0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EVM430-FE4272

EVM430-FE4272

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    EVAL MODULE FOR FE4272

  • 数据手册
  • 价格&库存
EVM430-FE4272 数据手册
MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 D Low Supply-Voltage Range, 2.7 V to 3.6 V D Ultra-Low-Power Consumption: D D D D D D D D D − Active Mode: 400 µA at 1 MHz, 3.0 V − Standby Mode: 1.6 µA − Off Mode (RAM Retention): 0.1 µA Five Power-Saving Modes Wake-Up From Standby Mode in Less Than 6 µs Frequency-Locked Loop, FLL+ 16-Bit RISC Architecture, 125-ns Instruction Cycle Time Embedded Signal Processing for Single-Phase Energy Metering With Integrated Analog Front-End and Temperature Sensor (ESP430CE1B) 16-Bit Timer_A With Three Capture/Compare Registers Integrated LCD Driver for 128 Segments Serial Communication Interface (USART), Asynchronous UART, or Synchronous SPI Selectable by Software Brownout Detector D Supply Voltage Supervisor/Monitor With Programmable Level Detection D Serial Onboard Programming, D D D D No External Programming Voltage Needed, Programmable Code Protection by Security Fuse Bootstrap Loader in Flash Devices Family Members Include: − MSP430FE4232 8KB + 256B Flash Memory, 256B RAM − MSP430FE4242 12KB + 256B Flash Memory, 512B RAM − MSP430FE4252 16KB + 256B Flash Memory, 512B RAM − MSP430FE4272 32KB + 256B Flash Memory, 1KB RAM Available in 64-Pin Quad Flat Pack (QFP) For Complete Module Descriptions, See the MSP430x4xx Family User’s Guide, Literature Number SLAU056 description The Texas Instruments MSP430 family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs. The MSP430FE42x2 devices are microcontroller configurations with two independent 16-bit sigma-delta analog-to-digital (A/D) converters and embedded signal processor core used to measure and calculate single-phase energy in both 2-wire and 3-wire configurations. Also included is a built-in 16-bit timer, 128 LCD segment drive capability, and 14 I/O pins. Typical applications include 2-wire and 3-wire single-phase metering. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  2008 Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 AVAILABLE OPTIONS PACKAGED DEVICES TA PLASTIC 64-PIN QFP (PM) −40°C to 85°C MSP430FE4232IPM MSP430FE4242IPM MSP430FE4252IPM MSP430FE4272IPM AVCC DVSS AVSS P2.3/SVSIN P2.4/UTXD0 P2.5/URXD0 RST/NMI TCK TMS TDI/TCLK TDO/TDI P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1/S31 P1.3/SVSOUT/S30 P1.4/S29 pin designation DVCC I1+ I1− NC NC V1+ V1− XIN XOUT 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 2 47 3 46 4 45 5 44 6 43 7 42 9 40 VREF 10 39 P2.2/STE0 S0 S1 S2 S3 S4 11 38 12 37 13 36 14 35 15 34 8 MSP430FE42x2 41 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 16 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P1.5/TACLK/ACLK/S28 P1.6/SIMO0/S27 P1.7/SOMI0/S26 P2.0/TA2/S25 P2.1/UCLK0/S24 R33 R23 R13 R03 COM3 COM2 COM1 COM0 S23 S22 S21 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 functional block diagram DVCC XIN XOUT DVSS AVCC AVSS P2 P1 8 6 ACLK Oscillators FLL+ SMCLK MCLK 8 MHz CPU incl. 16 Registers Emulation Module Flash RAM Timer_A3 Port 1 Port 2 USART0 32KB 16KB 12KB 8KB 1KB 512B 512B 256B 3 CC Reg 8 I/O Interrupt Capability 6 I/O Interrupt Capability UART or SPI Function POR/ SVS/ Brownout Watchdog WDT+ ESP430CE1B Embedded Signal Processing, Analog Front-End MAB MDB 15/16-Bit JTAG Interface Basic Timer 1 1 Interrupt Vector LCD 128 Segments 1,2,3,4 MUX fLCD RST/NMI POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 Terminal Functions TERMINAL NAME NO. I/O DESCRIPTION DVCC 1 I1+ 2 I Digital supply voltage, positive terminal Current 1 positive analog input. Internal connection to SD16 Channel 0 A0+. (see Note 1) I1− 3 I Current 1 negative analog input. Internal connection to SD16 Channel 0 A0−. (see Note 1) NC 4 I Not connected. Connection to analog ground (AVSS) recommended. NC 5 I Not connected. Connection to analog ground (AVSS) recommended. V1+ 6 I Voltage 1 positive analog input. Internal connection to SD16 Channel 1 A0+. (see Note 1) V1− 7 I Voltage 1 negative analog input. Internal connection to SD16 Channel 1 A0−. (see Note 1) XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 O Output terminal of crystal oscillator XT1 VREF 10 I/O Input for an external reference voltage / Internal reference voltage output (can be used as mid-voltage) P2.2/STE0 11 I/O General-purpose digital I/O / Slave transmit enable—USART0/SPI mode S0 12 O LCD segment output 0 S1 13 O LCD segment output 1 S2 14 O LCD segment output 2 S3 15 O LCD segment output 3 S4 16 O LCD segment output 4 S5 17 O LCD segment output 5 S6 18 O LCD segment output 6 S7 19 O LCD segment output 7 S8 20 O LCD segment output 8 S9 21 O LCD segment output 9 S10 22 O LCD segment output 10 S11 23 O LCD segment output 11 S12 24 O LCD segment output 12 