0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM358DR

LM358DR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    双通道、30V、700kHz、3mV 失调电压运算放大器

  • 数据手册
  • 价格&库存
LM358DR 数据手册
Order Now Product Folder Technical Documents Support & Community Tools & Software LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 Industry-Standard Dual Operational Amplifiers 1 Features 3 Description • • • • The LM358B and LM2904B devices are the nextgeneration versions of the industry-standard LM358 and LM2904 devices, which include two high-voltage (36-V) operational amplifiers (op amps). These devices provide outstanding value for cost-sensitive applications, with features including low offset (300 µV, typical), common-mode input range to ground, and high differential input voltage capability. 1 • • • Wide Supply Range of 3 V to 36 V (B Version) Supply-Current of 300 µA (B Version, Typical) Unity-Gain Bandwidth of 1.2 MHz (B Version) Common-Mode Input Voltage Range Includes Ground, Enabling Direct Sensing Near Ground Low Input Offset Voltage of 3 mV at 25°C (A and B Versions, Maximum) Internal RF and EMI Filter (B Version) On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters. 2 Applications • • • • • • • • • • • Merchant Network and Server Power Supply Units Multi-Function Printers Power Supplies and Mobile Chargers Motor Control: AC Induction, Brushed DC, Brushless DC, High-Voltage, Low-Voltage, Permanent Magnet, and Stepper Motor Desktop PC and Motherboard Indoor and Outdoor Air Conditioners Washers, Dryers, and Refrigerators AC Inverters, String Inverters, Central Inverters, and Voltage Frequency Drives Uninterruptible Power Supplies Programmable Logic Controllers Electronic Point-of-Sale Systems Single-Pole, Low-Pass Filter RG The LM358B and LM2904B devices simplify circuit design with enhanced features such as unity-gain stability, lower offset voltage of 3 mV (maximum at room temperature), and lower quiescent current of 300 µA (typical). High ESD (2 kV, HBM) and integrated EMI and RF filters enable the LM358B and LM2904B devices to be used in the most rugged, environmentally challenging applications. The LM358B and LM2904B devices are available in micro-size packages, such as TSOT-8 and WSON, as well as industry standard packages, including SOIC, TSSOP, and VSSOP. Device Information(1) PART NUMBER PACKAGE BODY SIZE (NOM) LM358B(2), LM2904B(2), LM358, LM358A,LM2904, SOIC (8) LM2904V, LM258, LM258A 4.90 mm × 3.90 mm LM358, LM358A, LM2904, LM2490V TSSOP (8) 3.00 mm × 4.40 mm LM358, LM358A LM2904, VSSOP (8) LM2904V, LM258, LM258A 3.00 mm × 3.00 mm LM358, LM2904 SO (8) 5.20 mm × 5.30 mm LM358, LM2904, LM358A, LM258, LM258A PDIP (8) 9.81 mm × 6.35 mm LM158, LM158A CDIP (8) 9.60 mm × 6.67 mm LM158, LM158A LCCC (20) 8.89 mm × 8.89 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. (2) Package is for preview only RF R1 VOUT VIN C1 f-3 dB = ( RF VOUT = 1+ RG VIN (( 1 1 + sR1C1 1 2pR1C1 ( 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA. LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 4 5 6 7.1 7.2 7.3 7.4 7.5 7.6 Absolute Maximum Ratings ...................................... 6 ESD Ratings.............................................................. 6 Recommended Operating Conditions....................... 7 Thermal Information .................................................. 7 Electrical Characteristics: LM358B and LM358BA ... 8 Electrical Characteristics: LM2904B and LM2904BA ................................................................. 9 7.7 Electrical Characteristics: LM358, LM358A ............ 10 7.8 Electrical Characteristics: LM2904, LM2904V ........ 11 7.9 Electrical Characteristics: LM158, LM158A ............ 12 7.10 Electrical Characteristics: LM258, LM258A .......... 13 7.11 Typical Characteristics .......................................... 14 8 9 Parameter Measurement Information ................ 16 Detailed Description ............................................ 17 9.1 9.2 9.3 9.4 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 17 17 18 18 10 Application and Implementation........................ 19 10.1 Application Information.......................................... 19 10.2 Typical Application ............................................... 19 11 Power Supply Recommendations ..................... 20 12 Layout................................................................... 20 12.1 Layout Guidelines ................................................. 20 12.2 Layout Examples................................................... 21 13 Device and Documentation Support ................. 22 13.1 13.2 13.3 13.4 13.5 13.6 13.7 Documentation Support ........................................ Related Links ........................................................ Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 22 22 22 22 22 22 23 14 Mechanical, Packaging, and Orderable Information ........................................................... 23 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision U (January 2017) to Revision V Page • Changed the data sheet title ................................................................................................................................................. 1 • Changed first four items in the Features section ................................................................................................................... 1 • Changed the first item in the Applications section and added four new items ...................................................................... 1 • Changed voltage values in the first paragraph of the Description section ............................................................................. 1 • Changed text in the second paragraph of the Description section......................................................................................... 