII2_TXD0 PRG1_PRU1_GPO11 5 PRG1_PRU1_GPO11 5 RMII2_TXD1 PRG1_PRU1_GPO12 5 PRG1_PRU1_GPO12 5 RMII2_TX_EN PRG1_PRU1_GPO15 5 PRG1_PRU1_GPO15 5 (1) RMII_REF_CLK is common to both RMII1 and RMII2. For proper operation, all pin multiplexed signal assignments must use the same IOSET. Table 7-35 defines valid pin combinations of each CPSW3G RGMII1 IOSET. Table 7-35. CPSW3G RGMII1 IOSETs SIGNALS IOSET1 BALL NAME 140 IOSET2 MUXMODE BALL NAME MUXMODE RGMII1_TX_CTL PRG1_PRU0_GPO9 4 PRG1_PRU0_GPO9 4 RGMII1_TXC PRG1_PRU0_GPO10 4 PRG1_PRU0_GPO10 4 RGMII1_TD0 PRG1_PRU1_GPO7 4 PRG1_PRU1_GPO7 4 RGMII1_TD1 PRG1_PRU1_GPO9 4 PRG1_PRU1_GPO9 4 RGMII1_TD2 PRG1_PRU1_GPO10 4 PRG1_PRU1_GPO10 4 RGMII1_TD3 PRG1_PRU1_GPO17 4 PRG1_PRU1_GPO17 4 RGMII1_RX_CTL PRG0_PRU0_GPO9 4 PRG1_PRU0_GPO5 4 RGMII1_RXC PRG0_PRU0_GPO10 4 PRG1_PRU0_GPO8 4 RGMII1_RD0 PRG0_PRU1_GPO7 4 PRG1_PRU1_GPO5 4 RGMII1_RD1 PRG0_PRU1_GPO9 4 PRG1_PRU1_GPO8 4 RGMII1_RD2 PRG0_PRU1_GPO10 4 PRG1_PRU1_GPO18 4 RGMII1_RD3 PRG0_PRU1_GPO17 4 PRG1_PRU1_GPO19 4 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.2 DDRSS For more details about features and additional description information on the device (LP)DDR4 Memory Interface, see the corresponding subsections within Signal Descriptions and Detailed Description sections. Table 7-36 and Figure 7-28 present switching characteristics for DDRSS. Table 7-36. DDRSS Switching Characteristics see Figure 7-28 NO. 1 (1) PARAMETER tc(DDR_CKP/ DDR_CKN) DDR TYPE Cycle time, DDR_CKP and DDR_CKN MIN MAX LPDDR4 1.25(1) 20 UNIT ns DDR4 1.25(1) 1.6 ns Minimum DDR clock Cycle time will be limited based on the specific memory type (vendor) used in a system and by PCB implementation. Refer to AM64x\AM243x DDR Board Design and Layout Guidelines for the proper PCB implementation to achieve maximum DDR frequency. 1 DDR0_CKP DDR0_CKN Figure 7-28. DDRSS Switching Characteristics For more information, see DDR Subsystem (DDRSS) section in Memory Controllers chapter in the device TRM. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 141 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.3 ECAP Table 7-37, Table 7-38, Figure 7-29, Table 7-39, and Figure 7-30 present timing conditions, requirements, and switching characteristics for ECAP. Table 7-37. ECAP Timing Conditions PARAMETER MIN MAX UNIT 1 4 V/ns 2 7 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance Table 7-38. ECAP Timing Requirements see Figure 7-29 NO. CAP1 (1) PARAMETER DESCRIPTION tw(CAP) MIN MAX (1) Pulse duration, CAP (asynchronous) 2 + 2P UNIT ns P = sysclk period in ns. CAP1 CAP EPERIPHERALS_TIMNG_01 Figure 7-29. ECAP Timings Requirements Table 7-39. ECAP Switching Characteristics see Figure 7-30 NO. CAP2 (1) PARAMETER DESCRIPTION tw(APWM) MIN MAX (1) Pulse duration, APWMx high/low -2 + 2P UNIT ns P = sysclk period in ns. CAP2 APWM EPERIPHERALS_TIMNG_02 Figure 7-30. ECAP Switching Characteristics For more information, see Enhanced Capture (ECAP) Module section in Peripherals chapter in the device TRM. 142 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.4 EPWM Table 7-40, Table 7-41, Figure 7-31, Table 7-42, Figure 7-32, Figure 7-33, and Figure 7-34 present timing conditions, requirements, and switching characteristics for EPWM. Table 7-40. EPWM Timing Conditions PARAMETER MIN MAX UNIT 1 4 V/ns 2 7 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance Table 7-41. EPWM Timing Requirements see Figure 7-31 NO. PARAMETER DESCRIPTION MIN UNIT ns ns PWM6 tw(SYNCIN) Pulse duration, EHRPWM_SYNCI 2+ PWM7 tw(TZ) Pulse duration, EHRPWM_TZn_IN low 2 + 3P(1) (1) MAX 2P(1) P = sysclk period in ns. PWM6 EHRPWM_SYNCI PWM7 EHRPWM_TZn_IN EPERIPHERALS_TIMNG_07 Figure 7-31. EPWM Timing Requirements Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 143 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-42. EPWM Switching Characteristics see Figure 7-32, Figure 7-33, and Figure 7-34 NO. PWM1 PARAMETER DESCRIPTION tw(PWM) MIN PWM2 tw(SYNCOUT) Pulse duration, EHRPWM_SYNCO PWM3 td(TZ-PWM) Delay time, EHRPWM_TZn_IN active to EHRPWM_A/B forced high/low PWM4 td(TZ-PWMZ) Delay time, EHRPWM_TZn_IN active to EHRPWM_A/B Hi-Z PWM5 tw(SOC) Pulse duration, EHRPWM_SOCA/B output (1) MAX P - 3(1) Pulse duration, EHRPWM_A/B high/low P- UNIT ns 3(1) ns P - 3(1) 11 ns 11 ns ns P = sysclk period in ns. PWM1 EHRPWM_A/B PWM1 PWM2 EHRPWM_SYNCO PWM5 EHRPWM_SOCA/B EPERIPHERALS_TIMNG_04 Figure 7-32. EHRPWM Switching Characteristics PWM3 EHRPWM_A/B EHRPWM_TZn_IN EPERIPHERALS_TIMING_05 Figure 7-33. EHRPWM_TZn_IN to EHRPWM_A/B Forced Switching Characteristics PWM4 EHRPWM_A/B EHRPWM_TZn_IN Figure 7-34. EHRPWM_TZn_IN to EHRPWM_A/B Hi-Z Switching Characteristics For more information, see Enhanced Pulse Width Modulation (EPWM) Module section in Peripherals chapter in the device TRM. 144 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.5 EQEP Table 7-43, Table 7-44, Figure 7-35, and Table 7-45 present timing conditions, requirements, and switching characteristics for EQEP. Table 7-43. EQEP Timing Conditions PARAMETER MIN MAX UNIT 1 4 V/ns 2 7 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance Table 7-44. EQEP Timing Requirements see Figure 7-35 NO. DESCRIPTION MIN ns ns (1) ns (1) ns (1) ns Pulse duration, QEP_A/B 2 + 2P tw(QEPIH) Pulse duration, QEP_I high 2 + 2P QEP3 tw(QEPIL) Pulse duration, QEP_I low 2 + 2P QEP4 tw(QEPSH) Pulse duration, QEP_S high 2 + 2P Pulse duration, QEP_S low UNIT (1) tw(QEP) QEP2 tw(QEPSL) MAX (1) QEP1 QEP5 (1) PARAMETER 2 + 2P P = sysclk period in ns QEP1 QEP_A/B QEP2 QEP_I QEP3 QEP4 QEP_S QEP5 EPERIPHERALS_TIMNG_03 Figure 7-35. EQEP Timing Requirements Table 7-45. EQEP Switching Characteristics NO. QEP6 PARAMETER td(QEP-CNTR) DESCRIPTION MIN Delay time, external clock to counter increment MAX 24 UNIT ns For more information, see Enhanced Quadrature Encoder Pulse (EQEP) Module section in Peripherals chapter in the device TRM. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 145 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.6 FSI Table 7-46, Table 7-47, Figure 7-36, Table 7-48, Figure 7-37, Table 7-49, and Figure 7-38 present timing conditions, requirements, and switching characteristics for FSI. Table 7-46. FSI Timing Conditions PARAMETER MIN MAX UNIT 0.8 4 V/ns 1 7 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance Table 7-47. FSI Timing Requirements see Figure 7-36 NO. MIN FSIR1 tc(RX_CLK) Cycle time, FSI_RXn_CLK FSIR2 tw(RX_CLK) Pulse width, FSI_RXn_CLK low or FSI_RXn_CLK high FSIR3 tsu(RX_D-RX_CLK) Setup time, FSI_RXn_D[1:0] valid before FSI_RXn_CLK FSIR4 th(RX_CLK-RX_D) Hold time, FSI_RXn_D[1:0] valid after FSI_RXn_CLK (1) MAX 20 (1) 0.5P - 1 UNIT ns (1) 0.5P + 1 ns 3 ns 2.5 ns P = FSI_RXn_CLK period in ns. FSIR1 FSIR2 FSIR2 FSI_RXn_CLK FSI_RXn_D0 FSI_RXn_D1 FSIR3 FSIR4 Figure 7-36. FSI Timing Requirements 146 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-48. FSI Switching Characteristics - FSI Mode see Figure 7-37 NO. PARAMETER FSIT1 tc(TX_CLK) MODE Cycle time, FSI_TXn_CLK MIN FSI Mode 20 (1) UNIT ns (1) ns (1) 0.25P + (1) 2.5 ns MIN MAX FSIT2 tw(TX_CLK) Pulse width, FSI_TXn_CLK low or FSI_TXn_CLK high FSI Mode 0.5p + 1 FSIT3 td(TX_CLK-TX_D) Delay time, FSI_TXn_D[1:0] valid after FSI_TXn_CLK high or FSI_TXn_CLK low FSI Mode 0.25P - 2 (1) MAX 0.5P - 1 P = FSI_TXn_CLK period in ns. FSIT1 FSIT2 FSIT2 FSI_TXn_CLK FSI_TXn_D0 FSI_TXn_D1 FSIT3 Figure 7-37. FSI Switching Characteristics - FSI Mode Table 7-49. FSI Switching Characteristics - SPI Mode see Figure 7-38 NO. PARAMETER FSIT4 tc(TX_CLK) MODE Cycle time, FSI_TXn_CLK SPI Mode 20 (1) FSIT5 tw(TX_CLK) Pulse width, FSI_TXn_CLK low or FSI_TXn_CLK high SPI Mode FSIT6 td(TX_CLKH-TX_D0) Delay time, FSI_TXn_CLK high to FSI_TXn_D0 valid SPI Mode 0.5P + 1 ns (1) ns 3 ns 0.5P - 1 P-3 SPI Mode P-2 ns SPI Mode Delay time, FSI_TXn_CLK low to FSI_TXn_D1 high ns Delay time, FSI_TXn_D1 low to FSI_TXn_CLK high td(TX_CLK-TX_D1) (1) td(TX_D1-TX_CLK) FSIT8 (1) FSIT7 (1) UNIT P = FSI_TXn_CLK period in ns. FSIT4 FSIT5 FSIT5 FSI_TXn_CLK FSIT6 FSI_TXn_D0 FSIT8 FSIT7 FSI_TXn_D1 Figure 7-38. FSI Switching Characteristics - SPI Mode For more information, see Fast Serial Interface section in Peripherals chapter in the device TRM. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 147 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.7 GPIO Table 7-50, Table 7-51, and Table 7-52 present timing conditions, requirements, and switching characteristics for GPIO. The device has three instances of the GPIO module. • MCU_GPIO0 • GPIO0 • GPIO1 Note GPIOn_x is generic name used to describe a GPIO signal, where n represents the specific GPIO module and x represents one of the input/output signals associated with the module. For additional description information on the device GPIO, see the corresponding subsections within Signal Descriptions and Detailed Description sections. Table 7-50. GPIO Timing Conditions PARAMETER BUFFER TYPE MIN MAX UNIT LVCMOS 0.2 6.6 V/ns I2C OD FS 0.2 0.8 V/ns INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance LVCMOS 3 10 pF I2C OD FS 3 100 pF Table 7-51. GPIO Timing Requirements NO. PARAMETER GPIO1 tw(GPIO_IN) (1) DESCRIPTION Pulse width, GPIOn_x MODE MIN 1.8 V 2P + 2.6 (1) 3.3 V 2P + 3.5 (1) MAX UNIT ns ns P = functional clock period in ns. Table 7-52. GPIO Switching Characteristics NO. PARAMETER GPIO2 tw(GPIO_OUT) DESCRIPTION Pulse width, GPIOn_x BUFFER TYPE LVCMOS I2C OD FS (1) MIN MAX UNIT 0.975P(1) 3.6 ns 160 ns P = functional clock period in ns. For more information, see General-Purpose Interface (GPIO) section in Peripherals chapter in the device TRM. 148 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.8 GPMC For more details about features and additional description information on the device General-Purpose Memory Controller, see the corresponding subsections within Signal Descriptions and Detailed Description sections. Note GPMC has one or more signals which can be multiplexed to more than one pin. Timing requirements and switching characteristics defined in this section are only valid for specific pin combinations known as IOSETs. Valid pin combinations or IOSETs for this interface is shown in Section 7.10.5.8.4. Table 7-53 presents timing conditions for GPMC. Table 7-53. GPMC Timing Conditions PARAMETER MIN MAX UNIT 1.65 4 V/ns 5 20 pF 133 MHz Synchronous Mode 140 360 ps All other modes 140 720 ps 200 ps INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance PCB CONNECTIVITY REQUIREMENTS td(Trace Delay) Propagation delay of each trace td(Trace Mismatch Propagation delay mismatch across all traces Delay) For more information, see General-Purpose Memory Controller (GPMC) section in Peripherals chapter in the device TRM. 7.10.5.8.1 GPMC and NOR Flash — Synchronous Mode Hold time, input wait GPMC_WAIT[j] valid after output clock GPMC_CLK high (th(clkH-waitV)) Table 7-54 and Table 7-55 present timing requirements and switching characteristics for GPMC and NOR Flash Synchronous Mode. Table 7-54. GPMC and NOR Flash Timing Requirements — Synchronous Mode see Figure 7-39, Figure 7-40, and Figure 7-43 MIN NO. PARAMETER F12 tsu(dV-clkH) F13 th(clkH-dV) F21 tsu(waitV-clkH) DESCRIPTION Setup time, input data GPMC_AD[n:0](1) valid before output clock GPMC_CLK high Hold time, input data GPMC_AD[n:0](1) valid after output clock GPMC_CLK high Setup time, input wait GPMC_WAIT[j](3) (4) valid before output clock GPMC_CLK high Copyright © 2023 Texas Instruments Incorporated MODE(5) MAX MIN MAX GPMC_FCLK = GPMC_FCLK = UNIT 100 MHz(2) 133 MHz(2) div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 1.81 1.12 ns not_div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 1.06 3.5 ns div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 2.29 2.29 ns not_div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 2.29 2.29 ns div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 1.81 1.12 ns not_div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 1.06 3.5 ns Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 149 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-54. GPMC and NOR Flash Timing Requirements — Synchronous Mode (continued) see Figure 7-39, Figure 7-40, and Figure 7-43 NO. PARAMETER F22 th(clkH-waitV) MODE(5) DESCRIPTION Hold time, input wait GPMC_WAIT[j](3) (4) valid after output clock GPMC_CLK high MIN MAX MIN MAX GPMC_FCLK = GPMC_FCLK = UNIT 100 MHz(2) 133 MHz(2) div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 2.29 2.29 ns not_div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 2.29 2.29 ns (1) (2) Synchronous Mode supports 16-bit data bus up to 133 MHz and 32-bit data bus up to 100 MHz GPMC_FCLK select (3) (4) • gpmc_fclk_sel[1:0] = 2b01 to select the 100MHz GPMC_FCLK • gpmc_fclk_sel[1:0] = 2b00 to select the 133MHz GPMC_FCLK In GPMC_WAIT[j], j is equal to 0 or 1. Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see GeneralPurpose Memory Controller (GPMC) section in the device TRM. For div_by_1_mode: (5) • GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h: – GPMC_CLK frequency = GPMC_FCLK frequency For not_div_by_1_mode: • GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 1h to 3h: – GPMC_CLK frequency = GPMC_FCLK frequency / (2 to 4) For GPMC_FCLK_MUX: • CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = PER1_PLL_CLKOUT / 3 = 300 / 3 = 100MHz For TIMEPARAGRANULARITY_X1: • GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/ WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME, OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE, WRDATAONADMUXBUS) Table 7-55. GPMC and NOR Flash Switching Characteristics – Synchronous Mode see Figure 7-39, Figure 7-40, Figure 7-41, Figure 7-42, and Figure 7-43 NO. (17) MIN MAX F0 1 / tc(clk) Period, output clock GPMC_CLK (16) div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 10.00 7.52 ns F1 tw(clkH) Typical pulse duration, output clock GPMC_CLK high div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 0.475P - 0.3(15) 0.475P - 0.3(15) ns F1 tw(clkL) Typical pulse duration, output clock GPMC_CLK low div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 0.475P - 0.3(15) 0.475P - 0.3(15) ns F2 td(clkH-csnV) Delay time, output clock GPMC_CLK rising edge to output chip select (14) GPMC_CSn[i] transition div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1; no extra_delay F - 2.2 F+ 3.75 F - 2.2 F+ 3.75 ns F3 td(clkH-CSn[i]V) Delay time, output clock GPMC_CLK rising edge to output chip select (14) GPMC_CSn[i] invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1; no extra_delay E - 2.2 E+ 3.18 E - 2.2 E + 4.5 ns Submit Document Feedback MODE MAX PARAMETER 150 DESCRIPTION MIN (3) 100 MHz (6) (5) 133 MHz (6) (5) UNIT Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-55. GPMC and NOR Flash Switching Characteristics – Synchronous Mode (continued) see Figure 7-39, Figure 7-40, Figure 7-41, Figure 7-42, and Figure 7-43 NO. DESCRIPTION (17) (3) PARAMETER MODE F4 td(aV-clk) Delay time, output address GPMC_A[27:1] valid to output clock GPMC_CLK first edge div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 F5 td(clkH-aIV) Delay time, output clock GPMC_CLK rising edge to output address GPMC_A[27:1] invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 F6 td(be[x]nV-clk) Delay time, output lower byte enable and command latch enable GPMC_BE0n_CLE, output upper byte enable GPMC_BE1n valid to output clock GPMC_CLK first edge div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 F7 td(clkH-be[x]nIV) Delay time, output clock GPMC_CLK rising edge to output lower byte enable and command latch enable GPMC_BE0n_CLE, output upper byte (11) enable GPMC_BE1n invalid F7 td(clkL-be[x]nIV) F7 MIN MAX MIN MAX 100 MHz 133 MHz B - 2.3 B + 4.5 B - 2.3 B + 4.5 (3) -2.3 4.5 (3) ns 4.5 ns B - 2.3 B + 1.9 B - 2.3 B + 1.9 ns div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 D - D + 1.9 2.3(4) D - 2.3 D + 1.9 ns Delay time, GPMC_CLK falling edge to GPMC_BE0n_CLE, GPMC_BE1n (12) invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 D - 2.3 D + 1.9 D - 2.3 D + 1.9 ns td(clkL-be[x]nIV). Delay time, GPMC_CLK falling edge to GPMC_BE0n_CLE, GPMC_BE1n (13) invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 D - 2.3 D + 1.9 D - 2.3 D + 1.9 ns F8 td(clkH-advn) Delay time, output clock GPMC_CLK rising edge to output address valid and address latch enable GPMC_ADVn_ALE transition div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1; no extra_delay G - G + 4.5 G - 2.3 G + 4.5 (7) 2.3(7) ns F9 td(clkH-advnIV) Delay time, output clock GPMC_CLK rising edge to output address valid and address latch enable GPMC_ADVn_ALE invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1; no extra_delay D - 2.3 D + 4.5 D - 2.3 D + 4.5 ns F10 td(clkH-oen) Delay time, output clock GPMC_CLK rising edge to output enable GPMC_OEn_REn transition div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1; no extra_delay H - H + 3.5 2.3(8) H - 2.3 H + 3.5 ns F11 td(clkH-oenIV) Delay time, output clock GPMC_CLK rising edge to output enable GPMC_OEn_REn invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1; no extra_delay H - 2.3 H + 3.5 H - 2.3 H + 3.5 ns F14 td(clkH-wen) Delay time, output clock GPMC_CLK rising edge to output write enable GPMC_WEn transition div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1; no extra_delay I - 2.3 F15 td(clkH-do) Delay time, output clock GPMC_CLK rising edge to output data (11) GPMC_AD[n:0](1) transition div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 F15 td(clkL-do) Delay time, GPMC_CLK falling edge to GPMC_AD[n:0](1) data bus (12) transition F15 td(clkL-do). F17 td(clkH-be[x]n) (3) (4) (4) (4) (8) (3) (4) (4) (4) (4) (8) (8) I + 4.5 ns J - 2.3 J + 2.7 J - 2.3 J + 2.7 ns div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 J - 2.3 J + 2.7 J - 2.3 J + 2.7 ns Delay time, GPMC_CLK falling edge to GPMC_AD[n:0](1) data bus (13) transition div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 J - 2.3 J + 2.7 J - 2.3 J + 2.7 ns Delay time, output clock GPMC_CLK rising edge to output lower byte enable and command latch enable (11) GPMC_BE0n_CLE transition div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 J - 2.3 J + 1.9 J - 2.3 J + 1.9 ns Copyright © 2023 Texas Instruments Incorporated (9) I + 4.5 -2.3 UNIT (10) (10) (10) (10) I - 2.3 (9) (10) (10) (10) (10) Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 151 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-55. GPMC and NOR Flash Switching Characteristics – Synchronous Mode (continued) see Figure 7-39, Figure 7-40, Figure 7-41, Figure 7-42, and Figure 7-43 NO. PARAMETER (3) DESCRIPTION (17) MODE MIN MAX MIN 100 MHz MAX 133 MHz UNIT F17 td(clkL-be[x]n) Delay time, GPMC_CLK falling edge to GPMC_BE0n_CLE, GPMC_BE1n (12) transition div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 J - 2.3 J + 1.9 J - 2.3 J + 1.9 ns F17 td(clkL-be[x]n). Delay time, GPMC_CLK falling edge to GPMC_BE0n_CLE, GPMC_BE1n (13) transition div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 J - 2.3 J + 1.9 J - 2.3 J + 1.9 ns F18 tw(csnV) Pulse duration, output chip select (14) GPMC_CSn[i] low Read Write F19 tw(be[x]nV) Pulse duration, output lower byte enable and command latch enable GPMC_BE0n_CLE, output upper byte enable GPMC_BE1n low Read Write Pulse duration, output address valid and address latch enable GPMC_ADVn_ALE low F20 tw(advnV) (1) (2) (3) (4) (5) (6) (10) (10) (10) (10) A A ns A A ns C C ns C C ns Read K K ns Write K K ns Synchronous Mode supports 16-bit data bus up to 133 MHz and 32-bit data bus up to 100 MHz For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15) For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15) For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15) With n being the page burst access number. B = ClkActivationTime × GPMC_FCLK(15) For single read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15) For burst read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15) For burst write: D = (WrCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15) For single read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15) For burst read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15) For burst write: E = (CSWrOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15) For csn falling edge (CS activated): • Case GPMCFCLKDIVIDER = 0: • – F = 0.5 × CSExtraDelay × GPMC_FCLK(15) Case GPMCFCLKDIVIDER = 1: F = 0.5 × CSExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime are even) – F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(15) otherwise Case GPMCFCLKDIVIDER = 2: – • (7) – F = 0.5 × CSExtraDelay × GPMC_FCLK(15) if ((CSOnTime - ClkActivationTime) is a multiple of 3) – F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(15) if ((CSOnTime - ClkActivationTime - 1) is a multiple of 3) – F = (2 + 0.5 × CSExtraDelay) × GPMC_FCLK(15) if ((CSOnTime - ClkActivationTime - 2) is a multiple of 3) For ADV falling edge (ADV activated): • Case GPMCFCLKDIVIDER = 0: • – G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) Case GPMCFCLKDIVIDER = 1: G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and ADVOnTime are even) – G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) otherwise Case GPMCFCLKDIVIDER = 2: – • – – – G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if ((ADVOnTime - ClkActivationTime) is a multiple of 3) G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVOnTime - ClkActivationTime - 1) is a multiple of 3) G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVOnTime - ClkActivationTime - 2) is a multiple of 3) For ADV rising edge (ADV deactivated) in Reading mode: • Case GPMCFCLKDIVIDER = 0: – 152 G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com • SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Case GPMCFCLKDIVIDER = 1: G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and ADVRdOffTime are even) – G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) otherwise Case GPMCFCLKDIVIDER = 2: – • – – – G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if ((ADVRdOffTime - ClkActivationTime) is a multiple of 3) G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVRdOffTime - ClkActivationTime - 1) is a multiple of 3) G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVRdOffTime - ClkActivationTime - 2) is a multiple of 3) For ADV rising edge (ADV deactivated) in Writing mode: • Case