0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV62569ADRLR

TLV62569ADRLR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT563-6

  • 描述:

    Tlv6256xA 1A, 2A step-down converter with SOT563 package and forced PWM

  • 数据手册
  • 价格&库存
TLV62569ADRLR 数据手册
Order Now Product Folder Support & Community Tools & Software Technical Documents TLV62568A, TLV62569A ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 采用 SOT563 封装并具有强制 PWM 的 TLV6256xA 1A、 、2A 降压转换器 1 特性 • • • • • • • • • • • • • • 1 3 说明 强制 PWM 模式可减少输出电压纹波 效率高达 95% 低 RDS(ON) 开关:100mΩ/60mΩ 输入电压范围为 2.5V 至 5.5V 可调输出电压范围为 0.6V 至 VIN 100% 占空比,可实现超低压降 1.5MHz 典型开关频率 电源正常输出 过流保护 内部软启动 热关断保护 采用 SOT563 封装 与 TLV62568、TLV62569 引脚对引脚兼容 借助 WEBENCH® 电源设计器创建定制设计方案 2 应用 • • • • • TLV62568A、TLV62569A 器件是经过优化而具有高效 率和紧凑型解决方案尺寸的同步降压型直流/直流转换 器。该器件集成了输出电流高达 2A 的开关。在整个负 载范围内,该器件将以 1.5MHz 开关频率在脉宽调制 (PWM) 模式下运行。关断时,流耗减少至 2μA 以下。 内部软启动电路可限制启动期间的浪涌电流。此外, 还内置了 诸如输出过流保护、热关断保护和电源正常 输出等其他特性。该器件采用 SOT563 封装。 器件信息(1) 器件型号 封装 TLV62568APDRL TLV62569ADRL SOT563 (6) TLV62569APDRL 器件比较 器件型号 输出电流 TLV62568ADRL 100 VOUT 1.8 V / 2.0 A L1 1.0 µH SW 95 C2 22 µF EN C3* 90 R1 200 k GND FB C3: Optional 电源正常 sp sp在 在 5V 输入电压下的效率 R2 100 k Efficiency (%) VIN C1 4.7 µF 电源正常 2A TLV62569APDRL sp sp sp典 典型应用原理图 功能 1A TLV62568APDRL TLV62569ADRL TLV62569A 1.60mm x 1.60mm (1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品 附录。 通用负载点 (POL) 电源 STB 和 DVR IP 网络摄像头 无线路由器 固态硬盘 (SSD) – 企业级 VIN 2.5 V to 5.5 V 封装尺寸(标称值) TLV62568ADRL 85 80 75 70 VOUT VOUT VOUT VOUT Copyright Ú 2016, Texas Instruments Incorporated 65 60 0.0 0.5 1.0 Load (A) 1.5 = = = = 1.2 1.8 2.5 3.3 V V V V 2.0 D008 1 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确 性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLVSE95 TLV62568A, TLV62569A ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 3 6.1 6.2 6.3 6.4 6.5 6.6 3 3 4 4 4 5 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description .............................................. 6 7.1 7.2 7.3 7.4 Overview ................................................................... Functional Block Diagrams ....................................... Feature Description................................................... Device Functional Modes.......................................... 6 6 6 7 8 Application and Implementation .......................... 8 8.1 Application Information.............................................. 8 8.2 Typical Application .................................................... 8 9 Power Supply Recommendations...................... 13 10 Layout................................................................... 13 10.1 Layout Guidelines ................................................. 13 10.2 Layout Example .................................................... 13 10.3 Thermal Considerations ........................................ 14 11 器件和文档支持 ..................................................... 14 11.1 11.2 11.3 11.4 11.5 11.6 11.7 器件支持 ............................................................... 文档支持 ............................................................... 接收文档更新通知 ................................................. 支持资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... Glossary ................................................................ 14 14 14 14 15 15 15 12 机械、封装和可订购信息 ....................................... 15 4 修订历史记录 Changes from Revision A (May 2018) to Revision B • Page 已更改 Power Good pin sink current capability from 1 mA to 2 mA ...................................................................................... 