0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV3601DBVR

TLV3601DBVR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-5

  • 描述:

    高速比较器 SOT23-5 2.5ns Vi=2.4V~5.5V 325MHz

  • 数据手册
  • 价格&库存
TLV3601DBVR 数据手册
TLV3601, TLV3602, TLV3603, TLV3603E ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 TLV360x 具有 2.5ns 传播延迟的 325MHz 高速比较器 1 特性 3 说明 快速传播延迟:2.5 ns 低过驱动分散:600 ps 高切换频率:325 MHz 窄脉宽检测功能:1.25ns 推挽式输出 宽电源电压范围:2.4 V 至 5.5 V 输入共模范围超出两个电源轨 200 mV 低输入失调电压:±5mV 输出端已知启动条件 TLV3603(E) 具体特性: – 可调迟滞控制引脚 – 锁存功能 • TLV3603E 工作温度范围更宽 – -55°C 至 125°C • 封装:TLV3601 (SC70-5)、(SOT23-5), TLV3603(E) (SC70-6), TLV360x 是一款 325MHz 高速比较器,具有轨到轨输 入和 2.5ns 的传播延迟。这两款比较器可快速响应,并 具有宽工作电压范围,非常适合激光雷达、测距仪和线 路接收器中的窄信号脉冲检测和数据与时钟恢复应用。 • • • • • • • • • • 与替代高速差分输出比较器相比,TLV360x 系列的推 挽(单端)输出可以简化 I/O 接口的板对板布线并节省 相关成本,同时能够降低功耗。它们可以直接连接下游 电路中的大多数现行数字控制器和 IO 扩展器。 TLV3601 采用 5 引脚 SC70 和 SOT23 封装,因此非 常适合空间受限的设备,这些设备可从比较器的快速响 应时间中受益。TLV3603(E) 采用 6 引脚 SC70 封装, 速度和尺寸与 TLV3601 相同,同时提供可调迟滞控制 和锁存功能等附加特性。TLV3602 是 TLV3601 的双通 道版本,采用 8 引脚 VSSOP 和 WSON 封装。 器件信息 TLV3602 (VSSOP-8)、(WSON-8) • 功能安全型 – 可提供用于功能安全系统设计的文档 [TLV3601/2] – 可提供用于功能安全系统设计的文档 [TLV3603] 2 应用 • • • • • • TLV3601 TLV3603(E) TLV3602 激光测距仪 时钟和数据恢复 示波器和逻辑分析仪中的高速触发器功能 激光雷达中的距离感测 无人机视觉 高速差分线路接收器 封装 (1) 器件型号 封装尺寸(标称值) SC70 (5) 1.25mm x 2.00mm SOT-23 (5) 2.90mm x 1.60mm SC70 (6) 1.25mm x 2.00mm VSSOP (8) 3.00mm x 3.00mm WSON (8)(预发 2.00mm x 2.00mm 布) (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 TLV3601 (TLV3602 per Channel) VCC TLV3603 V+ + + OPA858 + OUT OUT TLV3603 + TDC – LE/HYST – VEE LE/HYST VEE 功能方框图 VBIAS VREF TLV3603 应用电路 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 Table of Contents 1 特性................................................................................... 1 2 应用................................................................................... 1 3 说明................................................................................... 1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................3 6 Specifications.................................................................. 5 6.1 Absolute Maximum Ratings........................................ 5 6.2 ESD Ratings............................................................... 5 6.3 Recommended Operating Conditions.........................5 6.4 Thermal Information....................................................6 6.5 Electrical Characteristics.............................................7 6.6 Timing Diagrams ........................................................ 9 6.7 Typical Characteristics.............................................. 11 7 Detailed Description......................................................19 7.1 Overview................................................................... 19 7.2 Functional Block Diagram......................................... 19 7.3 Feature Description...................................................19 7.4 Device Functional Modes..........................................19 8 Application and Implementation.................................. 21 8.1 Application Information............................................. 21 8.2 Typical Application.................................................... 22 9 Power Supply Recommendations................................26 10 Layout...........................................................................27 10.1 Layout Guidelines................................................... 27 10.2 Layout Example...................................................... 27 11 Device and Documentation Support..........................28 11.1 Device Support........................................................28 11.2 接收文档更新通知................................................... 28 11.3 支持资源..................................................................28 11.4 Trademarks............................................................. 