GPMCFCLKDIVIDER = 0: • – G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) Case GPMCFCLKDIVIDER = 1: • G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and ADVWrOffTime are even) – G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) otherwise Case GPMCFCLKDIVIDER = 2: – (8) – G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if ((ADVWrOffTime - ClkActivationTime) is a multiple of 3) – G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVWrOffTime - ClkActivationTime - 1) is a multiple of 3) – G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVWrOffTime - ClkActivationTime - 2) is a multiple of 3) For OE falling edge (OE activated) and IO DIR rising edge (Data Bus input direction): • Case GPMCFCLKDIVIDER = 0: • – H = 0.5 × OEExtraDelay × GPMC_FCLK(15) Case GPMCFCLKDIVIDER = 1: • H = 0.5 × OEExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime are even) – H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) otherwise Case GPMCFCLKDIVIDER = 2: – – – – H = 0.5 × OEExtraDelay × GPMC_FCLK(15) if ((OEOnTime - ClkActivationTime) is a multiple of 3) H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) if ((OEOnTime - ClkActivationTime - 1) is a multiple of 3) H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) if ((OEOnTime - ClkActivationTime - 2) is a multiple of 3) For OE rising edge (OE deactivated): • Case GPMCFCLKDIVIDER = 0: • – H = 0.5 × OEExtraDelay × GPMC_FCLK(15) Case GPMCFCLKDIVIDER = 1: • H = 0.5 × OEExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are even) – H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) otherwise Case GPMCFCLKDIVIDER = 2: – (9) – H = 0.5 × OEExtraDelay × GPMC_FCLK(15) if ((OEOffTime - ClkActivationTime) is a multiple of 3) – H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) if ((OEOffTime - ClkActivationTime - 1) is a multiple of 3) – H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) if ((OEOffTime - ClkActivationTime - 2) is a multiple of 3) For WE falling edge (WE activated): • Case GPMCFCLKDIVIDER = 0: • – I = 0.5 × WEExtraDelay × GPMC_FCLK(15) Case GPMCFCLKDIVIDER = 1: • I = 0.5 × WEExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime are even) – I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) otherwise Case GPMCFCLKDIVIDER = 2: – – – – I = 0.5 × WEExtraDelay × GPMC_FCLK(15) if ((WEOnTime - ClkActivationTime) is a multiple of 3) I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) if ((WEOnTime - ClkActivationTime - 1) is a multiple of 3) I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) if ((WEOnTime - ClkActivationTime - 2) is a multiple of 3) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 153 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 For WE rising edge (WE deactivated): • Case GPMCFCLKDIVIDER = 0: • – I = 0.5 × WEExtraDelay × GPMC_FCLK (15) Case GPMCFCLKDIVIDER = 1: I = 0.5 × WEExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime are even) – I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) otherwise Case GPMCFCLKDIVIDER = 2: – • (10) (11) (12) (13) (14) (15) (16) (17) – I = 0.5 × WEExtraDelay × GPMC_FCLK(15) if ((WEOffTime - ClkActivationTime) is a multiple of 3) – I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) if ((WEOffTime - ClkActivationTime - 1) is a multiple of 3) – I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) if ((WEOffTime - ClkActivationTime - 2) is a multiple of 3) J = GPMC_FCLK(15) First transfer only for CLK DIV 1 mode. Half cycle; for all data after initial transfer for CLK DIV 1 mode. Half cycle of GPMC_CLKOUT; for all data for modes other than CLK DIV 1 mode. GPMC_CLKOUT divide down from GPMC_FCLK. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1. P = GPMC_CLK period in ns Related to the GPMC_CLK output clock maximum and minimum frequencies programmable in the GPMC module by setting the GPMC_CONFIG1_i configuration register bit field GPMCFCLKDIVIDER. For div_by_1_mode: • GPMC_CONFIG1_i register: GPMCFCLKDIVIDER = 0h: – GPMC_CLK frequency = GPMC_FCLK frequency For GPMC_FCLK_MUX: • CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = PER1_PLL_CLKOUT / 3 = 300 / 3 = 100MHz For TIMEPARAGRANULARITY_X1: • GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/ WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME, OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE, WRDATAONADMUXBUS) For no extra_delay: • • • • 154 GPMC_CONFIG2_i Register: CSEXTRADELAY = 0h = CSn Timing control signal is not delayed GPMC_CONFIG4_i Register: WEEXTRADELAY = 0h = nWE timing control signal is not delayed GPMC_CONFIG4_i Register: OEEXTRADELAY = 0h = nOE timing control signal is not delayed GPMC_CONFIG3_i Register: ADVEXTRADELAY = 0h = nADV timing control signal is not delayed Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 F1 F0 F1 GPMC_CLK F2 F3 F18 GPMC_CSn[i] F4 GPMC_A[MSB:1] Valid Address F6 F7 F19 GPMC_BE0n_CLE F19 GPMC_BE1n F6 F8 F8 F20 F9 GPMC_ADVn_ALE F10 F11 GPMC_OEn_REn F13 F12 GPMC_AD[15:0] D0 GPMC_WAIT[j] GPMC_01 A. B. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1. Figure 7-39. GPMC and NOR Flash — Synchronous Single Read (GPMCFCLKDIVIDER = 0) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 155 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 F1 F0 F1 GPMC_CLK F2 F3 GPMC_CSn[i] F4 GPMCA[MSB:1] Valid Address F6 F7 GPMC_BE0n_CLE F7 GPMC_BE1n F6 F8 F8 F9 GPMC_ADVn_ALE F10 F11 GPMC_OEn_REn F13 F13 F12 D0 GPMC_AD[15:0] F21 F12 D1 D2 D3 F22 GPMC_WAIT[j] GPMC_02 A. B. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1. Figure 7-40. GPMC and NOR Flash — Synchronous Burst Read — 4x16–bit (GPMCFCLKDIVIDER = 0) F1 F1 F0 GPMC_CLK F2 F3 GPMC_CSn[i] F4 Valid Address GPMC_A[MSB:1] F17 F6 F17 F17 GPMC_BE0n_CLE F17 F17 F17 GPMC_BE1n F6 F8 F8 F9 GPMC_ADVn_ALE F14 F14 GPMC_WEn F15 GPMC_AD[15:0] D0 F15 D1 D2 F15 D3 GPMC_WAIT[j] GPMC_03 A. 156 In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com B. SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 In GPMC_WAIT[j], j is equal to 0 or 1. Figure 7-41. GPMC and NOR Flash—Synchronous Burst Write (GPMCFCLKDIVIDER = 0) F1 F0 F1 GPMC_CLK F2 F3 GPMC_CSn[i] F6 F7 GMPC_BE0n_CLE Valid F6 F7 Valid GPMC_BE1n F4 GPMC_A[27:17] Address (MSB) F12 F4 GPMC_AD[15:0] F5 Address (LSB) F13 D0 F8 D1 F12 D2 F8 D3 F9 GPMC_ADVn_ALE F10 F11 GPMC_OEn_REn GPMC_WAIT[j] GPMC_04 A. B. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1. Figure 7-42. GPMC and Multiplexed NOR Flash — Synchronous Burst Read Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 157 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 F1 F1 F0 GPMC_CLK F2 F3 F18 GPMC_CSn[i] F4 GPMC_A[27:17] Address (MSB) F17 F6 F17 F6 F17 F17 GPMC_BE1n F17 F17 BPMC_BE0n_CLE F8 F8 F20 F9 GPMC_ADVn_ALE F14 F14 GPMC_WEn F15 GPMC_AD[15:0] Address (LSB) D0 F22 D1 F15 F15 D2 D3 F21 GPMC_WAIT[j] GPMC_05 A. B. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1. Figure 7-43. GPMC and Multiplexed NOR Flash — Synchronous Burst Write 158 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.8.2 GPMC and NOR Flash — Asynchronous Mode Table 7-56 and Table 7-57 present timing requirements and switching characteristics for GPMC and NOR Flash — Asynchronous Mode. Table 7-56. GPMC and NOR Flash Timing Requirements – Asynchronous Mode see Figure 7-44, Figure 7-45, Figure 7-46, and Figure 7-48 NO. FA5 PARAMETER (1) DESCRIPTION MODE MIN MAX UNIT Page mode successive data access time div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 P FA2 (1) 1 tacc2-pgmode(d) Page mode first data access time div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 H ns tacc1-pgmode(d) (4) FA2 (2) 0 ns H (3) div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 ns Data access time (4) tacc(d) (1) (2) (3) (4) (5) The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge. FA5 value must be stored inside the AccessTime register bit field. The FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field. P = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(5) H = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(5) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns. Table 7-57. GPMC and NOR Flash Switching Characteristics – Asynchronous Mode see Figure 7-44, Figure 7-45, Figure 7-46, Figure 7-47, Figure 7-48, and Figure 7-49 NO. FA0 FA1 FA3 PARAMETER tw(be[x]nV) tw(csnV) td(csnV-advnIV) DESCRIPTION MIN (15) MODE MAX 133 MHz Pulse duration, output lower-byte enable and command latch enable GPMC_BE0n_CLE, output upper-byte enable GPMC_BE1n valid time Read N (12) Write (12) Pulse duration, output chip select GPMC_CSn[i](13) low Read A (1) Write A (1) Delay time, output chip select GPMC_CSn[i](13) valid to output address valid and address latch enable GPMC_ADVn_ALE invalid Read B - 2.1 B + 2.1 Write B - 2.1 B + 2.1 N (2) (2) UNIT (2) ns ns ns (2) FA4 td(csnV-oenIV) Delay time, output chip select GPMC_CSn[i](13) valid to output enable GPMC_OEn_REn invalid (Single read) div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 C - 2.1 C + 2.1 ns FA9 td(aV-csnV) Delay time, output address GPMC_A[27:1] valid to output chip select GPMC_CSn[i](13) valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 J - 2.1 (9) J + 2.1 ns FA10 td(be[x]nV-csnV) Delay time, output lower-byte enable and command latch enable GPMC_BE0n_CLE, output upper-byte enable GPMC_BE1n valid to output chip select GPMC_CSn[i](13) valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 J - 2.1 (9) J + 2.1 ns FA12 td(csnV-advnV) Delay time, output chip select GPMC_CSn[i](13) valid to output address valid and address latch enable GPMC_ADVn_ALE valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 K - 2.1 K + 2.1 ns FA13 td(csnV-oenV) Delay time, output chip select GPMC_CSn[i](13) valid to output enable GPMC_OEn_REn valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 L - 2.1 L + 2.1 ns FA16 tw(aIV) Pulse duration output address GPMC_A[26:1] invalid between 2 successive read and write accesses div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 G (7) Copyright © 2023 Texas Instruments Incorporated (3) (10) (11) (3) (9) (9) (10) (11) Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 ns 159 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-57. GPMC and NOR Flash Switching Characteristics – Asynchronous Mode (continued) see Figure 7-44, Figure 7-45, Figure 7-46, Figure 7-47, Figure 7-48, and Figure 7-49 NO. PARAMETER DESCRIPTION MIN (15) MODE MAX 133 MHz FA18 td(csnV-oenIV) Delay time, output chip select GPMC_CSn[i](13) valid to output enable GPMC_OEn_REn invalid (Burst read) div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 FA20 tw(aV) Pulse duration, output address GPMC_A[27:1] valid - 2nd, 3rd, and 4th accesses div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 D (4) FA25 td(csnV-wenV) Delay time, output chip select GPMC_CSn[i](13) valid to output write enable GPMC_WEn valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 E - 2.1 E + 2.1 ns FA27 td(csnV-wenIV) Delay time, output chip select GPMC_CSn[i](13) valid to output write enable GPMC_WEn invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 F - 2.1 (6) F + 2.1 ns FA28 td(wenV-dV) Delay time, output write enable GPMC_WEn valid to output data GPMC_AD[15:0] valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 2.1 ns FA29 td(dV-csnV) Delay time, output data GPMC_AD[15:0] valid to output chip select GPMC_CSn[i](13) valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 J + 2.1 ns FA37 td(oenV-aIV) Delay time, output enable GPMC_OEn_REn valid to output address GPMC_AD[15:0] phase end div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 2.1 ns (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) I - 2.1 (8) I + 2.1 (8) UNIT (5) J - 2.1 (9) ns ns (5) (6) (9) For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14) For single write: A = (CSWrOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14) For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14) For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14) with n being the page burst access number For reading: B = ((ADVRdOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK(14) For writing: B = ((ADVWrOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK(14) C = ((OEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14) D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(14) E = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14) F = ((WEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14) G = Cycle2CycleDelay × GPMC_FCLK(14) I = ((OEOffTime + (n - 1) × PageBurstAccessTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14) J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK(14) K = ((ADVOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK(14) L = ((OEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14) For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14) For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14) For burst read: N = (RdCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14) For burst write: N = (WrCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. GPMC_FCLK is general-purpose memory controller internal functional clock period in ns. For div_by_1_mode: • GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h: – GPMC_CLK frequency = GPMC_FCLK frequency For GPMC_FCLK_MUX: • CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz For TIMEPARAGRANULARITY_X1: • 160 GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/ WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME, Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE, WRDATAONADMUXBUS) GPMC_FCLK GPMC_CLK FA5 FA1 GPMC_CSn[i] FA9 Valid Address GPMC_A[MSB:1] FA0 FA10 GPMC_BE0n_CLE Valid GPMC_BE1n Valid FA0 FA10 FA3 FA12 GPMC_ADVn_ALE FA4 FA13 GPMC_OEn_REn Data IN 0 GPMC_AD[15:0] Data IN 0 GPMC_WAIT[j] GPMC_06 A. B. C. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], jis equal to 0 or 1. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. Figure 7-44. GPMC and NOR Flash — Asynchronous Read — Single Word Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 161 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 GPMC_FCLK GPMC_CLK FA5 FA5 FA1 FA1 GPMC_CSn[i] FA16 FA9 FA9 GPMC_A[MSB:1] Address 0 Address 1 FA0 FA10 FA0 FA10 Valid GPMC_BE0n_CLE Valid FA0 GPMC_BE1n FA0 Valid FA10 Valid FA10 FA3 FA3 FA12 FA12 GPMC_ADCn_ALE FA4 FA13 FA4 FA13 GPMC_OEn_REn GPMC_AD[15:0] Data Upper GPMC_WAIT[j] GPMC_07 A. B. C. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. Figure 7-45. GPMC and NOR Flash — Asynchronous Read — 32–Bit 162 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 GPMC_FCLK GPMC_CLK FA21 FA20 FA20 FA20 Add1 Add2 Add3 D0 D1 D2 FA1 GPMC_CSn[i] FA9 Add0 GPMC_A[MSB:1] Add4 FA0 FA10 GPMC_BE0n_CLE FA0 FA10 GPMC_BE1n FA12 GPMC_ADVn_ALE FA18 FA13 GPMC_OEn_REn GPMC_AD[15:0] D3 D3 GPMC_WAIT[j] GPMC_08 A. B. C. D. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data will be internally sampled by active functional clock edge. FA21 calculation must be stored inside AccessTime register bits field. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC functional clock cycles. After each access to input page data, next input page data will be internally sampled by active functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first input page data). FA20 value must be stored in PageBurstAccessTime register bits field. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. Figure 7-46. GPMC and NOR Flash — Asynchronous Read — Page Mode 4x16–Bit Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 163 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 GPMC_FCLK GPMC_CLK FA1 GPMC_CSn[i] FA9 GPMC_A[MSB:1] Valid Address FA0 FA10 GPMC_BE0n_CLE FA0 FA10 GPMC_BE1n FA3 FA12 GPMC_ADVn_ALE FA27 FA25 GPMC_WEn FA29 GPMC_AD[15:0] Data OUT GPMC_WAIT[j] GPMC_09 A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1. Figure 7-47. GPMC and NOR Flash — Asynchronous Write — Single Word 164 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 GPMC_FCLK GPMC_CLK FA1 FA5 GPMC_CSn[i] FA9 GPMC_A[27:17] Address (MSB) FA0 FA10 GPMC_BE0n_CLE Valid FA0 FA10 GPMC_BE1n Valid FA3 FA12 GPMC_ADVn_ALE FA4 FA13 GPMC_OEn_REn FA29 GPMC_AD[15:0] FA37 Data IN Address (LSB) Data IN GPMC_WAIT[j] GPMC_10 A. B. C. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. Figure 7-48. GPMC and Multiplexed NOR Flash — Asynchronous Read — Single Word Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 165 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 GPMC_FCLK GPMC_CLK FA1 GPMC_CSn[i] FA9 GPMC_A[27:17] Address (MSB) FA0 FA10 GPMC_BE0n_CLE FA0 FA10 GPMC_BE1n FA3 FA12 GPMC_ADVn_ALE FA27 FA25 GPMC_WEn FA29 GPMC_AD[15:0] FA28 Valid Address (LSB) Data OUT GPMC_WAIT[j] GPMC_11 A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1. Figure 7-49. GPMC and Multiplexed NOR Flash — Asynchronous Write — Single Word 166 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.8.3 GPMC and NAND Flash — Asynchronous Mode Table 7-58 and Table 7-59 present timing requirements and switching characteristics for GPMC and NAND Flash — Asynchronous Mode. Table 7-58. GPMC and NAND Flash Timing Requirements – Asynchronous Mode see Figure 7-52 NO. PARAMETER (1) GNF12 (1) (2) (3) (4) tacc(d) Access time, input data GPMC_AD[15:0] MIN (4) DESCRIPTION MODE (3) MAX 133 MHz UNIT (2) div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 J ns The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field. J = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns. For div_by_1_mode: • GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h: – GPMC_CLK frequency = GPMC_FCLK frequency For GPMC_FCLK_MUX: • CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz For TIMEPARAGRANULARITY_X1: • GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/ WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME, OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE, WRDATAONADMUXBUS) Table 7-59. GPMC and NAND Flash Switching Characteristics – Asynchronous Mode see Figure 7-50, Figure 7-51, Figure 7-52 and Figure 7-53 NO. PARAMETER (4) MODE MIN MAX UNIT GNF0 tw(wenV) Pulse duration, output write enable GPMC_WEn valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 A GNF1 td(csnV-wenV) Delay time, output chip select GPMC_CSn[i](2) valid to output write enable GPMC_WEn valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 B-2 B+2 ns GNF2 tw(cleH-wenV) Delay time, output lower-byte enable and command latch enable GPMC_BE0n_CLE high to output write enable GPMC_WEn valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 C-2 C+2 ns GNF3 tw(wenV-dV) Delay time, output data GPMC_AD[15:0] valid to output write enable GPMC_WEn valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 D-2 D+2 ns GNF4 tw(wenIV-dIV) Delay time, output write enable GPMC_WEn invalid to output data GPMC_AD[15:0] invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 E-2 E+2 ns GNF5 tw(wenIV-cleIV) Delay time, output write enable GPMC_WEn invalid to output lower-byte enable and command latch enable GPMC_BE0n_CLE invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 F-2 F+2 ns GNF6 tw(wenIV-CSn[i]V) Delay time, output write enable GPMC_WEn invalid to output chip select GPMC_CSn[i](2) invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 G-2 G+2 ns GNF7 tw(aleH-wenV) Delay time, output address valid and address latch enable GPMC_ADVn_ALE high to output write enable GPMC_WEn valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 C-2 C+2 ns Copyright © 2023 Texas Instruments Incorporated ns Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 167 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-59. GPMC and NAND Flash Switching Characteristics – Asynchronous Mode (continued) see Figure 7-50, Figure 7-51, Figure 7-52 and Figure 7-53 NO. (4) PARAMETER MODE MIN MAX UNIT F-2 F+2 ns H ns I+2 ns K ns GNF8 tw(wenIV-aleIV) Delay time, output write enable GPMC_WEn invalid to output address valid and address latch enable GPMC_ADVn_ALE invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 GNF9 tc(wen) Cycle time, write div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 GNF10 td(csnV-oenV) Delay time, output chip select GPMC_CSn[i](2) valid to output enable GPMC_OEn_REn valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 GNF13 tw(oenV) Pulse duration, output enable GPMC_OEn_REn valid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 GNF14 tc(oen) Cycle time, read div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 L GNF15 tw(oenIV-CSn[i]V) Delay time, output enable GPMC_OEn_REn invalid to output chip select GPMC_CSn[i](2) invalid div_by_1_mode; GPMC_FCLK_MUX; TIMEPARAGRANULARITY_X1 M-2 (1) (2) (3) (4) I-2 ns M+2 ns A = (WEOffTime - WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(3) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. GPMC_FCLK is general-purpose memory controller internal functional clock period in ns. For div_by_1_mode: • GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h: – GPMC_CLK frequency = GPMC_FCLK frequency For GPMC_FCLK_MUX: • CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz For TIMEPARAGRANULARITY_X1: • GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/ WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME, OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE, WRDATAONADMUXBUS) GPMC_FCLK GNF1 GNF6 GNF2 GNF5 GPMC_CSn[i] GPMC_BE0n_CLE GPMC_ADCn_ALE GPMC_OEn_REn GNF0 GPMC_WEn GNF3 GPMC_AD[15:0] GNF4 Command GPMC_12 A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. Figure 7-50. GPMC and NAND Flash — Command Latch Cycle 168 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 GPMC_FCLK GNF1 GNF6 GNF7 GNF8 GPMC_CSn[i] GPMC_BE0n_CLE GPMC_ADVn_ALE GPMC_OEn_REn GNF9 GNF0 GPMC_WEn GNF3 GNF4 GPMC_AD[15:0] Address GPMC_13 A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. Figure 7-51. GPMC and NAND Flash — Address Latch Cycle GPMC_FCLK GNF12 GNF10 GNF15 GPMC_CSn[i] GPMC_BE0n_CLE GPMC_ADVn_ALE GNF14 GNF13 GPMC_OEn_REn GPMC_AD[15:0] DATA GPMC_WAIT[j] GPMC_14 A. B. C. GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active functional clock edge. GNF12 value must be stored inside AccessTime register bits field. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1. Figure 7-52. GPMC and NAND Flash — Data Read Cycle Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 169 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 GPMC_FCLK GNF1 GNF6 GPMC_CSn[i] GPMC_BE0n_CLE GPMC_ADVn_ALE GPMC_OEn_REn GNF9 GNF0 GPMC_WEn GNF3 GPMC_AD[15:0] GNF4 DATA GPMC_15 A. `In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. Figure 7-53. GPMC and NAND Flash — Data Write Cycle 170 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.8.4 GPMC0 IOSETs Table 7-60 defines valid pin combinations of each GPMC0 IOSET. Table 7-60. GPMC0 IOSETs SIGNALS IOSET1 BALL NAME IOSET2 MUXMODE BALL NAME MUXMODE GPMC0_AD0 GPMC0_AD0 0 GPMC0_AD0 0 GPMC0_AD1 GPMC0_AD1 0 GPMC0_AD1 0 GPMC0_AD2 GPMC0_AD2 0 GPMC0_AD2 0 GPMC0_AD3 GPMC0_AD3 0 GPMC0_AD3 0 GPMC0_AD4 GPMC0_AD4 0 GPMC0_AD4 0 GPMC0_AD5 GPMC0_AD5 0 GPMC0_AD5 0 GPMC0_AD6 GPMC0_AD6 0 GPMC0_AD6 0 GPMC0_AD7 GPMC0_AD7 0 GPMC0_AD7 0 GPMC0_AD8 GPMC0_AD8 0 GPMC0_AD8 0 GPMC0_AD9 GPMC0_AD9 0 GPMC0_AD9 0 GPMC0_AD10 GPMC0_AD10 0 GPMC0_AD10 0 GPMC0_AD11 GPMC0_AD11 0 GPMC0_AD11 0 GPMC0_AD12 GPMC0_AD12 0 GPMC0_AD12 0 GPMC0_AD13 GPMC0_AD13 0 GPMC0_AD13 0 GPMC0_AD14 GPMC0_AD14 0 GPMC0_AD14 0 GPMC0_AD15 GPMC0_AD15 0 GPMC0_AD15 0 GPMC0_CLK GPMC0_CLK 0 GPMC0_CLK 0 GPMC0_ADVn_ALE GPMC0_ADVn_ALE 0 GPMC0_ADVn_ALE 0 GPMC0_OEn_REn GPMC0_OEn_REn 0 GPMC0_OEn_REn 0 GPMC0_WEn GPMC0_WEn 0 GPMC0_WEn 0 GPMC0_BE0n_CLE GPMC0_BE0n_CLE 0 GPMC0_BE0n_CLE 0 GPMC0_BE1n GPMC0_BE1n 0 GPMC0_BE1n 0 GPMC0_WAIT0 GPMC0_WAIT0 0 GPMC0_WAIT0 0 GPMC0_WAIT1 GPMC0_WAIT1 0 GPMC0_WAIT1 0 GPMC0_WPn GPMC0_WPn 0 GPMC0_WPn 0 GPMC0_DIR GPMC0_DIR 0 GPMC0_DIR 0 GPMC0_CSn0 GPMC0_CSn0 0 GPMC0_CSn0 0 GPMC0_CSn1 GPMC0_CSn1 0 GPMC0_CSn1 0 GPMC0_CSn2 GPMC0_CSn2 0 GPMC0_CSn2 0 GPMC0_CSn3 GPMC0_CSn3 0 GPMC0_CSn3 0 GPMC0_AD16 PRG1_PRU0_GPO0 8 PRG1_PRU0_GPO0 8 GPMC0_AD17 PRG1_PRU0_GPO1 8 PRG1_PRU0_GPO1 8 GPMC0_AD18 PRG1_PRU0_GPO2 8 PRG1_PRU0_GPO2 8 GPMC0_AD19 PRG1_PRU0_GPO3 8 PRG1_PRU0_GPO3 8 GPMC0_AD20 PRG1_PRU0_GPO4 8 PRG1_PRU0_GPO4 8 GPMC0_AD21 PRG1_PRU0_GPO5 8 PRG1_PRU0_GPO5 8 GPMC0_AD22 PRG1_PRU0_GPO6 8 PRG1_PRU0_GPO6 8 GPMC0_AD23 PRG1_PRU0_GPO7 8 PRG1_PRU0_GPO7 8 GPMC0_AD24 PRG1_PRU0_GPO8 8 PRG1_PRU0_GPO8 8 GPMC0_AD25 PRG1_PRU0_GPO9 8 PRG1_PRU0_GPO9 8 GPMC0_AD26 PRG1_PRU0_GPO10 8 PRG1_PRU0_GPO10 8 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 171 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-60. GPMC0 IOSETs (continued) SIGNALS 172 IOSET1 BALL NAME IOSET2 MUXMODE BALL NAME MUXMODE GPMC0_AD27 PRG1_PRU0_GPO11 8 PRG1_PRU0_GPO11 8 GPMC0_AD28 PRG1_PRU0_GPO12 8 PRG1_PRU0_GPO12 8 GPMC0_AD29 PRG1_PRU0_GPO13 8 PRG1_PRU0_GPO13 8 GPMC0_AD30 PRG1_PRU0_GPO14 8 PRG1_PRU0_GPO14 8 GPMC0_AD31 PRG1_PRU0_GPO15 8 PRG1_PRU0_GPO15 8 GPMC0_BE2n PRG1_PRU0_GPO16 8 PRG1_PRU0_GPO16 8 GPMC0_A0 PRG1_PRU0_GPO17 8 PRG0_PRU0_GPO2 9 GPMC0_A1 PRG1_PRU0_GPO18 8 PRG0_PRU0_GPO4 9 GPMC0_A2 PRG1_PRU0_GPO19 8 PRG0_PRU0_GPO8 9 GPMC0_A3 PRG1_PRU1_GPO0 8 PRG0_PRU0_GPO14 9 GPMC0_A4 PRG1_PRU1_GPO1 8 PRG0_PRU0_GPO16 9 GPMC0_A5 PRG1_PRU1_GPO2 8 PRG0_PRU0_GPO18 9 GPMC0_A6 PRG1_PRU1_GPO3 8 PRG0_PRU0_GPO19 9 GPMC0_A7 PRG1_PRU1_GPO4 8 PRG0_PRU1_GPO12 9 GPMC0_A8 PRG1_PRU1_GPO5 8 PRG0_PRU1_GPO13 9 GPMC0_A9 PRG1_PRU1_GPO6 8 PRG0_PRU1_GPO14 9 GPMC0_A10 PRG1_PRU1_GPO7 8 PRG0_PRU1_GPO15 9 GPMC0_A11 PRG1_PRU1_GPO8 8 PRG0_PRU1_GPO16 9 GPMC0_A12 PRG1_PRU1_GPO9 8 PRG0_MDIO0_MDIO 9 GPMC0_A13 PRG1_PRU1_GPO10 8 PRG0_MDIO0_MDC 9 GPMC0_A14 PRG1_PRU1_GPO11 8 PRG0_PRU0_GPO12 9 GPMC0_A15 PRG1_PRU1_GPO12 8 PRG0_PRU0_GPO13 9 GPMC0_A16 PRG1_PRU1_GPO13 8 PRG0_PRU0_GPO15 9 GPMC0_A17 PRG1_PRU1_GPO14 8 PRG0_PRU0_GPO17 9 GPMC0_A18 PRG1_PRU1_GPO15 8 PRG0_PRU1_GPO3 9 GPMC0_A19 PRG1_PRU1_GPO16 8 PRG0_PRU1_GPO6 9 GPMC0_BE3n PRG1_PRU1_GPO17 8 PRG1_PRU1_GPO17 8 GPMC0_A20 GPMC0_CSn3 4 GPMC0_CSn3 4 GPMC0_A21 GPMC0_WAIT1 4 GPMC0_WAIT1 4 GPMC0_A22 GPMC0_WPn 4 GPMC0_WPn 4 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.9 I2C The device contains six multicontroller Inter-Integrated Circuit (I2C) controllers. Each I2C controller was designed to be compliant to the Philips I2C-bus™ specification version 2.1. However, the device IOs are not fully compliant to the I2C electrical specification. The speeds supported and exceptions are described per port below: • MCU_I2C1, I2C1, I2C2, and I2C3 – Speeds: • Standard-mode (up to 100 Kbits/s) – 1.8 V – 3.3 V • Fast-mode (up to 400 Kbits/s) – 1.8 V – 3.3 V – Exceptions: • The IOs associated with these ports are not compliant to the fall time requirements defined in the I2C specification because they are implemented with higher performance LVCMOS push-pull IOs that were designed to support other signal functions that could not be implemented with I2C compatible IOs. The LVCMOS IOs being used on these ports are connected such they emulate open-drain outputs. This emulation is achieved by forcing a constant low output and disabling the output buffer to enter the Hi-Z state. • The I2C specification defines a maximum input voltage VIH of (VDDmax + 0.5 V), which exceeds the absolute maximum ratings for the device IOs. The system must be designed to ensure the I2C signals never exceed the limits defined in the Absolute Maximum Ratings section of this datasheet. • MCU_I2C0 and I2C0 – Speeds: • Standard-mode (up to 100 Kbits/s) – 1.8 V – 3.3 V • Fast-mode (up to 400 Kbits/s) – 1.8 V – 3.3 V • Hs-mode (up to 3.4 Mbit/s) – 1.8 V – Exceptions: • The IOs associated with these ports were not design to support Hs-mode while operating at 3.3 V. So Hs-mode is limited to 1.8-V operation. • The rise and fall times of the I2C signals connected to these ports must not exceed a slew rate of 0.8 V/ns (or 8E+7 V/s). This limit is more restrictive than the minimum fall time limits defined in the I2C specification. Therefore, it may be necessary to add additional capacitance to the I2C signals to slow the rise and fall times such that they do not exceed a slew rate of 0.8 V/ns. • The I2C specification defines a maximum input voltage VIH of (VDDmax + 0.5 V), which exceeds the absolute maximum ratings for the device IOs. The system must be designed to ensure the I2C signals never exceed the limits defined in the Absolute Maximum Ratings section of this datasheet. Refer to the Philips I2C-bus specification version 2.1 for timing details. For more details about features and additional description information on the device Inter-Integrated Circuit, see the corresponding subsections within Signal Descriptions and Detailed Description sections. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 173 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.10 MCAN Table 7-61 and Table 7-62 presents timing conditions and switching characteristics for MCAN. For more details about features and additional description information on the device Controller Area Network Interface, see the corresponding subsections within Signal Descriptions and Detailed Description sections. Note The device has multiple MCAN modules. MCANn is a generic prefix applied to MCAN signal names, where n represents the specific MCAN module. Table 7-61. MCAN Timing Conditions PARAMETER MIN MAX UNIT 2 15 V/ns 5 20 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance Table 7-62. MCAN Switching Characteristics NO. PARAMETER DESCRIPTION MIN MAX UNIT MCAN1 td(MCAN_TX) Delay time, transmit shift register to MCANn_TX 10 ns MCAN2 td(MCAN_RX) Delay time, MCANn_RX to receive shift register 10 ns For more information, see Controller Area Network (MCAN) section in Peripherals chapter in the device TRM. 174 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.11 MCSPI For more details about features and additional description information on the device Serial Port Interface, see the corresponding subsections within Signal Descriptions and Detailed Description sections. Table 7-63 presents timing conditions for MCSPI. Table 7-63. MCSPI Timing Conditions PARAMETER MIN MAX UNIT 2 8.5 V/ns 6 12 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the device TRM. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 175 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.11.1 MCSPI — Controller Mode Table 7-64, Figure 7-54, Table 7-65, and Figure 7-55 present timing requirements and switching characteristics for SPI – Controller Mode. Table 7-64. MCSPI Timing Requirements – Controller Mode see Figure 7-54 NO. PARAMETER DESCRIPTION MIN SM4 tsu(POCI-SPICLK) Setup time, SPIn_D[x] valid before SPIn_CLK active edge SM5 th(SPICLK-POCI) Hold time, SPIn_D[x] valid after SPIn_CLK active edge MAX UNIT 2.8 ns 3 ns PHA=0 EPOL=1 SPI_CS[i] (OUT) SM1 SM3 SM8 SPI_SCLK (OUT) SM2 SM9 POL=0 SM1 SM3 SM2 POL=1 SPI_SCLK (OUT) SM5 SM5 SPI_D[x] (IN) SM4 SM4 Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0 PHA=1 EPOL=1 SPI_CS[i] (OUT) SM2 SM1 SM8 SPI_SCLK (OUT) SM3 SM9 POL=0 SM1 SM2 SM3 POL=1 SPI_SCLK (OUT) SM5 SM4 SM4 Bit n-1 SPI_D[x] (IN) SM5 Bit n-2 Bit n-3 Bit 1 Bit 0 SPRSP08_TIMING_McSPI_02 Figure 7-54. MCSPI Controller Mode Receive Timing 176 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-65. MCSPI Switching Characteristics - Controller Mode see Figure 7-55 NO. PARAMETER MIN MAX UNIT SM1 tc(SPICLK) Cycle time, SPIn_CLK SM2 tw(SPICLKL) Pulse duration, SPIn_CLK low 0.5P - 1 SM3 tw(SPICLKH) Pulse duration, SPIn_CLK high 0.5P - 1 SM6 td(SPICLK-PICO) Delay time, SPIn_CLK active edge to SPIn_D[x] -3 SM7 td(CS-PICO) Delay time, SPIn_CSi active edge to SPIn_D[x] 5 ns SM8 td(CS-SPICLK) Delay time, SPIn_CSi active to SPIn_CLK first edge PHA = 0 B - 4(2) ns PHA = 1 A- 4(3) ns PHA = 0 A - 4(4) ns PHA = 1 B - 4(5) ns SM9 (1) (2) (3) (4) (5) td(SPICLK-CS) Delay time, SPIn_CLK last edge to SPIn_CSi inactive 20 ns (1) ns (1) ns 2.5 ns P = SPI_CLK period in ns. T_ref is the period of the McSPI functional clock in ns. Fratio is the divide ratio of McSPI functional clock frequency to SPIn_CLK clock frequency, controlled by the CLKD and CLKG bit fields in the MSPI_CH(i)CONF register and the EXTCLK bit field in the MSPI_CH(i)CTRL register. TCS(i) is the value programmed into the chip select time control bit field of the MSPI_CH(i)CONF register. • When Fratio = 1; B = (TCS(i) + 0.5) * T_ref. • When Fratio ≥ 2 and even value; B = (TCS(i) + 0.5) * Fratio * T_ref. • When Fratio ≥ 3 and odd value; B = ((TCS(i) * Fratio) + ((Fratio + 1) / 2 )) * T_ref. T_ref is the period of the McSPI functional clock. Fratio is the divide ratio of McSPI functional clock frequency to SPIn_CLK clock frequency, controlled by the CLKD and CLKG bit fields in the MSPI_CH(i)CONF register and the EXTCLK bit field in the MSPI_CH(i)CTRL register. TCS(i) is the value programmed into the chip select time control bit field of the MSPI_CH(i)CONF register. • When Fratio = 1; A = (TCS(i) + 1) * T_ref. • When Fratio ≥ 2 and even value; A = (TCS(i) + 0.5) * Fratio * T_ref. • When Fratio ≥ 3 and odd value; A = ((TCS(i) * Fratio) + ((Fratio - 1) / 2 )) * T_ref. T_ref is the period of the McSPI functional clock. Fratio is the divide ratio of McSPI functional clock frequency to SPIn_CLK clock frequency, controlled by the CLKD and CLKG bit fields in the MSPI_CH(i)CONF register and the EXTCLK bit field in the MSPI_CH(i)CTRL register. TCS(i) is the value programmed into the chip select time control bit field of the MSPI_CH(i)CONF register. • When Fratio = 1; A = (TCS(i) + 1) * T_ref. • When Fratio ≥ 2 and even value; A = (TCS(i) + 0.5) * Fratio * T_ref. • When Fratio ≥ 3 and odd value; A = ((TCS(i) * Fratio) + ((Fratio + 1) / 2 )) * T_ref. T_ref is the period of the McSPI functional clock. Fratio is the divide ratio of McSPI functional clock frequency to SPIn_CLK clock frequency, controlled by the CLKD and CLKG bit fields in the MSPI_CH(i)CONF register and the EXTCLK bit field in the MSPI_CH(i)CTRL register. TCS(i) is the value programmed into the chip select time control bit field of the MSPI_CH(i)CONF register. • • • When Fratio = 1; B = (TCS(i) + 0.5) * T_ref. When Fratio ≥ 2 and even value; B = (TCS(i) + 0.5) * Fratio * T_ref. When Fratio ≥ 3 and odd value; B = ((TCS(i) * Fratio) + ((Fratio - 1) / 2 )) * T_ref. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 177 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 PHA=0 EPOL=1 SPI_CS[i] (OUT) SM1 SM3 SM8 SPI_SCLK (OUT) SM2 SM9 POL=0 SM1 SM3 SM2 POL=1 SPI_SCLK (OUT) SM7 SM6 Bit n-1 SPI_D[x] (OUT) SM6 Bit n-2 Bit n-3 Bit n-4 Bit 0 PHA=1 EPOL=1 SPI_CS[i] (OUT) SM1 SM2 SM8 SPI_SCLK (OUT) SM3 SM9 POL=0 SM1 SM2 SM3 POL=1 SPI_SCLK (OUT) SM6 Bit n-1 SPI_D[x] (OUT) SM6 Bit n-2 SM6 Bit n-3 SM6 Bit 1 Bit0 SPRSP08_TIMING_McSPI_01 Figure 7-55. MCSPI Controller Mode Transmit Timing 178 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.11.2 MCSPI — Peripheral Mode Table 7-66, Figure 7-56, Table 7-67, and Figure 7-57 present timing requirements and switching characteristics for SPI – Peripheral Mode. Table 7-66. MCSPI Timing Requirements – Peripheral Mode see Figure 7-56 NO. (1) PARAMETER DESCRIPTION MIN MAX UNIT SS1 tc(SPICLK) Cycle time, SPIn_CLK 20 ns SS2 tw(SPICLKL) Pulse duration, SPIn_CLK low 0.45P (1) ns SS3 tw(SPICLKH) Pulse duration, SPIn_CLK high 0.45P (1) ns SS4 tsu(PICO-SPICLK) Setup time, SPIn_D[x] valid before SPIn_CLK active edge 5 ns SS5 th(SPICLK-PICO) Hold time, SPIn_D[x] valid after SPIn_CLK active edge 5 ns SS8 tsu(CS-SPICLK) Setup time, SPIn_CSi valid before SPIn_CLK first edge 5 ns SS9 th(SPICLK-CS) Hold time, SPIn_CSi valid after SPIn_CLK last edge 5 ns P = SPIn_CLK period in ns. PHA=0 EPOL=1 SPI_CS[i] (IN) SS1 SS2 SS8 SPI_SCLK (IN) SS3 SS9 POL=0 SS1 SS2 SS3 POL=1 SPI_SCLK (IN) SS5 SS4 SS4 SS5 Bit n-1 SPI_D[x] (IN) Bit n-2 Bit n-3 Bit n-4 Bit 0 PHA=1 EPOL=1 SPI_CS[i] (IN) SS1 SS2 SS8 SPI_SCLK (IN) SS3 SS9 POL=0 SS1 SS3 SS2 POL=1 SPI_SCLK (IN) SS4 SS5 SPI_D[x] (IN) SS4 SS5 Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0 SPRSP08_TIMING_McSPI_04 Figure 7-56. SPI Peripheral Mode Receive Timing Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 179 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-67. MCSPI Switching Characteristics – Peripheral Mode see Figure 7-57 NO. PARAMETER DESCRIPTION SS6 td(SPICLK-POCI) Delay time, SPIn_CLK active edge to SPIn_D[x] SS7 tsk(CS-POCI) Delay time, SPIn_CSi active edge to SPIn_D[x] MIN MAX UNIT 2 17.12 ns 20.95 ns PHA=0 EPOL=1 SPI_CS[i] (IN) SS1 SS2 SS8 SPI_SCLK (IN) SS3 SS9 POL=0 SS1 SS2 SS3 POL=1 SPI_SCLK (IN) SS7 SS6 Bit n-1 SPI_D[x] (OUT) SS6 Bit n-2 Bit n-3 Bit n-4 Bit 0 PHA=1 EPOL=1 SPI_CS[i] (IN) SS1 SS2 SS8 SPI_SCLK (IN) SS3 SS9 POL=0 SS1 SS3 SS2 POL=1 SPI_SCLK (IN) SS6 Bit n-1 SPI_D[x] (OUT) SS6 Bit n-2 SS6 Bit n-3 SS6 Bit 1 Bit 0 SPRSP08_TIMING_McSPI_03 Figure 7-57. SPI Peripheral Mode Transmit Timing 180 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12 MMCSD The MMCSD Host Controller provides an interface to embedded Multi-Media Card (MMC), Secure Digital (SD), and Secure Digital IO (SDIO) devices. The MMCSD Host Controller deals with MMC/SD/SDIO protocol at transmission level, data packing, adding cyclic redundancy checks (CRCs), start/end bit insertion, and checking for syntactical correctness. For more details about MMCSD interfaces, see the corresponding MMC0 and MMC1 subsections within Signal Descriptions and Detailed Description sections. Note Some operating modes require software configuration of the MMC DLL delay settings, as shown in Table 7-68 and Table 7-77. The modes which show a value of "Tuning" in the ITAPDLYSEL column of Table 7-68 and Table 7-77 require a tuning algorithm to be used for optimizing input timing. Refer to the MMCSD Programming Guide in the device TRM for more information on the tuning algorithm and configuration of input delays required to optimize input timing. For more information, see Multi-Media Card/Secure Digital (MMCSD) Interface section in Peripherals chapter in the device TRM. 7.10.5.12.1 MMC0 - eMMC Interface MMC0 interface is compliant with the JEDEC eMMC electrical standard v5.1 (JESD84-B51) and supports the following eMMC applications: • Legacy speed • High speed SDR • High speed DDR • HS200 Table 7-68 presents the required DLL software configuration settings for MMC0 timing modes. Table 7-68. MMC0 DLL Delay Mapping for all Timing Modes REGISTER NAME BIT FIELD BIT FIELD NAME MMCSD0_SS_PHY_CTRL_4_REG [31:24] [20] [15:12] MMCSD0_SS_PHY_CTRL_5_REG [8] [4:0] [17:16] [10:8] [2:0] FRQSEL CLKBUFSEL STRBSEL OTAPDLYENA OTAPDLYSEL ITAPDLYENA ITAPDLYSEL SELDLYTXCLK SELDLYRXCLK MODE DESCRIPTION STROBE DELAY OUTPUT DELAY ENABLE OUTPUT DELAY VALUE INPUT DELAY ENABLE INPUT DELAY VALUE DLL DELAY CHAIN SELECT DLL REF FREQUENCY DELAY BUFFER DURATION Legacy SDR 8-bit PHY operating 1.8 V, 25 MHz 0x0 0x0 NA(1) 0x1 0x10 0x1 0x0 0x7 High Speed SDR 8-bit PHY operating 1.8 V, 50 MHz 0x0 0x0 NA(1) 0x1 0xA 0x1 0x0 0x7 High Speed DDR 8-bit PHY operating 1.8 V, 50 MHz 0x0 0x1 0x6 0x1 0x3 0x0 0x4 0x7 HS200 8-bit PHY operating 1.8 V, 200 MHz 0x0 0x1 0x7 0x1 Tuning(2) 0x0 0x0 0x7 (1) (2) NA means Not Applicable Tuning means this mode requires a tuning algorithm to optimize input timing Table 7-69 presents timing conditions for MMC0. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 181 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-69. MMC0 Timing Conditions PARAMETER MIN MAX UNIT 0.14 1.44 V/ns 0.3 0.9 V/ns INPUT CONDITIONS Legacy SDR SRI Input slew rate High Speed SDR High Speed DDR (CMD) 0.3 0.9 V/ns 0.45 0.9 V/ns Legacy SDR 1 12 pF High Speed SDR 1 12 pF High Speed DDR 1 12 pF HS200 1 6 pF 126 756 ps 100 ps 8 ps High Speed DDR (DAT[7:0]) OUTPUT CONDITIONS CL Output load capacitance PCB CONNECTIVITY REQUIREMENTS td(Trace Delay) td(Trace Mismatch Delay) 182 Propagation delay of each trace All modes Propagation delay mismatch across all traces Legacy SDR, High Speed SDR Submit Document Feedback High Speed DDR, HS200 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.1.1 Legacy SDR Mode Table 7-70, Figure 7-58, Table 7-71, and Figure 7-59 present timing requirements and switching characteristics for MMC0 – Legacy SDR Mode. Table 7-70. MMC0 Timing Requirements – Legacy SDR Mode see Figure 7-58 NO. MIN MAX UNIT LSDR1 tsu(cmdV-clkH) Setup time, MMC0_CMD valid before MMC0_CLK rising edge 1.56 ns LSDR2 th(clkH-cmdV) Hold time, MMC0_CMD valid after MMC0_CLK rising edge 5.44 ns LSDR3 tsu(dV-clkH) Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge 1.56 ns LSDR4 th(clkH-dV) Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge 5.44 ns Figure 7-58. MMC0 – Legacy SDR – Receive Mode Table 7-71. MMC0 Switching Characteristics – Legacy SDR Mode see Figure 7-59 NO. PARAMETER fop(clk) Operating frequency, MMC0_CLK LSDR5 tc(clk) Cycle time, MMC0_CLK LSDR6 tw(clkH) LSDR7 tw(clkL) LSDR8 LSDR9 MIN MAX UNIT 25 MHz 40 ns Pulse duration, MMC0_CLK high 18.7 ns Pulse duration, MMC0_CLK low 18.7 ns td(clkL-cmdV) Delay time, MMC0_CLK falling edge to MMC0_CMD transition -2.3 2.9 ns td(clkL-dV) Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition -2.3 2.9 ns Figure 7-59. MMC0 – Legacy SDR – Transmit Mode Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 183 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.1.2 High Speed SDR Mode Table 7-72, Figure 7-60, Table 7-73, and Figure 7-61 present timing requirements and switching characteristics for MMC0 – High Speed SDR Mode. Table 7-72. MMC0 Timing Requirements – High Speed SDR Mode see Figure 7-60 NO. MIN MAX UNIT HSSDR1 tsu(cmdV-clkH) Setup time, MMC0_CMD valid before MMC0_CLK rising edge 2.55 ns HSSDR2 th(clkH-cmdV) Hold time, MMC0_CMD valid after MMC0_CLK rising edge 2.67 ns HSSDR3 tsu(dV-clkH) Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge 2.55 ns HSSDR4 th(clkH-dV) Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge 2.67 ns Figure 7-60. MMC0 – High Speed SDR Mode – Receive Mode Table 7-73. MMC0 Switching Characteristics – High Speed SDR Mode see Figure 7-61 NO. PARAMETER MIN MAX UNIT 50 MHz fop(clk) Operating frequency, MMC0_CLK HSSDR5 tc(clk) Cycle time, MMC0_CLK 20 ns HSSDR6 tw(clkH) Pulse duration, MMC0_CLK high 9.2 ns HSSDR7 tw(clkL) Pulse duration, MMC0_CLK low 9.2 ns HSSDR8 td(clkL-cmdV) Delay time, MMC0_CLK falling edge to MMC0_CMD transition -2.3 2.9 ns HSSDR9 td(clkL-dV) Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition -2.3 2.9 ns Figure 7-61. MMC0 – High Speed SDR Mode – Transmit Mode 184 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.1.3 High Speed DDR Mode Table 7-74, Figure 7-62, Table 7-75, and Figure 7-63 present timing requirements and switching characteristics for MMC0 – High Speed DDR Mode. Table 7-74. MMC0 Timing Requirements – High Speed DDR Mode see Figure 7-62 NO. MIN MAX UNIT HSDDR1 tsu(cmdV-clk) Setup time, MMC0_CMD valid before MMC0_CLK rising edge 1.62 ns HSDDR2 th(clk-cmdV) Hold time, MMC0_CMD valid after MMC0_CLK rising edge 2.52 ns HSDDR3 tsu(dV-clk) Setup time, MMC0_DAT[7:0] valid before MMC0_CLK transition 0.83 ns HSDDR4 th(clk-dV) Hold time, MMC0_DAT[7:0] valid after MMC0_CLK transition 1.76 ns Figure 7-62. MMC0 – High Speed DDR Mode – Receive Mode Table 7-75. MMC0 Switching Characteristics – High Speed DDR Mode see Figure 7-63 NO. PARAMETER MIN MAX UNIT 50 MHz fop(clk) Operating frequency, MMC0_CLK HSDDR5 tc(clk) Cycle time, MMC0_CLK 20 ns HSDDR6 tw(clkH) Pulse duration, MMC0_CLK high 9.2 ns HSDDR7 tw(clkL) Pulse duration, MMC0_CLK low HSDDR8 td(clk-cmdV) Delay time, MMC0_CLK rising edge to MMC0_CMD transition 3.31 7.65 ns HSDDR9 td(clk-dV) Delay time, MMC0_CLK transition to MMC0_DAT[7:0] transition 2.81 6.94 ns 9.2 ns Figure 7-63. MMC0 – High Speed DDR Mode – Transmit Mode Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 185 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.1.4 HS200 Mode Table 7-76 and Figure 7-64 present switching characteristics for MMC0 – HS200 Mode. Table 7-76. MMC0 Switching Characteristics – HS200 Mode see Figure 7-64 NO. PARAMETER fop(clk) Operating frequency, MMC0_CLK HS2005 tc(clk) Cycle time, MMC0_CLK HS2006 tw(clkH) HS2007 HS2008 HS2009 MIN MAX UNIT 200 MHz 5 ns Pulse duration, MMC0_CLK high 2.08 ns tw(clkL) Pulse duration, MMC0_CLK low 2.08 td(clkL-cmdV) Delay time, MMC0_CLK rising edge to MMC0_CMD transition 0.99 3.28 ns td(clkL-dV) Delay time, MMC0_CLK rising edge to MMC0_DAT[7:0] transition 0.99 3.28 ns ns Figure 7-64. MMC0 – HS200 Mode – Transmit Mode 186 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.2 MMC1 - SD/SDIO Interface MMC1 interface is compliant with the SD Host Controller Standard Specification 4.10 and SD Physical Layer Specification v3.01 as well as SDIO Specification v3.00 and it supports the following SD Card applications: • Default speed • High speed • UHS–I SDR12 • UHS–I SDR25 • UHS–I SDR50 • UHS–I SDR104 • UHS–I DDR50 Table 7-77 presents the required DLL software configuration settings for MMC1 timing modes. Table 7-77. MMC1 DLL Delay Mapping for all Timing Modes REGISTER NAME BIT FIELD BIT FIELD NAME MMCSD1_SS_PHY_CTRL_4_REG [20] [15:12] OTAPDLYENA OTAPDLYSEL MMCSD1_SS_PHY_CTRL_5_REG [8] [4:0] [2:0] ITAPDLYENA ITAPDLYSEL CLKBUFSEL MODE DESCRIPTION DELAY ENABLE DELAY VALUE INPUT DELAY ENABLE INPUT DELAY VALUE DELAY BUFFER DURATION Default Speed 4-bit PHY operating 3.3 V, 25 MHz 0x1 0x0 0x1 0x0 0x7 High Speed 4-bit PHY operating 3.3 V, 50 MHz 0x1 0x0 0x1 0x0 0x7 UHS-I SDR12 4-bit PHY operating 1.8 V, 25 MHz 0x1 0xF 0x1 0x0 0x7 UHS-I SDR25 4-bit PHY operating 1.8 V, 50 MHz 0x1 0xF 0x1 0x0 0x7 UHS-I SDR50 4-bit PHY operating 1.8 V, 100 MHz 0x1 0xC 0x1 Tuning(1) 0x7 UHS-I DDR50 4-bit PHY operating 1.8 V, 50 MHz 0x1 0x9 0x1 Tuning(1) 0x7 UHS-I SDR104 4-bit PHY operating 1.8, V 200 MHz 0x1 0x6 0x1 Tuning(1) 0x7 (1) Tuning means this mode requires a tuning algorithm to be used for optimal input timing Table 7-78 presents timing conditions for MMC1. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 187 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-78. MMC1 Timing Conditions PARAMETER MIN MAX UNIT Default Speed, High Speed 0.69 2.06 V/ns UHS–I SDR12, UHS–I SDR25 0.34 1.34 V/ns UHS–I DDR50 1 2 V/ns UHS–I DDR50 3 10 pF All other modes 1 10 pF UHS–I DDR50 240 1134 ps All other modes 126 1386 ps 20 ps 100 ps Input Conditions SRI Input slew rate Output Conditions CL Output load capacitance PCB Connectivity Requirements td(Trace Delay) td(Trace Mismatch Delay) 188 Propagation delay of each trace Propagation delay mismatch across all traces Submit Document Feedback UHS–I DDR50, UHS–I SDR104 All other modes Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.2.1 Default Speed Mode Table 7-79, Figure 7-65, Table 7-80, and Figure 7-66 present timing requirements and switching characteristics for MMC1 – Default Speed Mode. Table 7-79. Timing Requirements for MMC1 – Default Speed Mode see Figure 7-65 NO. MIN MAX UNIT DS1 tsu(cmdV-clkH) Setup time, MMC1_CMD valid before MMCi_CLK rising edge 2.15 ns DS2 th(clkH-cmdV) Hold time, MMC1_CMD valid after MMC1_CLK rising edge 1.67 ns DS3 tsu(dV-clkH) Setup time, MMC1_DAT[3:0] valid before MMC1_CLK rising edge 2.15 ns DS4 th(clkH-dV) Hold time, MMC1_DAT[3:0] valid after MMC1_CLK rising edge 1.67 ns MMC[x]_CLK DS1 DS2 DS3 DS4 MMC[x]_CMD MMC[x]_DAT[3:0] Figure 7-65. MMC1 – Default Speed – Receive Mode Table 7-80. Switching Characteristics for MMC1 – Default Speed Mode see Figure 7-66 NO. PARAMETER MIN fop(clk) Operating frequency, MMC1_CLK DS5 tc(clk) Cycle time, MMC1_CLK DS6 tw(clkH) DS7 tw(clkL) DS8 DS9 MAX UNIT 25 MHz 40 ns Pulse duration, MMC1_CLK high 18.7 ns Pulse duration, MMC1_CLK low 18.7 ns td(clkL-cmdV) Delay time, MMC1_CLK falling edge to MMC1_CMD transition -1.8 1.8 ns td(clkL-dV) Delay time, MMC1_CLK falling edge to MMC1_DAT[3:0] transition -1.8 1.8 ns DS5 DS6 DS7 MMC[x]_CLK D S8 MMC[x]_CMD D S9 MMC[x]_DAT[3:0] Figure 7-66. MMC1 – Default Speed – Transmit Mode Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 189 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.2.2 High Speed Mode Table 7-81, Figure 7-67, Table 7-82, and Figure 7-68 present timing requirements and switching characteristics for MMC1 – High Speed Mode. Table 7-81. Timing Requirements for MMC1 – High Speed Mode see Figure 7-67 NO. MIN MAX UNIT HS1 tsu(cmdV-clkH) Setup time, MMC1_CMD valid before MMC1_CLK rising edge 2.15 ns HS2 th(clkH-cmdV) Hold time, MMC1_CMD valid after MMC1_CLK rising edge 1.67 ns HS3 tsu(dV-clkH) Setup time, MMC1_DAT[3:0] valid before MMC1_CLK rising edge 2.15 ns HS4 th(clkH-dV) Hold time, MMC1_DAT[3:0] valid after MMC1_CLK rising edge 1.67 ns MMC[x]_CLK HS1 H S2 HS3 H S4 MMC[x]_CMD MMC[x]_DAT[3:0] Figure 7-67. MMC1 – High Speed – Receive Mode Table 7-82. Switching Characteristics for MMC1 – High Speed Mode see Figure 7-68 NO. PARAMETER MIN MAX UNIT 50 MHz fop(clk) Operating frequency, MMC1_CLK HS5 tc(clk) Cycle time. MMC1_CLK 20 ns HS6 tw(clkH) Pulse duration, MMC1_CLK high 9.2 ns HS7 tw(clkL) Pulse duration, MMC1_CLK low 9.2 ns HS8 td(clkL-cmdV) Delay time, MMC1_CLK falling edge to MMC1_CMD transition -1.8 1.8 ns HS9 td(clkL-dV) Delay time, MMC1_CLK falling edge to MMC1_DAT[3:0] transition -1.8 1.8 ns HS5 HS6 HS7 MMC[x]_CLK H S8 MMC[x]_CMD H S9 MMC[x]_DAT[3:0] Figure 7-68. MMC1 – High Speed – Transmit Mode 190 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.2.3 UHS–I SDR12 Mode Table 7-83, Figure 7-69, Table 7-84, and Figure 7-70 present timing requirements and switching characteristics for MMC1 – UHS-I SDR12 Mode. Table 7-83. Timing Requirements for MMC1 – UHS-I SDR12 Mode see Figure 7-69 NO. MIN MAX UNIT SDR121 tsu(cmdV-clkH) Setup time, MMC1_CMD valid before MMC1_CLK rising edge 2.35 ns SDR122 th(clkH-cmdV) Hold time, MMC1_CMD valid after MMC1_CLK rising edge 1.67 ns SDR123 tsu(dV-clkH) Setup time, MMC1_DAT[3:0] valid before MMC1_CLK rising edge 2.35 ns SDR124 th(clkH-dV) Hold time, MMC1_DAT[3:0] valid after MMC1_CLK rising edge 1.67 ns MMC[x]_CLK SDR121 SDR122 SDR123 SDR124 MMC[x]_CMD MMC[x]_DAT[3:0] Figure 7-69. MMC1 – UHS-I SDR12 – Receive Mode Table 7-84. Switching Characteristics for MMC1 – UHS-I SDR12 Mode see Figure 7-70 NO. PARAMETER MIN MAX UNIT 25 MHz fop(clk) Operating frequency, MMC1_CLK SDR125 tc(clk) Cycle time, MMC1_CLK SDR126 tw(clkH) SDR127 tw(clkL) SDR128 td(clkL-cmdV) Delay time, MMC1_CLK rising edge to MMC1_CMD transition 1.2 8 ns SDR129 td(clkL-dV) Delay time, MMC1_CLK rising edge to MMC1_DAT[3:0] transition 1.2 8 ns 40 ns Pulse duration, MMC1_CLK high 18.7 ns Pulse duration, MMC1_CLK low 18.7 ns SDR125 SDR126 SDR127 MMC[x]_CLK SDR128 SDR128 SDR129 SDR129 MMC[x]_CMD MMC[x]_DAT[3:0] Figure 7-70. MMC1 – UHS-I SDR12 – Transmit Mode Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 191 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.2.4 UHS–I SDR25 Mode Table 7-85, Figure 7-71, Table 7-86, and Figure 7-72 present timing requirements and switching characteristics for MMC1 – UHS-I SDR25 Mode. Table 7-85. Timing Requirements for MMC1 – UHS-I SDR25 Mode see Figure 7-71 NO. MIN MAX UNIT SDR251 tsu(cmdV-clkH) Setup time, MMC1_CMD valid before MMC1_CLK rising edge 1.95 ns SDR252 th(clkH-cmdV) Hold time, MMC1_CMD valid after MMC1_CLK rising edge 1.67 ns SDR253 tsu(dV-clkH) Setup time, MMC1_DAT[3:0] valid before MMC1_CLK rising edge 1.95 ns SDR254 th(clkH-dV) Hold time, MMC1_DAT[3:0] valid after MMC1_CLK rising edge 1.67 ns MMC[x]_CLK SDR251 SDR252 SDR253 SDR254 MMC[x]_CMD MMC[x]_DAT[3:0] Figure 7-71. MMC1 – UHS-I SDR25 – Receive Mode Table 7-86. Switching Characteristics for MMC1 – UHS-I SDR25 Mode see Figure 7-72 NO. PARAMETER MIN MAX UNIT 50 MHz fop(clk) Operating frequency, MMC1_CLK SDR255 tc(clk) Cycle time, MMC1_CLK 20 ns SDR256 tw(clkH) Pulse duration, MMC1_CLK high 9.2 ns SDR257 tw(clkL) Pulse duration, MMC1_CLK low 9.2 ns SDR258 td(clkL-cmdV) Delay time, MMC1_CLK rising edge to MMC1_CMD transition 2.4 8 ns SDR259 td(clkL-dV) Delay time, MMC1_CLK rising edge to MMC1_DAT[3:0] transition 2.4 8 ns SDR255 SDR256 SDR257 MMC[x]_CLK SDR258 SDR258 SDR259 SDR259 MMC[x]_CMD MMC[x]_DAT[3:0] Figure 7-72. MMC1 – UHS-I SDR25 – Transmit Mode 192 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.2.5 UHS–I SDR50 Mode Table 7-87, and Figure 7-73 presents switching characteristics for MMC1 – UHS-I SDR50 Mode. Table 7-87. Switching Characteristics for MMC1 – UHS-I SDR50 Mode see Figure 7-73 NO. PARAMETER MIN fop(clk) Operating frequency, MMC1_CLK SDR505 tc(clk) Cycle time, MMC1_CLK SDR506 tw(clkH) SDR507 SDR508 SDR509 MAX UNIT 100 MHz 10 ns Pulse duration, MMC1_CLK high 4.45 ns tw(clkL) Pulse duration, MMC1_CLK low 4.45 td(clkL-cmdV) Delay time, MMC1_CLK rising edge to MMC1_CMD transition 1.2 6.35 ns td(clkL-dV) Delay time, MMC1_CLK rising edge to MMC1_DAT[3:0] transition 1.2 6.35 ns ns SDR505 SDR506 SDR507 MMC[x]_CLK SDR508 SDR508 SDR509 SDR509 MMC[x]_CMD MMC[x]_DAT[3:0] Figure 7-73. MMC1 – UHS-I SDR50 – Transmit Mode Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 193 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.2.6 UHS–I DDR50 Mode Table 7-88, and Figure 7-74 present switching characteristics for MMC1 – UHS-I DDR50 Mode. Table 7-88. Switching Characteristics for MMC1 – UHS-I DDR50 Mode see Figure 7-74 NO. PARAMETER MIN MAX UNIT 50 MHz fop(clk) Operating frequency, MMC1_CLK DDR505 tc(clk) Cycle time, MMC1_CLK 20 ns DDR506 tw(clkH) Pulse duration, MMC1_CLK high 9.2 ns DDR507 tw(clkL) Pulse duration, MMC1_CLK low 9.2 DDR508 td(clk-cmdV) Delay time, MMC1_CLK rising edge to MMC1_CMD transition 1.2 6.35 ns DDR509 td(clk-dV) Delay time, MMC1_CLK transition to MMC1_DAT[3:0] transition 1.2 6.35 ns ns DDR505 DDR506 DDR507 MMC[x]_CLK DDR508 MMC[x]_CMD DDR509 DDR509 MMC[x]_DAT[3:0] Figure 7-74. MMC1 – UHS-I DDR50 – Transmit Mode 194 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.12.2.7 UHS–I SDR104 Mode Table 7-89, and Figure 7-75 present switching characteristics for MMC1 – UHS-I SDR104 Mode. Table 7-89. Switching Characteristics for MMC1 – UHS-I SDR104 Mode see Figure 7-75 NO. PARAMETER MIN fop(clk) Operating frequency, MMC1_CLK SDR1045 tc(clk) Cycle time, MMC1_CLK SDR1046 tw(clkH) SDR1047 SDR1048 SDR1049 MAX UNIT 200 MHz 5 ns Pulse duration, MMC1_CLK high 2.12 ns tw(clkL) Pulse duration, MMC1_CLK low 2.12 td(clkL-cmdV) Delay time, MMC1_CLK rising edge to MMC1_CMD transition 1.08 3.2 ns td(clkL-dV) Delay time, MMC1_CLK rising edge to MMC1_DAT[3:0] transition 1.08 3.2 ns ns SDR1045 SDR1046 SDR1047 MMC[x]_CLK SDR1048 SDR1048 SDR1049 SDR1049 MMC[x]_CMD MMC[x]_DAT[3:0] Figure 7-75. MMC1 – UHS-I SDR104 – Transmit Mode Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 195 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.13 CPTS Table 7-90, Table 7-91, Figure 7-76, Table 7-92, and Figure 7-77 present timing conditions, requirements, and switching characteristics for CPTS. Table 7-90. CPTS Timing Conditions PARAMETER MIN MAX UNIT 0.5 5 V/ns 2 10 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance Table 7-91. CPTS Timing Requirements see Figure 7-76 NO. DESCRIPTION MIN MAX UNIT T1 tw(HWTSPUSHH) Pulse duration, HWnTSPUSH high 12P(1) +2 ns T2 tw(HWTSPUSHL) Pulse duration, HWnTSPUSH low 12P(1) + 2 ns T3 tc(RFT_CLK) Cycle time, RFT_CLK T4 tw(RFT_CLKH) Pulse duration, RFT_CLK high 0.45T(2) ns Pulse duration, RFT_CLK low 0.45T(2) ns T5 (1) (2) PARAMETER tw(RFT_CLKL) 5 8 ns P = functional clock period in ns. T = RFT_CLK period in ns. T1 T2 HWn_TSPUSH T3 RFT_CLK T4 T5 Figure 7-76. CPTS Timing Requirements 196 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-92. CPTS Switching Characteristics see Figure 7-77 NO. T6 PARAMETER tw(TS_COMPH) DESCRIPTION SOURCE MIN UNIT 36P(1) - 2 ns T7 tw(TS_COMPL) Pulse duration, TS_COMP low 36P(1) -2 ns T8 tw(TS_SYNCH) Pulse duration, TS_SYNC high 36P(1) - 2 ns 36P(1) T9 tw(TS_SYNCL) Pulse duration, TS_SYNC low T10 tw(SYNC_OUTH) Pulse duration, SYNCn_OUT high TS_SYNC -2 ns 36P(1) - 2 ns 5P(1) - 2 ns GENF T11 tw(SYNC_OUTL) Pulse duration, SYNCn_OUT low TS_SYNC 36P(1) GENF (1) MAX Pulse duration, TS_COMP high -2 ns 5P(1) - 2 ns P = functional clock period in ns. T6 T7 T8 T9 T10 T11 TS_COMP TS_SYNC SYNCn_OUT Figure 7-77. CPTS Switching Characteristics For more information, see Data Movement Architecture (DMA) chapter in the device TRM. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 197 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.14 OSPI OSPI0 offers two data capture modes, PHY mode and Tap mode. PHY mode uses an internal reference clock to transmit and receive data via a DLL based PHY, where each reference clock cycle produces a single cycle of OSPI0_CLK for Single Data Rate (SDR) transfers or a half cycle of OSPI0_CLK for Double Data Rate (DDR) transfers. PHY mode supports four clocking topologies for the receive data capture clock. Internal PHY Loopback - uses the internal reference clock as the PHY receive data capture clock. Internal Pad Loopback - uses OSPI0_LBCLKO looped back into the PHY from the OSPI0_LBCLKO pin as the PHY receive data capture clock. External Board Loopback - uses OSPI0_LBCLKO looped back into the PHY from the OSPI0_DQS pin as the PHY receive data capture clock. DQS - uses the DQS output from the attached device as the PHY receive data capture clock. SDR transfers are not supported when using the Internal Pad Loopback and DQS clocking topologies. DDR transfers are not supported when using the Internal PHY Loopback or Internal Pad Loopback clocking topologies. Tap mode uses an internal reference clock with selectable taps to adjusted data transmit and receive capture delays relative to OSPI0_CLK, which is a divide by 4 of the internal reference clock for SDR transfers or a divide by 8 of the internal reference clock for DDR transfers. Tap mode only supports one clocking topology for the receive data capture clock. No Loopback - uses the internal reference clock as the Tap receive data capture clock. This clocking topology supports a maximum internal reference clock rate of 200 MHz, which produces an OSPI0_CLK rate up to 50 MHz for SDR mode or 25 MHz for DDR mode. For more details about features and additional description information on the device Octal Serial Peripheral Interface, see the corresponding subsections within Signal Descriptions and Detailed Description sections. Section 7.10.5.14.1 defines timing requirements and switching characteristics associated with PHY mode and Section 7.10.5.14.2 defines timing requirements and switching characteristics associated with Tap mode. Table 7-93 presents timing conditions for OSPI0. Table 7-93. OSPI0 Timing Conditions PARAMETER MODE MIN MAX UNIT 1 6 V/ns 3 10 pF 450 ps 2L(1) - 30 2L(1) + 30 ps L(1) - 30 L(1) + 30 ps 60 ps INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance PCB CONNECTIVITY REQUIREMENTS td(Trace Delay) td(Trace Mismatch Delay) (1) Propagation delay of OSPI0_CLK trace No Loopback Internal PHY Loopback Internal Pad Loopback Propagation delay of OSPI0_LBCLKO trace External Board Loopback Propagation delay of OSPI0_DQS trace DQS Propagation delay mismatch of OSPI0_D[7:0] and OSPI0_CSn[3:0] relative to OSPI0_CLK All modes L = Propagation delay of OSPI0_CLK trace For more information, see Octal Serial Peripheral Interface (OSPI) section in Peripherals chapter in the device TRM. 198 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.14.1 OSPI0 PHY Mode 7.10.5.14.1.1 OSPI0 With PHY Data Training Read and write data valid windows will shift due to variation in process, voltage, temperature, and operating frequency. A data training method may be implemented to dynamically configure optimal read and write timing. Implementing data training enables proper operation across temperature with a specific process, voltage, and frequency operating condition, while achieving a higher operating frequency. Data transmit and receive timing parameters are not defined for the data training use case since they are dynamically adjusted based on the operating condition. Table 7-94 defines DLL delays required for OSPI0 with Data Training. Table 7-95, Figure 7-78, Table 7-96, and Figure 7-79 present timing requirements and switching characteristics for OSPI0 with Data Training. Table 7-94. OSPI0 DLL Delay Mapping for PHY Data Training MODE OSPI_PHY_CONFIGURATION_REG BIT FIELD DELAY VALUE Transmit All modes PHY_CONFIG_TX_DLL_DELAY_FLD, (1) PHY_CONFIG_RX_DLL_DELAY_FLD (2) Receive All modes (1) (2) Transmit DLL delay value determined by training software Receive DLL delay value determined by training software Table 7-95. OSPI0 Timing Requirements – PHY Data Training see Figure 7-78 NO. MODE O15 tsu(D-LBCLK) Setup time, OSPI0_D[7:0] valid before active OSPI0_DQS edge O16 th(LBCLK-D) Hold time, OSPI0_D[7:0] valid after active OSPI0_DQS edge (1) MIN MAX UNIT DDR with DQS (1) ns DDR with DQS (1) ns Minimum setup and hold time requirements for OSPI0_D[7:0] inputs are not defined when Data Training is used to find the optimum data valid window. OSPI_DQS O15 O16 O15 O16 OSPI_D[i:0] OSPI_TIMING_04 Figure 7-78. OSPI0 Timing Requirements – PHY Data Training, DDR with DQS Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 199 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-96. OSPI Switching Characteristics – PHY Data Training See Figure 7-79 NO. O1 tc(CLK) Cycle time, OSPI0_CLK O2 tw(CLKL) Pulse duration, OSPI0_CLK low O3 (1) (2) (3) (4) (5) (6) PARAMETER tw(CLKH) MODE MIN MAX UNIT 1.8V, DDR 6.02 7.52 ns 7.52 7.52 ns 3.3V, DDR Pulse duration, OSPI0_CLK high DDR ((0.475P(1)) - 0.3) DDR ((0.475P(1)) ((0.525P(1)) + (1.025M(2)R(4)) + (0.11TD(5)) + 1) ns ns - 0.3) ns O4 td(CSn-CLK) Delay time, OSPI0_CSn[3:0] active edge to OSPI0_CLK rising edge DDR ((0.475P(1)) + (0.975M(2)R(4)) + (0.04TD(5)) - 1) O5 td(CLK-CSn) Delay time, OSPI0_CLK rising edge to OSPI0_CSn[3:0] inactive edge DDR ((0.475P(1)) + (0.975N(3)R(4)) (0.04TD(5)) - 1) ((0.525P(1)) + (1.025N(3)R(4)) (0.11TD(5)) + 1) ns O6 td(CLK-D) Delay time, OSPI0_CLK active edge to OSPI0_D[7:0] transition DDR (6) (6) ns P = SCLK cycle time in ns = OSPI0_CLK cycle time in ns M = OSPI_DEV_DELAY_REG[D_INIT_FLD] N = OSPI_DEV_DELAY_REG[D_AFTER_FLD] R = reference clock cycle time in ns TD = PHY_CONFIG_TX_DLL_DELAY_FLD Minimum and maximum delay times for OSPI0_D[7:0] outputs are not defined when Data Training is used to find the optimum data valid window. OSPI_CSn O4 O5 O3 OSPI_CLK O6 O6 O2 O1 OSPI_D[i:0] OSPI_TIMING_01 Figure 7-79. OSPI0 Switching Characteristics – PHY DDR Data Training 200 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.14.1.2 OSPI0 Without Data Training Note Timing parameters defined in this section are only applicable when data training is not implemented and DLL delays are configured as described in Table 7-97 and Table 7-100. 7.10.5.14.1.2.1 OSPI0 PHY SDR Timing Table 7-97 defines DLL delays required for OSPI0 PHY SDR Mode. Table 7-98, Figure 7-80, Figure 7-81, Table 7-99, and Figure 7-82 present timing requirements and switching characteristics for OSPI0 PHY SDR Mode. Table 7-97. OSPI0 DLL Delay Mapping for PHY SDR Timing Modes MODE OSPI_PHY_CONFIGURATION_REG BIT FIELD DELAY VALUE Transmit All modes PHY_CONFIG_TX_DLL_DELAY_FLD, 0x0 PHY_CONFIG_RX_DLL_DELAY_FLD 0x0 Receive All modes Table 7-98. OSPI0 Timing Requirements – PHY SDR Mode see Figure 7-80 and Figure 7-81 NO. MODE MIN MAX UNIT O19 tsu(D-CLK) Setup time, OSPI0_D[7:0] valid before active OSPI0_CLK edge 1.8V, SDR with Internal PHY Loopback 4.8 ns 3.3V, SDR with Internal PHY Loopback 5.19 ns O20 th(CLK-D) Hold time, OSPI0_D[7:0] valid after active OSPI0_CLK edge 1.8V, SDR with Internal PHY Loopback -0.5 ns 3.3V, SDR with Internal PHY Loopback -0.5 ns O21 tsu(D-LBCLK) Setup time, OSPI0_D[7:0] valid before active OSPI0_DQS edge 1.8V, SDR with External Board Loopback 0.6 ns 3.3V, SDR with External Board Loopback 0.9 ns O22 th(LBCLK-D) Hold time, OSPI0_D[7:0] valid after active OSPI0_DQS edge 1.8V, SDR with External Board Loopback 1.7 ns 3.3V, SDR with External Board Loopback 2.0 ns OSPI_CLK O19 O20 OSPI_D[i:0] OSPI_TIMING_05 Figure 7-80. OSPI0 Timing Requirements – PHY SDR with Internal PHY Loopback OSPI_DQS O21 O22 OSPI_D[i:0] OSPI_TIMING_06 Figure 7-81. OSPI0 Timing Requirements – PHY SDR with External Board Loopback Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 201 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-99. OSPI0 Switching Characteristics – PHY SDR Mode see Figure 7-82 NO. PARAMETER MODE MIN 1.8V MAX UNIT 7 ns O7 tc(CLK) Cycle time, OSPI0_CLK 6.03 ns O8 tw(CLKL) Pulse duration, OSPI0_CLK low ((0.475P(1)) - 0.3) ns tw(CLKH) Pulse duration, OSPI0_CLK high ((0.475P(1)) ns O10 td(CSn-CLK) Delay time, OSPI0_CSn[3:0] active edge to OSPI0_CLK rising edge ((0.475P(1)) + ((0.525P(1)) + (0.975M(2)R(4)) - 1) (1.025M(2)R(4)) + 1) ns O11 td(CLK-CSn) Delay time, OSPI0_CLK rising edge to OSPI0_CSn[3:0] inactive edge ((0.475P(1)) + ((0.525P(1)) + (0.975N(3)R(4)) - 1) (1.025N(3)R(4)) + 1) ns O12 td(CLK-D) Delay time, OSPI0_CLK active edge to OSPI0_D[7:0] transition O9 (1) (2) (3) (4) 3.3V - 0.3) 1.8V -1.16 1.25 ns 3.3V -1.33 1.51 ns P = SCLK cycle time in ns = OSPI0_CLK cycle time in ns M = OSPI_DEV_DELAY_REG[D_INIT_FLD] N = OSPI_DEV_DELAY_REG[D_AFTER_FLD] R = reference clock cycle time in ns OSPI_CSn O10 O9 OSPI_CLK O11 O7 O8 O12 OSPI_D[i:0] OSPI_TIMING_02 Figure 7-82. OSPI0 Switching Characteristics – PHY SDR 202 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.14.1.2.2 OSPI0 PHY DDR Timing Table 7-100 defines DLL delays required for OSPI0 PHY DDR Mode. Table 7-101, Figure 7-83, Table 7-102, and Figure 7-84 present timing requirements and switching characteristics for OSPI0 PHY DDR Mode. Table 7-100. OSPI0 DLL Delay Mapping for PHY DDR Timing Modes MODE OSPI_PHY_CONFIGURATION_REG BIT FIELD DELAY VALUE Transmit 1.8V PHY_CONFIG_TX_DLL_DELAY_FLD 0x3E 3.3V PHY_CONFIG_TX_DLL_DELAY_FLD 0x3B Receive 1.8V, DQS PHY_CONFIG_RX_DLL_DELAY_FLD 0x15 3.3V, DQS PHY_CONFIG_RX_DLL_DELAY_FLD 0x3A All other modes PHY_CONFIG_RX_DLL_DELAY_FLD 0x0 Table 7-101. OSPI0 Timing Requirements – PHY DDR Mode see Figure 7-83 NO. O15 O16 MODE tsu(D-LBCLK) th(LBCLK-D) Setup time, OSPI0_D[7:0] valid before active OSPI0_DQS edge Hold time, OSPI0_D[7:0] valid after active OSPI0_DQS edge MIN UNIT 1.8V, DDR with External Board Loopback 0.53 ns 1.8V, DDR with DQS -0.46 ns 3.3V, DDR with External Board Loopback 1.23 ns 3.3V, DDR with DQS -0.66 ns 1.8V, DDR with External Board Loopback 1.24(1) ns 3.59 ns 1.44(1) ns 7.92 ns 1.8V, DDR with DQS 3.3V, DDR with External Board Loopback 3.3V, DDR with DQS (1) MAX This Hold time requirement is larger than the Hold time provided by a typical OSPI/QSPI/SPI device. Therefore, the trace length between the SoC and attached OSPI/QSPI/SPI device must be sufficiently long enough to ensure that the Hold time is met at the SoC. The length of the SoC's external loopback clock (OSPI0_LBCLKO to OSPI0_DQS) may need to be shortened to compensate. OSPI_DQS O15 O16 O15 O16 OSPI_D[i:0] OSPI_TIMING_04 Figure 7-83. OSPI0 Timing Requirements – PHY DDR with External Board Loopback or DQS Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 203 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-102. OSPI0 Switching Characteristics – PHY DDR Mode see Figure 7-84 NO. O1 (1) (2) (3) (4) PARAMETER tc(CLK) MODE MIN Cycle time, OSPI0_CLK - 0.3) ns O2 tw(CLKL) Pulse duration, OSPI0_CLK low O3 tw(CLKH) Pulse duration, OSPI0_CLK high ((0.475P(1)) - 0.3) td(CSn-CLK) Delay time, OSPI0_CSn[3:0] active edge to OSPI0_CLK rising edge O5 td(CLK-CSn) Delay time, OSPI0_CLK rising edge to OSPI0_CSn[3:0] inactive edge O6 td(CLK-D) Delay time, OSPI0_CLK active edge to OSPI0_D[7:0] transition UNIT ns ((0.475P(1)) O4 MAX 19 ns ((0.475P(1)) ((0.525P(1)) (0.975M(2)R(4))) (1.025M(2)R(4)) + 7) ns ((0.475P(1)) + (0.975N(3)R(4)) - 7) ((0.525P(1)) + (1.025N(3)R(4))) ns 1.8V -7.71 -1.56 ns 3.3V -7.71 -1.56 ns P = SCLK cycle time in ns = OSPI0_CLK cycle time in ns M = OSPI_DEV_DELAY_REG[D_INIT_FLD] N = OSPI_DEV_DELAY_REG[D_AFTER_FLD] R = reference clock cycle time in ns OSPI_CSn O4 O5 O3 OSPI_CLK O6 O6 O2 O1 OSPI_D[i:0] OSPI_TIMING_01 Figure 7-84. OSPI0 Switching Characteristics – PHY DDR 204 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.14.2 OSPI0 Tap Mode 7.10.5.14.2.1 OSPI0 Tap SDR Timing Table 7-103, Figure 7-85, Table 7-104, and Figure 7-86 present timing requirements and switching characteristics for OSPI0 Tap SDR Mode. Table 7-103. OSPI0 Timing Requirements – Tap SDR Mode see Figure 7-85 NO. MODE O19 tsu(D-CLK) Setup time, OSPI0_D[7:0] valid before active OSPI0_CLK edge O20 th(CLK-D) Hold time, OSPI0_D[7:0] valid after active OSPI0_CLK edge (1) (2) MIN MAX UNIT No Loopback (15.4 (0.975T(1)R(2))) ns No Loopback (- 4.3 + (0.975T(1)R(2))) ns T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD] R = reference clock cycle time in ns OSPI_CLK O19 O20 OSPI_D[i:0] OSPI_TIMING_05 Figure 7-85. OSPI0 Timing Requirements – Tap SDR, No Loopback Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 205 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-104. OSPI0 Switching Characteristics – Tap SDR Mode see Figure 7-86 NO. O7 PARAMETER tc(CLK) MODE MIN Cycle time, OSPI0_CLK MAX UNIT 20 ns - 0.3) ns O8 tw(CLKL) Pulse duration, OSPI0_CLK low ((0.475P(1)) O9 tw(CLKH) Pulse duration, OSPI0_CLK high ((0.475P(1)) - 0.3) ((0.475P(1)) ns ((0.525P(1)) O10 td(CSn-CLK) Delay time, OSPI0_CSn[3:0] active edge to OSPI0_CLK rising edge + + (0.975M(2)R(4)) - 1) (1.025M(2)R(4)) + 1) ns O11 td(CLK-CSn) Delay time, OSPI0_CLK rising edge to OSPI0_CSn[3:0] inactive edge ((0.475P(1)) + ((0.525P(1)) + (0.975N(3)R(4)) - 1) (1.025N(3)R(4)) + 1) ns O12 td(CLK-D) Delay time, OSPI0_CLK active edge to OSPI0_D[7:0] transition (1) (2) (3) (4) - 4.25 7.25 ns P = SCLK cycle time in ns = OSPI0_CLK cycle time in ns M = OSPI_DEV_DELAY_REG[D_INIT_FLD] N = OSPI_DEV_DELAY_REG[D_AFTER_FLD] R = reference clock cycle time in ns OSPI_CSn O10 O9 OSPI_CLK O11 O7 O8 O12 OSPI_D[i:0] OSPI_TIMING_02 Figure 7-86. OSPI0 Switching Characteristics – Tap SDR, No Loopback 206 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.14.2.2 OSPI0 Tap DDR Timing Table 7-105, Figure 7-87, Table 7-106, and Figure 7-88 present timing requirements and switching characteristics for OSPI0 Tap DDR Mode. Table 7-105. OSPI0 Timing Requirements – Tap DDR Mode see Figure 7-87 NO. MODE MIN MAX UNIT O13 tsu(D-CLK) Setup time, OSPI0_D[7:0] valid before active OSPI0_CLK edge No Loopback (17.04 (0.975T(1)R(2))) ns O14 th(CLK-D) Hold time, OSPI0_D[7:0] valid after active OSPI0_CLK edge No Loopback (- 3.16 + (0.975T(1)R(2))) ns (1) (2) T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD] R = reference clock cycle time in ns OSPI_CLK O13 O14 O13 O14 OSPI_D[i:0] OSPI_TIMING_03 Figure 7-87. OSPI0 Timing Requirements – Tap DDR, No Loopback Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 207 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-106. OSPI0 Switching Characteristics – Tap DDR Mode see Figure 7-88 NO. O1 (1) (2) (3) (4) (5) PARAMETER tc(CLK) MODE MIN Cycle time, OSPI0_CLK MAX UNIT 40 ns - 0.3) ns O2 tw(CLKL) Pulse duration, OSPI0_CLK low ((0.475P(1)) O3 tw(CLKH) Pulse duration, OSPI0_CLK high ((0.475P(1)) - 0.3) ns ((0.475P(1)) ((0.525P(1)) O4 td(CSn-CLK) Delay time, OSPI0_CSn[3:0] active edge to OSPI0_CLK rising edge + + ((0.975M(2)R(5)) - 1) ( 1.025M(2)R(5)) + 1) O5 td(CLK-CSn) Delay time, OSPI0_CLK rising edge to OSPI0_CSn[3:0] inactive edge ((0.475P(1)) + (0.975N(3)R(5)) - 1) ((0.525P(1)) + (1.025N(3)R(5)) + 1) ns O6 td(CLK-D) Delay time, OSPI0_CLK active edge to OSPI0_D[7:0] transition (- 5.04 + (0.975(T(4) + 1)R(5)) - (0.525P(1))) (3.64 + (1.025(T(4) + 1)R(5)) - (0.475P(1))) ns ns P = SCLK cycle time in ns = OSPI0_CLK cycle time in ns M = OSPI_DEV_DELAY_REG[D_INIT_FLD] N = OSPI_DEV_DELAY_REG[D_AFTER_FLD] T = OSPI_RD_DATA_CAPTURE_REG[DDR_READ_DELAY_FLD] R = reference clock cycle time in ns OSPI_CSn O4 O5 O3 OSPI_CLK O6 O6 O2 O1 OSPI_D[i:0] OSPI_TIMING_01 Figure 7-88. OSPI0 Switching Characteristics – Tap DDR, No Loopback 7.10.5.15 PCIe The PCI-Express Subsystem is compliant with the PCIe® Base Specification, Revision 4.0. Refer to the specification for timing details. For more details about features and additional description information on the device Peripheral Component Interconnect Express (PCIe), see the SERDES0 Signal Descriptions and the corresponding subsection within Detailed Description. For more information, see Peripheral Component Interconnect Express (PCIe) Subsystem section in Peripherals chapter of the device TRM. 208 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.16 PRU_ICSSG The device has integrated two identical Programmable Real-Time Unit Subsystem and Industrial Communication Subsystems - Gigabit (PRU_ICSSG), PRU_ICSSG0 and PRU_ICSSG1. The programmable nature of the PRU cores, along with their access to pins, events and all device resources, provides flexibility in implementing fast real-time responses, specialized data handling operations, custom peripheral interfaces, and in offloading tasks from the other processor cores in the device. For more details about features and additional description information on the device PRU_ICSSG, see the corresponding subsections within Signal Descriptions and Detailed Description sections. Note The PRU_ICSSG contains a second layer of multiplexing to enable additional functionality on the PRU GPO and GPI signals. This internal wrapper multiplexing is described in the PRU_ICSSG chapter in the device TRM. 7.10.5.16.1 PRU_ICSSG Programmable Real-Time Unit (PRU) Note The PRU_ICSSG PRU signals have different functionality depending on the mode of operation. The signal naming in this section matches the naming used in the PRU Module Interface section in the device TRM. Table 7-107. PRU_ICSSG PRU Timing Conditions PARAMETER MIN MAX UNIT 1 3 V/ns 2 30 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance 7.10.5.16.1.1 PRU_ICSSG PRU Direct Output Mode Timing Table 7-108. PRU_ICSSG PRU Switching Characteristics – Direct Output Mode see Figure 7-89 NO. PRDO1 PARAMETER tsk(GPO-GPO) DESCRIPTION MIN MAX Skew, GPO to GPO 2 UNIT ns GPO[n:0] PRDO1 A. PRU_TIMING_02 n in GPO[n:0] = 19. Figure 7-89. PRU_ICSSG PRU Direct Output Timing Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 209 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.16.1.2 PRU_ICSSG PRU Parallel Capture Mode Timing Table 7-109. PRU_ICSSG PRU Timing Requirements – Parallel Capture Mode see Figure 7-90 and Figure 7-91 NO. PARAMETER DESCRIPTION PRPC1 tc(CLOCK) Cycle time, CLOCKIN PRPC2 tw(CLOCKL) MIN MAX UNIT 20 ns Pulse duration, CLOCKIN low 0.45P(1) ns 0.45P(1) ns PRPC3 tw(CLOCKH) Pulse duration, CLOCKIN high PRPC4 tsu(DATAIN-CLOCK) Setup time, DATAIN valid before CLOCKIN active edge 4 ns PRPC5 th(CLOCK-DATAIN) Hold time, DATAIN valid after CLOCKIN active edge 0 ns (1) P = CLOCKIN cycle time in ns PRPC1 PRPC3 PRPC2 CLOCKIN DATAIN PRPC5 PRPC4 PRU_TIMING_03 Figure 7-90. PRU_ICSSG PRU Parallel Capture Timing Requirements – Rising Edge Mode PRPC1 PRPC3 PRPC2 CLOCKIN DATAIN PRPC5 PRPC4 PRU_TIMING_04 Figure 7-91. PRU_ICSSG PRU Parallel Capture Timing Requirements – Falling Edge Mode 210 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.16.1.3 PRU_ICSSG PRU Shift Mode Timing Table 7-110. PRU_ICSSG PRU Timing Requirements – Shift In Mode see Figure 7-92 NO. PARAMETER DESCRIPTION MIN MAX UNIT PRSI1 tw(DATAINH) Pulse duration, DATAIN high 2P(1) + 2 ns PRSI2 tw(DATAINL) Pulse duration, DATAIN low 2P(1) + 2 ns (1) P = Internal shift in clock period, defined by PRUn_GPI_DIV0 and PRUn_GPI_DIV1 bit fields in the ICSSG_GPCFGn_REG register. PRUn represents the respective PRU0 or PRU1 instance. PRSI1 PRSI2 DATAIN PRU_TIMING_05 Figure 7-92. PRU_ICSSG PRU Shift In Timing Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 211 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-111. PRU_ICSSG PRU Switching Characteristics – Shift Out Mode see Figure 7-93 NO. PARAMETER PRSO1 DESCRIPTION tc(CLOCKOUT) MIN Cycle time, CLOCKOUT MAX 10 UNIT ns PRSO2L tw(CLOCKOUTL) Pulse duration, CLOCKOUT low 0.475P(1)Z(2) 0.3 ns PRSO2H tw(CLOCKOUTH) Pulse duration, CLOCKOUT high 0.475P(1)Y(3) 0.3 ns PRSO3 (1) (2) td(CLOCKOUT-DATAOUT) Delay time, CLOCKOUT to DATAOUT valid -1 4 ns P = Software programmable shift out clock period, defined by PRUn_GPO_DIV0 and PRUn_GPO_DIV1 bit fields in the ICSSG_GPCFGn_REG register, where PRUn represents the respective PRU0 or PRU1 instance. The Z parameter is defined as follows, where PRUn represents the respective PRU0 or PRU1 instance. a. (3) If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are INTEGERS -or- if PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is an EVEN INTEGER then, Z equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1). b. If PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is an ODD INTEGER then, Z equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 + 0.5). c. If PRUn_GPI_DIV0 is an INTEGER and PRUn_GPI_DIV1 is a NON-INTEGER then, Z equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 + 0.5 * PRUn_GPI_DIV0). d. If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are NON-INTEGERS then, Z equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 + 0.25 * PRUn_GPI_DIV0). The Y parameter is defined as follows, where PRUn represents the respective PRU0 or PRU1 instance. a. b. c. d. If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are INTEGERS -or- if PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is an EVEN INTEGER then, Y equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1). If PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is an ODD INTEGER then, Y equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 - 0.5). If PRUn_GPI_DIV0 is an INTEGER and PRUn_GPI_DIV1 is a NON-INTEGER then, Y equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 - 0.5 * PRUn_GPI_DIV0). If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are NON-INTEGERS then, Y1 equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 - 0.25 * PRUn_GPI_DIV0) and Y2 equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 + 0.25 * PRUn_GPI_DIV0), where Y1 is the first high pulse and Y2 is the second high pulse. PRSO1 PRSO2H PRSO2L CLOCKOUT DATAOUT PRSO3 PRU_TIMING_06 Figure 7-93. PRU_ICSSG PRU Shift Out Timing 212 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.16.1.4 PRU_ICSSG PRU Sigma Delta and Peripheral Interface Table 7-112. PRU_ICSSG PRU Sigma Delta and Peripheral Interface Timing Conditions PARAMETER MIN MAX UNIT 1 3 V/ns 2 18 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance 7.10.5.16.1.4.1 PRU_ICSSG PRU Sigma Delta and Peripheral Interface Timing Table 7-113. PRU_ICSSG PRU Timing Requirements – Sigma Delta Mode see Figure 7-94 and Figure 7-95 NO. PARAMETER DESCRIPTION MIN MAX UNIT PRSD1 tc(SD_CLK) Cycle time, SDx_CLK 40 ns PRSD2L tw(SD_CLKL) Pulse duration, SDx_CLK low 20 ns PRSD2H tw(SD_CLKH) Pulse duration, SDx_CLK high 20 ns PRSD3 tsu(SD_D-SD_CLK) Setup time, SDx_D valid before SDx_CLK active edge 10 ns PRSD4 th(SD_CLK-SD_D) Hold time, SDx_D valid before SDx_CLK active edge 5 ns PRSD1 PRSD2H SDx_CLK PRSD2L SDx_D PRSD4 PRSD3 PRU_TIMING_07 Figure 7-94. PRU_ICSSG PRU SD_CLK Falling Active Edge PRSD2L SDx_CLK SDx_D PRSD4 PRSD3 PRU_TIMING_08 Figure 7-95. PRU_ICSSG PRU SD_CLK Rising Active Edge Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 213 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-114. PRU_ICSSG PRU Timing Requirements – Peripheral Interface Mode see Figure 7-96 NO. PARAMETER DESCRIPTION MIN MAX UNIT PRPIF1 tw(PIF_DATA_INH) Pulse duration, PIF_DATA_IN high 2+ (1) 0.475*(4*P) ns PRPIF2 tw(PIF_DATA_INL) Pulse duration, PIF_DATA_IN low 2+ (1) 0.475*(4*P) ns (1) P = 1x (or TX) clock period in ns, defined by PRUn_ED_TX_DIV_FACTOR and PRUn_ED_TX_DIV_FACTOR_FRAC in the ICSSG_PRUn_ED_TX_CFG_REG register. PRUn represents the respective PRU0 or PRU1 instance. PRPIF1 PRPIF2 PIF_DATA_IN PRUPIF_TIMING_01 Figure 7-96. PRU_ICSSG PRU Peripheral Interface Timing Requirements Table 7-115. PRU_ICSSG PRU Switching Characteristics – Peripheral Interface Mode see Figure 7-97 NO. PRPIF3 PARAMETER DESCRIPTION tc(PIF_CLK) MIN Cycle time, PIF_CLK UNIT ns (1) ns (1) ns PRPIF4 tw(PIF_CLKH) Pulse duration, PIF_CLK high 0.475*P PRPIF5 tw(PIF_CLKL) Pulse duration, PIF_CLK low 0.475*P td(PIF_CLK- Delay time, PIF_CLK fall to PIF_DATA_OUT PRPIF6 MAX 30 -5 5 ns -5 5 ns PIF_DATA_OUT) PRPIF7 (1) td(PIF_CLK-PIF_DATA_EN) Delay time, PIF_CLK fall to PIF_DATA_EN P = 1x (or TX) clock period in ns, defined by PRUn_ED_TX_DIV_FACTOR and PRUn_ED_TX_DIV_FACTOR_FRAC in the ICSSG_PRUn_ED_TX_CFG_REG register. PRUn represents the respective PRU0 or PRU1 instance. PRPIF3 PRPIF4 PRPIF5 PIF_CLK PRPIF6 PIF_DATA_OUT PRPIF7 PIF_DATA_EN Figure 7-97. PRU_ICSSG PRU Peripheral Interface Switching Characteristics 214 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.16.2 PRU_ICSSG Pulse Width Modulation (PWM) Table 7-116. PRU_ICSSG PWM Timing Conditions PARAMETER MIN MAX UNIT 1 4 V/ns 2 7 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance 7.10.5.16.2.1 PRU_ICSSG PWM Timing Table 7-117. PRU_ICSSG PWM Switching Characteristics see Figure 7-98 NO. PARAMETER PRPWM1 tsk(PWM_A-PWM_B) DESCRIPTION MIN Skew, PWM_A to PWM_B MAX 5 UNIT ns PWM_A/B PRPWM1 PRU_PWM_TIMING_01 Figure 7-98. PRU_ICSSG PWM Timing Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 215 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.16.3 PRU_ICSSG Industrial Ethernet Peripheral (IEP) Table 7-118. PRU_ICSSG IEP Timing Conditions PARAMETER MIN MAX UNIT 1 3 V/ns EDC_SYNC_OUTx EDIO_OUTVALID 2 7 pF EDIO_DATA_OUT 3 10 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance 7.10.5.16.3.1 PRU_ICSSG IEP Timing Table 7-119. PRU_ICSSG IEP Timing Requirements – Input Validated with SYNC see Figure 7-99 NO. PARAMETER DESCRIPTION MIN MAX UNIT PRIEP1 tw(EDC_SYNC_OUTxL) Pulse duration, EDC_SYNC_OUTx low 20P(1) -2 ns PRIEP2 tw(EDC_SYNC_OUTxH) Pulse duration, EDC_SYNC_OUTx high 20P(1) - 2 ns tsu(EDIO_DATA_IN- Setup time, EDIO_DATA_IN valid before EDC_SYNC_OUTx active edge 20 ns Hold time, EDIO_DATA_IN valid after EDC_SYNC_OUTx active edge 20 ns PRIEP3 EDC_SYNC_OUTx) PRIEP4 th(EDC_SYNC_OUTxEDIO_DATA_IN) (1) P = PRU_ICSSG IEP clock source period in ns. EDC_SYNC_OUTx PRIEP2 PRIEP1 PRIEP3 PRIEP4 EDIO_DATA_IN[7:0] PRU_IEP_TIMING_01 Figure 7-99. PRU_ICSSG IEP SYNC Timing Requirements 216 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-120. PRU_ICSSG IEP Switching Characteristics – Digital IOs see Figure 7-100 NO. IEPIO1 PARAMETER DESCRIPTION tw(EDIO_OUTVALIDL) MIN Pulse duration, EDIO_OUTVALID low 14P(1) - 2 32P(1) IEPIO2 tw(EDIO_OUTVALIDH) Pulse duration, EDIO_OUTVALID high IEPIO3 td(EDIO_OUTVALID- Delay time, EDIO_OUTVALID to EDIO_DATA_OUT MAX ns -2 0 UNIT ns 18P(1) ns 5 ns EDIO_DATA_OUT) IEPIO4 (1) tsk(EDIO_DATA_OUT) EDIO_DATA_OUT skew P = PRU_ICSSG IEP clock source period in ns. EDIO_DATA_OUT IEPIO4 PRU_EDIO_DATA_OUT_TIMING_00 Figure 7-100. PRU_ICSSG IEP Digital IOs Timing Requirements Table 7-121. PRU_ICSSG IEP Timing Requirements – LATCH_INx see Figure 7-101 NO. PRLA1 PRLA2 (1) PARAMETER DESCRIPTION tw(EDC_LATCH_INxL) tw(EDC_LATCH_INxH) MIN MAX UNIT Pulse duration, EDC_LATCH_INx low 3P(1) + 2 ns Pulse duration, EDC_LATCH_INx high 3P(1) ns +2 P = PRU_ICSSG IEP clock source period in ns. PRLA1 EDC_LATCH_INx PRLA2 PRU_IEP_TIMING_02 Figure 7-101. PRU_ICSSG IEP LATCH_INx Timing Requirements Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 217 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.16.4 PRU_ICSSG Universal Asynchronous Receiver Transmitter (UART) Table 7-122. PRU_ICSSG UART Timing Conditions PARAMETER MIN MAX UNIT 0.5 5 V/ns 1 30(1) INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL (1) Output load capacitance pF This value represents an absolute maximum load capacitance. As the UART baud rate increases, it may be necessary to reduce the load capacitance to a value less than this maximum limit to provide enough timing margin for the attached device. The output rise/fall times increase as capacitive load increases, which decreases the time data is valid for the receiver of the attached devices. Therefore, it is important to understand the minimum data valid time required by the attached device at the operating baud rate. Then use the device IBIS models to verify the actual load capacitance on the UART signals does not increase the rise/fall times beyond the point where the minimum data valid time of the attached device is violated. 7.10.5.16.4.1 PRU_ICSSG UART Timing Table 7-123. PRU_ICSSG UART Timing Requirements see Figure 7-102 NO. (1) (2) PARAMETER DESCRIPTION 1 tw(RXD) Pulse width, receive data bit high or low 2 tw(RXDS) Pulse width, receive start bit low MIN MAX 0.95U(1) 1.05U(1) (2) (2) 0.95U(1) UNIT ns ns (2) U = UART baud time in ns = 1/programmed baud rate. This value defines the data valid time, where the input voltage is required to be above VIH or below VIL. Table 7-124. PRU_ICSSG UART Switching Characteristics see Figure 7-102 NO. (1) PARAMETER DESCRIPTION MIN MAX UNIT 12 Mbps f(baud) Programmed baud rate 3 tw(TXD) Pulse width, transmit data bit high or low U(1) - 2 U(1) + 2 ns 4 tw(TXDS) Pulse width, transmit start bit low U(1) - 2 U(1) + 2 ns U = UART baud time in ns = 1/actual baud rate, where the actual baud rate is defined in the UART Baud Rate Settings table of the device TRM. 2 1 PRGi_UART0_RXD Start Bit VIH VIL Data Bits 4 3 PRGi_UART0_TXD Start Bit Data Bits PRU_UART_TIMING_01_RCVRVIHVIL Figure 7-102. PRU_ICSSG UART Timing Requirements and Switching Characteristics 218 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.16.5 PRU_ICSSG Enhanced Capture Peripheral (ECAP) Table 7-125. PRU_ICSSG ECAP Timing Conditions PARAMETER MIN MAX UNIT 1 3 V/ns 2 7 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance 7.10.5.16.5.1 PRU_ICSSG ECAP Timing Table 7-126. PRU_ICSSG ECAP Timing Requirements see Figure 7-103 NO. PARAMETER DESCRIPTION MIN MAX UNIT PREP1 tw(CAP) Pulse Duration, CAP (asynchronous) 2P(1) +2 ns PREP2 tw(SYNCI) Pulse Duration, SYNCI (asynchronous) 2P(1) + 2 ns (1) P = CORE_CLK period in ns. PREP1 CAP PREP2 SYNCI Figure 7-103. PRU_ICSSG ECAP Timing Table 7-127. PRU_ICSSG ECAP Switching Characteristics see Figure 7-104 NO. PREP3 PREP4 (1) PARAMETER DESCRIPTION tw(APWM) MIN 2P(1) - 2 Pulse Duration, APWM high/low tw(SYNCO) P(1) Pulse Duration, SYNCO (asynchronous) -2 MAX UNIT ns ns P = CORE_CLK period in ns. PREP3 APWM PREP4 SYNCO Figure 7-104. PRU_ICSSG ECAP Switching Characteristics Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 219 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.16.6 PRU_ICSSG RGMII, MII_RT, and Switch For more information, see Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem Gigabit (PRU_ICSSG) section in Processors and Accelerators chapter in the device TRM. 7.10.5.16.6.1 PRU_ICSSG MDIO Timing Table 7-128, Table 7-129, Table 7-130, and Figure 7-105 present timing conditions, requirements, and switching characteristics for PRU_ICSSG MDIO. Table 7-128. PRU_ICSSG MDIO Timing Conditions PARAMETER MIN MAX UNIT 0.9 3.6 V/ns 10 470 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance Table 7-129. PRU_ICSSG MDIO Timing Requirements see Figure 7-105 NO. PARAMETER MIN MDIO1 tsu(MDIO_MDC) Setup time, MDIO[x]_MDIO valid before MDIO[x]_MDC high MDIO2 th(MDC_MDIO) Hold time, MDIO[x]_MDIO valid after MDIO[x]_MDC high MAX UNIT 90 ns 0 ns Table 7-130. PRU_ICSSG MDIO Switching Characteristics see Figure 7-105 NO. PARAMETER MIN MAX UNIT MDIO3 tc(MDC) Cycle time, MDIO[x]_MDC 400 ns MDIO4 tw(MDCH) Pulse Duration, MDIO[x]_MDC high 160 ns MDIO5 tw(MDCL) Pulse Duration, MDIO[x]_MDC low 160 ns MDIO7 td(MDC_MDIO) Delay time, MDIO[x]_MDC low to MDIO[x]_MDIO valid -150 150 ns MDIO3 MDIO4 MDIO5 MDIO[x]_MDC MDIO1 MDIO2 MDIO[x]_MDIO (input) MDIO7 MDIO[x]_MDIO (output) CPSW2G_MDIO_TIMING_01 Figure 7-105. PRU_ICSSG MDIO Timing Requirements and Switching Characteristics 220 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.16.6.2 PRU_ICSSG MII Timing Note In order to ensure the MII_G_RT I/O timing values published in the device data sheet, the PRU_ICSSG ICSSGn_CORE_CLK (where n = 0 to 1) core clock must be configured for 200 MHz, 225 MHz, or 250 MHz and the TX_CLK_DELAYn (where n = 0 or 1) bit field in the ICSSG_TXCFG0/1 register must be set to 0h (default value). Table 7-131, Table 7-132, Figure 7-106, Table 7-133, Figure 7-107, Table 7-134, Figure 7-108, Table 7-135, and Figure 7-109 present timing conditions, requirements, and switching characteristics for PRU_ICSSG MII. Table 7-131. PRU_ICSSG MII Timing Conditions PARAMETER MIN MAX UNIT 0.9 3.6 V/ns 2 20 pF INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance Table 7-132. PRU_ICSSG MII Timing Requirements – MII[x]_RX_CLK see Figure 7-106 NO. PARAMETER DESCRIPTION PMIR1 tc(RX_CLK) Cycle time, MII[x]_RX_CLK PMIR2 tw(RX_CLKH) Pulse Duration, MII[x]_RX_CLK High PMIR3 tw(RX_CLKL) Pulse Duration, MII[x]_RX_CLK Low MODE MIN MAX UNIT 10 Mbps 399.96 400.04 ns 100 Mbps 39.996 40.004 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns PMIR1 PMIR2 PMIR3 MII_RX_CLK PRU_MII_RT_TIMING_04 Figure 7-106. PRU_ICSSG MII[x]_RX_CLK Timing Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 221 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-133. PRU_ICSSG MII Timing Requirements – MII[x]_RXD[3:0], MII[x]_RX_DV, and MII[x]_RX_ER see Figure 7-107 NO. PMIR4 PMIR5 PARAMETER DESCRIPTION MODE tsu(RXD-RX_CLK) Setup time, MII[x]_RXD[3:0] valid before MII[x]_RX_CLK tsu(RX_DV-RX_CLK) Setup time, MII[x]_RX_DV valid before MII[x]_RX_CLK tsu(RX_ER-RX_CLK) Setup time, MII[x]_RX_ER valid before