7 Changes from Original (April 2018) to Revision A Page • 已更改 将状态从“预告信息”更改为“生产数据” ........................................................................................................................ 1 2 Copyright © 2018–2020, Texas Instruments Incorporated TLV62568A, TLV62569A www.ti.com.cn ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 5 Pin Configuration and Functions SOT563-6 DRL Package (Top View) NC/PG EN SW 6 5 4 1 2 3 FB GND VIN Pin Functions SOT563-6 NAME PIN NUMBER I/O/PWR DESCRIPTION FB 1 I GND 2 PWR Ground pin. VIN 3 PWR Power supply voltage input. SW 4 PWR Switch pin connected to the internal FET switches and inductor terminal. Connect the inductor of the output filter to this pin. EN 5 I Device enable logic input. Logic high enables the device, logic low disables the device and turns it into shutdown. Do not leave floating. PG 6 O Power good open drain output pin for TLV62569APDRL. The pull-up resistor should not be connected to any voltage higher than 5.5V. If it's not used, leave the pin floating. NC 6 - No connection pin for TLV62569ADRL. The pin can be connected to the output or the ground for enhancing thermal performance. Or leave it floating. Feedback pin for the internal control loop. Connect this pin to an external feedback divider. 6 Specifications 6.1 Absolute Maximum Ratings over operating temperature range (unless otherwise noted) (1) VIN, EN, PG Voltage (2) SW (DC) SW (AC, less than 10ns) (3) MIN MAX -0.3 6 UNIT -0.3 VIN + 0.3 -3.0 9 V FB -0.3 3 TJ Junction temperature -40 150 °C Tstg Storage temperature -65 150 °C (1) (2) (3) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal. While switching. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) ±2000 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Copyright © 2018–2020, Texas Instruments Incorporated 3 TLV62568A, TLV62569A ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 www.ti.com.cn 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT VIN Input voltage 2.5 5.5 V VOUT Output voltage 0.6 VIN V IOUT Output current 0 2 A TJ Junction temperature -40 125 °C 6.4 Thermal Information TLV62568Ax, TLV62569Ax THERMAL METRIC RθJA (1) Junction-to-ambient thermal resistance JEDEC (DRL) EVM (DRL) 6 PINS 6 PINS UNIT 142.8 124.8 °C/W °C/W °C/W RθJC(top) Junction-to-case (top) thermal resistance 51.1 n/a (2) RθJB Junction-to-board thermal resistance 28.9 n/a (2) ΨJT Junction-to-top characterization parameter 1.4 1.6 °C/W ΨJB Junction-to-board characterization parameter 28.7 23.1 °C/W (1) (2) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Not applicable to an EVM. 6.5 Electrical Characteristics VIN = 5.0 V, TJ = 25 °C, unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX 0.01 2 2.3 2.45 UNIT SUPPLY ISD VUVLO TJSD Shutdown current into VIN pin EN = 0 V Under voltage lock out VIN falling under voltage lock out hysteresis Thermal shutdown 100 TJ rising 150 TJ falling 130 µA V mV °C LOGIC INTERFACE VIH High-level input voltage at EN pin 2.5 ≤ VIN ≤ 5.5 VIL Low-level input voltage at EN pin 2.5 ≤ VIN ≤ 5.5 tSS Soft startup time From EN high to 95% of VOUT nominal VPG Power good threshold VPG,OL Low-level output voltage at PG pin ISINK = 1 mA IPG,LKG Input leakage current into PG pin VPG = 5 V 100 nA tPG,DLY Power good delay time VFB falling 40 µs 4 1.2 V 0.4 0.9 VFB rising, referenced to VFB nominal 95% VFB falling, referenced to VFB nominal 90% V ms 0.4 V Copyright © 2018–2020, Texas Instruments Incorporated TLV62568A, TLV62569A www.ti.com.cn ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 Electrical Characteristics (continued) VIN = 5.0 V, TJ = 25 °C, unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX 0.588 0.6 0.612 UNIT OUTPUT VFB Feedback regulation voltage IFB Input leakage current into FB pin RDS(on) VFB = 0.6 V High-side FET on resistance 100 Low-side FET on resistance 60 ILIM High-side FET current limit fSW Switching frequency V 10 TLV62569A, TLV62569AP 3 TLV62568A, TLV62568AP 2 nA mΩ A 1.5 MHz 6.6 Typical Characteristics 0.606 0.5 0.603 FB Voltage (V) 6KXWGRZQ &XUUHQW $ 0.4 VIN = 2.5V VIN = 3.6V VIN = 5.0V 0.3 0.2 0.600 0.597 TJ TJ TJ TJ 0.1 0.0 -40 -20 0 20 40 60 80 Junction Temperature (°C) 100 0.594 2.5 120 3.0 3.5 D002 5.0 5.5 D003 Switch Current Limit (A) 3.0 3.5 3.0 2.5 2.0 VIN = 2.7V VIN = 3.6V VIN = 5.0V 2.5 -40 -40°C 25°C 85°C 125°C 图 2. FB Voltage Accuracy 图 1. Shutdown Current vs Junction Temperature 4.0 Switch Current Limit (A) 4.0 4.5 Input Voltage (V) = = = = -20 0 20 40 60 80 Junction Temperature (°C) 100 图 3. Switch Current Limit, TLV62569A 版权 © 2018–2020, Texas Instruments Incorporated VIN = 2.7V VIN = 3.6V VIN = 5.0V 1.5 -40 120 D020 -20 0 20 40 60 80 Junction Temperature (°C) 100 120 D021 图 4. Switch Current Limit, TLV62568A 5 TLV62568A, TLV62569A ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 www.ti.com.cn 7 Detailed Description 7.1 Overview The device is a high-efficiency synchronous step-down converter. The device operates with an adaptive off time with peak current control scheme. The device operates at typically 1.5-MHz frequency pulse width modulation (PWM) . Based on the VIN/VOUT ratio, a simple circuit sets the required off time for the low-side MOSFET. It makes the switching frequency relatively constant regardless of the variation of input voltage, output voltage, and load current. 7.2 Functional Block Diagrams PG Soft Start Thermal Shutdown UVLO Control Logic EN VPG + VFB ± VIN GND Peak Current Detect VREF + _ FB Modulator SW Gate Drive VSW VIN TOFF GND GND Copyright Ú 2018, Texas Instruments Incorporated 图 5. TLV62569A Functional Block Diagram 7.3 Feature Description 7.3.1 100% Duty Cycle Low Dropout Operation The device offers a low input-to-output voltage differential by entering 100% duty cycle mode. In this mode, the high-side MOSFET switch is constantly turned on and the low-side MOSFET is switched off. The minimum input voltage to maintain output regulation, depending on the load current and output voltage, is calculated as: VIN(MIN) = VOUT + IOUT x (RDS(ON) + RL) where • • RDS(ON) = High side FET on-resistance RL = Inductor ohmic resistance (DCR) (1) 7.3.2 Soft Startup After enabling the device, internal soft startup circuitry ramps up the output voltage which reaches nominal output voltage during a startup time. This avoids excessive inrush current and creates a smooth output voltage rise slope. It also prevents excessive voltage drops of primary cells and rechargeable batteries with high internal impedance. 6 版权 © 2018–2020, Texas Instruments Incorporated TLV62568A, TLV62569A www.ti.com.cn ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 Feature Description (接 接下页) The device is able to start into a pre-biased output capacitor. The converter starts with the applied bias voltage and ramps the output voltage to its nominal value. 