0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS542A52EVM-059

TPS542A52EVM-059

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    TPS542A52 - DC/DC,步降 1,非隔离 输出评估板

  • 数据手册
  • 价格&库存
TPS542A52EVM-059 数据手册
Table of Contents www.ti.com User’s Guide TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide ABSTRACT This user's guide describes the characteristics, operation, and use of the TPS542A52EVM-059 evaluation module (EVM). The user's guide includes test information, descriptions, and results. A complete schematic diagram, printed-circuit board layout, and bill of materials are also included in this document. Throughout this user's guide, the abbreviations EVM, TPS542A52EVM, and the term evaluation module are synonymous with the TPS542A52EVM-059, unless otherwise noted. Table of Contents 1 Introduction.............................................................................................................................................................................3 1.1 Before You Begin............................................................................................................................................................... 3 2 Description.............................................................................................................................................................................. 4 2.1 Typical End-User Applications........................................................................................................................................... 4 2.2 EVM Features.................................................................................................................................................................... 4 2.3 TPS542A52EVM-059 PCB................................................................................................................................................ 4 3 TPS542A52EVM-059 Bottom Circuit..................................................................................................................................... 6 3.1 Modifications...................................................................................................................................................................... 6 3.2 Bottom Circuit Schematic...................................................................................................................................................7 3.3 Test Setup and Results...................................................................................................................................................... 7 4 TPS542A52EVM-059 Top Circuit (Small Layout Area Design)..........................................................................................14 4.1 Modifications.................................................................................................................................................................... 14 4.2 TPS542A52EVM-059 Top Circuit (Small Layout Area) Schematic.................................................................................. 15 4.3 Test Setup and Results.................................................................................................................................................... 15 5 TPS542A52EVM-059 PCB Layout........................................................................................................................................22 6 List of Materials.....................................................................................................................................................................30 7 Revision History................................................................................................................................................................... 31 List of Figures Figure 2-1. TPS542A5E2VM-059 PCB View............................................................................................................................... 5 Figure 3-1. TPS542A52EVM-059 Bottom Circuit Schematic.......................................................................................................7 Figure 3-2. Efficiency - FCCM, fsw = 1000 kHz, Tamb = 25°C...................................................................................................... 9 Figure 3-3. Power Loss - FCCM, fsw = 1000 kHz, Tamb = 25°C...................................................................................................9 Figure 3-4. Load Regulation - FCCM, fsw = 1000 kHz, Tamb = -40°C to +105°C....................................................................... 10 Figure 3-5. Transient Response - 2-A to 12-A to 2-A load at 10 A/μs, ΔVout = 91.1 mV, fsw = 1000 kHz, FCCM.....................10 Figure 3-6. Loop Response - IOUT = 10 A, Loop Bandwidth = 120 kHz, Phase Margin = 65°................................................... 11 Figure 3-7. Output Voltage Ripple - 0-A load, ΔVout = 12.1 mV, fsw = 1000 kHz, FCCM.......................................................... 12 Figure 3-8. Output Voltage Ripple - 10-A load, ΔVout = 12.1 mV, fsw = 1000 kHz, FCCM........................................................ 12 Figure 3-9. Thermal Image - 15-A Load, TCASE = 78.4°C, Tamb = 25°C.................................................................................... 13 Figure 4-1. TPS542A52EVM-059 Top Circuit Schematic.......................................................................................................... 15 Figure 4-2. Efficiency - FCCM, fsw = 1200 kHz.......................................................................................................................... 17 Figure 4-3. Power Loss - FCCM, fsw = 1200 kHz...................................................................................................................... 17 Figure 4-4. Load Regulation - FCCM, fsw = 1200 kHz............................................................................................................... 18 Figure 4-5. Line Regulation - FCCM, fsw = 1200 kHz................................................................................................................ 18 Figure 4-6. Transient Response - 5-A to 10-A to 5-A Load at 5 A/μs, ΔVout = 62.1 mV, fsw = 1200 kHz, FCCM.................... 19 Figure 4-7. Loop Response - IOUT = 10 A, Loop Bandwidth = 105 kHz, Phase Margin = 52°................................................... 