MII[x]_RX_CLK tsu(RXD-RX_CLK) Setup time, MII[x]_RXD[3:0] valid before MII[x]_RX_CLK tsu(RX_DV-RX_CLK) Setup time, MII[x]_RX_DV valid before MII[x]_RX_CLK tsu(RX_ER-RX_CLK) Setup time, MII[x]_RX_ER valid before MII[x]_RX_CLK th(RX_CLK-RXD) Hold time, MII[x]_RXD[3:0] valid after MII[x]_ RX_CLK th(RX_CLK-RX_DV) Hold time, MII[x]_RX_DV valid after MII[x]_RX_CLK th(RX_CLK-RX_ER) th(RX_CLK-RXD) th(RX_CLK-RX_DV) Hold time, MII[x]_RX_DV valid after MII[x]_RX_CLK th(RX_CLK-RX_ER) Hold time, MII[x]_RX_ER valid after MII[x]_RX_CLK MIN MAX UNIT 8 ns 8 ns 8 ns 8 ns 8 ns 8 ns 8 ns 8 ns Hold time, MII[x]_RX_ER valid after MII[x]_RX_CLK 8 ns Hold time, MII[x]_RXD[3:0] valid after MII[x]_ RX_CLK 8 ns 8 ns 8 ns 10 Mbps 100 Mbps 10 Mbps 100 Mbps PMIR4 PMIR5 MII_RX_CLK MII_RXD[3:0], MII_RX_DV, MII_RX_ER Figure 7-107. PRU_ICSSG MII[x]_RXD[3:0], MII[x]_RX_DV, and MII[x]_RX_ER Timing Table 7-134. PRU_ICSSG MII Timing Requirements – MII[x]_TX_CLK see Figure 7-108 NO. PARAMETER DESCRIPTION PMIT1 tc(TX_CLK) Cycle time, MII[x]_TX_CLK PMIT2 tw(TX_CLKH) Pulse Duration, MII[x]_TX_CLK High PMIT3 tw(TX_CLKL) Pulse Duration, MII[x]_TX_CLK Low MODE MIN MAX UNIT 10 Mbps 399.96 400.04 ns 100 Mbps 39.996 40.004 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns PMIT1 PMIT3 PMIT2 MII_TX_CLK Figure 7-108. PRU_ICSSG MII[x]_TX_CLK Timing 222 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-135. PRU_ICSSG MII Switching Characteristics – MII[x]_TXD[3:0] and MII[x]_TX_EN see Figure 7-109 NO. PMIT4 PARAMETER DESCRIPTION MODE td(TX_CLK-TXD) Delay time, MII[x]_TX_CLK High to MII[x]_TXD[3:0] valid td(TX_CLK-TX_EN) Delay time, MII[x]_TX_CLK to MII[x]_TX_EN valid td(TX_CLK-TXD) Delay time, MII[x]_TX_CLK High to MII[x]_TXD[3:0] valid td(TX_CLK-TX_EN) Delay time, MII[x]_TX_CLK to MII[x]_TX_EN valid 10 Mbps 100 Mbps MIN MAX 0 25 UNIT ns 0 25 ns 0 25 ns 0 25 ns PMIT4 MII_TX_CLK MII_TXD[3:0], MII_TX_EN Figure 7-109. PRU_ICSSG MII[x]_TXD[3:0], MII[x]_TX_EN Timing Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 223 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.16.6.3 PRU_ICSSG RGMII Timing Table 7-136, Table 7-137, Table 7-138, Figure 7-110, Table 7-139, Table 7-140, and Figure 7-111 present timing conditions, requirements, and switching characteristics for PRU_ICSSG RGMII. Table 7-136. PRU_ICSSG RGMII Timing Conditions PARAMETER MIN MAX UNIT VDD = 1.8V 1.44 5 V/ns VDD = 3.3V 2.65 5 V/ns 2 20 pF RGMII[x]_RXC, RGMII[x]_RD[3:0], RGMII[x]_RX_CTL 50 ps RGMII[x]_TXC, RGMII[x]_TD[3:0], RGMII[x]_TX_CTL 50 ps INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance PCB CONNECTIVITY REQUIREMENTS td(Trace Mismatch Delay) 224 Propagation delay mismatch across all traces Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-137. PRU_ICSSG RGMII Timing Requirements – RGMII[x]_RXC see Figure 7-110 NO. PARAMETER RGMII1 RGMII2 RGMII3 tc(RXC) DESCRIPTION Cycle time, RGMII[x]_RXC tw(RXCH) Pulse duration, RGMII[x]_RXC high tw(RXCL) Pulse duration, RGMII[x]_RXC low MODE MIN MAX UNIT 10 Mbps 360 440 ns 100 Mbps 36 44 ns 1000 Mbps 7.2 8.8 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns Table 7-138. PRU_ICSSG RGMII Timing Requirements – RGMII[x]_RD[3:0] and RGMII[x]_RX_CTL see Figure 7-110 NO. PARAMETER RGMII4 tsu(RD-RXC) MODE Setup time, RGMII[x]_RD[3:0] valid before RXC high/low tsu(RX_CTL-RXC) RGMII5 DESCRIPTION th(RXC-RD) Setup time, RGMII[x]_RX_CTL valid before RGMII[x]_RXC high/low Hold time, RGMII[x]_RD[3:0] valid after RGMII[x]_RXC high/low th(RXC-RX_CTL) Hold time, RGMII[x]_RX_CTL valid after RGMII[x]_RXC high/low MIN MAX UNIT 10 Mbps 1 ns 100 Mbps 1 ns 1000 Mbps 1 ns 10 Mbps 1 ns 100 Mbps 1 ns 1000 Mbps 1 ns 10 Mbps 1 ns 100 Mbps 1 ns 1000 Mbps 1 ns 10 Mbps 1 ns 100 Mbps 1 ns 1000 Mbps 1 ns RGMII1 RGMII2 RGMII[x]_RXC RGMII3 (A) RGMII4 RGMII5 (B) RGMII[x]_RD[3:0] RGMII[x]_RX_CTL A. B. (B) 1st Half-byte 2nd Half-byte RXDV RXERR RGMII[x]_RXC must be externally delayed relative to the data and control pins. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the rising edge of RGMII[x]_RXC and data bits 7-4 on the falling edge of RGMII[x]_RXC. Similarly, RGMII[x]_RX_CTL carries RXDV on rising edge of RGMII[x]_RXC and RXERR on falling edge of RGMII[x]_RXC. Figure 7-110. PRU_ICSSG RGMII[x]_RXC, RGMII[x]_RD[3:0], RGMII[x]_RX_CTL Timing Requirements RGMII Mode Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 225 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Table 7-139. PRU_ICSSG RGMII Switching Characteristics – RGMII[x]_TXC see Figure 7-111 NO. PARAMETER RGMII6 RGMII7 RGMII8 tc(TXC) DESCRIPTION Cycle time, RGMII[x]_TXC tw(TXCH) Pulse duration, RGMII[x]_TXC high tw(TXCL) Pulse duration, RGMII[x]_TXC low MODE MIN MAX UNIT 10 Mbps 360 440 ns 100 Mbps 36 44 ns 1000 Mbps 7.2 8.8 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns Table 7-140. PRU_ICSSG RGMII Switching Characteristics – RGMII[x]_TD[3:0] and RGMII[x]_TX_CTL see Figure 7-111 NO. PARAMETER RGMII9 tosu(TD-TXC) Output setup time, RGMII[x]_TD[3:0] valid to RGMII[x]_TXC high/low tosu(TX_CTL-TXC) RGMII10 DESCRIPTION toh(TXC-TD) Output setup time, RGMII[x]_TX_CTL valid to RGMII[x]_TXC high/low Output setup time, RGMII[x]_TD[3:0] valid after RGMII[x]_TXC high/low toh(TXC-TX_CTL) Output setup time, RGMII[x]_TX_CTL valid after RGMII[x]_TXC high/low MODE MIN MAX UNIT 10 Mbps 1.2 ns 100 Mbps 1.2 ns 1000 Mbps 1.2 ns 10 Mbps 1.2 ns 100 Mbps 1.2 ns 1000 Mbps 1.2 ns 10 Mbps 1.2 ns 100 Mbps 1.2 ns 1000 Mbps 1.2 ns 10 Mbps 1.2 ns 100 Mbps 1.2 ns 1000 Mbps 1.2 ns RGMII6 RGMII7 RGMII8 (A) RGMII[x]_TXC RGMII9 (B) 1st Half-byte RGMII[x]_TD[3:0] 2nd Half-byte RGMII10 RGMII[x]_TX_CTL A. B. (B) TXEN TXERR TXC is delayed internally before being driven to the RGMII[x]_TXC pin. This internal delay is always enabled. Data and control information is received using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on the rising edge of RGMII[x]_TXC and data bits 7-4 on the falling edge of RGMII[x]_TXC. Similarly, RGMII[x]_TX_CTL carries TXEN on rising edge of RGMII[x]_TXC and TXERR on falling edge of RGMII[x]_TXC. Figure 7-111. PRU_ICSSG RGMII[x]_TXC, RGMII[x]_TD[3:0], and RGMII[x]_TX_CTL Switching Characteristics - RGMII Mode 226 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.17 Timers For more details about features and additional description information on the device Timers, see the corresponding subsections within Signal Descriptions and Detailed Description sections. Table 7-141. Timer Timing Conditions PARAMETER MIN MAX UNIT 0.5 5 V/ns 2 10 pF MAX UNIT INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance Table 7-142. Timer Input Timing Requirements see Figure 7-112 NO. (1) PARAMETER DESCRIPTION MODE MIN (1) ns (1) ns T1 tw(TINPH) Pulse duration, high CAPTURE 2 + 4P T2 tw(TINPL) Pulse duration, low CAPTURE 2 + 4P P = functional clock period in ns. Table 7-143. Timer Output Switching Characteristics see Figure 7-112 NO. T3 T4 (1) PARAMETER tw(TOUTH) tw(TOUTL) DESCRIPTION MODE Pulse duration, high PWM Pulse duration, low MIN PWM MAX UNIT (1) ns (1) ns -2 + 4P -2 + 4P P = functional clock period in ns. T1 T2 TIMER_IOx (inputs) T3 T4 TIMER_IOx (outputs) TIMER_01 Figure 7-112. Timer Timing Requirements and Switching Characteristics For more information, see Timers section in Peripherals chapter in the device TRM. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 227 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.5.18 UART For more details about features and additional description information on the device Universal Asynchronous Receiver Transmitter, see the corresponding subsections within Signal Descriptions and Detailed Description sections. Table 7-144. UART Timing Conditions PARAMETER MIN MAX UNIT 0.5 5 V/ns 1 30(1) INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL (1) Output load capacitance pF This value represents an absolute maximum load capacitance. As the UART baud rate increases, it may be necessary to reduce the load capacitance to a value less than this maximum limit to provide enough timing margin for the attached device. The output rise/fall times increase as capacitive load increases, which decreases the time data is valid for the receiver of the attached devices. Therefore, it is important to understand the minimum data valid time required by the attached device at the operating baud rate. Then use the device IBIS models to verify the actual load capacitance on the UART signals does not increase the rise/fall times beyond the point where the minimum data valid time of the attached device is violated. Table 7-145. UART Timing Requirements see Figure 7-113 NO. (1) (2) PARAMETER DESCRIPTION 1 tw(RXD) Pulse width, receive data bit high or low 2 tw(RXDS) Pulse width, receive start bit low MIN MAX 0.95U(1) 1.05U(1) (2) (2) 0.95U(1) UNIT ns ns (2) U = UART baud time in ns = 1/programmed baud rate. This value defines the data valid time, where the input voltage is required to be above VIH or below VIL. Table 7-146. UART Switching Characteristics see Figure 7-113 NO. PARAMETER DESCRIPTION f(baud) (1) MIN Programmable baud rate for Main Domain UARTs Programmable baud rate for MCU Domain UARTs 3 tw(TXD) Pulse width, transmit data bit high or low U(1) 4 tw(TXDS) Pulse width, transmit start bit low U(1) - 2.2 - 2.2 U(1) MAX UNIT 12 Mbps 3.7 Mbps + 2.2 ns ns U = UART baud time in ns = 1/programmed baud rate. 2 1 UARTi_RXD Start Bit VIH VIL Data Bits 4 3 UARTi_TXD Start Bit Data Bits UART_TIMING_01_RCVRVIHVIL Figure 7-113. UART Timing Requirements and Switching Characteristics 228 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 For more information, see Universal Asynchronous Receiver/Transmitter (UART) section in Peripherals chapter in the device TRM. 7.10.5.19 USB The USB 2.0 subsystem is compliant with the Universal Serial Bus (USB) Specification, revision 2.0. Refer to the specification for timing details. The USB 3.1 GEN1 subsystem is compliant with the Universal Serial Bus (USB) 3.1 Specification, revision 1.0. Refer to the specification for timing details. For more details about features and additional description information on the device Universal Serial Bus Subsystem (USB), see the SERDES0 Signal Descriptions and the corresponding subsection within Detailed Description. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 229 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.6 Emulation and Debug For more details about features and additional description information on the device Trace and JTAG interfaces, see the corresponding subsections within Signal Descriptions and Detailed Description sections. 7.10.6.1 Trace Table 7-147. Trace Timing Conditions PARAMETER MIN MAX UNIT 2 5 pF VDDSHV3 = 1.8V 200 ps VDDSHV3 =3.3V 100 ps OUTPUT CONDITIONS CL Output load capacitance PCB CONNECTIVITY REQUIREMENTS td(Trace Mismatch) Propagation delay mismatch across all traces Table 7-148. Trace Switching Characteristics NO. PARAMETER MIN MAX UNIT 1.8V Mode DBTR1 tc(TRC_CLK) Cycle time, TRC_CLK 6.50 ns DBTR2 tw(TRC_CLKH) Pulse width, TRC_CLK high 2.50 ns DBTR3 tw(TRC_CLKL) Pulse width, TRC_CLK low 2.50 ns tosu(TRC_DATAV- Output setup time, TRC_DATA valid to TRC_CLK edge 0.81 ns Output hold time, TRC_CLK edge to TRC_DATA invalid DBTR4 TRC_CLK) DBTR5 toh(TRC_CLK-TRC_DATAI) 0.81 ns DBTR6 tosu(TRC_CTLV-TRC_CLK) Output setup time, TRC_CTL valid to TRC_CLK edge 0.81 ns DBTR7 toh(TRC_CLK-TRC_CTLI) 0.81 ns Output hold time, TRC_CLK edge to TRC_CTL invalid 3.3V Mode DBTR1 tc(TRC_CLK) Cycle time, TRC_CLK 8.67 ns DBTR2 tw(TRC_CLKH) Pulse width, TRC_CLK high 3.58 ns DBTR3 tw(TRC_CLKL) Pulse width, TRC_CLK low 3.58 ns DBTR4 tosu(TRC_DATAV- Output setup time, TRC_DATA valid to TRC_CLK edge 1.08 ns Output hold time, TRC_CLK edge to TRC_DATA invalid TRC_CLK) DBTR5 toh(TRC_CLK-TRC_DATAI) 1.08 ns DBTR6 tosu(TRC_CTLV-TRC_CLK) Output setup time, TRC_CTL valid to TRC_CLK edge 1.08 ns DBTR7 toh(TRC_CLK-TRC_CTLI) 1.08 ns Output hold time, TRC_CLK edge to TRC_CTL invalid DBTR1 DBTR2 DBTR3 TRC_CLK (Worst Case 1) (Ideal) (Worst Case 2) DBTR4 DBTR5 DBTR4 DBTR5 DBTR6 DBTR7 DBTR6 DBTR7 TRC_DATA TRC_CTL SPRSP08_Debug_01 Figure 7-114. Trace Switching Characteristics 230 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 7.10.6.2 JTAG Table 7-149. JTAG Timing Conditions PARAMETER MIN MAX UNIT 0.5 2.0 V/ns 5 15 pF 83.5 1000(1) ps 100 ps INPUT CONDITIONS SRI Input slew rate OUTPUT CONDITIONS CL Output load capacitance PCB CONNECTIVITY REQUIREMENTS td(Trace Delay) Propagation delay of each trace td(Trace Mismatch Delay) Propagation delay mismatch across all traces (1) Maximum propagation delay associated with the JTAG signal traces has a significant impact on maximum TCK operating frequency. It may be possible to increase the trace delay beyond this value, but the operating frequency of TCK must be reduced to account for the additional trace delay. Table 7-150. JTAG Timing Requirements see Figure 7-115 NO. J1 UNIT 45.5(1) ns ns J2 tw(TCKH) Pulse width minimum, TCK high J3 tw(TCKL) Pulse width minimum, TCK low 0.4P(2) ns tsu(TDI-TCK) Input setup time minimum, TDI valid to TCK high 4 ns tsu(TMS-TCK) Input setup time minimum, TMS valid to TCK high 4 ns th(TCK-TDI) Input hold time minimum, TDI valid from TCK high 2 ns th(TCK-TMS) Input hold time minimum, TMS valid from TCK high 2 ns J5 (2) MAX Cycle time minimum, TCK 0.4P(2) J4 (1) MIN tc(TCK) The maximum TCK operating frequency assumes the following timing requirements and switching characteristics for the attached debugger. The operating frequency of TCK must be reduced to provide appropriate timing margin if the debugger exceeds any of these assumptions. • Minimum TDO setup time of 2.2 ns relative to the rising edge of TCK • TDI and TMS output delay in the range of -16.1 ns to 14.1 ns relative to the falling edge of TCK P = TCK cycle time in ns Table 7-151. JTAG Switching Characteristics see Figure 7-115 NO. PARAMETER MIN J6 td(TCKL-TDOI) Delay time minimum, TCK low to TDO invalid J7 td(TCKL-TDOV) Delay time maximum, TCK low to TDO valid MAX 0 UNIT ns 14 ns J1 J3 J2 TCK J4 J5 J4 J5 TDI / TMS J6 J7 TDO Figure 7-115. JTAG Timing Requirements and Switching Characteristics Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 231 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 8 Detailed Description 8.1 Overview AM64x is an extension of the Sitara™ industrial-grade family of heterogeneous Arm processors. AM64x is built for industrial applications, such as motor drives and programmable logic controllers (PLCs), which require a unique combination of real-time processing and communications with applications processing. AM64x combines two instances of Sitara’s gigabit TSN-enabled PRU-ICSSG, up to two Arm Cortex-A53 cores, up to four CortexR5F MCUs, and a Cortex-M4F MCU domain. AM64x is architected to provide real-time performance through the high-performance R5Fs, Tightly-Coupled Memory banks, configurable SRAM partitioning, and low-latency paths to and from peripherals for rapid data movement in and out of the SoC. This deterministic architecture allows for AM64x to handle the tight control loops found in servo drives, while the peripherals like FSI, GPMC, PWMs, sigma delta decimation filters, and absolute encoder interfaces help enable a number of different architectures found in these systems. The Cortex-A53s provide the powerful computing elements necessary for Linux applications. Linux, and Realtime (RT) Linux, is provided through TI’s Processor SDK Linux which stays updated to the latest Long Term Support (LTS) Linux kernel, bootloader and Yocto file system on an annual basis. AM64x helps bridge the Linux world with the real-time world by enabling isolation between Linux applications and real-time streams through configurable memory partitioning. The Cortex-A53s can be assigned to work strictly out of DDR for Linux, and the internal SRAM can be broken up into various sizes for the Cortex-R5Fs to use together or independently. The PRU_ICSSG in AM64x provides the flexible industrial communications capability necessary to run gigabit TSN, EtherCAT, PROFINET, EtherNet/IP, and various other protocols. In addition, the PRU_ICSSG also enables additional interfaces in the SoC including sigma delta decimation filter modules and absolute encoder interfaces. Functional safety features can be enabled through the MCU domain with an integrated Cortex-M4F and dedicated peripheral set which can all be shared or isolated from the rest of the SoC. AM64x also supports secure boot. Note For more information on features, subsystems, and architecture of superset device System on Chip (SoC), see the device TRM. 232 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 8.2 Processor Subsystems 8.2.1 Arm Cortex-A53 Subsystem The A53SS module supports the following features: • Dual Core A53 Cluster – Full ARM v8-A Architecture Compliant • AArch32 and AArch64 Execution States • All exception levels EL0-3 • A32 Instruction Set (Previously ARM instruction set) • T32 instruction set (previously Thumb instruction set) • A64 Instruction Set – Advanced SIMD and Floating Point Extensions (NEON) – ARMv8 Cryptography Extensions – ARMv8 Cryptography Extensions – ARM GICv3 architecture – In-order pipeline with symmetric dual-issue of most instructions – Harvard L1 with system MMU • 32 KB Instruction Cache • 32 KB Data Cache – 256KB Shared L2 Cache – Generic Timer(s) – Debug • 128-Bit VBUSM Initiator Interfaces (for axi_r and axi_r channels) • 128-Bit VBUSM Target Interface (for Accelerator Coherency Port) • 64-bit Grey-coded system input time • 48-bit Grey-coded debug input time • 32-bit VBUSP Target Interface for Debug • Integrated PBIST Controller with BISOR For more information, see Dual-A53 MPU Subsystem section in Processors and Accelerators chapter in the device TRM. 8.2.2 Arm Cortex-R5F Subsystem (R5FSS) The R5FSS is a dual-core implementation of the Arm® Cortex®-R5F processor configured for dual/single-core operation. It also includes accompanying memories (L1 caches and tightly-coupled memories), standard Arm® CoreSight™ debug and trace architecture, integrated Vectored Interrupt Manager (VIM), ECC Aggregators, and various wrappers for protocol conversion and address translation for easy integration into the SoC. Note The Cortex®-R5F processor is a Cortex-R5 processor that includes the optional Floating Point Unit (FPU) extension. For more information, see Dual-R5F Subsystem (R5FSS) section in Processors and Accelerators chapter in the device TRM. 8.2.3 Arm Cortex-M4F (M4FSS) The M4FSS module on the AM64x device provides a safety channel (secondary channel - working in conjunction with an external microcontroller)- or- a general purpose MCU. The M4FSS module supports the following features: • Cortex M4F With MPU • ARMv7-M architecture • Support for Nested Vectored Interrupt Controller (NVIC) with 64 inputs Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 233 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 • • • • • • Ability to executed code from internal or external memories 192 KB of SRAM (I-Code) 64 KB of SRAM (D-Code) External access to internal memories if allowed Debug Support Including: – DAP based Debug to the CPU Core – Full Debug Features of CPU Core are enabled – Standard ITM trace – CTM Cross Trigger – ETM Trace Support Fault Detection and Correction – SECDED ECC protection on I-CODE – SECDED ECC protection on D-CODE – Fault Error Interrupt Output For more information, see Arm Cortex M4F Subsystem (M4FSS) section in Processors and Accelerators chapter in the device TRM. 234 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 8.3 Accelerators and Coprocessors 8.3.1 Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem (PRU_ICSSG) The PRU_ICSSG module supports the following main features: • 3x PRUs – General-Purpose PRU (PRU) – Real-Time PRU(RTU_PRU) – Transmit PRU (TX_PRU) • 2x Ethernet MII_G_RT configurable connection to PRUs – Up to 2x RGMII ports – Up to 2x MII ports – RX Classifier • 2x Industrial Ethernet Peripheral (IEP) to manage and generate industrial Ethernet functions • 2x Industrial Ethernet 64-bit timers, each with 10 capture and 16 compare events, along with slow and fast compensation. • 1x MDIO • 1x UART, with a dedicated 192-MHz clock input • Supports up to 4 sets of 3-phased motor control, with 12 primary and 12 complimentary programmable PWM outputs. • Supports up to 9 safety events with optional external trip I/O per PWM set with hardware glitch filter. • 1x Enhanced Capture Module (ECAP) • 1x Interrupt Controller (INTC) – 160 input events supported – 96 external, 64 internal • Flexible power management support • Integrated switched central resource with programmable priority • All memories support ECC For more information, see Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem Gigabit (PRU_ICSSG) section in Processors and Accelerators chapter in the device TRM. 8.4 Other Subsystems 8.4.1 PDMA Controller The Peripheral DMA is a simple DMA which has been architected to specifically meet the data transfer needs of peripherals, which perform data transfers using memory mapped registers accessed via a standard non-coherent bus fabric. The PDMA module is intended to be located close to one or more peripherals which require an external DMA for data movement and is architected to reduce cost by using VBUSP interfaces and supporting only statically configured Transfer Request (TR) operations. The PDMA is only responsible for performing the data movement transactions which interact with the peripherals themselves. Data which is read from a given peripheral is packed by a PDMA source channel into a PSI-L data stream which is then sent to a remote peer UDMA-P destination channel which then performs the movement of the data into memory. Likewise, a remote UDMA-P source channel fetches data from memory and transfers it to a peer PDMA destination channel over PSI-L which then performs the writes to the peripheral. The PDMA architecture is intentionally heterogeneous (UDMA-P + PDMA) to right size the data transfer complexity at each point in the system to match the requirements of whatever is being transferred to or from. Peripherals are typically FIFO based and do not require multi-dimensional transfers beyond their FIFO dimensioning requirements, so the PDMA transfer engines are kept simple with only a few dimensions (typically for sample size and FIFO depth), hardcoded address maps, and simple triggering capabilities. Multiple source and destination channels are provided within the PDMA which allow multiple simultaneous transfer operations to be ongoing. The DMA controller maintains state information for each of the channels and employs round-robin scheduling between channels in order to share the underlying DMA hardware. There are five PDMA modules in the device. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 235 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 For more information, see PDMA Controller section in DMA Controllers chapter in the device TRM. 8.4.2 Peripherals 8.4.2.1 ADC The analog-to-digital converter (ADC) module is a single-channel general purpose analog-to-digital converter with an 8-input analog multiplexer, which supports 12-bit conversion samples from an analog front end (AFE). There is one ADC module in the device. For more information, see Analog-to-Digital Converter (ADC) section in Peripherals chapter in the device TRM. 8.4.2.2 DCC The Dual Clock Comparator (DCC) is used to determine the accuracy of a clock signal during the time execution of an application. Specifically, the DCC is designed to detect drifts from the expected clock frequency. The desired accuracy can be programed based on calculation for each application. The DCC measures the frequency of a selectable clock source using another input clock as a reference. The device has seven instances of DCC modules. For more information, see Dual Clock Comparator (DCC) section in Peripherals chapter in the device TRM. 8.4.2.3 Dual Date Rate (DDR) External Memory Interface (DDRSS) Integrated in MAIN domain: one instance of DDR Subsystem (DDRSS) is used as an interface to external RAM devices which can be utilized for storing program or data. DDRSS provides the following main features: • • • • • • • • • Support of DDR4 / LPDDR4 memory types 16-bit memory bus interface with in-line ECC System bus interface: little Endian only with 128-bit data width Configuration bus Interface: little Endian only with 32-bit data width Support of dual rank configuration Support of automatic idle power saving mode when no or low activity is detected Class of Service (CoS) - three latency classes supported Prioritized refresh scheduling Statistical counters for performance management For more information, see DDR Subsystem (DDRSS) section in Peripherals chapter in the device TRM. 8.4.2.4 ECAP This section describes the Enhanced Capture (ECAP) module for the device. For more information, see Enhanced Capture (ECAP) Module section in Peripherals chapter in the device TRM. 8.4.2.5 EPWM An effective PWM peripheral must be able to generate complex pulse width waveforms with minimal CPU overhead or intervention. It needs to be highly programmable and very flexible while being easy to understand and use. The EPWM unit described here addresses these requirements by allocating all needed timing and control resources on a per PWM channel basis. Cross coupling or sharing of resources has been avoided; instead, the EPWM is built up from smaller single channel modules with separate resources and that can operate together as required to form a system. This modular approach results in an orthogonal architecture and provides a more transparent view of the peripheral structure, helping users to understand its operation quickly. In the further description the letter x within a signal or module name is used to indicate a generic EPWM instance on a device. For example, output signals EPWMxA and EPWMxB refer to the output signals from the EPWM_x instance. Thus, EPWM1A and EPWM1B belong to EPWM1, EPWM2A and EPWM2B belong to EPWM2, and so forth. 236 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 Additionally, the EPWM integration allows this synchronization scheme to be extended to the capture peripheral modules (ECAP). The number of modules is device-dependent and based on target application needs. Modules can also operate stand-alone. The device has six instances of EPWM modules. For more information, see Enhanced Pulse Width Modulation (EPWM) Module section in Peripherals chapter in the device TRM. 8.4.2.6 ELM The Error Location Module (ELM) is used with the GPMC. Syndrome polynomials generated on-the-fly when reading a NAND flash page and stored in GPMC registers are passed to the ELM. A host processor can then correct the data block by flipping the bits to which the ELM error-location outputs point. When reading from NAND flash memories, some level of error-correction is required. In the case of NAND modules with no internal correction capability, sometimes referred to as bare NANDs, the correction process is delegated to the memory controller. ELM can be also used to support parallel NOR flash or NAND flash. The General-Purpose Memory Controller (GPMC) probes data read from an external NAND flash and uses this to compute checksum-like information, called syndrome polynomials, on a per-block basis. Each syndrome polynomial gives a status of the read operations for a full block, including 512 bytes of data, parity bits, and an optional spare-area data field, with a maximum block size of 1023 bytes. Computation is based on a Bose-Chaudhuri-Hocquenghem (BCH) algorithm. The ELM extracts error addresses from these syndrome polynomials. For more information, see Error Location Module (ELM) section in Peripherals chapter in the device TRM. 8.4.2.7 ESM The Error Signaling Module (ESM) aggregates safety-related events and/or errors from throughout the device into one location. The module can signal both low and high priority interrupts to a processor to deal with a safety event and/or manipulate an I/O error pin to signal external hardware that an error has occurred. This allows an external controller to reset the device or keep the system in safe, known state. For more information, see Error Signaling Module (ESM) section in Peripherals chapter in the device TRM. 8.4.2.8 GPIO The general-purpose input/output (GPIO) peripheral provides dedicated general-purpose pins that can be configured as either inputs or outputs. When configured as an output, user can write to an internal register to control the state driven on the output pin. When configured as an input, user can obtain the state of the input by reading the state of an internal register. In addition, the GPIO peripheral can produce host CPU interrupts and DMA synchronization events in different interrupt/event generation modes. For more information, see General-Purpose Interface (GPIO) section in Peripherals chapter in the device TRM. 8.4.2.9 EQEP The Enhanced Quadrature Encoder Pulse (EQEP) peripheral is used for direct interface with a linear or rotary incremental encoder to get position, direction and speed information from a rotating machine for use in high performance motion and position control system. The disk of an incremental encoder is patterned with a single track of slots patterns. These slots create an alternating pattern of dark and light lines. The disk count is defined as the number of dark/light line pairs that occur per revolution (lines per revolution). As a rule, a second track is added to generate a signal that occurs once per revolution (index signal: QEPI), which can be used to indicate an absolute position. Encoder manufacturers identify the index pulse using different terms such as index, marker, home position and zero reference. To derive direction information, the lines on the disk are read out by two different photo-elements that "look" at the disk pattern with a mechanical shift of 1/4 the pitch of a line pair between them. This shift is realized Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 237 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 with a reticle or mask that restricts the view of the photo-element to the desired part of the disk lines. As the disk rotates, the two photo-elements generate signals that are shifted 90 degrees out of phase from each other. These are commonly called the quadrature QEPA and QEPB signals. The clockwise direction for most encoders is defined as the QEPA channel going positive before the QEPB channel and vice versa. The encoder wheel typically makes one revolution for every revolution of the motor or the wheel can be at a geared rotation ratio with respect to the motor. Therefore, the frequency of the digital signal coming from the QEPA and QEPB outputs varies proportionally with the velocity of the motor. For example, a 2000-line encoder directly coupled to a motor running at 5000 revolutions per minute (rpm) results in a frequency of 166.6 KHz, so by measuring the frequency of either the QEPA or QEPB output, the processor can determine the velocity of the motor. For more information, see Enhanced Quadrature Encoder Pulse (EQEP) Module section in Peripherals chapter in the device TRM. 8.4.2.10 General-Purpose Memory Controller (GPMC) The General-Purpose Memory Controller is a unified memory controller dedicated for interfacing with external memory devices like: • Asynchronous SRAM-like memories and application-specific integrated circuit (ASIC) devices • Asynchronous, synchronous, and page mode (available only in non-multiplexed mode) burst NOR flash devices • NAND flash • Pseudo-SRAM devices For more information, see General-Purpose Memory Controller section in Peripherals chapter in the device TRM. 8.4.2.11 I2C The Inter-IC Bus (I2C) interface is implemented using the mshsi2c module. This peripheral implements the multi-controller I2C bus, which allows serial transfer of 8-bit data to and from other I2C controller and target devices, through a two-wire interface. The I2C module supports the following main features: • Compliant with Philips I2C specification version 2.1 • Supported Speeds: – Standard mode (up to 100 K bits/s) – Fast mode (up to 400 K bits/s) – High-speed mode (up to 3.4 M bits/s), I2C0 and MCU_I2C0 only • Multi-controller transmitter and target receiver mode • Multi-controller receiver and target transmitter mode • Combined controller transmit/receive and receive/transmit modes • 7-bit and 10-bit device addressing modes • Built-in 32-byte FIFO for buffered read or write • Programmable multi-target channel (responds to 4 separates addresses) • Programmable clock generation • Support for asynchronous wake-up • One interrupt line For more information, see Inter-Integrated Circuit (I2C) Interface section in Peripherals chapter in the device TRM. 8.4.2.12 MCAN The Controller Area Network (CAN) is a serial communications protocol which efficiently supports distributed real-time control with a high level of security. CAN has high immunity to electrical interference and the ability to self-diagnose and repair data errors. In a CAN network, many short messages are broadcast to the entire network, which provides for data consistency in every node of the system. 238 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 The MCAN module supports both classic CAN and CAN FD (CAN with Flexible Data-Rate) specifications. CAN FD feature allows high throughput and increased payload per data frame. The classic CAN and CAN FD devices can coexist on the same network without any conflict. The device supports 2 MCAN modules For more information, see Modular Controller Area Network (MCAN) section in Peripherals chapter in the device TRM. 8.4.2.13 MCRC Controller VBUSM CRC controller is a module which is used to perform CRC (Cyclic Redundancy Check) to verify the integrity of a memory system. A signature representing the contents of the memory is obtained when the contents of the memory are read into MCRC Controller. The responsibility of MCRC controller is to calculate the signature for a set of data and then compare the calculated signature value against a pre-determined good signature value. MCRC controller provides four channels to perform CRC calculation on multiple memories in parallel and can be used on any memory system. Channel 1 can also be put into data trace mode, where MCRC controller compresses each data being read through CPU read data bus. For more information, see MCRC Controller section in Interprocessor Communication chapter in the device TRM. 8.4.2.14 MCSPI The MCSPI module is a multichannel transmit/receive, controller/peripheral synchronous serial bus. There are total of seven MCSPI modules in the device. For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the device TRM. 8.4.2.15 MMCSD There are two Multi-Media Card/Secure Digital (MMCSD) modules inside the device - MMCSD0 and MMCSD1. Each MMCSD module includes one MMCSD Host Controller, where MMCSD0 is associated with MMC0 and MMCSD1 is associated with MMC1. The MMCSD Host Controller supports: • One controller with 8-bit wide data bus • One controller with 4-bit wide data bus • Support of eMMC5.1 Host Specification (JESD84-B51) • Support of SD Host Controller Standard Specification - SDIO 3.00 • Integrated DMA controller supporting SD Advanced DMA - ADMA2 and ADMA3 • eMMC Electrical Standard 5.1 (JESD84-B51) • Multi-Media card features: – Backward compatible with earlier eMMC standards – Legacy MMC SDR: 1.8 V, 8/4/1-bit bus width, 0-25 MHz, 25/12.5/3.125 MB/s – High Speed SDR: 1.8 V, 8/4/1-bit bus width, 0-50 MHz, 50/25/6.25 MB/s – High Speed DDR: 1.8 V, 8/4-bit bus width, 0-50 MHz, 100/50 MB/s – HS200 SDR: 1.8 V, 0-200 MHz, 8/4-bit bus width, 200/100 MB/s • SD card support: SDIO, SDR12, SDR25, SDR50, DDR50 • System bus interface: CBA 4.0 VBUSM initiator port with 64-bit data width and 64-bit address, little Endian only • Configuration bus interface: CBA 4.0 VBUSM with 32-bit data width, 32-bit aligned accesses only, linear incrementing addressing mode, little Endian only For more information, see Multi-Media Card/Secure Digital (MMCSD) Interface section in Peripherals chapter in the device TRM. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 239 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 8.4.2.16 OSPI The Octal Serial Peripheral Interface (OSPI) module is a kind of Serial Peripheral Interface (SPI) module which allows single, dual, quad or octal read and write access to external flash devices. This module has a memory mapped register interface, which provides a direct memory interface for accessing data from external flash devices, simplifying software requirements. The OSPI module is used to transfer data, either in a memory mapped direct mode (for example a processor wishing to execute code directly from external flash memory), or in an indirect mode where the module is set-up to silently perform some requested operation, signaling its completion via interrupts or status registers. For indirect operations, data is transferred between system memory and external flash memory via an internal SRAM which is loaded for writes and unloaded for reads by a device controller at low latency system speeds. Interrupts or status registers are used to identify the specific times at which this SRAM should be accessed using user programmable configuration registers. For more information, see Octal Serial Peripheral Interface (OSPI) section in Peripherals chapter in the device TRM. 8.4.2.17 Peripheral Component Interconnect Express (PCIe) The PCIe subsystem supports the following main features: • Dual mode – root port (RP) or end point (EP) modes. • 1-lane configuration with up to 5.0GT/lane. • 62.5/125 MHz operation on PIPE interface for Gen1/Gen2 respectively • Constant 32-bit PIPE width for Gen1/Gen2 modes • Maximum outbound payload size of 128 bytes • Maximum inbound payload size of 128 bytes • Maximum remote read request size of 4K bytes • Maximum number of nonposted outstanding transactions: 8 on each VBUSM interface. • Four virtual channels (4VC) • Resizable BAR capability • SRIS support • Power Management – L1 Power Management Substate support – D1 support – L1 Power Shutoff support • Legacy, MSI, and MSI-X interrupt support • 32 outbound address translation regions • Precision time measurement (PTM) For more information, see Peripheral Component Interconnect Express (PCIe) Subsystem section in Peripherals chapter in the device TRM. 8.4.2.18 Serializer/Deserializer (SerDes) PHY Integrated in the MAIN domain is one instance of high-speed differential interface implemented with Serializer/ Deserializer (SerDes) Multi-protocol Multi-link PHY with the following main blocks: • Single-lane SerDes PHY with common module for peripheral and Tx clocking handling • Physical coding sub-block for data translation from/to the parallel interface, as well as data encoding/ decoding and symbol alignment • MUX module for device interface multiplexing into a single SerDes lane (Tx and Rx) • A wrapper for sending control and reporting status signals from the SerDes and muxes For more information, see Serializer/Deserializer (SerDes) section in Peripherals chapter in the device TRM. 8.4.2.19 Real Time Interrupt (RTI/WWDT) This section describes the Real Time Interrupt (RTI) modules with Windowed Watchdog Timer (WWDT) functionality for the device. 240 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 For more information, see Real Time Interrupt (RTI/WWDT) Module section in Peripherals chapter of the device TRM. 8.4.2.20 Dual Mode Timer (DMTIMER) The Dual Mode Timer (DMTIMER) module supports the following main features: • Interrupts generated on overflow, compare, and capture events • Free running 32-bit upward counter • Supported operating modes: – Compare and capture modes – Auto-reload mode – Start-stop mode • Programmable divider clock source (2n with n=[0:8]) • Dedicated input trigger for capture mode, and dedicated output trigger/PWM (pulse width modulation) signal • On the fly read/write register (while counting) • Generate 1-ms tick with 32768-Hz functional clock For more information, see Timers section in Peripherals chapter in the device TRM. 8.4.2.21 UART The UART module supports the following main features: • 16C750 compatibility • Baud rate from 300 bps up to 12 Mbps (MCU_UART0 and MCU_UART1 limited to 3.7 Mbps) • Auto-baud between 1200 bps and 115.2 Kbps • Software/hardware flow control – Programmable Xon/Xoff characters – Programmable Auto-RTS and Auto CTS • Programmable serial interface characteristics – 5-, 6-, 7-, 8-bit characters – Even, odd, mark (always 1), space (always 0), or no parity (non-parity bit frame) bit generation and detection – 1-, 1.5-, or 2-stop bit generation • Optional multi-drop transmission • Configurable time-guard feature • False start bit detection • Line break generation and detection • Modem control functions on UART0 (CTS, RTS, DSR, DTR, RI, and DCD) • Fully prioritized interrupt system controls • Internal test and loopback capabilities • RS-485 External transceiver auto flow control support For more information, see Universal Synchronous/Asynchronous Receiver/Transmitter (UART) section in Peripherals chapter in the device TRM. 8.4.2.22 Universal Serial Bus Subsystem (USBSS) The Universal Serial Bus Subsystem (USBSS) module supports the following main features: General USB interface: • Compliant with USB 3.1 specification • Compliant with xHCI 1.1 specification • Port configurable as: – USB host: • SuperSpeed Gen 1 (5 Gbps) • High-speed (480 Mbps) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 241 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 • Full-speed (12 Mbps) • Low-speed (1.5 Mbps) – USB device/peripheral: • High-speed (480 Mbps) • Full-speed (12Mbps) – USB Dual-Role device USB Host mode features: • 64 slots • Up to 96 periodic simultaneous endpoints • 256 primary streams • MSI • Root hub For more information, see Universal Serial Bus (USB) Subsystem section in Peripherals chapter in the device TRM. 242 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 9 Applications, Implementation, and Layout Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 9.1 Device Connection and Layout Fundamentals 9.1.1 Power Supply 9.1.1.1 Power Supply Designs The TPS65220 or TPS65219 Power Management IC (PMIC) is recommended for an integrated power solution. This cost and space optimized solution is designed to power the device and its principal peripherals. For the full application note and related operational details, refer to Powering the AM64x with the TPS65220 or TPS65219 PMIC. • • • • Full device performance entitlement of TPS6522053 as validated on TI Evaluation boards Factory programmed configurations support power rail load steps, supply voltage accuracies and maximum load currents with margins Factory programmed configurations support LPDDR4 and DDR4 memory Meets all power supply sequencing requirements, refer to Power Supply Sequencing Note AM64x also supports discrete power supply topologies and customized power designs to meet various system requirements. 9.1.1.2 Power Distribution Network Implementation Guidance The Sitara Processor Power Distribution Networks: Implementation and Analysis provides guidance for successful implementation of the power distribution network. This includes PCB stackup guidance as well as guidance for optimizing the selection and placement of the decoupling capacitors. TI only supports designs that follow the board design guidelines contained in the application report. 9.1.2 External Oscillator For more information about External Oscillators, see the Clock Specifications section. 9.1.3 JTAG, EMU, and TRACE Texas Instruments supports a variety of eXtended Development System (XDS) JTAG controllers with various debug capabilities beyond only JTAG support. A summary of this information is available in the XDS Target Connection Guide. For recommendations on JTAG, EMU, and TRACE routing, see the Emulation and Trace Headers Technical Reference Manual 9.1.4 Unused Pins For more information about Unused Pins, see the Pin Connectivity Requirements section. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 243 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 9.2 Peripheral- and Interface-Specific Design Information 9.2.1 DDR Board Design and Layout Guidelines The goal of the AM64x\AM243x DDR Board Design and Layout Guidelines is to make the DDR system implementation straightforward for all designers. Requirements have been distilled down to a set of layout and routing rules that allow designers to successfully implement a robust design for the topologies that TI supports. TI only supports board designs using DDR4 or LPDDR4 memories that follow the guidelines in this document. 