7.3.3 Switch Current Limit The switch current limit prevents the device from high inductor current and drawing excessive current from a battery or input voltage rail. Excessive current might occur with a heavy load or shorted output circuit condition. The device adopts the peak current control by sensing the current of the high-side switch. Once the high-side switch current limit is reached, the high-side switch is turned off and low-side switch is turned on to ramp down the inductor current with an adaptive off-time. 7.3.4 Under Voltage Lockout To avoid mis-operation of the device at low input voltages, under voltage lockout is implemented that shuts down the device at voltages lower than VUVLO with VHYS_UVLO hysteresis. 7.3.5 Thermal Shutdown The device enters thermal shutdown once the junction temperature exceeds the thermal shutdown rising threshold, TJSD. Once the junction temperature falls below the falling threshold, the device returns to normal operation automatically. 7.4 Device Functional Modes 7.4.1 Enabling/Disabling the Device The device is enabled by setting the EN input to a logic High. Accordingly, a logic Low disables the device. If the device is enabled, the internal power stage starts switching and regulates the output voltage to the set point voltage. The EN input must be terminated and should not be left floating. 7.4.2 Power Good The TLV62568AP and TLV62569AP have a power good output. The PG pin goes high impedance once the output is above 95% of the nominal voltage, and is driven low once the output voltage falls below typically 90% of the nominal voltage. The PG pin is an open-drain output and is specified to sink up to 2 mA. The power good output requires a pull-up resistor connecting to any voltage rail less than 5.5 V. The PG signal can be used for sequencing of multiple rails by connecting it to the EN pin of other converters. Leave the PG pin unconnected when not used. 表 1. PG Pin Logic DEVICE CONDITIONS Enable EN = High, VFB ≥ VPG LOGIC STATUS HIGH Z LOW √ EN = High, VFB ≤ VPG √ Shutdown EN = Low √ Thermal Shutdown TJ > TJSD √ UVLO 1.4 V < VIN < VUVLO Power Supply Removal VIN ≤ 1.4 V 版权 © 2018–2020, Texas Instruments Incorporated √ √ 7 TLV62568A, TLV62569A ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 www.ti.com.cn 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The following section discusses the design of the external components to complete the power supply design for several input and output voltage options by using typical applications as a reference. 8.2 Typical Application VIN 2.5 V to 5.5 V TLV62569A VIN C1 4.7 µF VOUT 1.8 V / 2.0 A L1 1.0 µH SW C2 22 µF EN C3* R1 200 k GND FB R2 100 k C3: Optional Copyright Ú 2016, Texas Instruments Incorporated 图 6. TLV62569A 1.8-V Output Application 8.2.1 Design Requirements For this design example, use the parameters listed in 表 2 as the input parameters. 表 2. Design Parameters DESIGN PARAMETER EXAMPLE VALUE Input voltage 2.5 V to 5.5 V Output voltage 1.8 V Maximum output current 2.0 A 表 3 lists the components used for the example. 表 3. List of Components REFERENCE C1 4.7 µF, Ceramic Capacitor, 10 V, X7R, size 0805, GRM21BR71A475KA73L Murata C2 22 µF, Ceramic Capacitor, 6.3 V, X7T, size 0805, GRM21BD70J226ME44 Murata L1 1.0 µH, Power Inductor, size 4mmx4mm, XAL4020-102ME Coilcraft R1,R2,R3 C3 (1) MANUFACTURER (1) DESCRIPTION Chip resistor,1%,size 0603 Std. Optional, 10 pF if it is needed Std. See Third-party Products Disclaimer 8.2.2 Detailed Design Procedure 8.2.2.1 Custom Design With WEBENCH® Tools Click here to create a custom design using the TLV62569A device with the WEBENCH® Power Designer. 8 版权 © 2018–2020, Texas Instruments Incorporated TLV62568A, TLV62569A www.ti.com.cn ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements. 