0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS76325QDBVRQ1

TPS76325QDBVRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-5

  • 描述:

    IC REG LDO 2.5V 0.15A SOT23-5

  • 数据手册
  • 价格&库存
TPS76325QDBVRQ1 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 TPS763xx-Q1 Low-Power, 150-mA, Low-Dropout Linear Regulators 1 Features 3 Description • • The TPS763xx-Q1 family of low-dropout (LDO) voltage regulators offers the benefits of low-dropout voltage, low-power operation, and miniaturized packaging. These regulators feature low dropout voltages and quiescent currents compared to conventional LDO regulators. Offered in a 5-pin, small outline integrated-circuit SOT-23 package, the TPS763xx-Q1 series devices are ideal for costsensitive designs and for applications where board space is at a premium. 1 • • • • • • • • Qualified for Automotive Applications AEC-Q100 Qualified With the Following Results: – Device Temperature Grade 1: –40°C to +125°C Ambient Operating Temperature – Device HBM ESD Classification Level 1C – Device CDM ESD Classification Level C3 150-mA Low-Dropout Regulator Output Voltage: 5 V,3.3 V, 3 V, 2.5 V, 1.8 V, 1.6 V, and Variable Dropout Voltage, Typically 300 mV at 150 mA Thermal Protection Overcurrent Limitation Less Than 2-µA Quiescent Current in Shutdown Mode –40°C to 125°C Operating Junction Temperature Range 5-Pin SOT-23 (DBV) Package A combination of new circuit design and process innovation has enabled the usual pnp pass transistor to be replaced by a PMOS pass element. Because the PMOS pass element behaves as a low-value resistor, the dropout voltage is low—typically 300 mV at 150 mA of load current (TPS76333-Q1)—and is directly proportional to the load current. Since the PMOS pass element is a voltage-driven device, the quiescent current is low (140 μA maximum) and is stable over the entire range of output load current (0 mA to 150 mA). Intended for use in portable systems such as laptops and cellular phones, the low-dropout voltage feature and low-power operation result in a significant increase in system battery operating life. 2 Applications • • • • RF: VCOs, Receivers, ADCs Cellular phones Bluetooth® Battery-Powered Systems The TPS763xx-Q1 also features a logic-enabled sleep mode to shut down the regulator, reducing quiescent current to 1 μA maximum at TJ = 25°C.The TPS763xx-Q1 is offered in 1.6-V,1.8-V, 2.5-V, 3-V, 3.3-V, and 5-V fixed-voltage versions and in a variable version (programmable over the range of 1.5 V to 6.5 V). Device Information(1) PART NUMBER TPS763xx-Q1 PACKAGE SOT-23 (5) BODY SIZE (NOM) 2.90 mm × 1.60 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Typical Application Circuit TPS763xx-Q1 1 VI C1 1 µF IN NC/FB OUT 4 5 VO 3 EN + 4.7 µF GND 2 Note: CSR = 1 Ω TPS76316-Q1, TPS76318-Q1, TPS76325-Q1, TPS76301-Q1 TPS76333-Q1, TPS76350-Q1 (fixed-voltage options) 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Voltage Options ..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 3 4 7.1 7.2 7.3 7.4 7.5 7.6 4 4 4 4 5 6 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description ............................................ 10 8.1 8.2 8.3 8.4 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 10 10 10 11 9 Application and Implementation ........................ 12 9.1 Application Information............................................ 