1 • Added devices LM358B and LM2904B to data sheet ............................................................................................................ 1 • Changed the first three rows of the Device Information table and added a a cross-referenced note for PREVIEWstatus devices ......................................................................................................................................................................... 1 • Added Device Comparison table ........................................................................................................................................... 4 • Added a table note to the Pin Functions table ...................................................................................................................... 5 • Changed "free-air temperature" to "ambient temperature" in the Absolute Maximum Ratings condition statement ............. 6 • Changed all entries in the Absolute Maximum Ratings table except TJ and Tstg .................................................................. 6 • Deleted lead temperature and case temperature from Absolute Maximum Ratings.............................................................. 6 • Changed device listings and their voltage values in the ESD Ratings table ......................................................................... 6 • Changed "free-air temperature" to "ambient temperature" in the Recommended Operating Conditions condition statement ............................................................................................................................................................................... 7 • Changed table entries for all parameters in the Recommended Operating Conditions table ................................................ 7 • Added rows to the Thermal Information table, and a table note regarding device-package combinations .......................... 7 • Added two Electrical Characteristics tables with five additional devices, and redistributed the seven original devices differently among the tables ................................................................................................................................................... 8 • Deleted the Operating Conditions table................................................................................................................................ 13 • Added a condition statement to the Typical Characteristics section .................................................................................... 14 • Changed specific voltages to a Recommended Operating Conditions reference ............................................................... 17 2 Submit Documentation Feedback Copyright © 1976–2018, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V www.ti.com SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 Revision History (continued) • Changed unity-gain bandwidth from 0.7 MHz for all devices to 1.2 MHz for B-version devices.......................................... 18 • Changed slew rate from.3 V/µs for all devices to o.5 V/µs for B-version devices................................................................ 18 • Changed the Input Common Mode Range section in multiple places throughout ............................................................... 18 • Changed VCC to VS in the Application Information section .................................................................................................. 19 • Subscripted the suffixes fro RI and RF .................................................................................................................................. 19 • Changed Operational Amplifier Board Layout for Noninverting Configuration with an image that includes a dual op amp 21 • Added Preview designation to the LM358B and LM2904B devices in Table 1 ................................................................... 22 Changes from Revision T (April 2015) to Revision U Page • Changed data sheet title......................................................................................................................................................... 1 • Added Receiving Notification of Documentation Updates section and Community Resources section ............................. 22 Changes from Revision S (January 2014) to Revision T • Page Added Applications section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ............................................................... 1 Changes from Revision R (July 2010) to Revision S Page • Converted this data sheet from the QS format to DocZone using the PDF on the web ........................................................ 1 • Deleted Ordering Information table ........................................................................................................................................ 1 • Updated Features to include Military Disclaimer .................................................................................................................... 1 • Added Typical Characteristics section.................................................................................................................................. 14 • Added ESD warning ............................................................................................................................................................. 