19 Figure 4-8. Output Voltage Ripple - 0-A Load, ΔVOUT = 11.6 mV, fsw = 1200 kHz, FCCM........................................................ 20 Figure 4-9. Output Voltage Ripple - 12-A Load, ΔVOUT = 14.4 mV, fsw = 1200 kHz, FCCM...................................................... 20 Figure 4-10. Start up - 12-A load, fsw = 1200 kHz, FCCM......................................................................................................... 21 SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 1 Trademarks www.ti.com Figure 5-1. Top-Side Composite View....................................................................................................................................... 22 Figure 5-2. Bottom-Side Composite View (Viewed From Bottom).............................................................................................23 Figure 5-3. Top-Side Layout (Top-Down View).......................................................................................................................... 24 Figure 5-4. Internal Layer-1 Layout (Top-Down View)............................................................................................................... 25 Figure 5-5. Internal Layer-2 Layout (Top-Down View)............................................................................................................... 26 Figure 5-6. Internal Layer-3 Layout (Top-Down View)............................................................................................................... 27 Figure 5-7. Internal Layer-4 Layout (Top-Down View)............................................................................................................... 28 Figure 5-8. Bottom-Side Layout (Top-Down View).....................................................................................................................29 List of Tables Table 1-1. TPS542A52 Input Voltage and Output Current Summary.......................................................................................... 3 Table 2-1. EVM Input Voltage, Output Voltage, and Output Current Summary........................................................................... 4 Table 3-1. Enable Pin Selection...................................................................................................................................................6 Table 3-2. Top Circuit Connections and Test Points.................................................................................................................... 8 Table 3-3. Bottom Circuit Electrical Performance Specifications................................................................................................. 8 Table 4-1. Enable Pin Selection.................................................................................................................................................14 Table 4-2. Bottom Circuit Connections and Test Points.............................................................................................................16 Table 4-3. Top Circuit Electrical Performance Specifications.....................................................................................................16 Table 6-1. TPS542A52EVM-059 List of Materials..................................................................................................................... 30 Trademarks All trademarks are the property of their respective owners. 2 TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback Introduction www.ti.com 1 Introduction The TPS542A52EVM-059 evaluation module (EVM) uses the Texas Instruments TPS542A52 buck converter. The TPS542A52 is a highly integrated high-efficiency synchronous buck converter with differential remote sensing. It is capable of delivering up to 15 A to a load with output voltages ranging from 0.5 V to 5.5 V. The high-side and low-side switching MOSFETs are integrated in the device package, along with their associated gate drive circuitry. High efficiency, wide-operating junction temperature, and high output voltage accuracy make the TPS542A52 an excellent choice for applications where high output voltage accuracy across rigorous thermal conditions are required. The rated input voltage, output voltage, and output current range for the TPS542A52 are given in Table 1-1. Table 1-1. TPS542A52 Input Voltage and Output Current Summary CONVERTER PART NUMBER INPUT VOLTAGE RANGE OUTPUT VOLTAGE RANGE OUTPUT CURRENT RANGE TPS542A52 4 V to 18 V 0.5 V to 5.5 V 0 A to 15 A 1.1 Before You Begin The following warnings and cautions are noted for the safety of anyone using or working close to the TPS542A52EVM-059. Observe all safety precautions. ! Warning The TPS542A52EVM-059 circuit module may become hot during operation due to dissipation of heat. Avoid contact with the board. Follow all applicable safety procedures applicable to your laboratory. Caution Do not leave the EVM powered when unattended. WARNING The circuit module has signal traces, components, and component leads on the bottom of the board. This may result in exposed voltages, hot surfaces or sharp edges. Do not reach under the board during operation. CAUTION The circuit module may be damaged by over temperature. To avoid damage, monitor the temperature during evaluation and provide cooling, as needed, for your system environment. CAUTION Some power supplies can be damaged by application of external voltages. If using more than 1 power supply, check your equipment requirements and use blocking diodes or other isolation techniques as needed to prevent damage to your equipment. CAUTION The communication interface is not isolated on the EVM. Be sure no ground potential exists between the computer and the EVM. SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 3 www.ti.com Description 2 Description The TPS542A52EVM-059 is set up to allow the user to easily measure the performance of the TPS542A52 buck converter under a wide range of input voltages and load currents. The