28 11.5 静电放电警告...........................................................28 11.6 术语表..................................................................... 28 12 Mechanical, Packaging, and Orderable Information.................................................................... 28 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 Changes from Revision D (November 2022) to Revision E (March 2023) Page • 通篇添加了 TLV3603E........................................................................................................................................1 Changes from Revision C (July 2022) to Revision D (November 2022) Page • 删除了 TLV3602 VSSOP 封装的“预发布”状态............................................................................................... 1 Changes from Revision B (November 2021) to Revision C (July 2022) Page • 为 TLV3602 添加了 VSSOP 和 WSON 封装选项(处于“预发布”状态)........................................................1 • 删除了 TLV3601 SOT-23 封装的“预发布”状态............................................................................................... 1 Changes from Revision A (August 2021) to Revision B (November 2021) Page • 从 TLV3603 中删除了“预发布”....................................................................................................................... 1 • 添加了 TLV3601 的 DBV 封装预发布选项.......................................................................................................... 1 • Added typical performance curves....................................................................................................................11 Changes from Revision * (June 2021) to Revision A (August 2021) Page • 量产数据发布...................................................................................................................................................... 1 2 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 5 Pin Configuration and Functions 1 VEE 2 IN+ 3 5 VCC 4 IN- + OUT 图 5-1. DCK, DBV Package 5-Pin SC70, SOT-23 Top View 1 6 VCC VEE 2 5 LE/HYS IN+ 3 4 IN- + OUT 图 5-2. DCK Package 6-Pin SC70 Top View 表 5-1. Pin Functions PIN NAME I/O DESCRIPTION TLV3601 TLV3603(E) IN+ 3 3 I Non-inverting input IN– 4 4 I Inverting input OUT 1 1 O Output (Push-pull) VEE 2 2 I Negative power supply VCC 5 6 I Positive power supply LE/HYS - 5 I Adjustable hysteresis control and latch Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 3 Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 IN1+ 1 8 V+ IN1– 2 7 OUT1 IN2– 3 6 OUT2 IN2+ 4 5 V- 图 5-3. TLV3602 DGK, DSG Packages 8-Pin VSSOP, WSON 表 5-2. Pin Functions: TLV3602 (Dual) PIN NAME NO. DESCRIPTION IN1+ 1 I Noninverting input, channel 1 IN1– 2 I Inverting input, channel 1 IN2– 3 I Inverting input, channel 2 IN2+ 4 I Noninverting input, channel 2 OUT1 7 O Output, channel 1 OUT2 6 O Output, channel 2 V- 5 P Negative (lowest) supply or ground V+ 8 P Positive (highest) supply - Connect directly to V- pin Thermal PAD 4 I/O Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) Input Supply Voltage: VCC – VEE Input Voltage (IN+, IN–)(2) Differential Input Voltage (VDI = IN+ – IN–) MIN MAX –0.3 6 UNIT V VEE – 0.3 VCC + 0.3 V –(VCC – VEE + 0.3) + (VCC –VEE + 0.3) V V Output Voltage (OUT)(3) VEE – 0.3 VCC + 0.3 Latch and Hysteresis Control (LE/HYS) VEE – 0.3 VCC + 0.3 V Current into Input pins (IN+, IN–, LE/HYS)(2) ±10 mA Current into Output pins (OUT)(3) ±50 mA 150 °C 150 °C Junction temperature, TJ Storage temperature, Tstg (1) (2) (3) –65 Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must be current-limited to 10 mA or less. Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.3 V beyond the supply rails must be current-limited to 50 mA or less. 6.2 ESD Ratings VALUE UNIT TLV3601(DCK), TLV3603 Electrostatic discharge V(ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) Charged-device model (CDM), per ANSI/ESDA/JEDEC ±2000 JS-002(2) ±1000 V TLV3601(DBV) Electrostatic discharge V(ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001((1)) ±2000 Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002((2)) ±750 Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001((1)) ±2000 V TLV3602 V(ESD) (1) (2) Electrostatic