23 Copyright © 1976–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V 3 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 www.ti.com 5 Device Comparison Table 4 PART NUMBER SUPPLY VOLTAGE TEMPERATURE RANGE VOS (MAXIMUM AT 25°C) IQ / CH (TYPICAL AT 25°C) INTEGRATED EMI FILTER PACKAGE LM358B 3 V–36 V –40°C to 85°C 3 mV 300 µA Yes D, PW LM2904B 3 V–36 V –40°C to 125°C 3 mV 300 µA Yes D, PW LM358 3 V–32 V 0°C to 70°C 7 mV 350 µA No D, PW, DGK, P, PS LM2904 3 V–26 V –40°C to 125°C 7 mV 350 µA No D, PW, DGK, P, PS LM358A 3 V–32 V 0°C to 70°C 3 mV 350 µA No D, PW, DGK, P LM2904V 3 V–32 V –40°C to 125°C 3 mV 350 µA No D, PW LM158 3 V–32 V –55°C to 125°C 5 mV 350 µA No JG, FK LM158A 3 V–32 V –55°C to 125°C 3 mV 350 µA No JG, FK LM258 3 V–32 V –25°C to 85°C 5 mV 350 µA No D, DGK, P LM258A 3 V–32 V –25°C to 85°C 3 mV 350 µA No D, DGK, P Submit Documentation Feedback Copyright © 1976–2018, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V www.ti.com SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 6 Pin Configuration and Functions D, DGK, P, PS, PW, and JG Packages 8-Pin SOIC, VSSOP, PDIP, SO, TSSOP, and CDIP Top View NC 19 4 18 NC IN1± 5 17 OUT2 NC 6 16 NC IN1+ 7 15 IN2± NC 8 14 NC NC 9 Not to scale NC 13 IN2+ NC 5 V+ 4 20 V± 12 IN2± IN2+ 6 NC 3 1 IN1+ 11 OUT2 NC 7 OUT1 2 2 IN1± 10 V+ V± 8 NC 1 3 OUT1 FK Package 20-Pin LCCC Top View Not to scale NC - No internal connection Pin Functions PIN I/O DESCRIPTION LCCC (1) SOIC, SSOP, CDIP, PDIP, SO, TSSOP, CFP (1) IN1– 5 2 I Negative input IN1+ 7 3 I Positive input IN2– 15 6 I Negative input IN2+ 12 5 I Positive input OUT1 2 1 O Output OUT2 17 7 O Output V– 10 4 — Negative (lowest) supply or ground (for singlesupply operation) NC 1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19 — — No internal connection V+ 20 8 — Positive (highest) supply NAME (1) For a listing of which devices are available in what packages, see Device Comparison Table. Copyright © 1976–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V 5 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings over operating ambient temperature range (unless otherwise noted) (1) Supply voltage, VS = ([V+] – [V–]) Differential input voltage, VID (2) Input voltage, VI Either input MIN MAX LM358B, LM358BA, LM2904B, LM2904BA –0.3 ±20 or 40 LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V –0.3 ±16 or 32 LM2904 –0.3 ±13 or 26 LM358B, LM358BA, LM2904B, LM2904BA,LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V –32 32 LM2904 –26 26 LM358B, LM358BA, LM2904B, LM2904BA –0.3 40 LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V –0.3 32 LM2904 –0.3 26 Duration of output short circuit (one amplifier) to ground at (or below) TA = 25°C, VS ≤ 15 V (3) Operating ambient temperature, TA Unlimited LM158, LM158A –55 125 LM258, LM258A –25 85 LM358B, LM358BA –40 85 0 70 –40 125 LM358, LM358A LM2904B, LM2904BA, LM2904, LM2904V Operating virtual-junction temperature, TJ Storage temperature, Tstg (1) (2) (3) –65 UNIT V V V s °C 150 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Differential voltages are at IN+, with respect to IN−. Short circuits from outputs to VS can cause excessive heating and eventual destruction. 7.2 ESD Ratings VALUE UNIT LM358B, LM358BA, LM2904B, AND LM2904BA V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±750 V LM158, LM258, LM358, LM158, LM258A, LM358A, LM2904, AND LM2904V V(ESD) (1) (2) 6 Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) Charged-device model (CDM), per JEDEC specification JESD22-C101 ±500 (2) ±1000 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Submit Documentation Feedback Copyright © 1976–2018, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V www.ti.com SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 7.3 Recommended Operating Conditions over operating ambient temperature range (unless otherwise noted) VS Supply voltage, VS= ([V+] – [V–]) VCM Common-mode voltage MIN MAX LM358B, LM358BA, LM2904B, LM2904BA 3 36 LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V 3 30 LM2904 TA Operating ambient temperature 3 26 V– VS – 2 LM358B, LM358BA –40 85 LM2904B, LM2904BA, LM2904, LM2904V –40 125 LM358, LM358A 0 70 LM258, LM258A –20 85 LM158, LM158A –55 125 UNIT V V °C 7.4 Thermal Information LM258, LM258A, LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V (2) THERMAL METRIC (1) LM158, LM158A D (SOIC) DGK (VSSOP) P (PDIP) PS (SO) PW (TSSOP) FK (LCCC) JG (CDIP) UNIT 8 PINS 8 PINS 8 PINS 8 PINS 8 PINS 20 PINS 8 PINS RθJA Junction-to-ambient thermal resistance 124.7 181.4 80.9 116.9 171.7 — — °C/W RθJC(top) Junction-to-case (top) thermal resistance 66.9 69.4 70.4 62.5 68.8 5.61 14.5 °C/W RθJB Junction-to-board thermal resistance 67.9 102.9 57.4 68.6 99.2 — — °C/W ψJT Junction-to-top characterization parameter 19.2 11.8 40 21.9 11.5 — — °C/W ψJB Junction-to-board characterization parameter 67.2 101.2 56.9 67.6 97.9 — — °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — — — — — 12.1 — °C/W (1) (2) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. For a listing of which devices are available in what packages, see Device Comparison Table Copyright © 1976–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V 7 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 www.ti.com 7.5 Electrical Characteristics: LM358B and LM358BA For VS = (V+) – (V–) = 5 V to 36 V (±2.25 V to ±18 V), TA = 25 °C, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2 (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) MAX 1 3 0.5 1.8 UNIT OFFSET VOLTAGE LM358B VOS TA = –40°C to 85°C Input offset voltage 4 mV LM358BA TA = –40°C to 85°C dVOS/dT Input offset voltage drift PSRR Power-supply rejection ratio (ΔVIO/ΔVS) Channel separation, dc 2.5 TA = –40°C to 85°C ±3.5 µV/°C ±1 At dc 15 120 µV/V dB INPUT VOLTAGE RANGE VCM Common-mode input voltage range CMRR Common-mode rejection ratio VS = 3 V to 36 V (V–) < VCM < (V+) – 1.5 V (V–) < VCM < (V+) – 2 V (V–) (V+) – 1.5 (V–) (V+) – 2 V TA = –40°C to 85°C 80 103 70 96 dB TA = –40°C to 85°C INPUT BIAS CURRENT 10 IB Input bias current IOS Input offset current 35 nA TA = –40°C to 85°C 50 0.5 4 