0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN74HCT374N3

SN74HCT374N3

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    DIP20

  • 描述:

    IC FF D-TYPE SNGL 8BIT 20DIP

  • 数据手册
  • 价格&库存
SN74HCT374N3 数据手册
               SCLS005D − MARCH 1984 − REVISED AUGUST 2003 D Operating Voltage Range of 4.5 V to 5.5 V D High-Current 3-State True Outputs Can D D D D D D D SN54HCT374 . . . J OR W PACKAGE SN74HCT374 . . . DB, DW, N, NS, OR PW PACKAGE (TOP VIEW) Drive Up To 15 LSTTL Loads Low Power Consumption, 80-µA Max ICC Typical tpd = 22 ns ±6-mA Output Drive at 5 V Low Input Current of 1 µA Max Inputs Are TTL-Voltage Compatible Eight D-Type Flip-Flops in a Single Package Full Parallel Access for Loading OE 1Q 1D 2D 2Q 3Q 3D 4D 4Q GND description/ordering information These 8-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 VCC 8Q 8D 7D 7Q 6Q 6D 5D 5Q CLK 1D 1Q OE VCC 8Q SN54HCT374 . . . FK PACKAGE (TOP VIEW) 2D 2Q 3Q 3D 4D 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 8D 7D 7Q 6Q 6D 4Q GND CLK 5Q 5D The eight flip-flops of the ’HCT374 devices are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels that were set up at the data (D) inputs. 4 An output-enable (OE) input places the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. ORDERING INFORMATION PDIP − N SN74HCT374N Tube of 25 SN74HCT374DW Reel of 2000 SN74HCT374DWR SOP − NS Reel of 2000 SN74HCT374NSR HCT374 SSOP − DB Reel of 2000 SN74HCT374DBR HT374 Tube of 70 SN74HCT374PW Reel of 2000 SN74HCT374PWR TSSOP − PW −55°C −55 C to 125 125°C C TOP-SIDE MARKING Tube of 20 SOIC − DW −40°C to 85°C ORDERABLE PART NUMBER PACKAGE† TA SN74HCT374N HCT374 HT374 Reel of 250 SN74HCT374PWT CDIP − J Tube of 20 SNJ54HCT374J SNJ54HCT374J CFP − W Tube of 85 SNJ54HCT374W SNJ54HCT374W LCCC − FK Tube of 55 SNJ54HCT374FK SNJ54HCT374FK † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  2003, Texas Instruments Incorporated      ! " #$%! "  &$'(#! )!%* )$#!" # ! "&%##!" &% !+% !%"  %," "!$%!" "!)) -!.* )$#! &#%""/ )%" ! %#%""(. #($)% !%"!/  (( &%!%"*  &)$#!" #&(! ! 0 1 (( &%!%" % !%"!%) $(%"" !+%-"% !%)*  (( !+% &)$#!" &)$#! &#%""/ )%" ! %#%""(. #($)% !%"!/  (( &%!%"* POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1                SCLS005D − MARCH 1984 − REVISED AUGUST 2003 description/ordering information (continued) OE does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. FUNCTION TABLE (each flip-flop) INPUTS OE CLK D OUTPUT Q L ↑ H H L ↑ L L L H or L X Q0 H X X Z logic diagram (positive logic) OE CLK 1 11 C1 1D 3 1D 2 1Q To Seven Other Channels absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V Input clamp current, IIK (VI < 0 or VI > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±35 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±70 mA Package thermal impedance, θJA (see Note 2): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69°C/W NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-7. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265                SCLS005D − MARCH 1984 − REVISED AUGUST 2003 recommended operating conditions (see Note 3) SN54HCT374 MIN NOM MAX MIN NOM MAX 4.5 5 5.5 4.5 5 5.5 VCC VIH Supply voltage VIL VI Low-level input voltage Input voltage 0 VO ∆t/∆v Output voltage 0 High-level input voltage VCC = 4.5 V to 5.5 V VCC = 4.5 V to 5.5 V SN74HCT374 2 2 Input transition rise/fall time V V 0.8 VCC VCC UNIT 0 0 500 0.8 V VCC VCC V 500 ns V TA Operating free-air temperature −55 125 −40 85 °C NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC VOH VI = VIH or VIL IOH = −20 µA IOH = −6 mA 4.5 V VOL VI = VIH or VIL IOL = 20 µA IOL = 6 mA 4.5 V II IOZ VI = VCC or 0 VO = VCC or 0 ICC VI = VCC or 0, IO = 0 One input at 0.5 V or 2.4 V, Other inputs at 0 or VCC 5.5 V ∆ICC† MIN SN54HCT374 MIN MAX SN74HCT374 MIN 4.4 4.499 4.4 4.4 3.98 4.3 3.7 3.84 MAX UNIT V 0.001 0.1 0.1 0.1 0.17 0.26 0.4 0.33 5.5 V ±0.1 ±100 ±1000 ±1000 nA 5.5 V ±0.01 ±0.5 ±10 ±5 µA 8 160 80 µA 1.4 2.4 3 2.9 mA 3 10 10 10 pF 5.5 V 4.5 V to 5.5 V Ci TA = 25°C TYP MAX V † This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or VCC. timing requirements over recommended operating free-air temperature range (unless otherwise noted) fclock Clock frequency tw Pulse duration, CLK high or low tsu Setup time, data before CLK↑ th Hold time, data after CLK↑ POST OFFICE BOX 655303 TA = 25°C MIN MAX SN54HCT374 VCC 4.5 V 31 21 25 5.5 V 36 23 28 MIN MAX SN74HCT374 MIN 4.5 V 16 24 20 5.5 V 14 22 18 4.5 V 20 30 25 5.5 V 17 27 23 4.5 V 10 10 10 5.5 V 10 10 10 • DALLAS, TEXAS 75265 MAX UNIT MHz ns ns ns 3                SCLS005D − MARCH 1984 − REVISED AUGUST 2003 switching characteristics over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) fmax tpd CLK Any Q ten OE Any Q tdis OE Any Q tt Any Q TA = 25°C TYP MAX SN54HCT374 SN74HCT374 VCC MIN 4.5 V 31 36 21 25 5.5 V 36 40 23 28 MIN MAX MIN MAX UNIT MHz 4.5 V 30 36 54 45 5.5 V 25 32 49 41 4.5 V 26 30 45 38 5.5 V 23 27 41 34 4.5 V 23 30 45 38 5.5 V 22 27 41 34 4.5 V 10 12 18 15 5.5 V 9 11 16 14 ns ns ns ns switching characteristics over recommended operating free-air temperature range, CL = 150 pF (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) tpd CLK Any Q ten OE Any Q tt Any Q VCC MIN TA = 25°C TYP MAX SN54HCT374 MIN MAX SN74HCT374 MIN MAX 4.5 V 40 46 69 58 5.5 V 35 41 62 52 4.5 V 34 40 60 50 5.5 V 29 36 54 45 4.5 V 18 42 63 53 5.5 V 16 38 57 48 UNIT ns ns ns operating characteristics, TA = 25°C PARAMETER Cpd 4 TEST CONDITIONS Power dissipation capacitance per flip-flop POST OFFICE BOX 655303 No load • DALLAS, TEXAS 75265 TYP 85 UNIT pF                SCLS005D − MARCH 1984 − REVISED AUGUST 2003 PARAMETER MEASUREMENT INFORMATION VCC S1 Test Point From Output Under Test PARAMETER ten RL tdis CL (see Note A) S2 tPZH 1 kΩ tPZL tPHZ tPLZ tpd or tt CL S1 S2 50 pF or 150 pF Open Closed Closed Open Open Closed Closed Open Open Open RL 1 kΩ 50 pF 50 pF or 150 pF −− LOAD CIRCUIT 3V High-Level Pulse 1.3 V 3V Reference Input 1.3 V 0V 1.3 V tsu 0V tw Data Input 1.3 V 0.3 V 3V Low-Level Pulse 1.3 V 1.3 V Output Control (Low-Level Enabling) 3V 1.3 V 0V tPLH In-Phase Output 1.3 V 10% tPHL 90% 90% tr Out-ofPhase Output tPHL 90% VOH 1.3 V 10% V OL tf tPLH 1.3 V 10% 1.3 V 10% tf 2.7 V 3V 1.3 V 0.3 V 0 V tf VOLTAGE WAVEFORMS SETUP AND HOLD AND INPUT RISE AND FALL TIMES VOLTAGE WAVEFORMS PULSE DURATIONS 1.3 V 2.7 V tr 0V Input th 3V 1.3 V 1.3 V 0V tPZL Output Waveform 1 (See Note B) tPLZ ≈VCC 1.3 V 10% tPZH 90% VOH VOL tr VOLTAGE WAVEFORMS PROPAGATION DELAY AND OUTPUT RISE AND FALL TIMES Output Waveform 2 (See Note B) VOL tPHZ 1.3 V 90% VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS NOTES: A. CL includes probe and test-fixture capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr = 6 ns, tf = 6 ns. D. For clock inputs, fmax is measured when the input duty cycle is 50%. E. The outputs are measured one at a time with one input transition per measurement. F. tPLZ and tPHZ are the same as tdis. G. tPZL and tPZH are the same as ten. H. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 PACKAGE OPTION ADDENDUM www.ti.com 25-Oct-2016 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) 85507012A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 85507012A SNJ54HCT 374FK 8550701RA ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 8550701RA SNJ54HCT374J JM38510/65652BRA ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/ 65652BRA M38510/65652BRA ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/ 65652BRA SN54HCT374J ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 SN54HCT374J SN74HCT374DBR ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT374 SN74HCT374DBRG4 ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT374 SN74HCT374DW ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT374 SN74HCT374DWG4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT374 