0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN74GTLPH16945VR

SN74GTLPH16945VR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TVSOP48_9.9X4.4MM

  • 描述:

    IC BUS TXRX LVTTL-GTLP 48-TVSOP

  • 数据手册
  • 价格&库存
SN74GTLPH16945VR 数据手册
SN74GTLPH16945 16-BIT LVTTL-TO-GTLP BUS TRANSCEIVER www.ti.com FEATURES • • • • • • • • • • • • Member of the Texas Instruments Widebus™ Family TI-OPC™ Circuitry Limits Ringing on Unevenly Loaded Backplanes OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels LVTTL Interfaces Are 5-V Tolerant Medium-Drive GTLP Outputs (50 mA) LVTTL Outputs (–24 mA/24 mA) GTLP Rise and Fall Times Designed for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads Ioff, Power-Up 3-State, and BIAS VCC Support Live Insertion Bus Hold on A-Port Data Inputs Distributed VCC and GND Pins Minimize High-Speed Switching Noise Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II SCES292D – OCTOBER 1999 – REVISED JUNE 2005 DGG OR DGV PACKAGE (TOP VIEW) 1DIR 1A1 1A2 GND 1A3 1A4 VCC 1A5 1A6 GND 1A7 1A8 2A1 2A2 GND 2A3 2A4 VCC 2A5 2A6 GND 2A7 2A8 2DIR 1 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 16 33 17 32 18 31 19 30 20 29 21 28 22 27 23 26 24 25 1OE 1B1 1B2 GND 1B3 1B4 BIAS VCC 1B5 1B6 GND 1B7 1B8 2B1 2B2 GND 2B3 2B4 VREF 2B5 2B6 GND 2B7 2B8 2OE DESCRIPTION/ORDERING INFORMATION The SN74GTLPH16945 is a medium-drive, 16-bit bus transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It is partitioned as two 8-bit transceivers. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard TTL or LVTTL) backplane operation is a direct result of GTLP's reduced output swing ( VCC. The package thermal impedance is calculated in accordance with JESD 51-7. 5 SN74GTLPH16945 16-BIT LVTTL-TO-GTLP BUS TRANSCEIVER www.ti.com SCES292D – OCTOBER 1999 – REVISED JUNE 2005 Recommended Operating Conditions (1) (2) (3) (4) VCC BIAS VCC Supply voltage VTT Termination voltage VREF Reference voltage VI Input voltage VIH High-level input voltage VIL Low-level input voltage IIK Input clamp current IOH High-level output current IOL Low-level output current ?t/?V Input transition rise or fall rate ?t/?VCC Power-up ramp rate TA Operating free-air temperature (1) (2) (3) (4) 6 MIN NOM MAX UNIT 3.15 3.3 3.45 V GTL 1.14 1.2 1.26 GTLP 1.35 1.5 1.65 GTL 0.74 0.8 0.87 GTLP 0.87 1 1.1 B port VTT Except B port B port Except B port VCC 5.5 VREF + 0.05 VREF – 0.05 Except B port V V V 2 B port V 0.8 V –18 mA A port –24 mA A port 24 B port 50 Outputs enabled 10 ns/V µs/V 20 –40 mA 85 °C All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS VCC = 3.3 V first, I/O second, and VCC = 3.3 V last, because the BIAS VCC precharge circuitry is disabled when any VCC pin is connected. The control and VREF inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable but, generally, GND is connected first. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IOL ratings are not exceeded. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT. TI-OPC circuitry is enabled in the A-to-B direction and is activated when VTT > 0.7 V above VREF. If operated in the A-to-B direction, VREF should be set to within 0.6 V of VTT to minimize current drain. SN74GTLPH16945 16-BIT LVTTL-TO-GTLP BUS TRANSCEIVER www.ti.com SCES292D – OCTOBER 1999 – REVISED JUNE 2005 Electrical Characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted) PARAMETER VIK VOH A port VCC = 3.15 V, II = –18 mA VCC = 3.15 V to 3.45 V, IOH = –100 µA VCC – 0.2 IOH = –12 mA 2.4 IOH = –24 mA 2 VCC = 3.15 V VCC = 3.15 V to 3.45 V, A port VOL VCC = 3.15 V VCC = 3.15 V to 3.45 V, B port II Control inputs IOZH (2) IOZL (2) A port B port MIN TYP (1) MAX TEST CONDITIONS VCC = 3.15 V VCC = 3.45 V, VCC = 3.45 V –1.2 UNIT V V IOL = 100 µA 0.2 IOL = 12 mA 0.4 IOL = 24 mA 0.5 IOL = 100 µA 0.2 IOL = 10 mA 0.2 IOL = 40 mA 0.4 IOL = 50 mA 0.55 VI = 0 or 5.5 V ±10 VO = VCC 10 VO = 1.5 V 10 –10 V µA µA µA A and B ports VCC = 3.45 V, VO = GND (3) A port VCC = 3.15 V, VI = 0.8 V 75 µA IBHH (4) A port VCC = 3.15 V, VI = 2 V –75 µA IBHLO (5) A port VCC = 3.45 V, VI = 0 to VCC 500 µA (6) A port VCC = 3.45 V, VI = 0 to VCC –500 IBHL IBHHO ICC A or B port Cio (1) (2) (3) (4) (5) (6) (7) 50 Outputs low 50 Outputs disabled 50 VCC = 3.45 V, One A-port or control input at VCC – 0.6 V, Other A-port or control inputs at VCC or GND ?ICC (7) Ci VCC = 3.45 V, IO = 0, VI (A-port or control input) = VCC or GND, VI (B port) = VTT or GND µA Outputs high mA 1.5 mA pF Control inputs VI = 3.15 V or 0 4.5 5 A port VO = 3.15 V or 0 7.5 9 B port VO = 1.5 V or 0 7.5 9 pF All typical values are at VCC = 3.3 V, TA = 25°C. For I/O ports, the parameters IOZH and IOZL include the input leakage current. The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and then raising it to VILmax. The bus-hold circuit can source at least the minimum high sustaining current at VIHmin. IBHH should be measured after raising VIN to VCC and then lowering it to VIHmin. An external driver must source at least IBHLO to switch this node from low to high. An external driver must sink at least IBHHO to switch this node from high to low. This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND. Hot-Insertion Specifications for A Port over recommended operating free-air temperature range PARAMETER Ioff TEST CONDITIONS MIN MAX UNIT 10 µA OE = 0 ±30 µA OE = 0 ±30 µA VCC = 0, BIAS VCC = 0, VI or VO = 0 to 5.5 V IOZPU VCC = 0 to 1.5 V, VO = 0.5 V to 3 V, IOZPD VCC = 1.5 V to 0, VO = 0.5 V to 3 V, 7 SN74GTLPH16945 16-BIT LVTTL-TO-GTLP BUS TRANSCEIVER www.ti.com SCES292D – OCTOBER 1999 – REVISED JUNE 2005 Live-Insertion Specifications for B Port over recommended operating free-air temperature range PARAMETER Ioff TEST CONDITIONS MIN MAX µA VO = 0.5 V to 1.5 V, OE = 0 ±30 µA VO = 0.5 V to 1.5 V, OE = 0 ±30 µA 5 mA 10 µA BIAS VCC = 0, VI or VO = 0 to 1.5 V IOZPU VCC = 0 to 1.5 V, BIAS VCC = 0, IOZPD VCC = 1.5 V to 0, BIAS VCC = 0, ICC (BIAS VCC) VCC = 0 to 3.15 V VCC = 3.15 V to 3.45 V UNIT 10 VCC = 0, BIAS VCC = 3.15 V to 3.45 V, VO (B port) = 0 to 1.5 V VO VCC = 0, BIAS VCC = 3.3 V, IO = 0 IO VCC = 0, BIAS VCC = 3.15 V to 3.45 V, VO (B port) = 0.6 V 0.95 1.05 V µA –1 Switching Characteristics over recommended ranges of supply voltage and operating free-air temperature, VTT = 1.5 V and VREF = 1 V for GTLP (see Figure 1) PARAMETER tPLH tPHL ten tdis A B OE B Rise time, B outputs (20% to 80%) tf Fall time, B outputs (80% to 20%) tPHL ten tdis 8 TO (OUTPUT) tr tPLH (1) FROM (INPUT) B A OE A All typical values are at VCC = 3.3 V, TA = 25°C. MIN TYP (1) MAX 2.1 6.3 2.1 6.3 2 6.9 2 6.9 2.5 UNIT ns ns ns 2.1 ns 2.1 5.3 2.1 5.3 0.3 5.7 0.3 5.7 ns ns SN74GTLPH16945 16-BIT LVTTL-TO-GTLP BUS TRANSCEIVER www.ti.com SCES292D – OCTOBER 1999 – REVISED JUNE 2005 PARAMETER MEASUREMENT INFORMATION 500 Ω From Output Under Test S1 1.5 V 6V Open GND CL = 50 pF (see Note A) TEST tPLH/tPHL tPLZ/tPZL tPHZ/tPZH 500 Ω 25 Ω From Output Under Test CL = 30 pF (see Note A) S1 Open 6V GND Test Point LOAD CIRCUIT FOR B OUTPUTS LOAD CIRCUIT FOR A OUTPUTS 3V 1.5 V Input 1.5 V 0V tPLH tPHL VOH 1V Output 1V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES (A port to B port) 1V 0V tPLH 1.5 V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES (B port to A port) tPLZ 3V 1.5 V VOL + 0.3 V VOL tPZH VOH Output 1.5 V 0V Output Waveform 1 S1 at 6 V (see Note B) tPHL 1.5 V 1.5 V tPZL 1.5 V 1V Input 3V Output Control Output Waveform 2 S1 at GND (see Note B) tPHZ VOH 1.5 V VOH − 0.3 V ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES (A port) NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≈ 10 MHz, ZO = 50 Ω, tr ≈ 2 ns, tf ≈ 2 ns. D. The outputs are measured one at a time, with one transition per measurement. Figure 1. Load Circuits and Voltage Waveforms 9 SN74GTLPH16945 16-BIT LVTTL-TO-GTLP BUS TRANSCEIVER www.ti.com SCES292D – OCTOBER 1999 – REVISED JUNE 2005 Distributed-Load Backplane Switching Characteristics The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information. 38 Ω 0.25” ZO = 70 Ω 2” Conn. 1” Conn. 2” Conn. Conn. 1” 1” 0.25” 1” Rcvr Rcvr Rcvr Slot 2 Slot 9 Slot 10 Drvr Slot 1 Figure 2. Medium-Drive Test Backplane 1.5 V 19 Ω From Output Under Test LL = 19 nH Test Point CL = 9 pF Figure 3. Medium-Drive RLC Network 10 38 Ω 1.5 V 1.5 V SN74GTLPH16945 16-BIT LVTTL-TO-GTLP BUS TRANSCEIVER www.ti.com SCES292D – OCTOBER 1999 – REVISED JUNE 2005 Switching Characteristics over recommended ranges of supply voltage and operating free-air temperature, VTT = 1.5 V and VREF = 1 V for GTLP (see Figure 3) PARAMETER tPLH tPHL ten tdis (1) FROM (INPUT) TO (OUTPUT) A B OE B TYP (1) 4.3 4.3 5 4.4 UNIT ns ns tr Rise time, B outputs (20% to 80%) 1 ns tf Fall time, B outputs (80% to 20%) 2 ns All typical values are at VCC = 3.3 V, TA = 25°C. All values are derived from TI-SPICE models. 11 PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 PACKAGING INFORMATION Orderable Device Status (1) SN74GTLPH16945GR ACTIVE Package Type Package Pins Package Drawing Qty TSSOP DGG 48 2000 Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Op Temp (°C) Device Marking (4/5) -40 to 85 GTLPH16945 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 11-Mar-2017 TAPE AND REEL INFORMATION *All dimensions are nominal Device SN74GTLPH16945GR Package Package Pins Type Drawing TSSOP DGG 48 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) 2000 330.0 24.4 Pack Materials-Page 1 8.6 B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 13.0 1.8 12.0 24.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 11-Mar-2017 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74GTLPH16945GR TSSOP DGG 48 2000 367.0 367.0 45.0 Pack Materials-Page 2 MECHANICAL DATA MTSS003D – JANUARY 1995 – REVISED JANUARY 1998 DGG (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 48 PINS SHOWN 0,27 0,17 0,50 48 0,08 M 25 6,20 6,00 8,30 7,90 0,15 NOM Gage Plane 1 0,25 24 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 48 56 64 A MAX 12,60 14,10 17,10 A MIN 12,40 13,90 16,90 DIM 4040078 / F 12/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice. This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm). Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated
SN74GTLPH16945VR 价格&库存

很抱歉,暂时无法提供与“SN74GTLPH16945VR”相匹配的价格&库存,您可以联系我们找货

免费人工找货