EVM features two fully independent circuits. The first circuit that will be discussed is the lower half, or bottom circuit, of the EVM as described in Section 3, and is denoted by U1. This circuit maximizes efficiency and performance of the TPS542A52 in applications that are less constrained by layout area. The second circuit that will be discussed is the upper half, or top circuit, of the EVM as described in Section 4, and is denoted by U1_2. This circuit highlights the small layout area (17 mm × 14 mm) that is required by the TPS542A52 converter and all external components while still delivering high performance and efficiency for space-critical applications. The TPS542A52 features fixed-frequency voltage-mode control with user-configurable internal compensation, switching frequency, current limit, and soft-start timing. It also features selectable pulse-frequency modulation (PFM) for high light-load efficiency. These features are configured using external resistors. Optionally, a SYNC pin for PWM control can be synchronized to an external clock for low system noise. Other features include an enable pin, adjustable undervoltage lockout (UVLO), an open-drain power good indicator, and a typical shutdown quiescent current draw of 12 µA. The output voltage is programmable from 0.5 V to 5.5 V, and is set with a resistive divider between SREF and AGND, with the mid-point of the divider being tapped from the VSET pin. The low RDS(on) switching MOSFETs allow for high efficiency while maintaining low junction temperatures at high levels of output current. The TPS542A52 is capable of delivering 15 A of current to a load with no air flow at ambient temperatures up to 95°C, and up to 14 A with no external air flow at ambient temperatures of 105°C. The extended operating junction temperature of -40°C to +150°C makes the TPS542A52 an excellent choice for applications with rigorous thermal requirements. Examples of these applications can be seen in Section 2.1. The rated input voltage, output voltage, and output current of both circuits featured in the TPS542A52EVM-059 are shown in Table 2-1. The nominal input voltage of the EVM is 12 V, and the default output voltage is 1 V. Table 2-1. EVM Input Voltage, Output Voltage, and Output Current Summary TPS542A52EVM-059 INPUT VOLTAGE OUTPUT VOLTAGE OUTPUT CURRENT Bottom circuit 4 V to 18 V (12 V nominal) 1 V (default) 0 A to 15 A Top circuit (small layout area) 4 V to 18 V (12 V nominal) 1 V (default) 0 A to 12 A 2.1 Typical End-User Applications • • • • • Enterprise storage, SSD, NAS Wireless and wired communication infrastructure Industrial PCs, automation, ATE, PLC, video surveillance Enterprise server, switches, routers ASIC, SoC, FPGA, DSP core, and I/O rails 2.2 EVM Features • • • Regulated 1-V output up to 15 A, steady-state output current Convenient test points for probing critical waveforms Two fully independent circuits 2.3 TPS542A52EVM-059 PCB A top-down 3D view of the TPS542A52EVM-059 is shown in Figure 2-1. Some components are not populated by default. As previously described, the EVM features two fully independent circuits. The layers of the EVM PCB are presented in greater detail in Section 5. 4 TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback www.ti.com Description Figure 2-1. TPS542A5E2VM-059 PCB View SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 5 TPS542A52EVM-059 Bottom Circuit www.ti.com 3 TPS542A52EVM-059 Bottom Circuit The first circuit that will be discussed is the bottom (lower) circuit on the TPS542A52EVM-059 shown in Figure 2-1. In this circuit, the TPS542A52 converter IC is indicated as "U1". This circuit has been designed to highlight the performance and efficiency of the TPS542A52 across a wide range of operating conditions. The schematic for this circuit is shown in Figure 3-1. 3.1 Modifications This EVM is designed to provide access to the features of the TPS542A52 EVM. Some of the useful modifications are outlined in this section of the user’s guide. 3.1.1 Output Voltage Setpoint The output voltage is set by the resistor divider network of R5 and R6, as shown in Figure 3-1. The divider is connected between SREF and AGND pins, where the mid-point of the divider is tapped to the VSET pin. Unlike many converters, the output voltage is not set by connecting a resistor divider directly to the output node. This allows the use of a differential remote sense for improved output voltage accuracy. It is recommended to use R5 and R6 in the range of 1 kΩ to 100 kΩ, and the total impedance must be greater than 10 kΩ. A footprint for a small capacitor, C42, has been added for high frequency noise filtering, but is typically not necessary and is not populated by default. The value of R5 for a desired output voltage, VOUT, can be calculated using Equation 1. 5 × VSREF R5 = R6 × l F 1p VOUT (1) where • • VSREF = 1.2 V R6 = 20.0 kΩ (default EVM value) Note that for output voltages below 1 V, the value of R6 should be reduced to keep R5 and R6 between 1 kΩ and 100 kΩ, while still maintaining a total impedance greater than 10 kΩ. 3.1.2 Enable and Undervoltage Lockout The operation of the TPS542A52 can be enabled or disabled using J4. The EN pin of the TPS542A52 is connected to J4-2 (pin 2 of J4) and TP10. The EN pin threshold is 1.2 V. By leaving J4-2 floating, a pullup current source internal to the TPS542A52 enables the device, and the device is operational across all valid input voltages (4 V - 18 V). Undervoltage lockout (UVLO) can be implemented by connecting a jumper between J4-2 and J4-3. In this configuration, R11 and R13 should be populated according to the TPS542A52 device data sheet based on the desired UVLO requirements. By default, R11 and R13 are not populated. The TPS542A52 can be disabled by pulling J4-2 (the EN pin) below 1.2 V. When J4-2 is brought below 1.2 V, the regulator stops switching and enters into a low power shutdown mode. This can be accomplished in multiple ways. The first method is to connect a control signal directly to the EN test point (TP10), referenced to AGND (TP13, TP14, or TP15, recommended between 0 V and 5.5 V). Using this method, a jumper on J4 is not necessary. Another method is to connect a jumper