S13 25 O LCD segment output 13 S14 26 O LCD segment output 14 S15 27 O LCD segment output 15 S16 28 O LCD segment output 16 S17 29 O LCD segment output 17 S18 30 O LCD segment output 18 S19 31 O LCD segment output 19 S20 32 O LCD segment output 20 S21 33 O LCD segment output 21 S22 34 O LCD segment output 22 S23 35 O LCD segment output 23 COM0 36 O Common output, COM0−3 are used for LCD backplanes. COM1 37 O Common output, COM0−3 are used for LCD backplanes. COM2 38 O Common output, COM0−3 are used for LCD backplanes. COM3 39 O Common output, COM0−3 are used for LCD backplanes. R03 40 I Input port of fourth positive (lowest) analog LCD level (V5) NOTE 1: It is recommended to short unused analog input pairs and connect them to analog ground (AVSS). 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 Terminal Functions (Continued) TERMINAL NAME NO. I/O DESCRIPTION R13 41 I Input port of third most positive analog LCD level (V4 or V3) R23 42 I Input port of second most positive analog LCD level (V2) R33 43 O Output port of most positive analog LCD level (V1) P2.1/UCLK0/S24 44 I/O General-purpose digital I/O / External clock input-USART0/UART or SPI mode, clock output—USART0/SPI mode / LCD segment output 24 (See Note 1) P2.0/TA2/S25 45 I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, Compare: Out2 output / LCD segment output 25 (See Note 1) P1.7/SOMI0/S26 46 I/O General-purpose digital I/O / Slave out/master in of USART0/SPI mode / LCD segment output 26 (See Note 1) P1.6/SIMO0/S27 47 I/O General-purpose digital I/O / Slave in/master out of USART0/SPI mode / LCD segment output 27 (See Note 1) P1.5/TACLK/ ACLK/S28 48 I/O General-purpose digital I/O / Timer_A and SD16 clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8) / LCD segment output 28 (See Note 1) P1.4/S29 49 I/O General-purpose digital I/O / LCD segment output 29 (See Note 1) P1.3/SVSOUT/ S30 50 I/O General-purpose digital I/O / SVS: output of SVS comparator / LCD segment output 30 (See Note 1) P1.2/TA1/S31 51 I/O General-purpose digital I/O / Timer_A, Capture: CCI1A, CCI1B input, Compare: Out1 output / LCD segment output 31 (See Note 1) P1.1/TA0/MCLK 52 I/O General-purpose digital I/O / Timer_A, Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive P1.0/TA0 53 I/O General-purpose digital I/O / Timer_A, Capture: CCI0A input, Compare: Out0 output / BSL transmit TDO/TDI 54 I/O Test data output port. TDO/TDI data output or programming data input terminal. TDI/TCLK 55 I Test data input or test clock input. The device protection fuse is connected to TDI. TMS 56 I Test mode select. TMS is used as an input port for device programming and test. TCK 57 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 58 I Reset input or nonmaskable interrupt input port P2.5/URXD0 59 I/O General-purpose digital I/O / Receive data in—USART0/UART mode P2.4/UTXD0 60 I/O General-purpose digital I/O / Transmit data out—USART0/UART mode P2.3/SVSIN 61 I/O General-purpose digital I/O / Analog input to brownout, supply voltage supervisor AVSS 62 Analog supply voltage, negative terminal. Supplies SD16, SVS, brownout, oscillator, and LCD resistive divider circuitry. DVSS 63 Digital supply voltage, negative terminal. AVCC 64 Analog supply voltage, positive terminal. Supplies SD16, SVS, brownout, oscillator, and LCD resistive divider circuitry; must not power up prior to DVCC. NOTE 1: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g., ADD R4,R5 R4 + R5 −−−> R5 Single operands, destination only e.g., CALL PC −−>(TOS), R8−−> PC Relative jump, un/conditional e.g., JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D Indirect D D D D D Indirect autoincrement Immediate Register Indexed Symbolic (PC relative) Absolute D D D D SYNTAX EXAMPLE MOV Rs,Rd MOV R10,R11 MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) MOV EDE,TONI R10 −−> R11 M(2+R5)−−> M(6+R6) M(EDE) −−> M(TONI) MOV &MEM,&TCDAT M(MEM) −−> M(TCDAT) MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) −−> M(Tab+R6) D MOV @Rn+,Rm MOV @R10+,R11 M(R10) −−> R11 R10 + 2−−> R10 D MOV #X,TONI MOV #45,TONI NOTE: S = source, D = destination 6 OPERATION POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 #45 −−> M(TONI) MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 operating modes The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode (AM) − All clocks are active. D Low-power mode 0 (LPM0) − − − CPU is disabled. ACLK and SMCLK remain active, MCLK is available to modules. FLL+ loop control remains active. D Low-power mode 1 (LPM1) − − − CPU is disabled. ACLK and SMCLK remain active, MCLK is available to modules. FLL+ loop control is disabled. D Low-power mode 2 (LPM2) − − − − CPU is disabled. MCLK, FLL+ loop control, and DCOCLK are disabled. DCO’s dc generator remains enabled. ACLK remains active. D Low-power mode 3 (LPM3) − − − − CPU is disabled. MCLK, FLL+ loop control, and DCOCLK are disabled. DCO’s dc generator is disabled. ACLK remains active. D Low-power mode 4 (LPM4) − − − − − CPU is disabled. ACLK is disabled. MCLK, FLL+ loop control, and DCOCLK are disabled. DCO’s dc generator is disabled. Crystal oscillator is stopped. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External reset Watchdog Flash memory PC out-of-range (see Note 4) WDTIFG KEYV (see Note 1) Reset 0FFFEh 15, highest NMI Oscillator fault Flash memory access violation NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1 and 3) (Non)maskable (Non)maskable (Non)maskable 0FFFCh 14 ESP430 MBCTL_OUTxIFG, MBCTL_INxIFG (see Notes 1 and 2) Maskable 0FFFAh 13 SD16 SD16CCTLx SD16OVIFG, SD16CCTLx SD16IFG (see Notes 1 and 2) Maskable 0FFF8h 12 0FFF6h 11 Watchdog timer WDTIFG Maskable 0FFF4h 10 USART0 receive URXIFG0 Maskable 0FFF2h 9 USART0 transmit UTXIFG0 Maskable 8 7 Timer_A3 TACCR0 CCIFG (see Note 2) Maskable 0FFECh 6 Timer_A3 TACCR1 and TACCR2 CCIFGs, and TACTL TAIFG (see Notes 1 and 2) Maskable 0FFEAh 5 I/O port P1 (eight flags) P1IFG.0 to P1IFG.7 (see Notes 1 and 2) Maskable 0FFE8h 4 0FFE6h 3 0FFE4h 2 I/O port P2 (eight flags) P2IFG.0 to P2IFG.7 (see Notes 1 and 2) Maskable 0FFE2h 1 Basic timer1 BTIFG Maskable 0FFE0h 0, lowest NOTES: 1. 2. 3. 4. 8 0FFF0h 0FFEEh Multiple source flags Interrupt flags are located in the module. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt-enable cannot. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges (from 0600h to 0BFFh). POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 special function registers Most interrupt and module enable bits are collected into the lowest address space. Special function register bits that are not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement. interrupt enable 1 and 2 7 Address 0h 6 UTXIE0 rw–0 URXIE0 rw–0 5 4 ACCVIE NMIIE 3 2 OFIE 1 WDTIE 0 rw–0 rw–0 rw–0 rw–0 WDTIE: Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE: Oscillator-fault-interrupt enable NMIIE: Nonmaskable-interrupt enable ACCVIE: Flash access violation interrupt enable URXIE0: USART0: UART and SPI receive-interrupt enable UTXIE0: USART0: UART and SPI transmit-interrupt enable 7 Address 1h 6 5 4 3 2 1 4 3 2 1 0 BTIE rw-0 BTIE: Basic Timer1 interrupt enable interrupt flag register 1 and 2 7 Address 02h 6 5 UTXIFG0 URXIFG0 NMIIFG rw–1 rw–0 rw–0 OFIFG rw–1 0 WDTIFG rw–(0) WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC power up or a reset condition at the RST/NMI pin in reset mode. OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin URXIFG0: USART0: UART and SPI receive flag UTXIFG0: USART0: UART and SPI transmit flag Address 3h 7 6 5 4 3 2 1 0 BTIFG rw-0 BTIFG: Basic Timer1 interrupt flag POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 module enable registers 1 and 2 Address 04h 7 UTXE0 6 URXE0 USPIE0 rw–0 rw–0 5 4 3 URXE0: USART0: UART mode receive enable UTXE0: USART0: UART mode transmit enable USPIE0: USART0: SPI mode transmit and receive enable Address 7 6 5 4 3 05h Legend: rw−0,1: rw−(0,1): 10 Bit Can Be Read and Written. It Is Reset or Set by PUC. Bit Can Be Read and Written. It Is Reset or Set by POR. SFR Bit Not Present in Device. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2 1 2 1 0 0 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 memory organization MSP430FE4232 MSP430FE4242 MSP430FE4252 MSP430FE4272 Size Flash Flash 8KB 0FFFFh to 0FFE0h 0FFFFh to 0E000h 12KB 0FFFFh to 0FFE0h 0FFFFh to 0D000h 16KB 0FFFFh to 0FFE0h 0FFFFh to 0C000h 32KB 0FFFFh to 0FFE0h 0FFFFh to 08000h Information memory Size 256 Byte 010FFh to 01000h 256 Byte 010FFh to 01000h 256 Byte 010FFh to 01000h 256 Byte 010FFh to 01000h Boot memory Size 1kB 0FFFh to 0C00h 1kB 0FFFh to 0C00h 1kB 0FFFh to 0C00h 1kB 0FFFh to 0C00h Size 256 Byte 02FFh to 0200h 512 Byte 03FFh to 0200h 512 Byte 03FFh to 0200h 1KB 05FFh − 0200h 16 bit 8 bit 8-bit SFR 01FFh to 0100h 0FFh to 010h 0Fh to 00h 01FFh to 0100h 0FFh to 010h 0Fh to 00h 01FFh to 0100h 0FFh to 010h 0Fh to 00h 01FFh to 0100h 0FFh to 010h 0Fh to 00h Memory Interrupt vector Code memory RAM Peripherals bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature number SLAA089. BSL Function PM Package Pins Data Transmit 53 - P1.0 Data Receive 52 - P1.1 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A and B can be erased individually, or as a group with segments 0 to n. Segments A and B are also called information memory. D New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number SLAU056. oscillator and system clock The clock system in the MSP430FE42x2 family of devices is supported by the FLL+ module, which includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and a high-frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features a digital frequency-locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch-crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The FLL+ module provides the following clock signals: D D D D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal. Main clock (MCLK), the system clock used by the CPU. Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8. brownout, supply voltage supervisor (SVS) The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user-selectable level and supports both supply-voltage supervision (the device is automatically reset) and supply-voltage monitoring (SVM) (the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must ensure that the default FLL+ settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). digital I/O There are two 8-bit I/O ports implemented—ports P1 and P2 (only six P2 I/O signals are available on external pins). D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of port P1 and six bits of P2. Read/write access to port-control registers is supported by all instructions. NOTE: Only six bits of port P2 (P2.0 to P2.5) are available on external pins, but all control and data bits for port P2 are implemented. Basic Timer1 The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 can be used to generate periodic interrupts and clock for the LCD module. LCD drive The LCD driver generates the segment and common signals required to drive an LCD display. The LCD controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 watchdog timer (WDT+) The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_A3 SIGNAL CONNECTIONS INPUT PIN NUMBER DEVICE INPUT SIGNAL MODULE INPUT NAME 48 - P1.5 TACLK TACLK ACLK ACLK SMCLK SMCLK 48 - P1.5 TACLK INCLK 53 - P1.0 TA0 CCI0A 52 - P1.1 TA0 CCI0B DVSS GND DVCC VCC 51 - P1.2 TA1 CCI1A 51 - P1.2 TA1 CCI1B DVSS GND 45 - P2.0 DVCC VCC TA2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA OUTPUT PIN NUMBER 53 - P1.0 CCR0 TA0 51 - P1.2 CCR1 TA1 45 - P2.0 CCR2 TA2 universal synchronous/asynchronous receive transmit (USART0) The MSP430FE42x2 devices have one hardware USART0 peripheral module that is used for serial data communication. The USART supports synchronous SPI (3-pin or 4-pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. ESP430CE1B The ESP430CE1B module integrates a hardware multiplier, two independent 16-bit sigma-delta A/D converters (SD16) and an embedded signal processor (ESP430). The ESP430CE1B module measures 2 or 3-wire, single-phase energy and automatically calculates parameters which are made available to the MSP430 CPU. The module can be calibrated and initialized to accurately calculate energy, power factor, etc., for a wide range of metering sensor configurations. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog Watchdog timer control WDTCTL 0120h Timer_A3 _ Timer_A interrupt vector TAIV 012Eh Timer_A control TACTL 0160h Capture/compare control 0 TACCTL0 0162h Capture/compare control 1 TACCTL1 0164h Capture/compare control 2 TACCTL2 0166h Reserved 0168h Reserved 016Ah Reserved 016Ch Reserved 016Eh Timer_A register TAR 0170h Capture/compare register 0 TACCR0 0172h Capture/compare register 1 TACCR1 0174h Capture/compare register 2 TACCR2 0176h Reserved 0178h Reserved 017Ah Reserved 017Ch Reserved Hardware Multiplier p (see Note 1) Flash SD16 (see ( Note 1)) (see also: Peripherals with Byte Access) 017Eh Sum extend SUMEXT 013Eh Result high word RESHI 013Ch Result low word RESLO 013Ah Second operand OP2 0138h Multiply signed + accumulate/operand1 MACS 0136h Multiply + accumulate/operand1 MAC 0134h Multiply signed/operand1 MPYS 0132h Multiply unsigned/operand1 MPY 0130h Flash control 3 FCTL3 012Ch Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h General control SD16CTL 0100h Channel 0 control SD16CCTL0 0102h Reserved 0104h Channel 2 control SD16CCTL2 0106h Reserved 0108h Reserved 010Ah Reserved 010Ch Reserved 010Eh Interrupt vector word register SD16IV 0110h Channel 0 conversion memory SD16MEM0 0112h NOTE 1: Module is contained within ESP430CE1B. Registers not accessible when ESP430 is active. ESP430 must be disabled or suspended to allow CPU access to these modules. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 PERIPHERALS WITH WORD ACCESS SD16 (continued, see Note 1) Reserved 0114h Channel 2 conversion memory SD16MEM2 0118h Reserved 011Ah Reserved 011Ch Reserved ESP430 (ESP430CE1B) ( ) 0116h Reserved 011Eh ESP430 control ESPCTL 0150h Mailbox control MBCTL 0152h Mailbox in 0 MBIN0 0154h Mailbox in 1 MBIN1 0156h Mailbox out 0 MBOUT0 0158h Mailbox out 1 MBOUT1 015Ah ESP430 return value 0 RET0 01C0h : : : RET31 01FEh SD16INCTL0 0B0h ESP430 return value 31 PERIPHERALS WITH BYTE ACCESS SD16 (see ( Note 1)) (see also, Peripherals With Word Access) Channel 0 input control Reserved 0B1h Channel 2 input control SD16INCTL2 Reserved 0B3h Reserved 0B4h Reserved 0B5h Reserved 0B6h Reserved 0B7h Channel 0 preload SD16PRE0 Reserved 0B8h 0B9h Channel 2 preload SD16PRE2 0BAh Reserved 0BBh Reserved 0BCh Reserved 0BDh Reserved 0BEh Reserved LCD 0B2h 0BFh LCD memory 20 LCDM20 0A4h : : : LCD memory 16 LCDM16 0A0h LCD memory 15 LCDM15 09Fh : : : LCD memory 1 LCDM1 091h LCD control and mode LCDCTL 090h NOTE 1: Module is contained within ESP430CE1B. Registers not accessible when ESP430 is active. ESP430 must be disabled or suspended to allow CPU access to these modules. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) USART0 Transmit buffer U0TXBUF 077h Receive buffer U0RXBUF 076h Baud rate U0BR1 075h Baud rate U0BR0 074h Modulation control U0MCTL 073h Receive control U0RCTL 072h Transmit control U0TCTL 071h USART control U0CTL 070h Brownout, SVS SVS control register SVSCTL 056h FLL+ Clock FLL+ control 1 FLL_CTL1 054h FLL+ control 0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h BT counter 2 BTCNT2 047h BT counter 1 BTCNT1 046h BT control BTCTL 040h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR module enable 2 ME2 005h SFR module enable 1 ME1 004h SFR interrupt flag 2 IFG2 003h SFR interrupt flag 1 IFG1 002h SFR interrupt enable 2 IE2 001h SFR interrupt enable 1 IE1 000h Basic Timer1 Port P2 Port P1 Special p Functions 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 absolute maximum ratings† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to + 4.1 V Voltage applied to any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C Storage temperature (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. recommended operating conditions (see Note 1) PARAMETER MIN NOM MAX UNITS Supply voltage during program execution; ESP430 and SD16 disabled, VCC (AVCC = DVCC = VCC) (see Note 1) 1.8 3.6 V Supply voltage during program execution; SVS enabled, PORON = 1, ESP430 and SD16 disabled, VCC (AVCC = DVCC = VCC) (see Note 1 and Note 2) 2.0 3.6 V Supply voltage during program execution; ESP430 or SD16 enabled or during programming of flash memory, VCC (AVCC = DVCC = VCC) (see Note 1) 2.7 3.6 V Supply voltage (see Note 1), VSS (AVSS = DVSS = VSS) Operating free-air temperature range, TA LFXT1 crystal frequency, f(LFXT1) (see Note 3) LF selected, XTS_FLL=0 Watch crystal XT1 selected, XTS_FLL=1 Ceramic resonator XT1 selected, XTS_FLL=1 Crystal Processor frequency (signal MCLK), MCLK) f(System) (see Note 4) 0 0 V −40 85 °C 32768 Hz 450 8000 kHz 1000 8000 kHz VCC = 2.7 V dc 8.4 VCC = 3.6 V dc 8.4 MHz NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation. 2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing supply voltage. POR is going inactive when the supply voltage is raised above minimum supply voltage plus the hysteresis of the SVS circuitry. 3. The LFXT1 oscillator in LF-mode requires a watch crystal. 4. For frequencies above 8 MHz, MCLK is sourced by the built-in oscillator (DCO and FLL+). POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current (see Note 1) PARAMETER TEST CONDITIONS TYP MAX UNIT VCC = 3 V 400 500 µA TA = −40°C to 85°C VCC = 3 V 130 150 µA TA = −40°C to 85°C VCC = 3 V µA I(AM) Active mode, f(MCLK) = f(SMCLK) = f(DCO) = 1 MHz, f(ACLK) = 32,768 Hz, XTS_FLL = 0 (program executes in flash) TA = −40°C to 85°C I(LPM0) Low-power mode, (LPM0/LPM1) f(MCLK) = f(SMCLK) = f(DCO) = 1 MHz, f(ACLK) = 32,768 Hz, XTS_FLL = 0 FN_8 = FN_4 = FN_3 = FN_2 = 0 (see Note 2) I(LPM2) Low-power mode, (LPM2) (see Note 2) MIN TA = −40°C I(LPM3) TA = 25°C Low power mode, Low-power mode (LPM3) (see Note 2) VCC = 3 V TA = 60°C TA = 85°C TA = −40°C I(LPM4) TA = 25°C Low-power Low power mode, (LPM4) (see Note 2) VCC = 3 V TA = 85°C 10 22 1.5 2.0 1.6 2.1 1.7 2.2 2.0 3.5 0.1 0.5 0.1 0.5 0.8 2.5 NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. The current consumption in LPM2, LPM3, and LPM4 are measured with active Basic Timer1 and LCD (ACLK selected). The current consumption of the ESP430CE1B and the SVS module are specified in their respective sections. LPMx currents measured with WDT+ disabled. The currents are characterized with a KDS Daishinku DT−38 (6 pF) crystal. 2. Current for brownout included. current consumption of active mode versus system frequency I(AM) = I(AM) [1 MHz] × f(System) [MHz] current consumption of active mode versus supply voltage fSystem − Maximum Processor Frequency − MHz I(AM) = I(AM) [3 V] + 170 µA/V × (VCC – 3 V) f (MHz) Supply voltage range with ESP430 or SD16 enabled and during programming of the flash memory 8.4 MHz Supply voltage range during program execution 6 MHz 4.15 MHz 1.8 V ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ 2.7 V 3V 3.6 V VCC − Supply Voltage − V Figure 1. Frequency vs Supply Voltage 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 µA A µA MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Schmitt-trigger inputs − Ports P1 and P2, RST/NMI, JTAG: TCK, TMS, TDI/TCLK, TDO/TDI PARAMETER TEST CONDITIONS MIN MAX UNIT 1.5 1.98 V VCC = 3 V 0.9 1.3 V VCC = 3 V 0.45 1 V MAX VIT+ Positive-going input threshold voltage VCC = 3 V VIT− Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ − VIT−) inputs − Px.x, TAx PARAMETER TEST CONDITIONS VCC MIN UNIT t(int) External interrupt timing Port P1, P2: P1.x to P2.x, External trigger signal for the interrupt flag (see Note 1) 3V 1.5 cycle 3V 50 ns t(cap) Timer_A, capture timing TAx 3V 50 ns f(TAext) Timer_A clock frequency externally applied to pin TACLK, INCLK t(H) = t(L) 3V 10 MHz f(TAint) Timer_A clock frequency SMCLK or ACLK signal selected 3V 10 MHz NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) cycle and time parameters are met. It may be set even with trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in MCLK cycles. leakage current (see Note 1) PARAMETER Ilkg(P1.x) Ilkg(P2.x) Leakage current MAX UNIT Port P1 Port 1: V(P1.x) (see Note 2) TEST CONDITIONS VCC = 3 V MIN ±50 nA Port P2 Port 2: V(P2.x) (see Note 2) VCC = 3 V ±50 nA NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as an input. outputs − Ports P1 and P2 PARAMETER VOH High level output voltage High-level VOL Low level output voltage Low-level MIN MAX IOH(max) = −1.5 mA, TEST CONDITIONS VCC = 3 V, See Note 1 VCC−0.25 VCC IOH(max) = −6 mA, VCC = 3 V, See Note 2 VCC−0.6 VCC IOL(max) = 1.5 mA, VCC = 3 V, See Note 1 VSS VSS+0.25 IOL(max) = 6 mA, VCC = 3 V, See Note 2 VSS VSS+0.6 UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop. output frequency PARAMETER TEST CONDITIONS MIN fPx.y (1 ≤ x ≤ 2, 0 ≤ y ≤ 7) CL = 20 pF, IL = ± 1.5mA VCC = 3 V fACLK, fMCLK, fSMCLK P1.1/TA0/MCLK, P1.5/TACLK/ACLK/S28 CL = 20 pF VCC = 3 V P1.5/TACLK/ACLK/S28, CL = 20 pF VCC = 3 V fACLK = fLFXT1 = fXT1 40% fACLK = fLFXT1 = fLF 30% tXdc Duty cycle of output frequency P1.1/TA0/MCLK, CL = 20 pF, VCC = 3 V POST OFFICE BOX 655303 dc fACLK = fLFXT1 fMCLK = fDCOCLK • DALLAS, TEXAS 75265 TYP MAX UNIT 12 MHz 12 MHz 60% 70% 50% 50% − 15 ns 50% 50% + 15 ns 19 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs − Ports P1 and P2 (continued) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 30 I OL − Typical Low-level Output Current − mA I OL − Typical Low-level Output Current − mA 50 VCC = 2.2 V P2.1 TA = 25°C 25 TA = 85°C 20 15 10 5 0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P2.1 40 TA = 85°C 30 20 10 0 0.0 2.5 TA = 25°C 0.5 VOL − Low-Level Output Voltage − V 1.0 I OL − Typical High-level Output Current − mA I OL − Typical High-level Output Current − mA −5 −10 −15 TA = 85°C TA = 25°C 1.0 1.5 2.0 2.5 VCC = 3 V P2.1 −10 −20 −30 TA = 85°C −40 TA = 25°C −50 0.0 VOH − High-Level Output Voltage − V 20 0.5 1.0 1.5 Figure 5 One output loaded at a time POST OFFICE BOX 655303 2.0 2.5 3.0 VOH − High-Level Output Voltage − V Figure 4 NOTE: 3.5 0 VCC = 2.2 V P2.1 0.5 3.0 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 −30 0.0 2.5 Figure 3 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE −25 2.0 VOL − Low-Level Output Voltage − V Figure 2 −20 1.5 • DALLAS, TEXAS 75265 3.5 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) wake-up LPM3 PARAMETER TEST CONDITIONS MIN f = 1 MHz td(LPM3) UNIT 6 f = 2 MHz Delay time MAX 6 VCC = 3 V f = 3 MHz µs 6 RAM (see Note 1) PARAMETER TEST CONDITIONS VRAMh MIN CPU halted (see Note 1) MAX 1.6 UNIT V NOTE 1: This parameter defines the minimum supply voltage when the data in the program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. LCD PARAMETER TEST CONDITIONS V(33) Voltage at R33 V(23) Voltage at R23 Analog voltage Voltage at R13 V(33) − V(03) Voltage at R33/R03 I(R03) R03 = VSS I(R13) R13 = VCC/3 V(Sxx2) Segment line voltage (V33−V03) × 2/3 + V03 UNIT V (V(33)−V(03)) × 1/3 + V(03) 2.5 VCC +0.2 N lload d att allll segmentt and d No common lines lines, VCC = 3 V V(Sxx0) V(Sxx1) MAX VCC + 0.2 ±20 R23 = 2 × VCC/3 I(R23) TYP 2.5 VCC = 3 V V(13) Input leakage MIN I(Sxx) = −3 3 µA, A VCC = 3 V V(Sxx3) ±20 nA ±20 V(03) V(03) − 0.1 V(13) V(13) − 0.1 V(23) V(23) − 0.1 V(33) V(33) + 0.1 V USART0 (see Note 1) PARAMETER t(τ) USART0: deglitch time TEST CONDITIONS VCC = 3 V, SYNC = 0, UART mode MIN 150 TYP MAX 280 500 UNIT ns NOTE 1: The signal applied to the USART0 receive signal/terminal (URXD0) should meet the timing requirements of t(τ) to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(τ). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0 line. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 POR brownout, reset (see Notes 1 and 2) PARAMETER TEST CONDITIONS MIN TYP td(BOR) V(B_IT−) Brownout UNIT 2000 µs 0.7 × dVCC/dt ≤ 3 V/s (see Figure 6) VCC(start) MAX V V(B_IT−) dVCC/dt ≤ 3 V/s (see Figure 6, Figure 7, Figure 8) Vhys(B_IT−) dVCC/dt ≤ 3 V/s (see Figure 6) t(reset) Pulse length needed at RST/NMI pin to accepted reset internally, VCC = 3 V 70 2 130 1.71 V 180 mV µs NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT−) + Vhys(B_IT−) is ≤ 1.8 V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT−) + Vhys(B_IT−). The default FLL+ settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout/SVS circuit. 