nA TA = –40°C to 85°C 5 NOISE En Input voltage noise ƒ = 0.1 to 10 Hz en Input voltage noise density ƒ = 1 kHz 8 µVPP 40 nV/√Hz 10 || 0.1 MΩ || pF 4 || 1.5 GΩ || pF INPUT IMPEDANCE ZID Differential ZIC Common-mode OPEN-LOOP GAIN AOL Open-loop voltage gain VS = 15 V, VO = 1 V to 11 V, RL ≥ 2 kΩ 70 140 V/mV TA = –40°C to 85°C 35 FREQUENCY RESPONSE GBW Gain-bandwidth product 1.2 MHz SR Slew rate G = +1 0.5 V/µs φm Phase margin G = +1, RL = 10 kΩ, CL = 20 pF 56 º tS Settling time To 0.1%, VS = 5 V, 2-V step , G = +1, CL = 100 pF 4 µs tOR Overload recovery time VIN × gain > VS 30 µs THD + N Total harmonic distortion + noise G = +1, ƒ = 1 kHz, VO = 3.53 VRMS, RL = 100 kΩ 0.001% OUTPUT Positive Rail (V+) Voltage output swing from rail VO Negative Rail (V-) ISC Short-circuit current CLOAD Capacitive load drive RO Open-loop output resistance IOUT = 50 µA 1.35 IOUT = 1 mA 1.4 1.6 IOUT = 5 mA 1.5 1.75 IOUT = 50 µA 0.1 0.15 IOUT = 1 mA 0.75 1 ±40 60 VS = 20 V f = 1 MHz, IO = 0 A 1.5 V mA 100 pF 300 Ω POWER SUPPLY VS = 5 V; VO = 2.5 V; IO = 0 A IQ Quiescent current per amplifier (1) All typical values are TA = 25°C. 8 VS = 36 V; VO = 2.5 V; IO = 0 A Submit Documentation Feedback 300 460 µA TA = – 40°C to 85°C 800 Copyright © 1976–2018, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V www.ti.com SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 7.6 Electrical Characteristics: LM2904B and LM2904BA For VS = (V+) – (V–) = 5 V to 36 V (±2.25 V to ±18 V), TA = 25 °C, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2 (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) MAX 1 3 0.5 1.8 UNIT OFFSET VOLTAGE LM2904B VOS TA = –40°C to 125°C Input offset voltage 4 mV LM2904BA TA = –40°C to 125°C dVOS/dT Input offset voltage drift PSRR Power-supply rejection ratio (ΔVIO/ΔVS) Channel separation, dc 2.5 TA = –40°C to 125°C ±3.5 µV/°C ±1 At dc 15 120 µV/V dB INPUT VOLTAGE RANGE VCM Common-mode input voltage range CMRR Common-mode rejection ratio VS = 3 V to 36 V (V–) < VCM < (V+) – 1.5 V (V–) < VCM < (V+) – 2 V (V–) (V+) – 1.5 (V–) (V+) – 2 V TA = –40°C to 125°C 80 103 70 96 dB TA = –40°C to 125°C INPUT BIAS CURRENT 10 IB Input bias current IOS Input offset current 35 nA TA = –40°C to 125°C 50 0.5 4 nA TA = –40°C to 125°C 5 NOISE En Input voltage noise ƒ = 0.1 to 10 Hz en Input voltage noise density ƒ = 1 kHz 8 µVPP 40 nV/√Hz 10 || 0.1 MΩ || pF 4 || 1.5 GΩ || pF INPUT IMPEDANCE ZID Differential ZIC Common-mode OPEN-LOOP GAIN AOL Open-loop voltage gain VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ 70 140 V/mV TA = –40°C to 125°C 35 FREQUENCY RESPONSE GBW Gain-bandwidth product 1.2 MHz SR Slew rate G = +1 0.5 V/µs φm Phase margin G = +1, RL = 10 kΩ, CL = 20 pF 56 º tS Settling time To 0.1%, VS = 5 V, 2-V step , G = +1, CL = 100 pF 4 µs tOR Overload recovery time VIN × gain > VS 30 µs THD + N Total harmonic distortion + noise G = +1, ƒ = 1 kHz, VO = 3.53 VRMS, RL = 100 kΩ 0.001% OUTPUT Positive rail (V+) VO Voltage output swing from rail Negative rail (V–) ISC Short-circuit current CLOAD Capacitive load drive RO Open-loop output resistance IOUT = 50 µA 1.35 IOUT = 1 mA 1.4 1.6 IOUT = 5mA 1.5 1.75 IOUT = 50 µA 0.1 0.15 IOUT = 1 mA 0.75 1 ±40 60 VS = 20 V f = 1 MHz, IO = 0 A 1.5 V mA 100 pF 300 Ω POWER SUPPLY VS = 5 V; VO = 2.5 V; IO = 0 A IQ Quiescent current per amplifier (1) All typical values are TA = 25°C. VS = 36 V; VO = 2.5 V; IO = 0 A Copyright © 1976–2018, Texas Instruments Incorporated 300 460 µA TA = –40°C to 125°C 800 Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V 9 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 www.ti.com 7.7 Electrical Characteristics: LM358, LM358A For VS = (V+) – (V–) = 5 V, TA = 25 °C, (unless otherwise noted) TEST CONDITIONS (1) PARAMETER MIN TYP (2) MAX 3 7 UNIT OFFSET VOLTAGE LM358 VOS Input offset voltage VS = 5 V to 30 V; VCM = 0 V; VO = 1.4 V TA = 0°C to 70°C 9 mV LM358A 2 3 TA = 0°C to 70°C dVOS/dT Input offset voltage drift PSRR Input offset voltage vs power supply (ΔVIO/ΔVS) VS = 5 V to 30 V VO1/ VO2 Channel separation f = 1 kHz to 20 kHz 5 LM358 TA = 0°C to 70°C 7 LM358A TA = 0°C to 70°C 7 µV/°C 65 20 100 dB 120 dB INPUT VOLTAGE RANGE VCM Common-mode voltage range CMRR Common-mode rejection ratio VS = 5 V to 30 V LM358 VS = 30 V LM358A VS = 5 V to 30 V LM358 VS = 30 V LM358A (V–) (V+) – 1.5 (V–) (V+) – 2 V TA = 0°C to 70°C VS = 5 V to 30 V; VCM = 0 V 65 80 dB INPUT BIAS CURRENT –20 –250 LM358 IB Input bias current TA = 0°C to 70°C VO = 1.4 V –500 nA –15 –100 LM358A TA = 0°C to 70°C –200 2 50 LM358 IOS Input offset current TA = 0°C to 70°C VO = 1.4 V 150 nA 2 30 LM358A TA = 0°C to 70°C 75 10 dIOS/dT Input offset current drift pA/°C LM358A TA = 0°C to 70°C 300 NOISE en Input voltage noise density f = 1 kHz 40 nV/√Hz OPEN-LOOP GAIN AOL Open-loop voltage gain 25 VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ 100 V/mV TA = 0°C to 70°C 15 FREQUENCY RESPONSE GBW Gain bandwidth product SR Slew rate G = +1 0.7 MHz 0.3 V/µs OUTPUT VS = 30 V; RL = 2 kΩ Positive rail VO Voltage output swing from rail TA = 0°C to 70°C 4 VS = 30 V; RL ≥ 10 kΩ 2 VS = 5 V; RL ≥ 2 kΩ Negative rail VS = 5 V; RL ≤ 10 kΩ TA = 0°C to 70°C 5 –20 VS = 15 V; VO = 0 V; VID =1V Source –10 10 Sink 20 mV –60 Output current VS = 15 V; VO = 15 V; VID = –1 V V –30 LM358A TA = 0°C to 70°C IO 3 1.5 TA = 0°C to 70°C LM358 mA 20 5 12 µA VID = –1 V; VO = 200 mV ISC Short-circuit current 30 VS = 10 V; VO = VS / 2 ±40 ±60 mA POWER SUPPLY IQ (1) (2) 10 Quiescent current per amplifier VO = 2.5 V; IO = 0 A VS = 30 V; VO = 15 V; IO = 0 A TA = 0°C to 70°C 350 600 500 1000 µA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum VS for testing purposes is 30 V for LM358 and LM358A. All typical values are TA = 25°C. Submit Documentation Feedback Copyright © 1976–2018, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V