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial. 3. Compare the generated design with other possible solutions from Texas Instruments. The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability. In most cases, these actions are available: • Run electrical simulations to see important waveforms and circuit performance • Run thermal simulations to understand board thermal performance • Export customized schematic and layout into popular CAD formats • Print PDF reports for the design, and share the design with colleagues Get more information about WEBENCH tools at www.ti.com/WEBENCH. 8.2.2.2 Setting the Output Voltage An external resistor divider is used to set output voltage according to 公式 2. When sizing R2, in order to achieve low current consumption and acceptable noise sensitivity, use a maximum of 200 kΩ for R2. Larger currents through R2 improve noise sensitivity and output voltage accuracy but increase current consumption. R1 ö R1 ö æ æ VOUT = VFB ´ ç 1 + ÷ ÷ = 0.6V ´ ç 1 + R2 ø R2 ø è è (2) A feed forward capacitor, C3 improves the loop bandwidth to make a fast transient response (shown in 图 24). A 10-pF capacitance is recommended for R2 of 100-kΩ resistance. A more detailed discussion on the optimization for stability vs. transient response can be found in SLVA289. 8.2.2.3 Output Filter Design The inductor and output capacitor together provide a low-pass filter. To simplify this process, 表 4 outlines possible inductor and capacitor value combinations. Checked cells represent combinations that are proven for stability by simulation and lab test. Further combinations should be checked for each individual application. 表 4. Matrix of Output Capacitor and Inductor Combinations (1) (2) (3) VOUT [V] L [µH] (1) 0.6 ≤ VOUT < 1.2 1 1.2 ≤ VOUT 1 COUT [µF] (2) 4.7 10 22 47 100 + ++ (3) + Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by +20% and -30%. Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by +20% and -50%. This LC combination is the standard value and recommended for most applications. 8.2.2.4 Inductor Selection The main parameters for inductor selection is inductor value and then saturation current of the inductor. To calculate the maximum inductor current under static load conditions, 公式 3 is given: DI IL,MAX = IOUT,MAX + L 2 VOUT VIN DIL = VOUT ´ L ´ fSW 1- where: • • IOUT,MAX is the maximum output current ΔIL is the inductor current ripple 版权 © 2018–2020, Texas Instruments Incorporated 9 TLV62568A, TLV62569A ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 • • www.ti.com.cn fSW is the switching frequency L is the inductor value (3) It is recommended to choose a saturation current for the inductor that is approximately 20% to 30% higher than IL,MAX. In addition, DC resistance and size should also be taken into account when selecting an appropriate inductor. 8.2.2.5 Input and Output Capacitor Selection The architecture of the device allows use of tiny ceramic-type output capacitors with low equivalent series resistance (ESR). These capacitors provide low output voltage ripple and are thus recommended. To keep its resistance up to high frequencies and to achieve narrow capacitance variation with temperature, it is recommended to use X7T or X5R dielectric. The input capacitor is the low impedance energy source for the converter that helps provide stable operation. A low ESR multilayer ceramic capacitor is recommended for best filtering. For most applications, 4.7-μF input capacitance is sufficient; a larger value reduces input voltage ripple. The device is designed to operate with an output capacitor of 22 µF to 47 µF, as outlined in 表 4. 