12 9.2 Typical Application ................................................. 12 10 Power Supply Recommendations ..................... 15 11 Layout................................................................... 15 11.1 Layout Guidelines ................................................. 15 11.2 Layout Example .................................................... 15 11.3 Power Dissipation and Junction Temperature ...... 15 12 Device and Documentation Support ................. 16 12.1 12.2 12.3 12.4 12.5 12.6 12.7 Device Support .................................................... Documentation Support ........................................ Related Links ........................................................ Community Resource............................................ Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 16 16 16 16 16 17 17 13 Mechanical, Packaging, and Orderable Information ........................................................... 17 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Original (September 2011) to Revision B Page • Removed 3.8 V, 2.8 V, and 2.7 V output voltage versions from the data sheet ................................................................... 1 • Removed the TPS76327-Q1, TPS76328-Q1, and TPS76338-Q1 parts from the data sheet................................................ 1 • Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ................................................................................................. 1 • Deleted Dissipation Ratings .................................................................................................................................................. 6 2 Submit Documentation Feedback Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 www.ti.com SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 5 Voltage Options VOLTAGE PART NUMBER SYMBOL Variable TPS76301QDBVRQ1 BAN 1.6 V TPS76316QDBVRQ1 BAD 1.8 V TPS76318QDBVRQ1 BAP 2.5 V TPS76325QDBVRQ1 BAQ 3V TPS76330QDBVRQ1 BAT 3.3 V TPS76333QDBVRQ1 BAU 5V TPS76350QDBVRQ1 BAW 6 Pin Configuration and Functions DBV Package 5-Pin SOT-23 Top View IN 1 GND 2 EN 3 5 OUT 4 NC/FB Pin Functions PIN NAME NO. I/O DESCRIPTION EN 3 — FB 4 I Enable input GND 2 — IN 1 I NC 4 — No connection (fixed-voltage option only) OUT 5 O Regulated output voltage. Feedback voltage (TPS76301-Q1 only) Ground Input supply voltage Copyright © 2011–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 3 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) Input voltage MIN MAX UNIT –0.3 10 V Voltage at EN V Voltage on OUT, FB V Peak output current Internally limited Operating junction temperature, TJ –40 150 °C Storage temperature, Tstg –65 150 °C (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 7.2 ESD Ratings VALUE V(ESD) (1) Electrostatic discharge Human-body model (HBM), per AEC Q100-002 (1) ±2000 Charged-device model (CDM), per AEC Q100-011 ±500 UNIT V AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN Input voltage, VI Continuous output current, IO Operating junction temperature, TJ NOM MAX UNIT 2.7 10 V 0 150 mA –40 125 °C 7.4 Thermal Information TPS763xx-Q1 THERMAL METRIC (1) DBV (SOT-23) UNIT 5 PINS RθJA Junction-to-ambient thermal resistance 205.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 11.83 °C/W RθJB Junction-to-board thermal resistance 34.8 °C/W ψJT Junction-to-top characterization parameter 12.2 °C/W ψJB Junction-to-board characterization parameter 33.