0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SERDES01-40USB/NOPB

SERDES01-40USB/NOPB

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    KIT EVALUATION FOR DS99R101/102

  • 数据手册
  • 价格&库存
SERDES01-40USB/NOPB 数据手册
Application Report SNLA102B – May 2008 – Revised April 2013 AN-1807 FPD-Link II Display SerDes Overview ..................................................................................................................................................... ABSTRACT TI’s FPD-Link II family of embedded clock LVDS SerDes provide enhanced features, and improved signal quality over prior generations of FPD-Link SerDes devices for Display applications. FPD-Link Chipsets serialized the wide parallel RGB buses down to 4 or 5 pairs of LVDS signaling depending upon the chipset. 18-bit RGB was serialized to three LVDS data lines and a LVDS clock, while 24-bit RGB was serialized to four LVDS data lines and a LVDS clock. This provided a smaller, higher speed video bus and has become the defacto standard for Notebook Display interfaces. 1 2 3 4 5 6 7 8 9 Contents Introduction .................................................................................................................. The SERIALIZER Function ................................................................................................ The DESERIALIZER Function ............................................................................................ Serial Payload ............................................................................................................... Streaming RGB Display Applications .................................................................................... Signal Quality Enhancers .................................................................................................. EMI Mitigation Features .................................................................................................... Current FPD-Link II SerDes Devices ..................................................................................... Summary ..................................................................................................................... 2 3 3 3 4 4 5 5 5 List of Figures 1 General Block Diagram – FPD-Link II 18-bit RGB Display Application .............................................. 2 2 24-bit Serial Payload Example ............................................................................................ 2 3 24-bit RGB FPD-Link II SERDES XGA Display Application ........................................................... 4 List of Tables 1 Select FPD-Link II SER and DES Device Comparison Table ......................................................... 5 All trademarks are the property of their respective owners. SNLA102B – May 2008 – Revised April 2013 Submit Documentation Feedback AN-1807 FPD-Link II Display SerDes Overview Copyright © 2008–2013, Texas Instruments Incorporated 1 Introduction 1 www.ti.com Introduction The FPD-Link II SerDes family serializes the wide parallel display bus all the way to a single serial differential signal as shown in Figure 1. Signal compression ratios of 24:1 or even greater (if ground wires are taken into account) are obtained. Current devices in the family support common 18-bit and 24-bit RGB Display applications. With the single serial signal, skew problems between multiple lines (lanes) are removed and cable lengths up to 10 meters are supported. This makes the FPD-Link II SerDes ideal for long reach applications with low cost small cables. The single serial differential signal carries the parallel data (RGB and control) information, clock information and a small amount of serial overhead. Routing of the single signal pair greatly eases system design, saves bulk interconnect, saves connector pins, and reduces concern over interface interconnect skew. FPD-Link II SERIALIZER FPD-Link II DESERIALIZER RED BLUE BLUE VSYNC HSYNC DE GP0 GP1 GP2 VSYNC HSYNC DE GP0 GP1 GP2 CDR / PLL PHY control PCLK 24-Bit LVCMOS GREEN Output Latch Decoding Serial to Parallel RX TX Encoding Input Latch 24-Bit LVCMOS GREEN Parallel to Serial RED PCLK PLL PHY control CONFIG. CONFIG. Figure 1. General Block Diagram – FPD-Link II 18-bit RGB Display Application An example of the 24-bit (user) payload is shown in Figure 2. The 24-bit data field is appended with four additional serial bits which provide the embedded clock information, link coding, and operating mode information. A fixed clock edge is created between the C0 and C1 bits, and the coding/mode information is conveyed by the A and B bits. C1 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 A B b17 b12 b18 b13 b19 b14 b20 b15 b21 b16 b22 b23 C0 TPCLK Figure 2. 