www.ti.com SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 7.8 Electrical Characteristics: LM2904, LM2904V For VS = (V+) – (V–) = 5 V, TA = 25 °C, (unless otherwise noted) TEST CONDITIONS (1) PARAMETER MIN TYP (2) MAX UNIT OFFSET VOLTAGE VOS Input offset voltage VS = 5 V to maximum; VCM = 0 V; VO = 1.4 V dVOS/dT Input offset voltage drift PSRR Input offset voltage vs power supply (ΔVIO/ΔVS) VS = 5 V to 30 V VO1/ VO2 Channel separation f = 1 kHz to 20 kHz Non-A suffix devices A-suffix devices 3 TA = –40°C to 125°C 7 10 mV 1 TA = –40°C to 125°C 2 4 TA = –40°C to 125°C 7 65 µV/°C 100 dB 120 dB INPUT VOLTAGE RANGE VCM Common-mode voltage range CMRR Common-mode rejection ratio VS = 5 V to maximum (V–) (V+) – 1.5 (V–) (V+) – 2 V TA = –40°C to 125°C VS = 5 V to maximum; VCM = 0 V 65 80 dB INPUT BIAS CURRENT –20 IB Input bias current VO = 1.4 V Non-V suffix device IOS Input offset current VO = 1.4 V V-suffix device dIOS/dT –250 nA TA = –40°C to 125°C Input offset current drift –500 2 TA = –40°C to 125°C 50 300 nA 2 TA = –40°C to 125°C 50 150 TA = –40°C to 125°C 10 pA/°C 40 nV/√Hz NOISE en Input voltage noise density f = 1 kHz OPEN-LOOP GAIN AOL Open-loop voltage gain VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ 25 100 V/mV TA = –40°C to 125°C 15 FREQUENCY RESPONSE GBW Gain bandwidth product SR Slew rate G = +1 0.7 MHz 0.3 V/µs OUTPUT RL ≥ 10 kΩ Non-V suffix device Positive rail VO VS – 1.5 VS = maximum; RL = 2 kΩ Voltage output swing from rail VS = maximum; RL = 2 kΩ V-suffix device Negative rail 22 VS = maximum; RL ≥ 10 kΩ 23 VS = 15 V; VO = 0 V; VID = 1 V Source VS = 15 V; VO = 15 V; VID = –1 V Sink 27 28 –20 –30 TA = –40°C to 125°C TA = –40°C to 125°C 5 Output current TA = –40°C to 125°C ISC Short-circuit current mV mA 20 5 Non-V suffix device VID = -1 V; VO = 200 mV 20 –10 10 IO V 26 VS = maximum; RL ≥ 10 kΩ VS = 5 V; RL ≤ 10 kΩ 24 TA = –40°C to 125°C 30 µA V-suffix device 12 VS = 10 V; VO = VS / 2 40 ±40 ±60 mA POWER SUPPLY IQ (1) (2) Quiescent current per amplifier VO = 2.5 V; IO = 0 A VS = maximum; VO = maximum / 2; IO = 0 A TA = –40°C to 125°C 350 600 500 1000 µA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum VS for testing purposes is 26 V for LM2904 and 32 V for LM2904V. All typical values are TA = 25°C. Copyright © 1976–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V 11 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 www.ti.com 7.9 Electrical Characteristics: LM158, LM158A For VS = (V+) – (V–) = 5 V, TA = 25 °C, (unless otherwise noted) TEST CONDITIONS (1) PARAMETER MIN TYP (2) MAX 3 5 UNIT OFFSET VOLTAGE LM158 VOS Input offset voltage TA = –55°C to 125°C VS = 5 V to 30 V; VCM = 0 V; VO = 1.4 V 7 mV 2 LM158A TA = –55°C to 125°C dVOS/dT Input offset voltage drift PSRR Input offset voltage vs power supply (ΔVIO/ΔVS) VS = 5 V to 30 V VO1/ VO2 Channel separation f = 1 kHz to 20 kHz 4 LM158 TA = –55°C to 125°C 7 LM158A TA = –55°C to 125°C 7 65 15 (3) µV/°C 100 dB 120 dB INPUT VOLTAGE RANGE VCM Common-mode voltage range CMRR Common-mode rejection ratio VS = 5 V to 30 V LM158 VS = 30 V LM158A VS = 5 V to 30 V LM158 VS = 30 V LM158A (V–) (V+) – 1.5 (V–) (V+) – 2 V TA = –55°C to 125°C VS = 5 V to 30 V; VCM = 0 V 70 80 dB INPUT BIAS CURRENT –20 –150 LM158 IB Input bias current TA = –55°C to 125°C VO = 1.4 V –300 nA –15 –50 LM158A TA = –55°C to 125°C –100 2 30 LM158 IOS Input offset current TA = –55°C to 125°C VO = 1.4 V 100 nA 2 10 LM158A TA = –55°C to 125°C 30 10 dIOS/dT Input offset current drift pA/°C LM158A TA = –55°C to 125°C 200 NOISE en Input voltage noise density f = 1 kHz 40 nV/√Hz OPEN-LOOP GAIN AOL Open-loop voltage gain 50 VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ 100 V/mV TA = –55°C to 125°C 25 FREQUENCY RESPONSE GBW Gain bandwidth product SR Slew rate 0.7 V/µs VS = 30 V; RL = 2 kΩ Positive rail VO Voltage output swing from rail TA = –55°C to 125°C 4 VS = 30 V; RL ≥ 10 kΩ 2 VS = 5 V; RL ≥ 2 kΩ Negative rail VS = 5 V; RL ≤ 10 kΩ VS = 15 V; VO = 0 V; VID = 1 V Source TA = –55°C to 125°C VS = 15 V; VO = 15 V; VID = –1 V 5 Short-circuit current 20 mV –60 –10 10 mA 20 Sink TA = –55°C to 125°C VID = –1 V; VO = 200 mV ISC V –30 LM158A TA = –55°C to 125°C Output current 3 1.5 –20 IO MHz G = +1 5 12 VS = 10 V; VO = VS / 2 30 ±40 µA ±60 mA POWER SUPPLY IQ (1) (2) (3) 12 Quiescent current per amplifier VO = 2.5 V; IO = 0 A VS = 30 V; VO = 15 V; IO = 0 A TA = –55°C to 125°C 350 600 500 1000 µA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum VS for testing purposes is 30 V for LM158 and LM158A. All typical values are TA = 25°C. On products compliant to MIL-PRF-38535, this parameter is not production tested. Submit Documentation Feedback Copyright © 1976–2018, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V www.ti.com SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 7.10 Electrical Characteristics: LM258, LM258A For VS = (V+) – (V–) = 5 V, TA = 25 °C, (unless otherwise noted) TEST CONDITIONS (1) PARAMETER MIN TYP (2) MAX 3 5 UNIT OFFSET VOLTAGE LM258 VOS Input offset voltage TA = –25°C to 85°C VS = 5 V to 30 V; VCM = 0 V; VO = 1.4 V 7 mV 2 3 LM258A TA = –25°C to 85°C dVOS/dT Input offset voltage drift PSRR Input offset voltage vs power supply (ΔVIO/ΔVS) VS = 5 V to 30 V VO1/ VO2 Channel separation f = 1 kHz to 20 kHz 4 LM258 TA = –25°C to 85°C 7 LM258A TA = –25°C to 85°C 7 µV/°C 65 15 100 dB 120 dB INPUT VOLTAGE RANGE VCM Common-mode voltage range CMRR Common-mode rejection ratio VS = 5 V to 30 V LM258 VS = 30 V LM258A VS = 5 V to 30 V LM258 VS = 30 V LM258A (V–) (V+) – 1.5 (V–) (V+) – 2 V TA = –25°C to 85°C VS = 5 V to 30 V; VCM = 0 V 70 80 dB INPUT BIAS CURRENT –20 –150 LM258 IB Input bias current TA = –25°C to 85°C VO = 1.4 V –300 nA –15 –80 LM258A TA = –25°C to 85°C –100 2 30 LM258 IOS Input offset