between J4-1 and J4-2, and connect a control signal to J6-1. Default setting: J4 open, EN floating for always-on operation. Table 3-1. Enable Pin Selection 6 J4 CONNECTION ENABLE SELECTION J4-2 floating Device is enabled J4-2 and J4-3 shorted UVLO implemented if R11 and R13 are populated - see data sheet for details J4-1 and J4-2 shorted Enable can be controlled with external control signal TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52EVM-059 Bottom Circuit www.ti.com 3.1.3 External Clock Synchronization An external signal (recommended 0-V to 3.3-V) can be used as an external clock synchronization source. To use this feature, the TPS542A52 must be enabled, either by pulling the EN pin high or leaving it floating as described in Section 3.1.2. A jumper should be placed between J3-2 and J3-3, and the external clock signal should be applied to the SYNC_CLK (TP12) test point, referenced to AGND. The external clock synchronization signal applied to the SYNC pin must also be within -10% to +10% of the configured switching frequency. 3.1.4 Load Step with Function Generator The TPS542A52EVM-059 provides a convenient location to connect a function generator for applying load steps to the output. The positive and negative connections of the function generator are applied to FGEN+ (TP19) and FGEN- (TP20), respectively. It is recommended that a 50-Ω termination on the output of the function generator is configured. The FGEN+ input drives the gate of a Texas Instruments CSD17527Q5A N-Channel NexFET Power MOSFET. Two 0.02-Ω resistors in parallel (R14, R15), connected from the source of the CSD17527Q5A to PGND, provide a 0.01-Ω resistance to measure the voltage across for determining output current, which is nominally equal to 10 mV/A. The voltage across these two resistors is measured from J5-1 and J5-2/3, for the positive and negative terminals, respectively. TI recommends driving the CSD17527Q5A gate with at least 5 V to minimize the RDS(on) of the CSD17527Q5A. The safe operating area of the CSD17527Q5A must be observed at all times when using this feature. 3.2 Bottom Circuit Schematic The schematic of the bottom circuit of the TPS542A52EVM-059 is shown in Figure 3-1. The components that are not populated by default are shown with a red "X" through them. VOUT Input: 4V to 18V, up to 5A DC C4 U1 220uF 220uF 220uF 18 19 20 AVIN C11 1 2 C12 C13 C14 C15 C16 C17 C19 C18 C20 C21 TP4 VREG 4.7uF 22uF 22uF 4.7uF 0.1uF 1µF AVIN 21 AVIN EN 22 EN 0.47uF AGND 330uF 4.7uF VREG R2 12 PGD 10k 4.7uF 11 PGD PGND PGND PGND PGND PGND PGND PGND PGND PGND PVINPGND AVIN TP10 EN EN R11 EN_D EN TP11 PGD 1 2 3 EN_D R13 TP12 SYNC_CLK J3 PGM SYNC SYNC_CLK C37 J6 PGD 1 2 3 1 3 5 7 9 2 4 6 8 10 17 SW SW SW 26 27 28 C8 C9 100uF 100uF 0.1uF TP5 SW+ PGND L1 0.1uF PGND TP6 SW VOUT J2 VOUT+ RSP 10.0 6 RSN TP9 CHA COMP SS/PFM ILIM FSEL TP8 CHB C25 C26 0.1uF 0.1uF C27 C29 C30 47uF 9 SYNC 5 SYNC AGND AGND 25 8 TP7 PGND Output: 1V and up to 15A DC R5 10 VSET C31 VOUTR8 61.9k SREF SREF VSET R10 33.2k 100k C42 1uF C28 24 2 1 23 NC NC 4 3 2 1 R3 R7 61.9k R9 16.2k R6 20.0k VOUT Q1 TP19 4 CSD17527Q5A TPS542A52RJMR FGEN+ C35 C36 AGND AGND R16 10.0k C10 BT 7 RSP 3 4 PGM C7 100uF 330nH SCL SDA 3V3 J4 BOOT C6 100uF C22 VREG 13 15 14 16 29 30 31 32 33 C23 TP2 R4 PVIN PVIN PVIN C5 C33 7,8 5,6, R1 10.0 TP3 J1 AGND C3 PVIN+ PVIN EN_A C2 1,2,3 TP1 C1 TP14 TP15 TP13 R17 10.0k TP18 + J5 SCL SDA AGND AGND AGND SW- 0.01uF IMON TP17 NT1 1 2 3 R14 0.02 0.01uF R12 49.9 R15 0.02 PGND TP20 AGND PGND FGENPGND Figure 3-1. TPS542A52EVM-059 Bottom Circuit Schematic 3.3 Test Setup and Results This section describes how to properly connect, set up, and use the bottom circuit of the TPS542A52EVM-059. This section also includes test results typical for the evaluation module and covers efficiency, power loss, load regulation, transient response, loop response, output voltage ripple, and thermal data. For a more complete set of data, please refer to the TPS542A52 data sheet. 3.3.1 Input/Output Connections The TPS542A52EVM-059 is provided with input/output connectors and test points as shown in Table 3-2. A power supply capable of supplying at least 5 A at the desired EVM input voltage must be connected to J1 through a pair of 20-AWG or greater wires. The load must be connected to J2 through a pair of 18-AWG or greater wires. The maximum load current capability is 15 A. Wire lengths must be minimized to reduce losses and parasitic inductance in the wires. PVIN+ (TP1) provides a test point to monitor the VIN input voltages with PVIN- (TP2) providing a convenient reference to PGND. VOUT+ (TP6) is used to monitor the output voltage with VOUT- (TP7) providing a reference to PGND. SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 7 TPS542A52EVM-059 Bottom Circuit www.ti.com Table 3-2. Top Circuit Connections and Test Points CONNECTION AND TEST POINTS DESCRIPTION J1 VIN, PGND connection (see Table 1-1 for input voltage range) J2 VOUT, PGND connection: 5.5 V at 15 A maximum (default is 1 V out at 15 A) J3 Programming mode and external clock synchronization J4 Enable configuration J5 Output current sensing points when using function generator as load control signal J6 Not utilized in this EVM PVIN+ (TP1), PVIN- (TP2) VIN voltage sensing test points VOUT+ (TP6), VOUT- (TP7) VOUT voltage sensing test points AVIN (TP3) AVIN voltage sensing test points VREG (TP4) VREG voltage sensing test point SW+ (TP5), SW- (TP18) SW node sensing test points CHA (TP9), CHB (TP8) Loop measurement test points EN (TP10) EN pin test point PGD (TP11) Open-drain PGD test point SYNC_CLK (TP12) For connecting and measuring external clock synchronization AGND (TP13, TP14, TP15) AGND connection - multiple provided to reduce oscilloscope ground probe loop inductance PGND (TP17) PGND connection FGEN+ (TP19), FGEN- (TP20) Function generator connection points - referenced to PGND 3.3.2 Start Up Procedure 1. Make sure the EN jumper (J4) is open to float the EN pin, enabling the TPS542A52. Alternatively, the device can be enabled as described in Section 3.1.2. 