discharge Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002((2)) ±1000 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN MAX 2.4 5.5 V Input Voltage Range (IN+, IN–) VEE – 0.3 VCC + 0.3 V Latch and Hysteresis Control (LE/HYS) VEE – 0.3 VCC + 0.3 V Ambient temperature, TA –40 125 °C Ambient temperature, TA (TLV3603E) –55 125 °C Input Supply Voltage: VCC – VEE Copyright © 2023 Texas Instruments Incorporated UNIT Submit Document Feedback 5 Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.4 Thermal Information TLV3601 TLV3601 TLV3602 TLV3602 TLV3603 (E) DBV (SOT-23) DCK (SC70) DGK (VSSOP) DSG (WSON) DCK (SC70) 5 PINS 5 PINS 8 PINS 8 PINS 6 PINS 176.5 187.5 170.5 64.9 165.1 °C/W Junction-to-case (top) thermal resistance 74.7 139.2 61.7 83.9 129.1 °C/W Junction-to-case (bottom) thermal resistance N/A N/A N/A 5.5 N/A °C/W 43.4 65.8 92.4 32.0 58.9 °C/W THERMAL METRIC RθJA Junction-to-ambient thermal resistance Rθ JC(top UNIT ) Rθ JC(bot tom) RθJB Junction-to-board thermal resistance 6 ψJT Junction-to-top characterization parameter 16.7 43.0 8.9 2.1 39.4 °C/W ψJB Junction-to-board characterization parameter 43.1 65.5 90.8 32.0 58.7 °C/W Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.5 Electrical Characteristics VCC = 2.5, 3.3 and 5 V, VEE = 0 V, VCM = VEE + 300 mV, CL = 5 pF probe capacitance, typical at TA = 25°C (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DC Input Characteristics VIO Input offset voltage TA = –40°C to +125℃ –5 ±0.5 5 mV VIO (TLV3603E) Input offset voltage TA = –55°C to +125℃ –10 ±0.5 10 mV dVIO/dT Input offset voltage drift VCM Input common mode voltage range TA = –40℃ to +125℃ VEE – 0.2 VCC + 0.2 V VCM (TLV3603E) Input common mode voltage range TA = –55℃ to +125℃ VEE – 0.2 VCC + 0.2 V VHYST (TLV3601/2) Input hysteresis voltage TA = –40℃ to +125℃ 1.5 CIN Input capacitance RDM Input differential mode resistance RCM Input common mode resistance IB Input bias current TA = –40℃ to +125℃ 1 5 uA IB (TLV3603E) Input bias current TA = –55℃ to +125℃ 1 5 uA IOS Input offset current CMRR Common-mode rejection ratio PSRR Power-supply rejection ratio ±3.0 3 μV/°C 5(1) mV 1 pF 67 kΩ 5 MΩ ±0.03 uA VCM = VEE – 0.2V to VCC + 0.2V 80 dB VCC = 2.4 to 5.5V 80 dB 60 DC Output Characteristics VOH Output high voltage from VCC ISOURCE = 1 mA TA = –40℃ to +125℃ VOH (TLV3603E) Output high voltage from VCC ISOURCE = 1 mA TA = –55℃ to +125℃ VOL Output low voltage from VEE ISINK = 1 mA TA = –40℃ to +125℃ VOL (TLV3603E) Output low voltage from VEE ISINK = 1 mA TA = –55℃ to +125℃ ISC_SOURCE Output Short-Circuit Current Source TA = –40℃ to +125℃ 10 30 mA ISC_SOURCE (TLV360 Output Short-Circuit Current 3E) Source TA = –55℃ to +125℃ 10 30 mA Output Short-Circuit Current Sink TA = –40℃ to +125℃ 10 30 mA ISC_SINK (TLV3603E Output Short-Circuit Current ) Sink TA = –55℃ to +125℃ 10 30 mA ISC_SINK 80 mV 80 mV 60 80 mV 60 80 mV 60 Power Supply ICC (TLV3601) quiescent current Output being high TA = –40℃ to +125℃ 4.9 7 mA ICC (TLV3602) quiescent current per channel Output being high TA = –40℃ to +125℃ 4.9 7 mA ICC (TLV3603) quiescent current Output being high TA = –40℃ to +125℃ 5.7 7.8 mA ICC (TLV3603E) quiescent current Output being high TA = –55℃ to +125℃ 5.7 7.8 mA VPOR (postive) Power-On Reset Voltage 2.1 V AC Characteristics 3.5(1) ns Propagation delay VOVERDRIVE = VUNDERDRIVE = 50mV TA = –40℃ to +125℃ 4.5(1) ns tPD (TLV3603E) Propagation delay VOVERDRIVE = VUNDERDRIVE = 50mV TA = –55℃ to +125℃ 4.5((1)) ns ΔtPD (TLV3602 only) Channel-to-channel propagation delay skew((2)) VCM = VCC/2, VOVERDRIVE = VUNDERDRIVE = 50mV, 50 MHz Squarewave tPD Propagation delay VOVERDRIVE = VUNDERDRIVE = 50mV tPD Copyright © 2023 Texas Instruments Incorporated 2.5 24 ps Submit Document Feedback 7 Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.5 Electrical Characteristics (continued) VCC = 2.5, 3.3 and 5 V, VEE = 0 V, VCM = VEE + 300 mV, CL = 5 pF probe capacitance, typical at TA = 25°C (unless otherwise noted). PARAMETER 8 TEST CONDITIONS tCM_DISPERSION Common