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W (1) 4 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Submit Documentation Feedback Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 www.ti.com SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 7.5 Electrical Characteristics over operating free-air temperature range, VI = VO(typ) + 1 V, IO = 1 mA, EN = IN, Co = 4.7 μF (unless otherwise noted) PARAMETER TEST CONDITIONS TPS76301-Q1 TPS76316-Q1 MIN TYP MAX 3.25 V > VI ≥ 2.7 V, 2.5 V ≥ VO ≥ 1.5 V, IO = 1 mA to 75 mA, TJ = 25°C 0.98VO VO 1.02VO 3.25 V > VI ≥ 2.7 V, 2.5 V ≥ VO ≥ 1.5 V, IO = 1 mA to 75 mA, 0.97VO VO 1.03VO VI ≥ 3.25 V, 5 V ≥ VO ≥ 1.5 V, IO = 1 mA to 100 mA, TJ = 25°C 0.98VO VO 1.02VO VI ≥ 3.25 V, 5 V ≥ VO ≥ 1.5 V, IO = 1 mA to 100 mA, 0.97VO VO 1.03VO VI ≥ 3.25 V, 5 V ≥ VO ≥ 1.5 V, IO = 1 mA to 150 mA, TJ = 25°C 0.975VO VO 1.025VO VI ≥ 3.25 V, 5 V ≥ VO ≥ 1.5 V, IO = 1 mA to 150 mA, 0.9625VO VO 1.0375VO VI = 2.7 V, 1 mA < IO < 75 mA, TJ = 25°C 1.568 1.6 1.632 VI = 2.7 V, 1 mA < IO < 75 mA, TJ = 25°C 1.552 1.6 1.648 VI = 3.25 V, 1 mA < IO < 100 mA, TJ = 25°C 1.568 1.6 1.632 VI = 3.25 V, 1 mA < IO < 100 mA, TJ = 25°C 1.552 1.6 1.648 TPS76318-Q1 Output voltage TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 1.56 1.6 1.64 VI 3.25 V, 1 mA < IO < 150 mA, TJ = 25°C 1.536 1.6 1.664 VI = 2.7 V, 1 mA < IO < 75 mA, TJ = 25°C 1.764 1.8 1.836 VI = 2.7 V, 1 mA < IO < 75 mA 1.746 1.8 1.854 VI = 3.25 V, 1 mA < IO < 100 mA, TJ = 25°C 1.764 1.8 1.836 VI = 3.25 V, 1 mA < IO < 100 mA 1.746 1.8 1.854 VI = 3.25 V, 1 mA < IO < 150 mA, TJ = 25°C 1.755 1.8 1.845 VI = 3.25 V, 1 mA < IO < 150 mA 1.733 1.8 1.867 IO = 1 mA to 100 mA, TJ = 25°C 2.45 2.5 2.55 IO = 1 mA to 100 mA 2.425 2.5 2.575 IO = 1 mA to 150 mA,, TJ = 25°C 2.438 2.5 2.562 IO = 1 mA to 150 mA V V 2.407 2.5 2.593 IO = 1 mA to 100 mA, TJ = 25°C 2.94 3 3.06 IO = 1 mA to 100 mA 2.91 3 3.09 IO = 1 mA to 150 mA, TJ = 25°C 2.925 3 3.075 IO = 1 mA to 150 mA 2.888 3 3.112 IO = 1 mA to 100 mA, TJ = 25°C 3.234 3.3 3.366 IO = 1 mA to 100 mA 3.201 3.3 3.399 IO = 1 mA to 150 mA, TJ = 25°C 3.218 3.3 3.382 IO = 1 mA to 150 mA 3.177 3.3 3.423 IO = 1 mA to 100 mA, TJ = 25°C 4.875 5 5.125 IO = 1 mA to 100 mA 4.825 5 5.175 IO = 1 mA to 150 mA, TJ = 25°C 4.750 5 5.15 V V V IO = 1 mA to 150 mA I(Q) 4.80 IO = 0 mA to 150 mA, TJ = 25°C (1) Quiescent current (GND) terminal current) 5 5.2 85 100 µA IO = 0 mA to 150 mA, see 140 EN < 0.5 V, TJ = 25°C Standby current 0.5 Output noise voltage BW = 300 Hz to 50 kHz, Co = 10 μF, TJ = 25°C PSRR Ripple rejection f = 1 kHz, Co = 10 μF, TJ = 25°C (2) Current limit TJ = 25°C, see (3) Output voltage line regulation (ΔVO/VO), (see (3) )) 140 0.5 See EN low level input See (2) II EN input current dB 0.8 1.5 0.04 0.07 A %/V 0.1 (2) EN high level input µV 60 VO + 1 V < VI ≤ 10 V, VI ≥ 3.5 V VIL (1) (2) (3) 2 (2) VO + 1 V < VI ≤ 10 V, VI ≥ 3.5 V, TJ = 25°C VIH 1 µA EN < 0.5 V Vn V V VI = 3.25 V, 1 mA < IO < 150 mA, TJ = 25°C VO UNIT 1.4 2 V 0.5 1.2 EN = 0 V –0.01 –0.5 EN = IN –0.01 –0.5 µa Minimum IN operating voltage is 2.7 V or VO(typ) + 1 V, whichever is greater. Test condition includes: output voltage VO = 0 V (for variable device FB is shorted to VO) and pulse duration = 10 ms. If VO < 2.5 V and VImax = 10 V, VImin = 3.5 V: Copyright © 2011–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 