current TA = –25°C to 85°C VO = 1.4 V 100 nA 2 15 LM258A TA = –25°C to 85°C 30 10 dIOS/dT Input offset current drift pA/°C LM258A TA = –25°C to 85°C 200 NOISE en Input voltage noise density f = 1 kHz 40 nV/√Hz OPEN-LOOP GAIN AOL Open-loop voltage gain 50 VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ 100 V/mV TA = –25°C to 85°C 25 FREQUENCY RESPONSE GBW Gain bandwidth product SR Slew rate G = +1 0.7 MHz 0.3 V/µs OUTPUT VS = 30 V; RL = 2 kΩ Positive rail VO Voltage output swing from rail TA = –25°C to 85°C 4 VS = 30 V; RL ≥ 10 kΩ 2 VS = 5 V; RL ≥ 2 kΩ Negative rail VS = 5 V; RL ≤ 10 kΩ TA = –25°C to 85°C 5 –20 VS = 15 V; VO = 0 V; VID = 1 V IO Source VS = 15 V; VO = 15 V; VID = –1 V Short-circuit current 20 mV –60 –10 10 mA 20 Sink TA = –25°C to 85°C VID = –1 V; VO = 200 mV ISC V –30 LM258A TA = –25°C to 85°C Output current 3 1.5 5 12 VS = 10 V; VO = VS / 2 30 ±40 µA ±60 mA POWER SUPPLY IQ (1) (2) Quiescent current per amplifier VO = 2.5 V; IO = 0 A VS = 30 V; VO = 15 V; IO = 0 A TA = –25°C to 85°C 350 600 500 1000 µA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum VS for testing purposes is 30 V for LM258 and LM258A. All typical values are TA = 25°C. Copyright © 1976–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V 13 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 www.ti.com 7.11 Typical Characteristics Typical characteristics section is applicable for LM158, LM158A, LM258, LM258A, LM358, LM358A, LM2904, and LM2904V 20 0.36 18 0.34 –55C 0C 125C 14 12 10 8 5Vdc 15Vdc 30Vdc 6 4 0.32 Supply Current (mA) Input Current (nAdc) 16 0.3 0.28 0.26 0.24 0.22 2 0 –55 –35 –15 5 45 25 65 Temperature (°C) 85 105 0.2 125 0 Figure 1. Input Current vs. Temperature 10 15 20 Supply Voltage (Vdc) 25 30 Figure 2. Supply Current vs. Supply Voltage 160 100 CMRR 90 RL=20K RL=2K 140 80 120 70 100 CMRR (dB) Avol Voltage Gain (dB) 5 80 60 60 50 40 30 40 20 20 10 0 0 0 5 10 15 20 25 30 V+ Supply Voltage (Vdc) 35 0.1 40 10 100 1000 Frequency (kHz) C001 Figure 4. Common-Mode Rejection Ratio vs. Frequency Figure 3. Voltage Gain vs. Supply Voltage 0.50 3.5 VOUT 3.0 0.45 2.5 0.40 Voltage (V) Voltage (V) 1 2.0 1.5 0.35 0.30 1.0 0.25 0.5 VOUT 0.20 0.0 0 4 8 12 16 20 24 Time ( s) 28 32 36 40 C001 Figure 5. Voltage Follower Large Signal Response (50 pF) 14 Submit Documentation Feedback 0 2 4 6 Time ( s) 8 10 C001 Figure 6. Voltage Follower Small Signal Response (50 pF) Copyright © 1976–2018, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V www.ti.com SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 Typical Characteristics (continued) Typical characteristics section is applicable for LM158, LM158A, LM258, LM258A, LM358, LM358A, LM2904, and LM2904V 8 Output Voltage (Vdc) relative to Vcc 20 17.5 Output Swing (Vp-p) 15 12.5 10 7.5 5 2.5 0 1 10 100 Frequency (kHz) 7 6 5 4 3 2 1 0.001 1k Figure 7. Maximum Output Swing vs. Frequency (VCC = 15 V) 0.1 1 Output Sink Current (mAdc) 10 100 Figure 8. Output Sourcing Characteristics 90 10 5Vdc 15Vdc 30Vdc 80 Output Current (mAdc) Output Voltage (Vdc) 0.01 1 0.1 70 60 50 40 30 20 10 0.01 0.001 0 0.01 0.1 1 10 Output Sink Current (mAdc) Figure 9. Output Sinking Characteristics Copyright © 1976–2018, Texas Instruments Incorporated 100 –55 –35 –15 5 45 25 65 Temperature (°C) 85 105 125 Figure 10. Source Current Limiting Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V 15 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 www.ti.com 8 Parameter Measurement Information 900 Ω VCC+ VCC+ − VI VO + 100 Ω − VI = 0 V RS VCC− CL RL VO + VCC− Figure 11. Unity-Gain Amplifier 16 Submit Documentation Feedback Figure 12. Noise-Test Circuit Copyright © 1976–2018, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V www.ti.com SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 9 Detailed Description 9.1 Overview These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is within the supply voltage range specified in the Recommended Operating Conditions section, and VS is at least 1.5 V more positive than the input common-mode voltage. The low supplycurrent drain is independent of the magnitude of the supply voltage. Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required interface electronics without additional ±5-V supplies. 9.2 Functional Block Diagram VCC+ ≈6-µA Current Regulator ≈100-µA Current Regulator ≈6-µA Current Regulator OUT IN− ≈50-µA Current Regulator IN+ GND (or VCC−) To Other Amplifier COMPONENT COUNT Epi-FET Diodes Resistors Transistors Capacitors Copyright © 1976–2018, Texas Instruments Incorporated 1 2 7 51 2 Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V 17 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 www.ti.com 9.3 Feature Description 9.3.1 Unity-Gain Bandwidth The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without greatly distorting the signal. These devices have a 1.2-MHz unity-gain bandwidth (B Version). 9.3.2 Slew Rate The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. These devices have a 0.5-V/µs slew rate (B Version). 9.3.3 Input Common Mode Range The valid common mode range is from device ground to VS – 1.5 V (VS – 2 V across temperature). Inputs may exceed VS up to the maximum VS without device damage. At least one input must be in the valid input commonmode range for the output to be the correct phase. If both inputs exceed the valid range, then the output phase is undefined. If either input more than 0.3 V below V– then input current should be limited to 1 mA and the output phase is undefined. 9.4 Device Functional Modes These devices are powered on when the supply is connected. This device can be operated as a single-supply operational amplifier or dual-supply amplifier, depending on the application. 