dispersion VCM varied from VEE to VCC tOD_DISPERSION Overdrive dispersion tUD_DISPERSION Underdrive dispersion tR tF MIN TYP MAX UNIT 80 ps Overdrive varied from 10 mV to 125 mV 600 ps Underdrive varied from 10mV to 125 mV 330 ps Rise time 10% to 90% 0.75 ns Fall time 90% to 10% 0.75 ns tJITTER RMS Jitter VIN = 100mVP-P, fIN = 100MHz, Jitter BW = 10Hz – 50MHz 4 ps fTOGGLE Input toggle frequency VIN = 200 mVPP Sine Wave, When output high reaches 90% of VCC - VEE or output low reaches 10% of VCC - VEE 325 MHz PulseWidth Minimum allowed input pulse width VOVERDRIVE = VUNDERDRIVE = 50mV PWOUT = 90% of PWIN 1.25 ns Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.5 Electrical Characteristics (continued) VCC = 2.5, 3.3 and 5 V, VEE = 0 V, VCM = VEE + 300 mV, CL = 5 pF probe capacitance, typical at TA = 25°C (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Latching/Adjustable Hysteresis VHYST Input hysteresis voltage VHYST = Logic High 0 mV VHYST Input hysteresis voltage RHYST = Floating 3 mV VHYST Input hysteresis voltage RHYST = 150 kΩ 30 mV VHYST Input hysteresis voltage RHYST = 56 kΩ 60 mV VIH_LE LE pin input high level TA = –40℃ to +125℃ VEE + 1.5 V VIH_LE (TLV3603E) LE pin input high level TA = –55℃ to +125℃ VEE + 1.5 V VIL_LE LE pin input low level TA = –40℃ to +125℃ VEE + 0.35 V VIL_LE (TLV3603E) LE pin input low level TA = –55℃ to +125℃ VEE + 0.35 V IIH_LE LE pin input leakage current VLE = VCC TA = –40℃ to +125℃ 15 uA IIH_LE (TLV3603E) LE pin input leakage current VLE = VCC TA = –55℃ to +125℃ 15 uA IIL_LE LE pin input leakage current VLE = VEE, TA = –40℃ to +125℃ 40 uA IIL_LE (TLV3603E) LE pin input leakage current VLE = VEE, TA = –55℃ to +125℃ 40 uA tSETUP Latch setup time tHOLD Latch hold time tPL Latch to OUT delay (1) (2) –1.4 ns 7.2 ns 7 ns Ensured by characterization Differential propagation delay is defined as the larger of the two: ΔtPDLH = tPDLH(MAX) – tPDLH(MIN) ΔtPDHL = tPDHL(MAX) – tPDHL(MIN) where (MAX) and (MIN) denote the maximum and minimum values of a given measurement across the different comparator channels. 6.6 Timing Diagrams VOVERDRIVE VUNDERDRIVE INVUNDERDRIVE VOVERDRIVE IN+ tPLH tPHL tR tF 90% 50% 10% VOUT 图 6-1. General Timing Diagram Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 9 Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 VOD = 125mV VOD = 10mV ININ+ DISPERSION VOUT 图 6-2. Overdrive Dispersion 10 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.7 Typical Characteristics At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603(E) only), and input overdrive = 50 mV, unless otherwise noted. 2 3.2 3.1 1 Hysteresis (mV) Input Offset Voltage (mV) 1.5 0.5 0 -0.5 3 2.9 VCC = 2.5V VCC = 3.3V VCC = 5V -1 -1.5 -40 For 33 units -25 -10 5 20 35 50 65 Temperature (C) 80 95 2.8 -40 110 125 -25 -10 5 20 35 50 65 Temperature (C) 80 95 110 125 图 6-4. TLV3601 Hysteresis vs. Temperature 图 6-3. TLV3601 Offset vs. Temperature 1.8 Input Offset Voltage (mV) 1.4 1 0.6 0.2 -0.2 -0.6 -1 -0.2 For 33 units 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 Input Common-Mode Voltage (V) 2.5 2.7 图 6-6. TLV3601 Hysteresis vs. Common-Mode, 2.5 V 图 6-5. TLV3601 Offset vs. Common-Mode, 2.5 V 5 1.8 4.5 4 1 Hysteresis (mV) Input Offset Voltage (mV) 1.4 0.6 0.2 -0.2 3.5 3 2.5 2 1.5 -40C 25C 85C 125C 1 -0.6 -1 -0.2 0.5 For 33 units 0.3 0.8 1.3 1.8 2.3 2.8 Input Common-Mode Voltage (V) 图 6-7. TLV3601 Offset vs. Common-Mode, 3.3 V 3.3 0 -0.2 0.3 0.8 1.3 1.8 2.3 2.8 Input Common Mode Voltage (V) 3.3 图 6-8. TLV3601 Hysteresis vs. Common-Mode, 3.3 V Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 11 Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.7 Typical Characteristics (continued) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603(E) only), and input overdrive = 50 mV, unless otherwise noted. 