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) VCC Vhys(B_IT−) V(B_IT−) VCC(start) 1 0 td(BOR) Figure 6. POR/Brownout Reset (BOR) vs Supply Voltage VCC 2 VCC (drop) − V tpw 3V V cc = 3 V Typical Conditions 1.5 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns tpw − Pulse Width − µs 1 ns tpw − Pulse Width − µs Figure 7. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC VCC (drop) − V 2 1.5 tpw 3V V cc = 3 V Typical Conditions 1 VCC(drop) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw − Pulse Width − µs tpw − Pulse Width − µs Figure 8. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) SVS (supply voltage supervisor/monitor) (see Note 1) PARAMETER t(SVSR)4 TEST CONDITIONS MIN dVCC/dt > 30 V/ms (see Figure 9) 5 MAX 150 dVCC/dt ≤ 30 V/ms 2000 td(SVSon) SVSon, switch from VLD=0 to VLD ≠ 0, VCC = 3 V tsettle VLD ≠ 0‡ V(SVSstart) VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 9) 20 1.55 VLD = 1 VCC/dt ≤ 3 V/s (see Figure 9) VLD = 2 to 14 Vhys(SVS_IT−) VCC/dt ≤ 3 V/s (see Figure 9), External voltage applied on P2.3 VCC/dt ≤ 3 V/s (see Figure 9) V(SVS_IT−) (SVS IT ) VCC/dt ≤ 3 V/s (see Figure 9), External voltage applied on P2.3 ICC(SVS) (see Note 1) TYP VLD = 15 70 120 µs 12 µs 1.7 V 155 mV V(SVS_IT−) × 0.001 V(SVS_IT−) × 0.016 1 20 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.6 VLD = 6 2.33 2.5 2.71 VLD = 7 2.46 2.65 2.86 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 3.42 VLD = 12 3.11 3.35 3.61† VLD = 13 3.24 3.5 3.76† VLD = 14 3.43 3.7† 3.99† VLD = 15 1.1 1.2 1.3 10 15 † µs 150 VLD = 1 VLD ≠ 0, VCC = 2.2 V/3 V UNIT mV V µA The recommended operating voltage range is limited to 3.6 V. tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV. NOTE 1: The current consumption of the SVS module is not included in the ICC current consumption data. ‡ 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) VCC V Software Sets VLD>0: SVS is Active Vhys(SVS_IT−) (SVS_IT−) V(SVSstart) Vhys(B_IT−) V(B_IT−) VCC(start) Brownout Brownout Region Brownout Region 1 0 td(BOR) SVS out td(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT−) 1 0 td(SVSon) Set POR 1 td(SVSR) Undefined 0 Figure 9. SVS Reset (SVSR) vs Supply Voltage VCC tpw 3V 2 Rectangular Drop VCC(drop) − V 1.5 VCC(drop) Triangular Drop 1 1 ns 0.5 1 ns VCC tpw 3V 0 1 10 100 1000 tpw − Pulse Width − µs VCC(drop) tf = tr tf tr t − Pulse Width − µs Figure 10. VCC(drop) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) DCO PARAMETER VCC MIN TYP MAX UNIT f(DCOCLK) N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS= 0, fCrystal = 32.768 kHz 3V f(DCO=2) FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1 3V 0.3 0.7 1.3 MHz f(DCO=27) FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1 3V 2.7 6.1 11.3 MHz f(DCO=2) FN_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1 3V 0.8 1.5 2.5 MHz f(DCO=27) FN_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1 3V 6.5 12.1 20 MHz f(DCO=2) FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1 3V 1.3 2.2 3.5 MHz f(DCO=27) FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1 3V 10.3 17.9 28.5 MHz f(DCO=2) FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1 3V 2.1 3.4 5.2 MHz f(DCO=27) FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1 3V 16 26.6 41 MHz f(DCO=2) FN_8 = 1, FN_4 = FN_3 = FN_2 = x, DCOPLUS = 1 3V 4.2 6.3 9.2 MHz f(DCO=27) FN_8 = 1,FN_4 = FN_3 = FN_2 = x, DCOPLUS = 1 3V 30 46 70 MHz Sn Step size between adjacent DCO taps: Sn = fDCO(Tap n+1) / fDCO(Tap n), (see Figure 12 for taps 21 to 27) Dt Temperature drift, N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 DV Drift with VCC variation, N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 f f TEST CONDITIONS f (DCO) f (DCO3V) 1 1 < TAP ≤ 20 1.06 1.11 TAP = 27 1.07 1.17 3V –0.2 –0.3 –0.4 %/_C 0 5 15 %/V (DCO) (DCO205C) 1.0 1.0 0 1.8 2.4 3.0 3.6 VCC − V −40 −20 0 20 40 60 Figure 11. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature 26 MHz POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 85 TA − °C MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 Sn - Stepsize Ratio between DCO Taps electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 1.17 ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ Max 1.11 1.07 1.06 Min 1 20 27 DCO Tap Figure 12. DCO Tap Step Size f(DCO) Legend Tolerance at Tap 27 DCO Frequency Adjusted by Bits 29 to 25 in SCFI1 {N{DCO}} Tolerance at Tap 2 Overlapping DCO Ranges: Uninterrupted Frequency Range FN_2=0 FN_3=0 FN_4=0 FN_8=0 FN_2=1 FN_3=0 FN_4=0 FN_8=0 FN_2=x FN_3=1 FN_4=0 FN_8=0 FN_2=x FN_3=x FN_4=1 FN_8=0 FN_2=x FN_3=x FN_4=x FN_8=1 Figure 13. Five Overlapping DCO Ranges Controlled by FN_x Bits POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1 oscillator (see Notes 1 and 2) PARAMETER CXIN Integrated input capacitance ((see Note 4)) CXOUT Integrated output capacitance (see Note 4) VIL Low-level input voltage at XIN VIH High-level input voltage at XIN TEST CONDITIONS VCC OSCCAPx = 0h 3V 0 OSCCAPx = 1h 3V 10 OSCCAPx = 2h 3V 14 OSCCAPx = 3h 3V 18 OSCCAPx = 0h 3V 0 OSCCAPx = 1h 3V 10 OSCCAPx = 2h 3V 14 OSCCAPx = 3h 3V See Note 3 2 2 V/3 V 2.2 MIN TYP MAX UNIT pF pF 18 VSS 0.8×VCC 0.2×VCC V VCC V NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2pF. The effective load capacitor for the crystal is (CXIN x CXOUT) / (CXIN + CXOUT). It is independent of XTS_FLL . 