244 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 9.2.2 OSPI/QSPI/SPI Board Design and Layout Guidelines The following section details the PCB routing guidelines that must be observed when connecting OSPI, QSPI, or SPI devices. 9.2.2.1 No Loopback, Internal PHY Loopback, and Internal Pad Loopback • • • • • The OSPI[x]_CLK output pin must be connected to the CLK input pin of the attached OSPI/QSPI/SPI device The signal propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B) must be ≤ 450 ps (~7cm as stripline or ~8cm as microstrip) The signal propagation delay of each OSPI[x]_D[y] and OSPI[x]_CSn[z] pin to the corresponding attached OSPI/QSPI/SPI device data and control pin (E to F, or F to E) must be approximately equal to the signal propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B) 50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-1 Propagation delays and matching: – (A to B) ≤ 450 ps – (E to F, or F to E) = ((A to B) ± 60 ps) A B R1 0 Ω* OSPI/QSPI/SPI Device Clock Input OSPI[x]_CLK OSPI[x]_LBCLKO OSPI[x]_DQS E OSPI[x]_D[y], OSPI[x]_CSn[z] OSPI Device DQS F OSPI/QSPI/SPI Device IO[y], CS# OSPI_Board_01 * 0 Ω resistor (R1), located as close as possible to the OSPI[x]_CLK pin, is placeholder for fine tuning, if needed. Figure 9-1. OSPI Connectivity Schematic for No Loopback, Internal PHY Loopback, and Internal Pad Loopback Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 245 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 9.2.2.2 External Board Loopback • • • • • • The OSPI[x]_CLK output pin must be connected to the CLK input pin of the attached OSPI/QSPI/SPI device The OSPI[x]_LBCLKO output pin must be looped back to the OSPI[x]_DQS input pin The signal propagation delay of the OSPI[x]_LBCLKO pin to the OSPI[x]_DQS pin (C to D) must be approximately twice the propagation delay of the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B) The signal propagation delay of each OSPI[x]_D[y] and OSPI[x]_CSn[z] pin to the corresponding attached OSPI/QSPI/SPI device data and control pin (E to F, or F to E) must be approximately equal to the signal propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B) 50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-2 Propagation delays and matching: – (C to D) = 2 x ((A to B) ± 30 ps), see the exception note below. – (E to F, or F to E) = ((A to B) ± 60 ps) Note The External Board Loopback hold time requirement (defined by parameter number O16 in Table 7-101, OSPI0 Timing Requirements - PHY DDR Mode) may be larger than the hold time provided by a typical OSPI/QSPI/SPI device. In this case, the propagation delay of OPSI[x]_LBCLKO pin to the OSPI[x]_DQS pin (C to D) can be reduced to provide additional hold time. A B R1 0 Ω* OSPI/QSPI/SPI Device Clock Input OSPI[x]_CLK C R1 0 Ω* OSPI[x]_LBCLKO D OSPI[x]_DQS E OSPI[x]_D[y], OSPI[x]_CSn[z] OSPI Device DQS F OSPI/QSPI/SPI Device IO[y], CS# OSPI_Board_02 * 0 Ω resistor (R1), located as close as possible to the OSPI[x]_CLK and OSPI[x]_LBCLKO pins, is a placeholder for fine tuning, if needed. Figure 9-2. OSPI Connectivity Schematic for External Board Loopback 246 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 9.2.2.3 DQS (only available in Octal SPI devices) • • • • • • The OSPI[x]_CLK output pin must be connected to the CLK input pin of the attached OSPI/QSPI/SPI device The DQS pin of the attached OSPI/QSPI/SPI device must be connected to OSPI[x]_DQS pin The signal propagation delay from the attached OSPI/QSPI/SPI device DQS pin to the OSPI[x]_DQS pin (D to C) must be approximately equal to the signal propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B) The signal propagation delay of each OSPI[x]_D[y] and OSPI[x]_CSn[z] pin to the corresponding attached OSPI/QSPI/SPI device data and control pin (E to F, or F to E) must be approximately equal to the signal propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B) 50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-3 Propagation delays and matching: – (D to C) = ((A to B) ± 30 ps) – (E to F, or F to E) = ((A to B) ± 60 ps) A B R1 0 Ω* OSPI/QSPI/SPI Device Clock Input OSPI[x]_CLK OSPI[x]_LBCLKO C OSPI[x]_DQS E OSPI[x]_D[y], OSPI[x]_CSn[z] D OSPI Device DQS F OSPI/QSPI/SPI Device IO[y], CS# OSPI_Board_03 * 0 Ω resistor (R1), located as close as possible to the OSPI[x]_CLK pin, is a placeholder for fine tuning, if needed. Figure 9-3. OSPI Connectivity Schematic for DQS Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 247 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 9.2.3 USB VBUS Design Guidelines The USB 3.1 specification allows the VBUS voltage to be as high as 5.5 V for normal operation, and as high as 20 V when the Power Delivery addendum is supported. Some automotive applications require a max voltage to be 30 V. The device requires the VBUS signal voltage be scaled down using an external resistor divider (as shown in the Figure 9-4), which limits the voltage applied to the actual device pin (USB0_VBUS). The tolerance of these external resistors should be equal to or less than 1%, and the leakage current of Zener diode at 5 V should be less than 100 nA. Device USBn_VBUS 16.5 kΩ ±1% 3.48 kΩ ±1% 10 kΩ ±1% VBUS signal 6.8V (BZX84C6V8 or equivalent) VSS VSS J7ES_USB_VBUS_01 Figure 9-4. USB VBUS Detect Voltage Divider / Clamp Circuit The USB0_VBUS pin can be considered to be fail-safe because the external circuit in Figure 9-4 limits the input current to the actual device pin in a case where VBUS is applied while the device is powered off. 9.2.4 System Power Supply Monitor Design Guidelines The VMON_VSYS pin provides a way to monitor a system power supply. This system power supply is typically a single pre-regulated power source for the entire system and can be connected to the VMON_VSYS pin via and external resistor divider circuit. This system supply is monitored by comparing the external voltage divider output voltage to an internal voltage reference, where a power fail event is triggered when the voltage applied to VMON_VSYS drops below the internal reference voltage. The actual system power supply voltage trip point is determined by the system designer when selecting component values used to implement the external resistor voltage divider circuit. When building the resistor divider circuit the designer must understand various factors which contribute to variability in the system power supply monitor trip point. The first thing to consider is the initial accuracy of the VMON_VSYS input threshold which has a nominal value of 0.45 V, with a variation of ±3%. Precision 1% resistors with similar thermal coefficient are recommended for implementing the resistor voltage divider. This minimizes variability contributed by resistor value tolerances. Input leakage current associated with VMON_VSYS must also be considered since any current flowing into the pin creates a loading error on the voltage divider output. The VMON_VSYS input leakage current can be in the range of 10 nA to 2.5 µA when applying 0.45 V. Note The resistor voltage divider shall be designed such that the output voltage never exceeds the maximum value defined in the Recommended Operating Conditions section, during normal operating conditions. Figure 9-5 presents an example, where the system power supply is nominally 5 V and the maximum trigger threshold is 5 V - 10%, or 4.5 V. 248 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 For this example, the designer must understand which variables effect the maximum trigger threshold when selecting resistor values. A device which has a VMON_VSYS input threshold of 0.45 V + 3% needs to be considered when trying to design a voltage divider that doesn’t trip until the system supply drops 10%. The effect of resistor tolerance and input leakage also needs to be considered, but the contribution to the maximum trigger point is not obvious. When selecting component values which produce a maximum trigger voltage, the system designer must consider a condition where the value of R1 is 1% low and the value of R2 is 1% high combined with a condition where input leakage current for the VMON_VSYS pin is 2.5 µA. When implementing a resistor divider where R1 = 4.81 KΩ and R2 = 40.2 KΩ, the result is a maximum trigger threshold of 4.517 V. Once component values have been selected to satisfy the maximum trigger voltage as described above, the system designer can determine the minimum trigger voltage by calculating the applied voltage that produces an output voltage of 0.45 V - 3% when the value of R1 is 1% high and the value of R2 is 1% low, and the input leakage current is 10 nA, or zero. Using an input leakage of zero with the resistor values given above, the result is a minimum trigger threshold of 4.013 V. This example demonstrates a system power supply voltage trip point that ranges from 4.013 V to 4.517 V. Approximately 250 mV of this range is introduced by VMON_VSYS input threshold accuracy of ±3%, approximately 150 mV of this range is introduced by resistor tolerance of ±1%, and approximately 100 mV of this range is introduced by loading error when VMON_VSYS input leakage current is 2.5 µA. The resistor values selected in this example produces approximately 100 µA of bias current through the resistor divider when the system supply is 4.5 V. The 100 mV of loading error mentioned above can be reduced to about 10 mV by increasing the bias current through the resistor divider to approximately 1 mA. So resistor divider bias current vs loading error is something the system designer needs to consider when selecting component values. The system designer must also consider implementing a noise filter on the voltage divider output since VMON_VSYS has minimum hysteresis and a high-bandwidth response to transients. This can be done by installing a capacitor across R1 as shown in Figure 9-5. However, the system designer must determine the response time of this filter based on system supply noise and expected response to transient events. Device VMON_VSYS R2 40.2 kΩ ±1% R1 4.81 kΩ ±1% VSYS (System Power Supply) C1 Value = Determined by system designer VSS SPRSP56_VMON_ER_MON_01 Figure 9-5. System Supply Monitor Voltage Divider Circuit VMON_1P8_MCU and VMON_1P8_SOC pins provide a way to monitor external 1.8 V power supplies. These pins must be connected directly to their respective power source. An internal resistor divider with software control is implemented inside the SoC for each of these pins. Software can program each internal resistor divider to create appropriate under voltage and over voltage interrupts. VMON_3P3_MCU and VMON_3P3_SOC pins provide a way to monitor external 3.3 V power supplies. These pins must be connected directly to their respective power source. An internal resistor divider with software control is implemented inside the SoC for each of these pins. Software can program each internal resistor divider to create appropriate under voltage and over voltage interrupts. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 249 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 9.2.5 High Speed Differential Signal Routing Guidance The High Speed Interface Layout Guidelines provides guidance for successful routing of the high speed differential signals. This includes PCB stackup and materials guidance as well as routing skew, length and spacing limits. TI supports only designs that follow the board design guidelines contained in the application note. 9.2.6 Thermal Solution Guidance The Thermal Design Guide for DSP and ARM Application Processors provides guidance for successful implementation of a thermal solution for system designs containing this device. This document provides background information on common terms and methods related to thermal solutions. TI only supports designs that follow system design guidelines contained in the application note. 250 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 9.3 Clock Routing Guidelines 9.3.1 Oscillator Routing When designing the printed-circuit board: • Place all crystal circuit components as close as possible to the respective device pins. • Route the crystal circuit traces on the outer layer of the PCB and minimize trace lengths to reduce parasitic capacitance and minimize crosstalk from other signals. • Place a continuous ground plane on the adjacent layer of the PCB such that it is under all crystal circuit components and crystal circuit traces. • Route a ground guard around the crystal circuit components to shield it from any adjacent signals routed on the same layer as the crystal circuit traces. Insert multiple vias to stitch down the ground guard such that it does not have any unterminated stubs. • Route a ground guard between the MCU_OSC0_XI and MCU_OSC0_XO signals to shield the MCU_OSC0_XI signal from the MCU_OSC0_X0 signal. Insert multiple vias to stitch down the ground guard such that it does not have any unterminated stubs. • Connect all crystal circuit ground connections and ground guard connections directly to the adjacent layer ground plane, and the device VSS ground plane if they are implemented separately on different layers of the PCB. Note Implementing a ground guard between the MCU_OSC0_XI and MCU_OSC0_XO signals is critical to minimize shunt capacitance between the two signals. Routing these two signals adjacent to each other without a ground guard between them will effectively reduce the gain of the oscillator amplifier, which reduces its ability to start oscillation. GND vias Device MCU_OSC0_XI Cap Crystal Cap GND plane GND guard MCU_OSC0_XO GND vias Figure 9-6. MCU_OSC0 PCB requirements Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 251 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 10 Device and Documentation Support 10.1 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all embedded processor devices and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, AM6442BSFFHAALV). Texas Instruments recommends two of three possible prefix designators for related support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS). Device development evolutionary flow: X Experimental device that is not necessarily representative of the device's final electrical specifications and may not use production assembly flow. P Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications. null (BLANK) Production version of the silicon die that is fully qualified and meets final electrical specifications. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully-qualified development-support product. X and P devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. For orderable part numbers of AM64x devices in the ALV package type, see the Package Option Addendum at the end of this document, the TI website (ti.com), or contact your TI sales representative. 252 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 10.1.1 Standard Package Symbolization Note Some devices may have a cosmetic circular marking visible on the top of the device package which results from the production test process. In addition, some devices may also show a color variation in the package substrate which results from the substrate manufacturer. These differences are cosmetic only with no reliability impact. SITARA aBBBBBBr ZfYytPPPQ1 XXXXXXX G1 YYY A1 (PIN ONE INDICATOR) O Figure 10-1. Printed Device Reference Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 253 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 10.1.2 Device Naming Convention Table 10-1. Nomenclature Description FIELD PARAMETER FIELD DESCRIPTION a Device evolution stage VALUE DESCRIPTION X Prototype P Preproduction (production test flow, no reliability data) BLANK Production AM6442 AM6441 BBBBBB Base production part number AM6422 AM6421 See Table 5-1, Device Comparison AM6412 AM6411 r Device revision Z Device Speed Grades f Y y t PPP Q1 Features (see Table 5-1) Functional Safety Security Temperature (1) Package Designator Automotive Designator XXXXXXX Silicon Revision (SR) 1.0 B SR 2.0 S K See Table 7-1, Speed Grade Maximum Frequency C All PRU_ICSSG features are enabled except for industrial communication support. PRU_ICSSG industrial communication interfaces include Ethernet networking (MII/RGMII, MDIO), Sigma-Delta (SD) decimation, and three channel peripheral interface (EnDat 2.2 and BiSS) D Features supported by C, plus PRU_ICSSG industrial communication is enabled E Features supported by D, plus EtherCAT HW Accelerator and CAN-FD are enabled F Features supported by E, plus Pre-integrated Stacks are enabled G Non-Functional Safety F Functional Safety G Non-Secure H Secure A –40°C to 105°C - Extended Industrial (see Section 7.4, Recommended Operating Conditions) I –40°C to 125°C - Automotive (see Section 7.4, Recommended Operation Conditions) ALV ALV FCBGA-N441 (17.2 mm × 17.2 mm) Package Q1 Automotive Qualified (AEC - Q100) BLANK Standard Lot Trace Code (LTC) YYY (1) A Production Code; For TI use only O Pin one designator G1 ECAT—Green package designator Applies to device max junction temperature. Note BLANK in the symbol or part number is collapsed so there are no gaps between characters. 254 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 10.2 Tools and Software The following Development Tools support development for TI's Embedded Processing platforms: Development Tools Code Composer Studio™ Integrated Development Environment Code Composer Studio (CCS) Integrated Development Environment (IDE) is a development environment that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. The tool includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers. SysConfig-PinMux Tool The SysConfig-PinMux Tool is a software tool which provides a Graphical User Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI Embedded Processor devices. The tool can be used to automatically calculate the optimal pinmux configuration to satisfy entered system requirements. The tool generates output C header/code files that can be imported into software development kits (SDKs) and used to configure customer's software to meet custom hardware requirements. The Cloud-based SysConfig-PinMux Tool is also available. For a complete listing of development-support tools for the processor platform, visit the Texas Instruments website at ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. 10.3 Documentation Support To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Notifications to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. The following documents describe the AM64x devices. Technical Reference Manual AM64x/AM243x Processors Silicon Revision 1.0 Technical Reference Manual Details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the AM64x family of devices. Errata AM64x/AM243x Processors Silicon Revision 1.0 Silicon Errata Describes the known exceptions to the functional specifications for the device. 10.4 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 10.5 Trademarks Sitara™, Code Composer Studio™, and TI E2E™ are trademarks of Texas Instruments. CoreSight™ is a trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. Arm® and Cortex® are registered trademarks of Arm Limited. TrustZone® is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. PCI-Express® is a registered trademark of PCI-SIG. EtherCAT® is a registered trademark of Beckhoff Automation GmbH. All trademarks are the property of their respective owners. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 255 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 10.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 10.7 Glossary TI Glossary 256 This glossary lists and explains terms, acronyms, and definitions. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 AM6442, AM6441, AM6422, AM6421, AM6412, AM6411 www.ti.com SPRSP56F – JANUARY 2021 – REVISED OCTOBER 2023 11 Mechanical, Packaging, and Orderable Information 11.1 Packaging Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: AM6442 AM6441 AM6422 AM6421 AM6412 AM6411 257 PACKAGE OPTION ADDENDUM www.ti.com 8-Nov-2023 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) AM6411BKCGHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6411B KCGHAALV 709 AM6411BSCGHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6411B SCGHAALV 709 AM6412BKCGHAALVR ACTIVE FCBGA ALV 441 500 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6412B KCGHAALV 709 AM6412BSCGHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6412B SCGHAALV 709 AM6421BSDGHAALVR ACTIVE FCBGA ALV 441 500 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6421B SDGHAALV 709 AM6421BSEFHAALVR ACTIVE FCBGA ALV 441 500 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6421B SEFHAALV 709 AM6421BSFFHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6421B SFFHAALV 709 AM6421BSFGHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6421B SFGHAALV 709 AM6422BSDFHAALVR ACTIVE FCBGA ALV 441 500 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6422B SDFHAALV 709 AM6422BSDGHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6422B SDGHAALV 709 AM6441BSEFHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6441B SEFHAALV 709 AM6441BSEGHAALVR ACTIVE FCBGA ALV 441 500 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6441B SEGHAALV Addendum-Page 1 Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 8-Nov-2023 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) 709 AM6441BSFFHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6441B SFFHAALV 709 AM6442BSDGHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6442B SDGHAALV 709 AM6442BSEFHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6442B SEFHAALV 709 AM6442BSEGHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6442B SEGHAALV 709 AM6442BSFFHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6442B SFFHAALV 709 AM6442BSFGHAALV ACTIVE FCBGA ALV 441 84 RoHS & Green Call TI Level-3-250C-168 HR -40 to 105 AM6442B SFGHAALV 709 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
AM6422BSDGHAALV 价格&库存

很抱歉,暂时无法提供与“AM6422BSDGHAALV”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AM6422BSDGHAALV
    •  国内价格
    • 1000+109.67000

    库存:0