5 1.8 4.5 4 1 Hysteresis (mV) Input Offset Voltage (mV) 1.4 0.6 0.2 -0.2 3 2.5 2 1.5 -40C 25C 85C 125C 1 -0.6 0.5 -1 -0.2 0.3 For 33 units 0.8 1.3 1.8 2.3 2.8 3.3 3.8 Input Common-Mode Voltage (V) 4.3 0 -0.2 4.8 5.2 2 0.8 1.3 1.8 2.3 2.8 3.3 3.8 Input Common Mode Voltage (V) 4.3 4.8 5.2 40 38 1.5 36 Hysteresis (mV) 1 0.5 0 34 32 30 28 -0.5 VCC = 2.5V VCC = 3.3V VCC = 5V 26 -1 -1.5 -40 0.3 图 6-10. TLV3601 Hysteresis vs. Common-Mode, 5 V 图 6-9. TLV3601 Offset vs. Common-Mode, 5 V Input Offset Voltage (mV) 3.5 24 -40 For 33 units -25 -10 5 20 35 50 65 Temperature (C) 80 95 -25 110 125 -10 5 20 35 50 65 Temperature (C) 80 95 110 125 图 6-12. TLV3603 Hysteresis vs. Temperature 1.8 40 1.4 38 0.6 0.2 -0.2 For 33 units 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 Input Common-Mode Voltage (V) 2.5 2.7 图 6-13. TLV3603 Offset vs. Common-Mode, 2.5 V 12 34 32 30 28 -0.6 -1 -0.2 -40C 25C 85C 125C 36 1 Hysteresis (mV) Input Offset Voltage (mV) 图 6-11. TLV3603 Offset vs. Temperature Submit Document Feedback 26 24 -0.2 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 Input Common-Mode Voltage (V) 2.5 2.7 图 6-14. TLV3603 Hysteresis vs. Common-Mode, 2.5 V Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.7 Typical Characteristics (continued) 1.8 40 1.4 38 0.6 0.2 -0.2 0.3 0.8 1.3 1.8 2.3 2.8 Input Common-Mode Voltage (V) 30 24 -0.2 3.3 1.8 40 1.4 38 0.8 1.3 1.8 2.3 2.8 Input Common-Mode Voltage (V) 3.3 -40C 25C 85C 125C 36 1 0.6 0.2 -0.2 34 32 30 28 -0.6 -1 -0.2 0.3 0.3 图 6-16. TLV3603 Hysteresis vs. Common-Mode, 3.3 V Hysteresis (mV) Input Offset Voltage (mV) 32 26 For 33 units 图 6-15. TLV3603 Offset vs. Common-Mode, 3.3 V 26 For 33 units 0.8 1.3 1.8 2.3 2.8 3.3 3.8 Input Common-Mode Voltage (V) 4.3 24 -0.2 0.3 4.8 5.2 图 6-17. TLV3603 Offset vs. Common-Mode, 5 V 0.8 1.3 1.8 2.3 2.8 3.3 3.8 Input Common-Mode Voltage (V) 4.3 4.8 5.2 图 6-18. TLV3603 Hysteresis vs. Common-Mode, 5 V 80 80 -40C 25C 85C 125C 70 60 50 40 30 60 50 40 30 20 20 10 10 0 -40C 25C 85C 125C 70 VHYST (mV) VHYST (mV) 34 28 -0.6 -1 -0.2 -40C 25C 85C 125C 36 1 Hysteresis (mV) Input Offset Voltage (mV) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603(E) only), and input overdrive = 50 mV, unless otherwise noted. 0 0 200 400 600 RHYST (k) 800 图 6-19. TLV3603 Hysteresis vs. Resistance, 2.5 V 1,000 0 200 400 600 RHYST (k) 800 1,000 图 6-20. TLV3603 Hysteresis vs. Resistance, 3.3 V Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 13 Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.7 Typical Characteristics (continued) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603(E) only), and input overdrive = 50 mV, unless otherwise noted. 80 -40C 25C 85C 125C 70 VHYST (mV) 60 50 40 30 20 10 0 0 200 400 600 RHYST (k) 800 1,000 图 6-21. TLV3603 Hysteresis vs. Resistance, 5 V 图 6-22. Bias Current vs. Input Voltage, 2.5 V 8 Input Bias Current (A) 6 4 2 0 -2 -4 -40C 25C 85C 125C -6 -8 -0.2 0.3 0.8 1.3 1.8 2.3 Input Voltage (V) 2.8 3.3 图 6-24. Bias Current vs. Input Voltage, 5 V 图 6-23. Bias Current vs. Input Voltage, 3.3 V Output Voltage to VCC (V) 10 1 100m 10m 1m 100 -40C 25C 85C 125C 1m 10m Output Sourcing Current (A) 100m 图 6-25. Output Voltage vs. Output Sourcing Current, 2.5 V 14 Submit Document Feedback 图 6-26. Output Voltage vs. Output Sinking Current, 2.5 V Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.7 Typical Characteristics (continued) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603(E) only), and input overdrive = 50 mV, unless otherwise noted. 图 6-28. Output Voltage vs. Output Sinking Current, 3.3 V 图 6-29. Output Voltage vs. Output Sourcing Current, 5 V 图 6-30. Output Voltage vs. Output Sinking Current, 5 V 5.5 5.5 5.3 5.3 5.1 4.9 -40C 25C 85C 125C 4.7 4.5 Supply Current (mA) Supply Current (mA) 图 6-27. Output Voltage vs. Output Sourcing Current, 3.3 V 5.1 4.9 -40C 25C 85C 125C 4.7 4.5 2 2.5 3 3.5 4 4.5 Supply Voltage (V) 5 5.5 图 6-31. TLV3601 Supply Current vs. Voltage (Output Low) 2 2.5 3 3.5 4 4.5 Supply Voltage (V) 5 5.5 图 6-32. TLV3601 Supply Current vs. Voltage (Output High) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 15 Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.7 Typical Characteristics (continued) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603(E) only), and input overdrive = 50 mV, unless otherwise noted. 