24-bit Serial Payload Example 2 AN-1807 FPD-Link II Display SerDes Overview Copyright © 2008–2013, Texas Instruments Incorporated SNLA102B – May 2008 – Revised April 2013 Submit Documentation Feedback The SERIALIZER Function www.ti.com 2 The SERIALIZER Function The Serializer (SER) function generically collects a wide parallel bus plus its clock signal, performs payload optimization, appends the serial control bits and level translates the high-speed serial signal to LVDS-like levels. The payload is optimized for serial transmission over AC-coupled interconnects. This step balances the data being sent to support the AC-coupled transmission. Depending upon the chipset being used, payload randomization and scrambling is also done to enhance the signal quality across the link. A few options are also supported depending upon the SER device. Various input (parallel) buses are supported. This ranges from bus width and also signaling physical layer. LVCMOS buses at 3.3V are supported, with optional 1.8V support on some products. In addition, serializers with FPD-Link (LVDS based) inputs convert to FPD-Link II (that is, DS99R421 and DS90UR907). 3 The DESERIALIZER Function The Deserializer (DES) function is to recover the clock and data signals and to provide them to the target device (a display for example). The FPD-Link II DES is very unique as it is able to quickly lock to the serial stream without the need of a local reference clock or any special training patterns from the SER. These features set the FPD-Link II SerDes apart from many competing interfaces. They simplify the application, support hot plugging, and also require less external components (less board space and cost). The DES even provides a LOCK output signal to allow the system to check serial link status. A few options are also supported depending upon the DES device selected. Various output (parallel) buses are supported. This ranges from bus width and also the signaling physical layer. LVCMOS buses at 3.3V are supported, with optional 1.8V support on some products. In addition, deserializers are available with FPD-Link (LVDS based) outputs (that is, DS90UR908). 4 Serial Payload The serial payload is optimized for the different chipsets in the FPD-Link II family and also for the applications they support. A common serial payload to explain as a reference is the 28-bit serial frame shown in Figure 2. The 28 bits are comprised of: 24 data bits, 2 bits of embedded clock information, and 2 bits of serial control for the link. Thus, for every 24 bits of data, 28 serial bits are sent. This makes the basic link 24/28 (86%) efficient. This is an important bench mark, as it is always desirable to keep overhead low. This scheme is also ~30% better than the common data communication 8b/10b scheme which is 80% efficient. Note that the 24 data bits are modified by the balancing, randomization, and scrambling. This is done to support the AC coupling on the link, and also to help reduce ISI (Inter-symbol Interference) effects when sending relatively static data. The two clock bits are fixed, with one bit high (C1) and one bit low (C0) – note these two are DC balanced as a pair. The two serial control bits, commonly noted as DCA (A) and DCB (B), provide information to the DES to recover the data and also the link status and mode. Chipsets supporting 24-bit RGB encode the status of video synchronization signals in the serial stream. SNLA102B – May 2008 – Revised April 2013 Submit Documentation Feedback AN-1807 FPD-Link II Display SerDes Overview Copyright © 2008–2013, Texas Instruments Incorporated 3 Streaming RGB Display Applications 5 www.ti.com Streaming RGB Display Applications The FPD-Link II chipset is mainly used for RGB applications with various display resolutions. With the basic chipset (DS90UR241/124), 18-bit color depth is commonly used. A wide range of PCLK rates are supported depending upon the chipset selected. Of the user data payload, that is, the 24 data bits, 18 bits of RGB information, 3 display control signals (HS, VS, DE) and 3 general purpose signals are sent per PCLK. Up to 10m TWP Cable FPD-Link ll DES G[7:0] FPD-Link II SER R[7:0] XGA 24-bit RGB Display B[7:0] V, H, DE PCLK HOST GPU Figure 3. 24-bit RGB FPD-Link II SERDES XGA Display Application In this example, if the PCLK was at 43 MHz, the serial transmission rate is 28 times the PCLK, or 1.2 Gbps. The user data rate is 24X of PCLK, or 1.0 Gbps in this example. 