18 Submit Documentation Feedback Copyright © 1976–2018, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V www.ti.com SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 10 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 10.1 Application Information The LMx58 and LM2904 operational amplifiers are useful in a wide range of signal conditioning applications. Inputs can be powered before VS for flexibility in multiple supply circuits. 10.2 Typical Application A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive. RF RI Vsup+ VOUT + VIN Vsup- Figure 13. Application Schematic 10.2.1 Design Requirements The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application scales a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to accommodate this application. 10.2.2 Detailed Design Procedure Determine the gain required by the inverting amplifier using Equation 1 and Equation 2: VOUT AV VIN 1.8 AV 3.6 0.5 (1) (2) Once the desired gain is determined, choose a value for RI or RF. [Subscripts should be fixed in the accompanying figures and equations also.] Choosing a value in the kilohm range is desirable because the amplifier circuit uses currents in the milliampere range. This ensures the part does not draw too much current. This example uses 10 kΩ for RI which means 36 kΩ is used for RF. This was determined by Equation 3. RF AV (3) RI Copyright © 1976–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V 19 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 www.ti.com Typical Application (continued) 10.2.3 Application Curve 2 VIN 1.5 VOUT 1 Volts 0.5 0 -0.5 -1 -1.5 -2 0 0.5 1 Time (ms) 1.5 2 Figure 14. Input and Output Voltages of the Inverting Amplifier 11 Power Supply Recommendations CAUTION Supply voltages larger than specified in the recommended operating region can permanently damage the device (see the Absolute Maximum Ratings). Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. For more detailed information on bypass capacitor placement, see the Layout section. 12 Layout 12.1 Layout Guidelines For best operational performance of the device, use good PCB layout practices, including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry. – Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. • To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace. [Things in parallel never cross, by definition] • Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Layout Examples. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. 20 Submit Documentation Feedback Copyright © 1976–2018, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V www.ti.com SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 12.2 Layout Examples Place components close to device and to each other to reduce parasitic errors Run the input traces as far away from the supply lines as possible VS+ RF OUT1 V+ GND IN1í OUT2 VIN IN1+ IN2í Ví IN2+ RG GND R IN Use low-ESR, ceramic bypass capacitor Only needed for dual-supply operation GND VSí (or GND for single supply) Ground (GND) plane on another layer Figure 15. Operational Amplifier Board Layout for Noninverting Configuration VIN RIN RG + VOUT RF Figure 16. Operational Amplifier Schematic for Noninverting Configuration Copyright © 1976–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V 21 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 www.ti.com 13 Device and Documentation Support 13.1 Documentation Support 13.1.1 Related Documentation • Texas Instruments, Circuit Board Layout Techniques. 13.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now. Table 1. Related Links PARTS PRODUCT FOLDER ORDER NOW TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY LM158 Click here Click here Click here Click here Click here LM158A Click here Click here Click here Click here Click here LM258 Click here Click here Click here Click here Click here LM258A Click here Click here Click here Click here Click here LM358 Click here Click here Click here Click here Click here LM358A Click here Click here Click here Click here Click here LM358B (1) (1) Click here Click here Click here Click here Click here LM2904 Click here Click here Click here Click here Click here LM2904B (1) Click here Click here Click here Click here Click here LM2904V Click here Click here Click here Click here Click here Device is currently Preview 13.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 13.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 13.5 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 13.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 22 Submit Documentation Feedback Copyright © 1976–2018, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM2904, LM2904B, LM2904V www.ti.com SLOS068V – JUNE 1976 – REVISED SEPTEMBER 2018 13.7 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms and definitions. 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the mostcurrent data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser based versions of this data sheet, see the left-hand navigation pane. Copyright © 1976–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM358B LM2904 LM2904B LM2904V 23 PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2019 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) 5962-87710012A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 596287710012A LM158FKB 5962-8771001PA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8771001PA LM158 5962-87710022A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 596287710022A LM158AFKB 5962-8771002PA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8771002PA LM158A LM158AFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 596287710022A LM158AFKB LM158AJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 LM158AJG LM158AJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8771002PA LM158A LM158FKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 