图 6-34. TLV3601 Supply Current vs. Temp (Output High) 6.2 6.2 6 6 5.8 5.6 -40C 25C 85C 125C 5.4 Supply Current (mA) Supply Current (mA) 图 6-33. TLV3601 Supply Current vs. Temp (Output Low) -40C 25C 85C 125C 5.2 2 2.5 3 3.5 4 Supply Voltage (V) 4.5 5 5.5 图 6-35. TLV3603 Supply Current vs. Voltage (Output Low) 2 6.2 6.2 6 6 5.8 5.6 5.4 5.2 -40 VCC = 2.5V VCC = 3.3V VCC = 5V -25 -10 5 20 35 50 65 Temperature (C) 80 95 110 125 图 6-37. TLV3603 Supply Current vs. Temp (Output Low) Submit Document Feedback 2.5 3 3.5 4 Supply Voltage (V) 4.5 5 5.5 图 6-36. TLV3603 Supply Current vs. Voltage (Output High) Supply Current (mA) Supply Current (mA) 5.6 5.4 5.2 16 5.8 5.8 5.6 5.4 5.2 -40 VCC = 2.5V VCC = 3.3V VCC = 5V -25 -10 5 20 35 50 65 Temperature (C) 80 95 110 125 图 6-38. TLV3603 Supply Current vs. Temp (Output High) Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.7 Typical Characteristics (continued) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603(E) only), and input overdrive = 50 mV, unless otherwise noted. 4.5 -40C 25C 85C 125C 4 3.5 3 2.5 2 1.5 10 20 30 40 50 70 100 200 300 Input Overdrive (mV) Propagation Delay, High to Low (ns) Propagation Delay, Low to High (ns) 4.5 -40C 25C 85C 125C 4 3.5 3 2.5 2 1.5 10 500 700 1000 图 6-39. Propagation Delay, Low to High, 2.5 V 20 30 40 50 70 100 200 300 Input Overdrive (mV) 500 700 1000 图 6-40. Propagation Delay, High to Low, 2.5 V Propagation Delay, High to Low (ns) 4.5 -40C 25C 85C 125C 4 3.5 3 2.5 2 1.5 10 20 30 40 50 70 100 200 300 Input Overdrive (mV) 500 700 1000 图 6-41. Propagation Delay, Low to High, 3.3 V 图 6-42. Propagation Delay, High to Low, 3.3 V 图 6-43. Propagation Delay, Low to High, 5 V 图 6-44. Propagation Delay, High to Low, 5 V Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 17 Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 6.7 Typical Characteristics (continued) 10 10 8 8 Propagation Delay (ns) Propagation Delay (ns) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603(E) only), and input overdrive = 50 mV, unless otherwise noted. 6 4 2 6 4 2 tPHL tPLH 0 0 10 20 30 40 50 60 70 Output Capacitive Load (pF) 80 90 100 图 6-45. Propagation Delay vs. Load Capacitance, 3.3 V tPHL tPLH 0 0 10 20 30 40 50 60 70 Output Capacitive Load (pF) 80 90 100 图 6-46. Propagation Delay vs. Load Capacitance, 5 V 图 6-47. Minimum Pulse Width vs. Temperature 18 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 7 Detailed Description 7.1 Overview TheTLV360x family are high-speed comparators with single-ended (push-pull) output stages. The fast response time of these comparators make them well suited for applications that require narrow pulse width detection or high toggle frequencies. The TLV3601 is available in a 5-pin SC70 and SOT23 package, while the TLV3603(E) is packaged in a 6-pin SC70. The TLV3602 is a dual channel version of the TLV3601 and is packaged in an 8-pin VSSOP and WSON package. 7.2 Functional Block Diagram TLV3601 TLV3603 VCC VCC + + LE/HYST VEE VEE 7.3 Feature Description The TLV3601,TLV3603(E), and TLV3602 are single and dual channel, high speed comparators with a typical propagation delay of 2.5 ns and push-pull outputs. The minimum pulse width detection capability is 1.25 ns and the typical toggle rate is 325 MHz. These comparators are well-suited for distance measurement applications that utilize a time-of-flight arechitecture as well as systems that suffer from capacitive loading and require data and clock recovery. In addition to their high speed, the TLV360x family offers rail-to-rail input stages capable of operating up to 200 mV beyond each power supply rail combined with a maximum 5 mV input offset. The TLV3603(E) also provides adjustable hysteresis via an external resistor for noise suppression or a latching mode to hold the output of the comparators. 