2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines must be observed: • Keep the trace between the MSP430FE42x2 and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to XIN an XOUT pins. • Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. • Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. 3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator. 4. External capacitance is recommended for precision real-time clock applications (OSCCAPx = 0h). 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) ESP430CE1B, SD16 and ESP430 power supply and recommended operating conditions PARAMETER AVCC IESP430 ISD16 Analog supply voltage Total digital and analog supply current when ESP430 and SD16 active i (IAVCC + IDVCC) Analog supply current: one active SD16 channel including internal reference (ESP430 disabled) fMAINS Mains frequency range fSD16 Analog front-end input clock frequency TEST CONDITIONS VCC AVCC = DVCC AVSS = DVSS = 0V MIN TYP 2.7 MAX 3.6 SD16LP = 0, fMCLK = 4MHz, /4 fSD16 = fMCLK/4, SD16REFON = 1, SD16VMIDON = 0 GAIN(V): 1, GAIN(I1): 1, I2: off 3V 2.0 2.6 GAIN(V): 1, GAIN(I1): 32, I2: off 3V 2.4 3.3 GAIN(V): 1, GAIN(I1): 1, GAIN(I2): 1 3V 2.7 3.6 GAIN(V): 1, GAIN(I1): 32, GAIN(I2): 32 3V 3.4 4.9 SD16LP = 1, fMCLK = 2 MHz, fSD16 = fMCLK/4, /4 SD16REFON = 1, SD16VMIDON = 0 GAIN(V): 1, GAIN(I1): 1, I2: off 3V 1.5 2.1 GAIN(V): 1, GAIN(I1): 32, I2: off 3V 1.6 2.1 GAIN(V): 1, GAIN(I1): 1, GAIN(I2): 1 3V 2.1 2.8 GAIN(V): 1, GAIN(I1): 32, GAIN(I2): 32 3V 2.2 3.0 SD16LP = 0, fSD16 = 1 MHz, SD16OSR = 256 GAIN: 1, 2 3V 650 950 GAIN: 4, 8, 16 3V 730 1100 GAIN: 32 3V 1050 1550 SD16LP = 1, fSD16 = 0.5 0 5 MHz, MHz SD16OSR = 256 GAIN: 1 3V 620 930 GAIN: 32 3V 700 1060 33 80 SD16LP = 0 (low-power mode disabled) 3V 1 SD16LP = 1 (low-power mode enabled) 3V 0.5 UNIT V mA µA Hz MHz ESP430CE1B, SD16 input range (see Note 1) PARAMETER VID Differential input voltage range for specified performance (see Note 2) TEST CONDITIONS VCC MIN TYP SD16GAINx = 1, SD16REFON = 1 ±500 SD16GAINx = 2, SD16REFON = 1 ±250 SD16GAINx = 4, SD16REFON = 1 ±125 SD16GAINx = 8, SD16REFON = 1 ±62 SD16GAINx = 16, SD16REFON = 1 ±31 SD16GAINx = 32, SD16REFON = 1 ±15 MAX UNIT mV fSD16 = 1MHz, SD16GAINx = 1 3V 200 ZI Input impedance (one input pin to AVSS) fSD16 = 1MHz, SD16GAINx = 32 3V 75 Differential input impedance (IN+ to IN−) fSD16 = 1MHz, SD16GAINx = 1 3V 300 400 ZID fSD16 = 1MHz, SD16GAINx = 32 3V 100 150 VI Absolute input voltage range AVSS− 1V AVCC V VIC Common-mode input voltage range AVSS− 1V AVCC V kΩ kΩ NOTES: 1. All parameters pertain to each SD16 channel. 2. The analog input range depends on the reference voltage applied to VREF. If VREF is sourced externally, the full-scale range is defined by VFSR+ = +(VREF/2)/GAIN and VFSR− = −(VREF/2)/GAIN. The analog input range should not exceed 80% of VFSR+ or VFSR−. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 MSP430FE42x2 MIXED SIGNAL MICROCONTROLLER SLAS616 − JULY 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) ESP430CE1B, SD16 performance (fSD16 = 1MHz, SD16OSRx = 256, SD16REFON = 1) PARAMETER Signal to noise + Signal-to-noise distortion ratio SINAD G Nominal gain EOS Offset error dEOS/dT Offset error temperature coefficient Common mode Common-mode rejection ratio CMRR AC PSRR AC power supply rejection ratio XT Crosstalk TEST CONDITIONS VCC MIN TYP MAX SD16GAINx = 1,Signal Amplitude = 500mV 3V 83.5 SD16GAINx = 2,Signal Amplitude = 250mV 3V 81.5 84 SD16GAINx = 4,Signal Amplitude = 125mV 3V 76 79.5 3V 73 76.5 SD16GAINx = 16,Signal Amplitude = 31mV 3V 69 73 SD16GAINx = 32,Signal Amplitude = 15mV 3V 62 69 SD16GAINx = 1 3V 0.97 1.00 1.02 SD16GAINx = 2 3V 1.90 1.96 2.02 3.96 SD16GAINx = 8,Signal Amplitude = 62mV fIN = 50 Hz, 100 Hz UNIT 85 dB SD16GAINx = 4 3V 3.76 3.86 SD16GAINx = 8 3V 7.36 7.62 7.84 SD16GAINx = 16 3V 14.56 15.04 15.52 SD16GAINx = 32 3V 27.20 28.35 29.76 SD16GAINx = 1 3V ±0.2 SD16GAINx = 32 3V ±1.5 SD16GAINx = 1 3V ±4 ±20 SD16GAINx = 32 3V ±20 ±100 SD16GAINx = 1, Common-mode input signal: VID = 500 mV, fIN = 50 Hz, 100 Hz 3V >90 SD16GAINx = 32, Common-mode input signal: VID = 16 mV, fIN = 50 Hz, 100 Hz 3V >75 SD16GAINx = 1, VCC = 3 V ± 100 mV, fVCC = 50 Hz 3V >80 dB 3V
EVM430-FE4272 价格&库存

很抱歉,暂时无法提供与“EVM430-FE4272”相匹配的价格&库存,您可以联系我们找货

免费人工找货