2. If using an external load, connect the load to VOUT and PGND of J2 using copper wire capable of handling at least 15 A (18-AWG or greater). If using the built-in load with a function generator, connect the positive and negative connections of the function generator to FGEN+ (TP19) and FGEN- (TP20), respectively. 3. Apply appropriate VIN voltage to the VIN and PGND terminals of J1. 3.3.3 Electrical Performance Specifications and Results The typical electrical perfomance specifications of the TPS542A52EVM bottom circuit are shown in Table 3-3. Unless stated otherwise, the measurements were taken with the converter operating in FCCM and TAMB = 25°C. Table 3-3. Bottom Circuit Electrical Performance Specifications PARAMETER TEST CONDITIONS VIN voltage range MIN TYP MAX UNITS 5 12 14 V Output voltage 1 Output current range Load regulation VIN = 12 V, IO = 0 A to 15 A, FCCM 15 A -0.2 +0.2 % ΔVOUT, total V = 12 V, IO = 2-A to 12-A to 2-A load step @ 10 A/μs undershoot/overshoot IN 91 mV Loop bandwidth VIN = 12 V, IO = 10 A 120 kHz Phase margin VIN = 12 V, IO = 10 A 65 ° VIN = 12 V, IO = 0 A 12.1 mV VIN = 12 V, IO = 10 A 12.1 mV Output voltage ripple 8 V 0 IC case temperature VIN = 12 V, IO = 15 A, Tamb = 25C 78.4 °C Switching frequency FCCM 1000 kHz TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52EVM-059 Bottom Circuit www.ti.com 3.3.4 Efficiency Figure 3-2 shows the efficiency of the TPS542A52EVM-059 when operating in forced continuous-conduction mode (FCCM). The light-load efficiency can be improved by operating the converter in DCM as described in the TPS542A52 data sheet. The default setting on the EVM is FCCM operation. Figure 3-2. Efficiency - FCCM, fsw = 1000 kHz, Tamb = 25°C 3.3.5 Power Loss The power loss of the bottom circuit when operating in FCCM is shown in Figure 3-3. The power loss includes all losses of the converter, including the losses of the output inductor. Figure 3-3. Power Loss - FCCM, fsw = 1000 kHz, Tamb = 25°C 3.3.6 Load Regulation The EVM bottom circuit load regulation for ambient temperatures of -40°C to +105°C and input voltages of 5 V and 12 V is shown in Figure 3-4. SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 9 www.ti.com TPS542A52EVM-059 Bottom Circuit Figure 3-4. Load Regulation - FCCM, fsw = 1000 kHz, Tamb = -40°C to +105°C 3.3.7 Transient Response Figure 3-5 shows the transient response of the converter when operating in FCCM. The total undershoot and overshoot in response to a 10-A load transient (2-A to 12-A to 2-A) with a slew rate of 10 A/μs is 91.1 mV. Figure 3-5. Transient Response - 2-A to 12-A to 2-A load at 10 A/μs, ΔVout = 91.1 mV, fsw = 1000 kHz, FCCM 3.3.8 Loop Response The loop response of the bottom circuit of the TPS542A52EVM-059 with a 10-A load is shown in Figure 3-6. The bandwidth of the loop is 120 kHz, and the phase margin is 65°. 10 TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback www.ti.com TPS542A52EVM-059 Bottom Circuit Figure 3-6. Loop Response - IOUT = 10 A, Loop Bandwidth = 120 kHz, Phase Margin = 65° 3.3.9 Output Voltage Ripple Figure 3-7 shows an output voltage ripple of 12.1 mV with a load of 0 A. Figure 3-8 shows an output voltage ripple of 12.1 mV with a load of 10 A. SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 11 www.ti.com TPS542A52EVM-059 Bottom Circuit Figure 3-7. Output Voltage Ripple - 0-A load, ΔVout = 12.1 mV, fsw = 1000 kHz, FCCM Figure 3-8. Output Voltage Ripple - 10-A load, ΔVout = 12.1 mV, fsw = 1000 kHz, FCCM 3.3.10 Thermal Data Figure 3-9 shows a thermal image of the TPS542A52 operating at a load current of 15 A and Tamb = 25°C. The IC case temperature is 78.4°C. 12 TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback www.ti.com TPS542A52EVM-059 Bottom Circuit Figure 3-9. Thermal Image - 15-A Load, TCASE = 78.4°C, Tamb = 25°C SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 13 TPS542A52EVM-059 Top Circuit (Small Layout Area Design) www.ti.com 4 TPS542A52EVM-059 Top Circuit (Small Layout Area Design) The second circuit that will be discussed is the top (upper) circuit on the TPS542A52EVM-059 shown in Figure 2-1. In this circuit, the TPS542A52 converter IC is indicated as U1_2. This circuit has been designed with a minimal layout area for applications where space is limited. The default switching frequency is 1.2 MHz, which allows for the use of smaller output inductance and capacitance. The converter and all associated components fit inside a 17-mm × 14-mm layout area (238 mm2) while still delivering high performance for space-critical applications. 4.1 Modifications This EVM is designed to provide access to the features of the TPS542A52EVM-059. Some of the useful modifications are outlined in this section of the user’s guide. 4.1.1 Output Voltage Setpoint The output voltage is set by the resistor divider network of R5_2 and R10_2, as shown in Figure 4-1. The divider is connected between SREF and AGND pins, where the mid-point of the divider is tapped to the VSET pin. Unlike many converters, the output voltage is not set by connecting a resistor divider directly to the output node. This allows the use of a differential remote sense for improved output voltage accuracy. It is recommended to use R5_2 and R10_2 in the range of 1 kΩ to 100 kΩ, and the total impedance must be greater than 10 kΩ. A footprint for a small capacitor, C22_2, has been added for high frequency noise filtering, but is typically not necessary and is not populated by default. The value of R5_2 for a desired output voltage, VOUT, can be calculated using Equation 2. 