SN74HCT374DWR ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT374 SN74HCT374DWRE4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT374 SN74HCT374DWRG4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT374 SN74HCT374N ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 SN74HCT374N SN74HCT374N3 OBSOLETE PDIP N 20 TBD Call TI Call TI -40 to 85 SN74HCT374NE4 ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 SN74HCT374N SN74HCT374NSR ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT374 SN74HCT374NSRG4 ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT374 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 25-Oct-2016 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) SN74HCT374PW ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT374 SN74HCT374PWE4 ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT374 SN74HCT374PWR ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT374 SN74HCT374PWRE4 ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT374 SN74HCT374PWRG4 ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT374 SN74HCT374PWT ACTIVE TSSOP PW 20 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT374 SNJ54HCT374FK ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 85507012A SNJ54HCT 374FK SNJ54HCT374J ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 8550701RA SNJ54HCT374J (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 25-Oct-2016 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SN54HCT374, SN74HCT374 : • Catalog: SN74HCT374 • Military: SN54HCT374 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Military - QML certified for Military and Defense Applications Addendum-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 17-Aug-2016 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant SN74HCT374DBR SSOP DB 20 2000 330.0 16.4 8.2 7.5 2.5 12.0 16.0 Q1 SN74HCT374DWR SOIC DW 20 2000 330.0 24.4 10.8 13.3 2.7 12.0 24.0 Q1 SN74HCT374DWR SOIC DW 20 2000 330.0 24.4 10.8 13.3 2.7 12.0 24.0 Q1 SN74HCT374NSR SO NS 20 2000 330.0 24.4 9.0 13.0 2.4 12.0 24.0 Q1 SN74HCT374PWR TSSOP PW 20 2000 330.0 16.4 6.95 7.1 1.6 8.0 16.0 Q1 SN74HCT374PWT TSSOP PW 20 250 330.0 16.4 6.95 7.1 1.6 8.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 17-Aug-2016 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74HCT374DBR SSOP DB 20 2000 367.0 367.0 38.0 SN74HCT374DWR SOIC DW 20 2000 367.0 367.0 45.0 SN74HCT374DWR SOIC DW 20 2000 367.0 367.0 45.0 SN74HCT374NSR SO NS 20 2000 367.0 367.0 45.0 SN74HCT374PWR TSSOP PW 20 2000 367.0 367.0 38.0 SN74HCT374PWT TSSOP PW 20 250 367.0 367.0 38.0 Pack Materials-Page 2 PACKAGE OUTLINE DW0020A SOIC - 2.65 mm max height SCALE 1.200 SOIC C 10.63 TYP 9.97 SEATING PLANE PIN 1 ID AREA A 0.1 C 20 1 13.0 12.6 NOTE 3 18X 1.27 2X 11.43 10 11 B 7.6 7.4 NOTE 4 20X 0.51 0.31 0.25 C A B 2.65 MAX 0.33 TYP 0.10 SEE DETAIL A 0.25 GAGE PLANE 0 -8 0.3 0.1 1.27 0.40 DETAIL A TYPICAL 4220724/A 05/2016 NOTES: 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side. 5. Reference JEDEC registration MS-013. www.ti.com EXAMPLE BOARD LAYOUT DW0020A SOIC - 2.65 mm max height SOIC 20X (2) SYMM 1 20 20X (0.6) 18X (1.27) SYMM (R0.05) TYP 10 11 (9.3) LAND PATTERN EXAMPLE SCALE:6X SOLDER MASK OPENING METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK 0.07 MAX ALL AROUND 0.07 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS 4220724/A 05/2016 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com EXAMPLE STENCIL DESIGN DW0020A SOIC - 2.65 mm max height SOIC 20X (2) SYMM 1 20 20X (0.6) 18X (1.27) SYMM 11 10 (9.3) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:6X 4220724/A 05/2016 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,25 0,09 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0°–ā8° 0,95 0,55 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 /E 12/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated
SN74HCT374N3 价格&库存

很抱歉,暂时无法提供与“SN74HCT374N3”相匹配的价格&库存,您可以联系我们找货

免费人工找货