5 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 www.ti.com Electrical Characteristics (continued) over operating free-air temperature range, VI = VO(typ) + 1 V, IO = 1 mA, EN = IN, Co = 4.7 μF (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP IO = 0 mA, TJ = 25°C MAX IO = 1 mA, TJ = 25°C 3 IO = 50 mA, TJ = 25°C 120 150 IO = 50 mA 200 IO = 75 mA, TJ = 25°C TPS76325-Q1 180 225 mV IO = 75 mA 300 IO = 100 mA, TJ = 25°C 240 300 IO = 100 mA 400 IO = 150 mA, TJ = 25°C 360 450 IO = 150 mA 600 IO = 0 mA, TJ = 25°C 0.2 IO = 1 mA, TJ = 25°C 3 IO = 50 mA, TJ = 25°C 100 125 IO = 50 mA VDO Dropout voltage 166 IO = 75 mA, TJ = 25°C TPS76333-Q1 150 188 mV IO = 75 mA 250 IO = 100 mA, TJ = 25°C 200 250 IO = 100 mA 333 IO = 150 mA, TJ = 25°C 300 375 IO = 150 mA 500 IO = 0 mA, TJ = 25°C 0.2 IO = 1 mA, TJ = 25°C 2 IO = 50 mA, TJ = 25°C 60 75 IO = 50 mA 100 IO = 75 mA, TJ = 25°C TPS76350-Q1 UNIT 0.2 90 113 mV IO = 75 mA 150 IO = 100 mA, TJ = 25°C 120 150 IO = 100 mA 200 IO = 150 mA, TJ = 25°C 180 225 IO = 150 mA 300 7.6 Typical Characteristics 2.505 1.805 VI = 3.5 V CI = CO = 4.7 µF TJ = 25°C VO − Output Voltage − V VO − Output Voltage − V 2.5 2.495 2.49 2.485 2.48 1.795 1.790 1.785 1.780 1.775 1.770 2.475 0 6 VI = 3.5 V CI = CO = 4.7 µF TJ = 25°C 1.800 30 60 90 120 150 180 0 30 60 90 120 150 180 IO − Output Current − mA IO − Output Current − mA Figure 1. TPS76325-Q1 Output Voltage vs Output Current Figure 2. TPS76318-Q1 Output Voltage vs Output Current Submit Documentation Feedback Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 www.ti.com SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 Typical Characteristics (continued) 2.53 5.01 2.52 VO − Output Voltage − V 5 VO − Output Voltage − V VI = 3.5 V CI = CO = 4.7 µF VI = 6 V CI = CO = 4.7 µF TJ = 25°C 4.99 4.98 4.97 4.96 2.51 IO = 1 mA 2.5 IO = 150 mA 2.49 2.48 2.47 −55 −35 4.95 0 60 30 120 90 150 180 −15 5 25 45 65 85 125 105 TJ − Junction Temperature − °C IO − Output Current − mA Figure 3. TPS76350-Q1 Output Voltage vs Output Current Figure 4. TPS76325-Q1 Output Voltage vs Free-Air Temperature 1.82 5.1 VI = 6 V CI = CO = 4.7 µF 5.08 1.81 IO = 1 mA 5.06 VO − Output Voltage − V VO − Output Voltage − V 1.8 1.79 IO = 150 mA 1.78 1.77 1.76 5.04 5.02 IO = 1 mA 5 4.98 4.96 IO = 150 mA 4.94 VI = 3.5 V CI = CO = 4.7 µF 1.75 1.74 −55 −35 −15 5 25 45 65 85 105 4.92 125 4.9 −55 −35 TJ − Junction Temperature − °C 25 45 65 85 105 125 TJ − Junction Temperature − °C Figure 5. TPS76318-Q1 Output Voltage vs Free-Air Temperature 1000 Figure 6. TPS76350-Q1 Output Voltage vs Free-Air Temperature 3 V Hz TJ = 25°C VI = 6 V CI = CO = 4.7 µF IO = 0 mA and 150 mA Ground Current − µ A 5 −15 2.5 V Hz CO = 10 µF IO = 150 mA 2 V Hz CO = 4.7 µF IO = 150 mA 1.5 V Hz 100 1 V Hz CO = 4.7 µF IO = 1 mA 0.5 V Hz 10 −55 −35 −15 5 25 45 65 85 105 125 TJ − Junction Temperature − °C Figure 7. TPS76350-Q1 Ground Current vs Free-Air Temperature Copyright © 2011–2016, Texas Instruments Incorporated 0 V Hz 250 CO = 10 µF IO = 1 mA 1k 10k 100k f − Frequency − Hz Figure 8. Output Noise vs Frequency Submit Documentation Feedback Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 7 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 www.ti.com Typical Characteristics (continued) 10 600 VI = EN = 2.7 V CI = CO = 4.7 µF VDO − Dropout Voltage − mV Zo − Output Impedance − Ω 500 IO = 1 mA 1 IO = 150 