7.4 Device Functional Modes The TLV3601 has a single functional mode and is active when the power supply voltage is greater than 2.4V. The TLV3603(E) has two modes of operation. The first is an active mode where the output reflects the condition at the inputs when an external resistor is connected to ground on the LE/HYS pin. The second is a latch mode where the output is held at its last active state when the LE/HYS pin is pulled low. The TLV3603(E) returns to active mode after a short delay when the pin is pulled high. 7.4.1 Inputs The TLV360x family features input stages capable of operating 200 mV below negative power supply (ground) and 200 mV beyond the positive supply voltage, allowing for zero cross detection and maximizing input dynamic range given a certain power supply. The input stages are protected from conditions where the voltage on either pin exceeds this level by internal ESD protection diodes to VCC and VEE. To avoid damaging the inputs when exceeding the recommended input voltage range, an external resistor should be used to limit the current. 7.4.2 Push-Pull (Single-Ended) Output The TLV360x outputs have excellent drive capability and are designed to connect directly to CMOS logic input devices. Likewise, the comparator output stages can drive capacitive loads. Transient performance parameters in the Electrical Characteristics Tables and Typical Characteristics section are for a load of 5pF, corresponding to a standard CMOS load. Device performance for larger capacitive loads can be found in the typical performance curves titled Propagation Delay vs Capacitive Load. For optimal speed and performance, output load capacitance should be reduced as much as possible. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 19 Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 7.4.3 Known Startup Condition The TLV360x have a Power-on-Reset (POR) circuit which provides system designers a known start-up condition for the output of the comparators. When the power supply (VCC) is ramping up or ramping down, the POR circuit will be active when VCC is below VPOR. When active, the POR circuit holds the output low at VEE. When VCC is greater than or equal to VPOR as stated in 节 6.5 , the comparator output reflects the state of the input pins. 图 7-1 shows how the TLV360x outputs respond for VCC rising. The input is configured with a logic high input to highlight the transition from the POR circuit control (logic low output) to a standard comparator operation where the output reflects the input condition. Note how the output goes high when VCC reaches 2.1V. 图 7-1. TLV3601/TLV3603 Output for VCC Rising 20 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 8 Application and Implementation 备注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 8.1 Application Information 8.1.1 Adjustable Hysteresis As a result of a comparator’s high open loop gain, there is a small band of input differential voltage where the output can toggle back and forth between “logic high” and “logic low” states. This can cause design challenges for inputs with slow rise and fall times or systems with excessive noise. These challenges can be overcome by adding hysteresis to the comparator. Since the TLV3601 and TLV3602 only has a minimal amount of internal hysteresis, external hysteresis can be applied in the form of a positive feedback loop that adjusts the trip point of the comparator depending on its current output state. See the Implementing Hysteresis section for more details. The TLV3603(E) on the other hand has a LE/HYS pin that can be used to increase or eliminate the internal hysteresis of the comparator. In order to increase the internal hysteresis of the TLV3603(E), connect a single resistor as shown in the adjusting hysteresis figure between the LE/HYS pin and VEE. A curve of hysteresis versus resistance is provided below to provide guidance in setting the desired amount of hysteresis. Likewise, for applications where no hysteresis is desired, the LE/HYS pin can be connected to VCC. VCC TLV3603 IN+ + OUT IN- LE/HYS VEE 图 8-1. Adjustable Hysteresis with an External Resistor 80 -40C 25C 