8.2.3 Application Performance Curves VIN = 5 V, VOUT = 1.8 V, TA = 25 °C, external components shown in 表 3, unless otherwise noted. 95 10 85 Efficiency (%) Quiescent Current (mA) 90 8 6 4 TJ TJ TJ TJ 2 0 2.5 3.0 3.5 4.0 4.5 Input Voltage (V) = = = = 5.0 80 75 70 65 -40°C 25°C 85°C 125°C VIN = 3.3 V VIN = 4.2 V VIN = 5.0 V 60 55 0.0 5.5 0.5 D001 1.0 Load (A) 1.5 2.0 D005 VOUT = 0.6 V 图 8. 0.6-V Output Efficiency 100 100 95 95 90 90 Efficiency (%) Efficiency (%) 图 7. Quiescent Current 85 80 75 70 0.5 1.0 Load (A) 1.5 图 9. 1.2-V Output Efficiency 10 80 75 70 VIN = 3.3 V VIN = 4.2 V VIN = 5.0 V 65 60 0.0 85 VIN = 3.3 V VIN = 4.2 V VIN = 5.0 V 65 2.0 D006 60 0.0 0.5 1.0 Load (A) 1.5 2.0 D004 图 10. 1.8-V Output Efficiency 版权 © 2018–2020, Texas Instruments Incorporated TLV62568A, TLV62569A ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 100 100 95 95 90 90 Efficiency (%) Efficiency (%) www.ti.com.cn 85 80 75 70 85 80 75 70 VIN = 3.3 V VIN = 4.2 V VIN = 5.0 V 65 60 0.0 0.5 1.0 Load (A) 1.5 65 VIN = 4.2 V VIN = 5.0 V 60 0.0 2.0 0.5 1.0 Load (A) D019 图 11. 2.5-V Output Efficiency 1.5 2.0 D007 图 12. 3.3-V Output Efficiency 1.00 100 95 Load Regulation (%) Efficiency (%) 90 85 80 75 70 VOUT VOUT VOUT VOUT 65 60 0.0 0.5 1.0 Load (A) = = = = 1.2 1.8 2.5 3.3 1.5 V V V V 0.50 0.00 -0.50 VOUT VOUT VOUT VOUT = = = = -1.00 0.0 2.0 D008 0.6 1.2 1.8 3.3 V V V V 0.5 1.0 Load (A) 1.5 2.0 D009 VIN = 5 V 图 14. Load Regulation 图 13. 5.0-V Input Efficiency 4.0 1.00 Maximum Output Current (A) Line Regulation (%) 3.5 0.50 0.00 -0.50 -1.00 2.5 VOUT VOUT VOUT VOUT 3.0 3.5 4.0 4.5 Input Voltage (V) IOUT = 1 A 5.0 = = = = 0.6 1.2 1.8 3.3 V V V V 3.0 2.5 2.0 1.5 1.0 TA = 25°C TA = 65°C TA = 85°C 0.5 5.5 0.0 2.5 3.0 D010 3.5 4.0 4.5 Input Voltage (V) 5.0 5.5 D019 PG is high 图 15. Line Regulation 版权 © 2018–2020, Texas Instruments Incorporated 图 16. Maximum Output Current at VOUT = 1.8 V 11 TLV62568A, TLV62569A ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 www.ti.com.cn 2000 Switching Frequency (kHz) Switching Frequency (kHz) 2000 1500 1000 VOUT VOUT VOUT VOUT VOUT 500 = = = = = 0.6 1.2 1.8 2.5 3.3 V V V V V 0 0 0.5 1 Load (A) 1.5 2 1500 1000 VOUT VOUT VOUT VOUT VOUT 500 0 2.5 3 D011 3.5 4 4.5 Input Voltage (V) = = = = = 5 V V V V V 5.5 D012 IOUT = 1 A VIN = 5 V 图 18. Switching Frequency vs Input Voltage 图 17. Switching Frequency vs Load VSW 5V/DIV VSW 5V/DIV ICOIL 0.5A/DIV ICOIL 0.5A/DIV VOUT 10mV/DIV AC VOUT 10mV/DIV AC Time - 500ns/DIV Time - 500ns/DIV D013 D014 IOUT = 36 mA IOUT = 1 A 图 19. PWM Operation 图 20. PWM Operation VEN 2V/DIV VEN 2V/DIV VOUT 0.5V/DIV VOUT 0.5V/DIV ICOIL 1A/DIV ICOIL 0.5A/DIV 7LPH V ',9 7LPH V ',9 D015 Load = 0.9 Ω 图 21. Startup and Shutdown with Load 12 0.6 1.2 1.8 2.5 3.3 D016 Load = 9 Ω 图 22. Startup and Shutdown with Load 版权 © 2018–2020, Texas Instruments Incorporated TLV62568A, TLV62569A www.ti.com.cn ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 VOUT 0.1V/DIV AC VOUT 0.1V/DIV AC ICOIL 0.5A/DIV ICOIL 0.5A/DIV 7LPH V ',9 7LPH V ',9 D017 Load Step 0 A to 1 A, 1A/μs slew rate D018 Load Step 0 A to 1 A, 1A/μs slew rate 图 23. Load Transient C3 = 10 pF 图 24. Load Transient with A Feed Forward Capacitor 9 Power Supply Recommendations The power supply to the TLV62569A must have a current rating according to the supply voltage, output voltage and output current. 