596287710012A LM158FKB LM158JG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 LM158JG LM158JGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8771001PA LM158 LM258AD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258A LM258ADGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM -25 to 85 (M3L, M3P, M3S, M3 U) LM258ADR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -25 to 85 LM258A LM258ADRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258A LM258ADRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258A LM258AP ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN N / A for Pkg Type -25 to 85 LM258AP Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2019 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM258APE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -25 to 85 LM258AP LM258D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258 LM258DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258 LM258DGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM -25 to 85 (M2L, M2P, M2S, M2 U) LM258DGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 (M2L, M2P, M2S, M2 U) LM258DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -25 to 85 LM258 LM258DRG3 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -25 to 85 LM258 LM258DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258 LM258P ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN N / A for Pkg Type -25 to 85 LM258P LM258PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -25 to 85 LM258P LM2904AVQDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV LM2904AVQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV LM2904AVQPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV LM2904AVQPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV LM2904BIDR PREVIEW SOIC D 8 2500 TBD Call TI Call TI -40 to 125 LM2904D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2019 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM2904DGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM -40 to 125 (MBL, MBP, MBS, MB U) LM2904DGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (MBL, MBP, MBS, MB U) LM2904DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DRG3 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904P ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN N / A for Pkg Type -40 to 125 LM2904P LM2904PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 125 LM2904P LM2904PSR ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904 LM2904PW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904 LM2904PWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 L2904 LM2904PWRG3 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 L2904 LM2904PWRG4-JF ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904 LM2904QDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 2904Q1 LM2904QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 2904Q1 LM2904VQDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V LM2904VQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V LM2904VQPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2019 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM2904VQPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V LM358AD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A LM358ADE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A LM358ADG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A LM358ADGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM 0 to 70 (M6L, M6P, M6S, M6 U) LM358ADGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 (M6L, M6P, M6S, M6 U) LM358ADR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 LM358A LM358ADRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A LM358ADRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A LM358AP ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN N / A for Pkg Type 0 to 70 LM358AP LM358APE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 LM358AP LM358APW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358A LM358APWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 L358A LM358APWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358A LM358BIDR PREVIEW SOIC D 8 2500 TBD Call TI Call TI -40 to 85 LM358D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358DGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM 0 to 70 (M5L, M5P, M5S, M5 U) Addendum-Page 4 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2019 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM358DGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 (M5L, M5P, M5S, M5 U) LM358DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 LM358 LM358DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358DRG3 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 LM358 LM358DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358P ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN N / A for Pkg Type 0 to 70 LM358P LM358PE3 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU SN N / A for Pkg Type 0 to 70 LM358P LM358PE4 ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 LM358P LM358PSR ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358 LM358PW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358 LM358PWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 L358 LM358PWRG3 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 L358 LM358PWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358 LM358PWRG4-JF ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 5 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2019 (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LM358DR 价格&库存

很抱歉,暂时无法提供与“LM358DR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LM358DR
  •  国内价格
  • 5+0.45424
  • 20+0.41344
  • 100+0.37264
  • 500+0.33184
  • 1000+0.31280
  • 2000+0.29920

库存:6207