85C 125C 70 VHYST (mV) 60 50 40 30 20 10 0 0 200 400 600 RHYST (k) 800 1,000 图 8-2. VHYST (mV) vs RHYST (kΩ), VCC = 5 V Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 21 Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 8.1.2 Capacitive Loads For capacitive loads under 100 pF, the propagation delay has minimum change (see Propagation Delay vs. Capacitive Load). However, excessive capacitive loading under high switching frequencies may increase supply current, propagation delay, or induce decreased slew rate. 8.1.3 Latch Functionality The latch pin for the TLV3603(E) holds the output state of the device when the voltage at the LE/HYS pin is a logic low. This is particularly useful when the output state is intended to remain unchanged. An important consideration of the latch functionality is the latch hold and setup times. Latch hold time is the minimum time required (after the latch pin is asserted) for properly latching the comparator output. Likewise, latch setup time is defined as the time that the input must be stable before the latch pin is asserted low. The figure below illustrates when the input can transition for a valid latch. Note that the typical setup time in the EC table is negative; this is due to the internal trace delays of the LE/HYS pin relative to the input pin trace delays. A small delay (tPL) in the output response is shown below when the TLV3603(E) exits a latched output stage. tSETUP tHOLD LE/HYS IN Valid Input Transition Region Invalid Input Transition Region Valid Input Transition Region 图 8-3. Input Change Properly Latched LE/HYS IN tPL OUT 图 8-4. Latch Disable with Input Change 8.2 Typical Application 8.2.1 Implementing Hysteresis A comparator may produce “chatter” (multiple transitions) at the output when there are noise or signal variations around the reference threshold; this causes the output to change states in rapid random successions 22 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E English Data Sheet: SNOSDB1 TLV3601, TLV3602, TLV3603, TLV3603E www.ti.com.cn ZHCSKO5E – JUNE 2021 – REVISED APRIL 2023 as the comparator input goes above and below the threshold of the reference. This usually occurs when the input signal is moving very slowly across the switching threshold of the comparator. This problem can be prevented by using the internal hysteresis feature of the comparator or by the addition of external hysteresis. The TLV3603(E) has a LE/HYS pin that allows for variable internal hysteresis depending on the resistor value connected between the pin and VEE, where increasing the resistance decreases the hysteresis to a minimum level. VCC 5V TLV3603 VIN + VO VO VL VREF 2.5 V VH 0V 2.485 V LE/HYS R1 2.515 V VIN 150 kΩ VEE 图 8-5. Adjustable Hysteresis with a 150kΩ Resistor using TLV3603 Since the TLV3601 and TLV3602 only have a minimal amount of internal hysteresis, external hysteresis can be added in the form of a positive feedback loop. A non-inverting comparator with hysteresis requires a two-resistor network and a voltage reference (VREF) at the inverting input, as shown in Figure 8-6. VREF 2.5 V VIN 5V – VO VA + VO VL R1 60 VH 0V 2.485 V 2.515 V VIN R2 10 k 图 8-6. Non-Inverting Configuration for Hysteresis using TLV3601 8.2.1.1 Design Requirements For this design, follow these design requirements. 表 8-1. Design Parameters PARAMETER VALUE Supply Voltage (VCC) 5V VREF 2.5 V VHYS 30 mV Lower Threshold (VL) 2.485 V Upper Threshold (VH) 2.515 V 8.2.1.2 Detailed Design Procedure For the TLV3603(E), the hysteresis vs. resistance curve (Figure 8-2) can be used as a guidance to set the desired amount of hysteresis. Figure 8-2 shows that for a 30-mV hysteresis, a 150 kΩ resistor must be placed from the LE/HYS pin to VEE. For the TLV3601 and TLV3602, the following procedure can be used to add external hysteresis for a noninverting configuration. Note that VHYST
TLV3601DBVR 价格&库存

很抱歉,暂时无法提供与“TLV3601DBVR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLV3601DBVR
    •  国内价格
    • 1+17.81780

    库存:0