10 Layout 10.1 Layout Guidelines The PCB layout is an important step to maintain the high performance of the TLV62569A device. • The input/output capacitors and the inductor should be placed as close as possible to the IC. This keeps the power traces short. Routing these power traces direct and wide results in low trace resistance and low parasitic inductance. • The low side of the input and output capacitors must be connected properly to the power GND to avoid a GND potential shift. • The sense traces connected to FB are signal traces. Special care should be taken to avoid noise being induced. Keep these traces away from SW nodes. • GND layers might be used for shielding. 10.2 Layout Example GND R1 R2 C1 VIN FB GND VIN L1 PG EN SW C2 VOUT 图 25. TLV62569APDRL Layout 版权 © 2018–2020, Texas Instruments Incorporated 13 TLV62568A, TLV62569A ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 www.ti.com.cn 10.3 Thermal Considerations Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of a given component. Two basic approaches for enhancing thermal performance are listed below: • Improving the power dissipation capability of the PCB design • Introducing airflow in the system For more details on how to use the thermal parameters, see the application notes: Thermal Characteristics Application Notes SZZA017 and SPRA953. 11 器件和文档支持 11.1 器件支持 11.1.1 第三方产品免责声明 TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类 产品或服务单独或与任何 TI 产品或服务一起的表示或认可。 11.1.2 开发支持 11.1.2.1 使用 WEBENCH® 工具创建定制设计 单击此处,使用 TLV62569A 器件并借助 WEBENCH® 电源设计器创建定制设计方案。 1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。 2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。 3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。 WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。 在多数情况下,可执行以下操作: • 运行电气仿真,观察重要波形以及电路性能 • 运行热性能仿真,了解电路板热性能 • 将定制原理图和布局方案以常用 CAD 格式导出 • 打印设计方案的 PDF 报告并与同事共享 有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。 11.2 文档支持 11.2.1 相关文档 • 德州仪器 (TI),《半导体和 IC 封装热指标》 应用报告 • 德州仪器 (TI),《采用 JEDEC PCB 设计的线性和逻辑封装热工特性》 应用报告 11.3 接收文档更新通知 要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 11.4 支持资源 TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 14 版权 © 2018–2020, Texas Instruments Incorporated TLV62568A, TLV62569A www.ti.com.cn ZHCSI23B – APRIL 2018 – REVISED MARCH 2020 11.5 商标 E2E is a trademark of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments. 11.6 静电放电警告 这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损 伤。 11.7 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。 版权 © 2018–2020, Texas Instruments Incorporated 15 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV62568ADRLR ACTIVE SOT-5X3 DRL 6 3000 RoHS & Green Call TI | SN Level-1-260C-UNLIM -40 to 125 1BE TLV62568ADRLT ACTIVE SOT-5X3 DRL 6 250 RoHS & Green Call TI | SN Level-1-260C-UNLIM -40 to 125 1BE TLV62568APDRLR ACTIVE SOT-5X3 DRL 6 3000 RoHS & Green Call TI | SN Level-1-260C-UNLIM -40 to 125 1BF TLV62568APDRLT ACTIVE SOT-5X3 DRL 6 250 RoHS & Green Call TI | SN Level-1-260C-UNLIM -40 to 125 1BF TLV62569ADRLR ACTIVE SOT-5X3 DRL 6 3000 RoHS & Green Call TI | SN Level-1-260C-UNLIM -40 to 125 1BG TLV62569ADRLT ACTIVE SOT-5X3 DRL 6 250 RoHS & Green Call TI | SN Level-1-260C-UNLIM -40 to 125 1BG TLV62569APDRLR ACTIVE SOT-5X3 DRL 6 3000 RoHS & Green Call TI | SN Level-1-260C-UNLIM -40 to 125 1BH TLV62569APDRLT ACTIVE SOT-5X3 DRL 6 250 RoHS & Green Call TI | SN Level-1-260C-UNLIM -40 to 125 1BH (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV62569ADRLR 价格&库存

很抱歉,暂时无法提供与“TLV62569ADRLR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLV62569ADRLR
    •  国内价格
    • 1+0.73360
    • 200+0.44800

    库存:980