5 × VSREF R5_2 = R10_2 × l F 1p VOUT (2) where • • VSREF = 1.2 V R10_2 = 20.0 kΩ Note that for Vout below 1 V, the value of R10_2 should be reduced to keep R5_2 and R10_2 between 1 kΩ and 100 kΩ, while still maintaining a total impedance greater than 10 kΩ. 4.1.2 Enable and Undervoltage Lockout The operation of the TPS542A52 can be enabled or disabled using J3_2. The EN pin of the TPS542A52 is connected to J3_2-2 (pin 2 of J3_2) and TP14_2. The EN pin threshold is 1.2 V. By leaving J3_2-2 floating, a pullup current source internal to the TPS542A52 enables the device, and the device is operational across all valid input voltages (4 V - 18 V). Undervoltage lockout (UVLO) can be implemented by connecting a jumper between J3_2-2 and J3_2-3. In this configuration, R12_2 and R15_2 should be populated according to the TPS542A52 device data sheet based on the desired UVLO requirements. By default, R12_2 and R15_2 are not populated. The TPS542A52 can be disabled by pulling J3_2-2 (the EN pin) below 1.2 V. When J3_2-2 is brought below 1.2 V, the regulator stop switching and enters into a low power shutdown mode. To externally control the EN pin of the TPS542A52, a control signal referenced to AGND (TP15_2, TP16_2, or TP17_2, recommended between 0 V and 5.5 V) can be connected directly to the EN_2 test point (TP14_2). Using this method, a jumper on J3_2 is not necessary. The converter can be put into shutdown mode manually by connecting a jumper between J3_2-2 and J3_2-1, which grounds the EN pin. Default setting: J3_2 open, EN floating for always-on operation. Table 4-1. Enable Pin Selection 14 J3_2 CONNECTION ENABLE SELECTION J3_2-2 floating Device is enabled TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52EVM-059 Top Circuit (Small Layout Area Design) www.ti.com Table 4-1. Enable Pin Selection (continued) J3_2 CONNECTION ENABLE SELECTION J3_2-2 and J3_2-3 shorted UVLO implemented if R12_2 and R15_2 are populated - see data sheet for details J3_2-1 and J3_2-2 shorted Converter is disabled 4.1.3 External Clock Synchronization An external signal (recommended 0-V to 3.3-V) can be used as an external clock synchronization source. To use this feature, the TPS542A52 must be enabled by bringing the EN pin (J3_2-2 or TP14_2) high, or leaving it floating. The external clock synchronization signal should be applied to the SYNC (TP12_2) pin, referenced to AGND. The external clock synchronization source must also be within -10% to +10% of the set switching frequency. 4.1.4 Load Step with Function Generator The TPS542A52EVM-059 has a built-in load that can be controlled using the function generator inputs, FGEN+_2 (TP20_2) and FGEN-_2 (TP21_2). The positive connection of the function generator output is connected to FGEN+_2, and the negative connection of the function generator is connected to FGEN-_2. It is recommended that a 50-Ω termination on the output of the function generator is configured. The FGEN+_2 input drives the gate of a Texas Instruments CSD17527Q5A N-channel NexFET Power MOSFET. Two 0.02-ohm resistors in parallel (R13_2, R14_2), connected from the source of the CSD17527Q5A to PGND, provide a 0.01-ohm resistance to measure the voltage across to determine output current, which is equal to approximately 10 mV/A. The voltage across these two resistors is measured from J4_2-1 and J4_2-2/3, for the positive and negative terminals, respectively. TI recommends driving the CSD17527Q5A gate with at least 5 V to minimize RDS(on) of the CSD17527Q5A. The safe operating area of the CSD17527Q5A must always be observed when using this feature. 4.2 TPS542A52EVM-059 Top Circuit (Small Layout Area) Schematic Input: 4V to 18V, up to 5A DC PVIN+_2 TP9_2 PVIN2 R2_2 1 2 C5_2 C4_2 C6_2 C7_2 C10_2 C8_2 C9_2 0.47uF 330uF 10µF 1µF PVIN PVIN PVIN AVIN2 21 AVIN EN2 22 EN C12_2 AGND2 10µF 18 19 20 TP3_2 AVIN_2 C3_2 J1_2 TP4_2 VREG_2 VREG2 1µF 12 PGD2 11 PGD 13 15 14 16 29 30 31 32 33 PGND PGND PGND PGND PGND PGND PGND PGND PGND C19_2 10k 4.7uF TP2_2 PVIN-_2 PGND2 TP14_2 EN_2 TP10_2 TP11_2 SCL2 EN2 PGD_2 TP12_2 AVIN2 TP13_2 SCL2 SDA2 SDA2 3 4 SYNC2 PGD2 SYNC2 J3_2 AVIN_UVLO 5 0.1uF TP6_2 SW2 C15_2 C16_2 100µF 100µF 100µF 100µF J2_2 C17_2 C18_2 C11_2 4 3 2 1 TP7_2 VOUT-_2 PGND2 SREF 10 SREF2 VSET 9 VSET2 25 8 AGND AGND C14_2 24 2 1 23 R5_2 VOUT2 100k R6_2 44.2k R10_2 SYNC C13_2 10.0 6 RSN NC NC R3_2 RSP2 7 COMP SS/PFM ILIM FSEL VOUT+_2 VOUT2 220nH RSP Output: 1V and up to 12A DC CHB_2 SW+_2 L1_2 C22_2 R7_2 44.2k R8_2 44.2k R9_2 23.7k Q1_2 CSD17527Q5A 20.0k TP20_2 4 FGEN+_2 1,2,3 1 2 3 CHA_2 PGND2 TP5_2 26 27 28 SW SW SW TP8_2 C1_2 BT2 C2_2 AGND2 R12_2 17 BOOT VREG 0.1uF R4_2 R1_2 U1_2 10.0 7,8 5,6, TP1_2 TPS542A52RJMR C20_2 C21_2 R11_2 0.01uF 0.01uF 49.9 IMON TP16_2 TP17_2 TP18_2 AGND2 TP19_2 TP15_2 J4_2 R15_2 NT1_2 + PGND_2 AGND_2 1 2 3 R14_2 R13_2 0.02 0.02 TP21_2 AGND_2 AGND_2 SW-_2 AGND2 FGEN-_2 AGND2 PGND2 PGND2 Figure 4-1. TPS542A52EVM-059 Top Circuit Schematic 4.3 Test Setup and Results This section descibes how to properly connect, set up, and use the top circuit of the TPS542A52EVM-059. This section also includes test results typical for the evaluation module and covers efficiency, power loss, load regulatiom, line regulation, transient response, loop response, output voltage ripple, and start up. For a more complete set of data, please consult the TPS542A52 data sheet. 4.3.1 Input/Output Connections The TPS542A52EVM-059 is provided with input/output connectors and test points as shown in Table 4-2. A power supply capable of supplying at least 5 A at the desired EVM input voltage must be connected to J1_2 through a pair of 20-AWG or greater wires. The load must be connected to J2_2 through a pair of 18-AWG or greater wires. The maximum load current capability of the top ciricuit is 12 A, as limited by R7_2. Wire lengths must be minimized to reduce losses and parasitic inductance in the wires. PVIN+_2 (TP1_2) provides a tets point to monitor the VIN input voltages with PVIN-_2 (TP2_2) providing a convenient reference to SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 15 TPS542A52EVM-059 Top Circuit (Small Layout Area Design) www.ti.com PGND. VOUT+_2 (TP6_2) is used to monitor the output voltage with VOUT-_2 (TP7_2) providing a reference to PGND. Table 4-2. Bottom Circuit Connections and Test Points CONNECTION AND TEST POINTS DESCRIPTION J1_2 VIN, PGND connection (see Table 1-1 for input voltage range) J2_2 VOUT, PGND connection: 5.5 V at 15 A maximum (default is 1 V out at 12 A) J3_2 Enable configuration J4_2 Output current sensing points when using function generator as load control signal PVIN+_2 (TP1_2), PVIN-_2 (TP2_2) VIN voltage sensing test points VOUT+_2 (TP6_2), VOUT-_2 (TP7_2) VOUT voltage sensing test points AVIN_2 (TP3_2) AVIN voltage sensing test points VREG_2 (TP4_2) VREG voltage sensing test point SW+_2 (TP5_2), SW-_2 (TP18_2) SW node sensing test points CHA_2 (TP9_2), CHB_2 (TP8_2) Loop measurement test points SCL2 (TP10_2), SDA2 (TP11_2) Not used in this EVM EN_2 (TP14_2) EN pin test point PGD_2 (TP13_2) Open-drain PGD test point SYNC2 (TP12_2) For connecting and measuring external clock synchronization AGND_2 (TP15_2, TP16_2, TP17_2) AGND connection - multiple provided to reduce oscilloscope ground probe loop inductance PGND_2 (TP18_2, TP19_2) PGND connection FGEN+_2 (TP20_2), FGEN-_2 (TP21_2) Function generator connection points - referenced to PGND 4.3.2 Start Up Procedure 1. Make sure the EN jumper (J3_2) is open to float the EN pin, enabling the TPS542A52. 