6 Signal Quality Enhancers As noted above, the data payload is modified to randomize, scramble, and balance the data to support AC-coupling of the interface and to also enhance the signal quality of the serial signal. In addition to these, the physical layer is also enhanced and allows for various options depending upon the chipset. Certain FPD-Link II line drivers feature an adjustable Pre-Emphasis feature. This is useful with longer distance applications or with high-loss interconnects. A resistor is connected to the PRE pin to ground and the value sets the amount of additional output current that is driven. If the following logic bit is the same logic state, the “additional” current is turned off for the following bit. With this scheme, ISI (jitter) is reduced and also some power is saved. Other FPD-Link II line drivers provide De-Emphasis. Similar to Pre-Emphasis, this feature is adjustable via an external resistor. A serial control bus provides another means to adjust a programmable register setting. De-Emphasis reduces the differential output swing after the initial data transition, thus minimizing ISI. Certain FPD-Link II line drivers also support a differential output voltage magnitude select pin. This pin is typically set to low for standard swings. But if a larger VOD is desired, the pin allows for an increased swing setting by setting it High. Cable equalization is provided by some FPD-Link II receivers. This feature compensates for cable loss. Adjustment is made via pin control or serial bus controlled registers. 4 AN-1807 FPD-Link II Display SerDes Overview Copyright © 2008–2013, Texas Instruments Incorporated SNLA102B – May 2008 – Revised April 2013 Submit Documentation Feedback EMI Mitigation Features www.ti.com 7 EMI Mitigation Features The differential LVDS style physical layer is used to help minimize the generation of EMI. Line driver transition times are controlled to be balanced and centered. This is done to minimize any common-mode currents from the line driver. The odd-mode (differential) signaling generates equal and opposite currents in the pair which also help to lower overall emissions. The serial link is terminated at both the source and load ends to minimize any signal reflections. Certain parts provide internal terminations to reduce external part count and to also minimize the resulting stub lengths. The Parallel Bus at the DES (receiver output) is also optimized to reduce EMI. Edge rates are controlled, and on certain DES devices an output drive strength control is provided. Most DES devices support PTO (progressive turn-on), a feature that groups the data outputs into banks and offsets the switching point in time to reduce simultaneous switching and thus reduce supply noise. Other devices employ frequency spread PTO to dynamically alter the output switching sequence and further enhance the noise reduction of the wide bus. Spread spectrum clock generation is provided by some deserializers. This feature modulates the output clock and data period to effectively spread the energy associated with periodic output transitions and minimize emissions. 8 Current FPD-Link II SerDes Devices Many variants of FPD-Link II SER and DES devices are currently available with more to follow. Table 1. Select FPD-Link II SER and DES Device Comparison Table NSID (root) Function Color Depth (bits per pixel) General Purpose I/O DS90C241Q SER 18-bit 3 LVCMOS 5 to 35 DS90C124Q DES 18-bit 3 LVCMOS 5 to 35 DS90UR241Q SER 18-bit 3 LVCMOS 5 to 43 DS90UR124Q DES 18-bit 3 LVCMOS 5 to 43 DS99R421Q SER 18-bit 3 FPD-Link (3D + C LVDS) 5 to 43 DS90UR905Q SER 24-bit N/A LVCMOS 5 to 65 DS90UR906Q DES 24-bit N/A LVCMOS 5 to 65 DS90UR907Q SER 24-bit N/A FPD-Link (4D + C LVDS) 5 to 65 DS90UR908Q DES 24-bit N/A FPD-Link (4D + C LVDS) 5 to 65 Parallel Interface PCLK (MHz) Check website for latest product introductions. 9 Summary The FPD-Link II SerDes devices provide an embedded clock single serial stream for Display, Imaging, Pixel based, and other applications. The serial interface greatly eases interconnect design in terms of space, pins, skew and cost. The FPD-Link II DES devices with the special clock recovery circuitry are unique in that they do not require training patterns, a local reference clock, and support hot-plugging into a live link. SNLA102B – May 2008 – Revised April 2013 Submit Documentation Feedback AN-1807 FPD-Link II Display SerDes Overview Copyright © 2008–2013, Texas Instruments Incorporated 5 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated
SERDES01-40USB/NOPB 价格&库存

很抱歉,暂时无法提供与“SERDES01-40USB/NOPB”相匹配的价格&库存,您可以联系我们找货

免费人工找货