mA 300 200 0.1 1 10 100 0 −55 −35 1000 Figure 9. Output Impedance vs Frequency IO = 1 mA IO = 150 mA 20 10 CO = 4.7 µF ESR = 1 Ω TJ = 25°C 1k 10 k 100 k 1M 10 M 200 100 0 CO = 4.7 µF ESR = 0.25 Ω TJ = 25°C CO = 4.7 µF ESR = 0.25 Ω TJ = 25°C 20 0 dv dt −20 0 20 −100 −150 40 60 80 100 120 140 160 180 200 t − Time − µs Figure 13. TPS76318-Q1 Load Transient Response 8 Submit Documentation Feedback 40 60 80 100 120 140 160 180 200 t − Time − µs 8 dv 1V = 10 ms dt 7 6 5 ∆ VO − Change in Output Voltage − mV ∆ VO − Change in Output Voltage − mV −50 1V 10 s −30 CO = 4.7 µF ESR = 0.25 Ω TJ = 25°C 50 0 20 125 Figure 12. TPS76318-Q1 Line Transient Response VI − Input Voltage − V I O − Output Current − mA Figure 11. TPS76325-Q1 Ripple Rejection vs Frequency 0 105 2 f − Frequency − Hz 50 85 65 3 1 100 45 4 30 −10 10 25 5 ∆ VO − Change in Output Voltage − mV Ripple Rejection − dB 50 40 5 Figure 10. TYPS76325-Q1 Dropout Voltage vs Free-Air Temperature VI − Input Voltage − V 70 60 −15 TJ − Junction Temperature − °C f − Frequency − kHz 0 1 mA 0 mA 100 CI = CO = 4.7 µF ESR = 1 Ω TJ = 25°C 0.1 0.01 150 mA 400 0 −50 −100 0 50 100 150 200 250 300 350 400 450 500 t − Time − µs Figure 14. TPS76350-Q1 Line Transient Response Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 www.ti.com SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 Typical Characteristics (continued) CSR − Compensation Series Resistance − Ω I O − Output Current − mA 100 200 CO = 4.7 µF ESR = 0.25 Ω TJ = 25°C 100 0 ∆ VO − Change in Output Voltage − mV 150 100 0 −100 Region of Instability 10 0.1 Region of Instability 0.01 −200 0 20 40 60 50 100 150 200 250 IO − Output Current − mA Figure 16. Typical Regions of Stability Compensation Series Resistance (CSR) vs Output Current 100 100 CSR − Compensation Series Resistance − Ω CSR − Compensation Series Resistance − Ω 0 80 100 120 140 160 180 200 t − Time − µs Figure 15. TPS76350-Q1 Load Transient Response Region of Instability 10 I = 150 mA CO = 4.7 µF TJ = 25°C 1 0.1 Region of Instability 0.01 CO = 4.7 µF TJ = 25°C 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Region of Instability 10 0.1 Region of Instability 0.01 1 CO = 10 µF 1 0 50 100 150 200 250 Added Ceramic Capacitance − µF IO − Output Current − mA Figure 17. Typical Regions of Stability Compensation Series Resistance (CSR) vs Added Ceramic Capacitance Figure 18. Typical Regions of Stability Compensation Series Resistance (CSR) vs Output Current CSR − Compensation Series Resistance − Ω 100 Region of Instability 10 CO = 10 µF 1 0.1 Region of Instability 0.01 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Added Ceramic Capacitance − µF Figure 19. Typical Regions of Stability Compensation Series Resistance (CSR) vs Added Ceramic Copyright © 2011–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 9 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 www.ti.com 8 Detailed Description 8.1 Overview The TPS763xx-Q1 low-dropout (LDO) regulators are new families of regulators which have been optimized for use in battery-operated equipment and feature low dropout voltages, low quiescent current (140 μA), and an enable input to reduce supply currents to less than 2 μA when the regulator is turned off. 8.2 Functional Block Diagram TPS76301-Q1 OUT IN EN VREF Current Limit/ Thermal Protection FB GND TPS76316/18/25/30/33/50-Q1 OUT IN EN VREF Current Limit/ Thermal