2. If using an external load, connect the load to VOUT and PGND of J2_2 using copper wire capable of handling at least 15 A (18-AWG or greater). If using the built-in load with a function generator, connect the positive and negative connections of the function generator to FGEN+_2 (TP20_2) and FGEN-_2 (TP21_2), respectively. 3. Apply appropriate VIN voltage to the VIN and PGND terminals of J1_2. 4.3.3 Electrical Performance Specifications and Results The typical electrical perfomance specifications of the TPS542A52EVM top circuit are shown in Table 4-3. Unless stated otherwise, the measurements were taken with the converter operating in FCCM and TAMB = 25°C. Table 4-3. Top Circuit Electrical Performance Specifications PARAMETER TEST CONDITIONS VIN voltage range IIN input current MIN 5 ΔVOUT, total overshoot/undershoot Loop bandwidth Phase margin Output voltage ripple 16 UNITS 12 14 V 35 VIN = 12 V, IO = 12 A 1190 Output voltage Line regulation MAX VIN = 12 V, IO = 0 A mA 1 Output current range Load regulation TYP V 0 12 A VIN = 12 V, IO = 0 A to 12 A, -0.2 +0.2 % VIN = 5 V to 14 V, IOUT = 0 A -0.2 +0.2 % VIN = 5 V to 14 V, IOUT = 12 A -0.2 +0.2 % VIN = 12 V, IO = 5-A to 10-A to 5-A load step @ 5A/μs 62.1 mV 105 kHz 52 ° VIN = 12 V, IO = 0 A 11.6 mV VIN = 12 V, IO = 12 A 14.4 mV VIN = 12 V, IO = 10 A TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52EVM-059 Top Circuit (Small Layout Area Design) www.ti.com Table 4-3. Top Circuit Electrical Performance Specifications (continued) PARAMETER TEST CONDITIONS Switching frequency FCCM MIN TYP 1200 MAX UNITS kHz 4.3.4 Efficiency Figure 4-2. Efficiency - FCCM, fsw = 1200 kHz 4.3.5 Power Loss The power loss of the circuit is shown in Figure 4-3. The losses of the top circuit are slightly higher due to the increased switching losses associated with a higher switching frequency. Figure 4-3. Power Loss - FCCM, fsw = 1200 kHz 4.3.6 Load Regulation The load regulation for VIN = 5 V to 14 V is shown in Figure 4-4. SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 17 www.ti.com TPS542A52EVM-059 Top Circuit (Small Layout Area Design) Figure 4-4. Load Regulation - FCCM, fsw = 1200 kHz 4.3.7 Line Regulation The line regulation for output currents of 0 A, 7 A, and 12 A is shown in Figure 4-5. Figure 4-5. Line Regulation - FCCM, fsw = 1200 kHz 4.3.8 Transient Response Figure 4-6 shows the transient response of the converter when operating in FCCM. The total undershoot and overshoot in response to a 5-A load transient (5-A to 10-A to 5-A) with a slew rate of 5 A/μs is 62.1 mV. 18 TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52EVM-059 Top Circuit (Small Layout Area Design) www.ti.com Figure 4-6. Transient Response - 5-A to 10-A to 5-A Load at 5 A/μs, ΔVout = 62.1 mV, fsw = 1200 kHz, FCCM 4.3.9 Loop Response The loop response of the top circuit of the TPS542A52EVM-059 with a 10-A load is shown in Figure 4-7. The bandwidth of the loop is 105 kHz, and the phase margin is 52°. Figure 4-7. Loop Response - IOUT = 10 A, Loop Bandwidth = 105 kHz, Phase Margin = 52° 4.3.10 Output Voltage Ripple Figure 4-8 shows an output voltage ripple with a 0-A load, and Figure 4-9 shows the output voltage ripple with a 12-A load. SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 19 www.ti.com TPS542A52EVM-059 Top Circuit (Small Layout Area Design) Figure 4-8. Output Voltage Ripple - 0-A Load, ΔVOUT = 11.6 mV, fsw = 1200 kHz, FCCM Figure 4-9. Output Voltage Ripple - 12-A Load, ΔVOUT = 14.4 mV, fsw = 1200 kHz, FCCM 4.3.11 Start Up Figure 4-10 shows the VOUT, EN, PGOOD, and SW start up waveforms with a 12-A load. The time between the rising edge of the EN signal and the rising edge of PGOOD is approximately 1.95 ms. 20 TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback www.ti.com TPS542A52EVM-059 Top Circuit (Small Layout Area Design) Figure 4-10. Start up - 12-A load, fsw = 1200 kHz, FCCM SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 21 www.ti.com TPS542A52EVM-059 PCB Layout 5 TPS542A52EVM-059 PCB Layout The PCB layout of the TPS542A52EVM-059 is shown in Figure 5-1 through Figure 5-8. The top, internal, and bottom layers are all 2 oz. copper. Figure 5-1. Top-Side Composite View 22 TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52EVM-059 PCB Layout www.ti.com Figure 5-2. Bottom-Side Composite View (Viewed From Bottom) SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 23 www.ti.com TPS542A52EVM-059 PCB Layout Figure 5-3. Top-Side Layout (Top-Down View) 24 TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52EVM-059 PCB Layout www.ti.com Figure 5-4. Internal Layer-1 Layout (Top-Down View) SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 25 www.ti.com TPS542A52EVM-059 PCB Layout Figure 5-5. Internal Layer-2 Layout (Top-Down View) 26 TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52EVM-059 PCB Layout www.ti.com Figure 5-6. Internal Layer-3 Layout (Top-Down View) SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 27 www.ti.com TPS542A52EVM-059 PCB Layout Figure 5-7. Internal Layer-4 Layout (Top-Down View) 28 TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52EVM-059 PCB Layout www.ti.com Figure 5-8. Bottom-Side Layout (Top-Down View) SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 29 List of Materials www.ti.com 6 List of Materials The EVM components list, according to the schematic, is shown in Table 6-1. Table 6-1. TPS542A52EVM-059 List of Materials DESIGNATOR QUANTITY VALUE DESCRIPTION !PCB1 1 C1, C11_2 0 DNP, 220 μF CAP, Tantalum Polymer, 220 μF, 6.3 V, ±20%, 0.035 Ω, 3.5x1.9x2.8mm SMD C1_2, C33 0 220 pF C2, C3, C4 3 220 μF C2_2, C22 2 C3_2, C11 2 C4_2, C12 C5, C6, C7, C8 PACKAGE REFERENCE Printed Circuit Board PART NUMBER MANUFACTURER BSR059 Any 