Protection GND 8.3 Feature Description 8.3.1 Regulator Protection The TPS763xx-Q1 pass element has a built-in back diode that safely conducts reverse currents when the input voltage drops below the output voltage (for example, during power down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage is anticipated, external limiting might be appropriate. The TPS763xx-Q1 also features internal current limiting and thermal protection. During normal operation, the TPS763xx-Q1 limits output current to approximately 800 mA. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds 165°C, thermal-protection circuitry shuts it down. Once the device has cooled down to below 140°C, the regulator operation resumes. 10 Submit Documentation Feedback Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 www.ti.com SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 8.4 Device Functional Modes 8.4.1 Normal Operation The device regulates to the nominal output voltage under the following conditions: • The input voltage is at least as high as VIN(min). • The input voltage is greater than the nominal output voltage added to the dropout voltage. • The enable voltage is greater than VEN(min). • The output current is less than the current limit. • The device junction temperature is less than the maximum specified junction temperature. 8.4.2 Dropout Operation If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In this mode of operation, the output voltage is the same as the input voltage minus the dropout voltage. The transient performance of the device is significantly degraded because the pass device is in the linear region and no longer controls the current through the LDO. Line or load transients in dropout can result in large output voltage deviations. 8.4.3 Disabled The device is disabled under the following conditions: • The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising threshold. • The device junction temperature is greater than the thermal shutdown temperature. • The input voltage is less than UVLOfalling. Table 1 shows the conditions that lead to the different modes of operation. Table 1. Device Functional Mode Comparison OPERATING MODE PARAMETER VIN VEN IOUT TJ Normal mode VIN > VOUT(nom) + VDO and VIN > VIN(min) VEN > VEN(high) IOUT < ILIM TJ < 125°C Dropout mode VIN(min) < VIN < VOUT(nom) + VDO VEN > VEN(high) — TJ < 125°C Disabled mode (any true condition disables the device) VIN < UVLOfalling VEN < VEN(low) — TJ > 165°C (1) (1) Approximate value for thermal shutdown Copyright © 2011–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 11 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The TPS763xx-Q1 low-dropout (LDO) regulators are new families of regulators which have been optimized for use in battery-operated equipment and feature low dropout voltages, low quiescent current (140 μA), and an enable input to reduce supply currents to less than 2 μA when the regulator is turned off. The TPS763xx-Q1 uses a PMOS pass element to dramatically reduce both dropout voltage and supply current over more conventional PNP pass element LDO designs. The PMOS pass element is a voltage-controlled device that, unlike a PNP transistor, does not require increased drive current as output current increases. Supply current in the TPS763xx-Q1 is essentially constant from no-load to maximum load. Current limiting and thermal protection