6TPE220MAZB Panasonic CAP, CERM, 220 pF, 50 V, ±10%, X7R, 0603 0603 C0603X221K5RACTU Kemet CAP, Tantalum Polymer, 220 μF, 6.3 V, ±20%, 0.035 Ω, 3.5x1.9x2.8mm SMD 3.5x1.9x2.8mm 6TPE220MAZB Panasonic 0.1 μF CAP, CERM, 0.1 μF, 25 V, ±10%, X7R, 0402 0402 GRM155R71E104KE14D MuRata 0.47 μF CAP, CERM, 0.47 μF, 25 V, ±10%, X5R, 0402 0402 GRM155R61E474KE01D MuRata 2 330 μF CAP, AL, 330 μF, 25 V, ±20%, 0.15 Ω, SMD SMT Radial G EEE-FC1E331P Panasonic 4 100 μF CAP, CERM, 100 μF, 4 V, ±20%, X6T, 1206 1206 GRM31CD80G107ME39L MuRata C5_2, C7_2 2 10 μF CAP, CERM, 10 µF, 25 V, ±10%, X6S, 0805 0805 GRM21BC81E106KE51L MuRata C6_2, C12_2 0 10 μF CAP, CERM, 10 µF, 25 V, ±10%, X6S, 0805 0805 GRM21BC81E106KE51L MuRata C8_2, C9, C20, C25, C26 5 0.1 μF CAP, CERM, 0.1 μF, 25 V, ±20%, X7R, 0402 0402 TMK105B7104MV-FR Taiyo Yuden C9_2, C10_2, C19 3 CAP CER 1µF 25 V X6S 0402 0402 GRM155C81E105KE11D Murata C10 0 0.1 μF CAP, CERM, 0.1 μF, 25 V, ±20%, X7R, 0402 0402 TMK105B7104MV-FR Taiyo Yuden C13, C18, C21 3 4.7 μF CAP, CERM, 4.7 μF, 25 V, ±10%, X6S, 0603 0603 GRM188C81E475KE11D MuRata C13_2, C14_2, C15_2, C16_2 4 100 μF CAP, CERM, 100 µF, 4 V, ±20%, X6S, 0805 0805 GRM21BC80G107ME15L MuRata C14, C15 2 22 µF CAP, CERM, 22 µF, 25 V, ±20%, X6S, 1206_190 1206_190 GRM31CC81E226ME11L MuRata C16, C17 0 22 µF CAP, CERM, 22 µF, 25 V, ±20%, X6S, 1206_190 1206_190 GRM31CC81E226ME11L MuRata C17_2, C18_2 0 100 µF CAP, CERM, 100 µF, 4 V,±20%, X6S, 0805 0805 GRM21BC80G107ME15L MuRata C19_2, C23 2 4.7 µF CAP, CERM, 4.7 µF, 16 V, ±10%, X5R, 0603 0603 GRM188R61C475KAAJ MuRata C20_2, C21_2 2 0.01µF CAP, CERM, 0.01 µF, 50 V, ±5%, X7R, 0402 0402 C0402C103J5RACTU Kemet C22_2, C42 0 1000 pF CAP, CERM, 1000 pF, 50 V, ±10%, X7R, 0402 0402 GRM155R71H102KA01D MuRata C27, C28, C29, C31 0 47 µF CAP, CERM, 47 µF, 6.3 V, ±20%, X5R, AECQ200 Grade 3, 0805 0805 GRT21BR60J476ME13L MuRata C30 1 47 µF CAP, CERM, 47 µF, 6.3 V, ±20%, X5R, AECQ200 Grade 3, 0805 0805 GRT21BR60J476ME13L MuRata C35, C36 2 0.01 µF CAP, CERM, 0.01 µF, 50 V, ±10%, X7R, AEC-Q200 Grade 1, 0603 0603 GCM188R71H103KA37D MuRata C37 1 1 µF 3.5x1.9x2.8mm CAP, CERM, 1 µF, 16 V, ±10%, X7R, 0603 0603 EMK107B7105KA-T Taiyo Yuden H1, H2, H3, H4, H9, 6 H11 Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead Screw NY PMS 440 0025 PH B&F Fastener Supply H5, H6, H7, H8, H10, H12 6 Standoff, Hex, 0.5"L #4-40 Nylon Standoff 1902C Keystone J1, J1_2 2 Terminal Block, 5.08 mm, 2x1, Brass, TH 2x1 5.08 mm Terminal Block ED120/2DS On-Shore Technology J2, J2_2 2 Terminal Block, 5.08 mm, 4x1, Brass, TH 4x1 5.08 mm Terminal Block ED120/4DS On-Shore Technology J3, J3_2, J4, J4_2, J5 5 Header, 100mil, 3x1, Tin, TH Header, 3 PIN, 100mil, Tin PEC03SAAN Sullins Connector Solutions J6 1 Header(Shrouded), 2.54 mm, 5x2, Gold, TH Header, 2.54mm, 5x2, TH AWHW-10G-0202-T Assman WSW L1 1 330 nH Inductor, Shielded Drum Core, Ferrite, 330 nH, 27 A, 0.00037 Ω, SMD 10.1x6.8x7mm 744308033 Wurth Elektronik L1_2 1 220 nH Inductor, Shielded Drum Core, Ferrite, 220 nH, 29 A, 0.00033 Ω, SMD 7.4x7x7.2mm 744307022 Wurth Elektronik LBL1 1 Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll PCB Label 0.650 x 0.200 inch THT-14-423-10 Brady Q1, Q1_2 2 30 V MOSFET, N-CH, 30 V, 65 A, DQJ0008A (VSONP-8) DQJ0008A CSD17527Q5A Texas Instruments R1, R3, R3_2 3 10.0 RES, 10.0, 1%, 0.1 W, 0603 0603 RC0603FR-0710RL Yageo America R1_2, R4 0 1.0 RES, 1.0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603 0603 CRCW06031R00JNEA Vishay-Dale R2, R4_2, R16, R17 4 10.0 k RES, 10.0 k, 1%, 0.1 W, 0603 0603 RCG060310K0FKEA Vishay Draloric R2_2 1 10.0 RES, 10.0, 1%, 0.063 W, 0402 0402 RK73H1ETTP10R0F KOA Speer R5 1 100 k RES, 100 k, 1%, 0.1 W, 0603 0603 RC0603FR-07100KL Yageo America 30 TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback www.ti.com Revision History Table 6-1. TPS542A52EVM-059 List of Materials (continued) DESIGNATOR QUANTITY VALUE DESCRIPTION PACKAGE REFERENCE PART NUMBER MANUFACTURER R5_2 1 100 k RES, 100 k, 1%, 0.0625 W, 0402 0402 RC0402FR-07100KL Yageo America R6 1 20.0 k RES, 20.0 k, 1%, 0.1 W, 0603 0603 RC0603FR-0720KL Yageo America R6_2, R7_2, R8_2 2 44.2 k RES, 44.2 k, 1%, 0.063 W, AEC-Q200 Grade 0402 0, 0402 CRCW040244K2FKED Vishay-Dale R7, R8 2 61.9 k RES, 61.9 k, 1%, 0.1 W, 0603 0603 RC0603FR-0761K9L Yageo R9 1 16.2 k RES, 16.2 k, 1%, 0.1 W, 0603 0603 RC0603FR-0716K2L Yageo America R9_2 1 23.7 k RES, 23.7 k, 1%, 0.063 W, AEC-Q200 Grade 0402 0, 0402 CRCW040223K7FKED Vishay-Dale R10 1 33.2 k RES, 33.2 k, 1%, 0.1 W, 0603 RC0603FR-0733K2L Yageo America R10_2 1 20.0 k RES, 20.0 k, 1%, 0.063 W, AEC-Q200 Grade 0402 0, 0402 CRCW040220K0FKED Vishay-Dale R11, R12_2, R13, R15_2 0 10.0 k RES, 10.0 k, 1%, 0.1 W, 0603 0603 RCG060310K0FKEA Vishay Draloric R11_2, R12 2 49.9 RES, 49.9, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW040249R9FKED Vishay-Dale R13_2, R14, R14_2, R15 4 0.02 RES, 0.02, 1%, 3 W, 2512 2512 CRA2512-FZ-R020ELF Bourns SH-J1, SH-J2, SHJ3, SH-J4, SH-J5 5 Shunt, 100mil, Gold plated, Black Shunt 2 pos. 100 mil 881545-2 TE Connectivity TP1, TP1_2, TP3, TP3_2, TP4, TP4_2, TP6, TP6_2, TP19, TP20_2 10 Test Point, Multipurpose, Red, TH Red Multipurpose Testpoint 5010 Keystone TP2, TP2_2, TP7, TP7_2, TP13, TP14, TP15, TP15_2, TP16_2, TP17, TP17_2, TP18, TP18_2, TP19_2, TP20, TP21_2 16 Test Point, Multipurpose, Black, TH Black Multipurpose Testpoint 5011 Keystone TP5, TP5_2, TP8, TP8_2, TP9, TP9_2, TP10, TP10_2, TP11, TP11_2, TP12, TP12_2, TP13_2, TP14_2 14 Test Point, Multipurpose, White, TH White Multipurpose Testpoint 5012 Keystone U1, U1_2 2 4-V to 18-V Input, 15-A, Synchronous Buck Converter with Differential Remote Sense, RJM0033A (VQFN-HR-33) RJM0033A TPS542A52RJM Texas Instruments 0603 7 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision * (January 2021) to Revision A (May 2021) Page • Updated user's guide title................................................................................................................................... 3 SNVU753A – NOVEMBER 2019 – REVISED MAY 2021 Submit Document Feedback TPS542A52 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 31 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TPS542A52EVM-059 价格&库存

很抱歉,暂时无法提供与“TPS542A52EVM-059”相匹配的价格&库存,您可以联系我们找货

免费人工找货