prevent damage by excessive output current and/or power dissipation. The device switches into a constant-current mode at approximately 1 A; further load reduces the output voltage instead of increasing the output current. The thermal protection shuts the regulator off if the junction temperature rises above 165°C. Recovery is automatic when the junction temperature drops approximately 25°C below the high temperature trip point. The PMOS pass element includes a back diode that safely conducts reverse current when the input voltage level drops below the output voltage level. A logic low on the enable input, EN shuts off the output and reduces the supply current to less than 2 μA. EN should be tied high in applications where the shutdown feature is not used. 9.2 Typical Application A typical application circuit is shown in Figure 20. TPS763xx-Q1 1 VI C1 1 µF IN NC/FB OUT 4 5 VO 3 EN + 4.7 µF GND 2 Note: CSR = 1 Ω TPS76316-Q1, TPS76318-Q1, TPS76325-Q1, TPS76301-Q1 TPS76333-Q1, TPS76350-Q1 (fixed-voltage options) Figure 20. Typical Application Circuit 12 Submit Documentation Feedback Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 www.ti.com SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 Typical Application (continued) 9.2.1 Design Requirements Table 2 lists the design requirements. Table 2. Design Parameters PARAMETER DESIGN REQUIREMENTS Input voltage 2.7 to 10 V Output voltage 2.5 to 6.45 V Output current 0 to 150 mA 9.2.2 Detailed Design Procedure 9.2.2.1 External Capacitor Requirements Although not required, a 0.047 μF or larger ceramic bypass input capacitor, connected between IN and GND and located close to the TPS763xx-Q1, is recommended to improve transient response and noise rejection. A highervalue electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source. Like all low dropout regulators, the TPS763xx-Q1 requires an output capacitor connected between OUT and GND to stabilize the internal loop control. The minimum recommended capacitance value is 4.7 μF and the ESR (equivalent series resistance) must be between 0.3 Ω and 10 Ω. Capacitor values of 4.7 μF or larger are acceptable, provided the ESR is less than 10 Ω. Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described above. Most of the commercially available 4.7-μF surface-mount solid tantalum capacitors, including devices from Sprague, Kemet, and Nichico, meet the ESR requirements stated above. Table 3. Capacitor Selection PART NO. MFR. VALUE MAX ESR SIZE (H × L × W) T494B475K016AS KEMET 4.7 μF 1.5 Ω 1.9 × 3.5 × 2.8 195D106x0016x2T SPRAGUE 10 μF 1.5 Ω 1.3 × 7.0 × 2.7 695D106x003562T SPRAGUE 10 μF 1.3 Ω 2.5 × 7.6 × 2.5 AVX 4.7 μF 0.6 Ω 2.6 × 6.0 × 3.2 TPSC475K035R0600 9.2.2.2 Output Voltage Programming The output voltage of the TPS76301-Q1 adjustable regulator is programmed using an external resistor divided as shown in figure 21. The output voltage is calculated using Equation 1. VO = 0.995 × VREF × (1 + R1/R2) where • • VREF = 1.192 V typical (the internal reference voltage) 0.995 is a constant used to center the load regulator (1%) (1) Resistors R1 and R2 should be chosen for approximately 7-μA divider current. Lower value resistors can be used, but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose R2 = 169 kΩ to set the divider current at 7 μA and then calculate R1 using Equation 2. - (VO + 1) V (V ´ 1000 Line Re g. (mV) = (% / V) ´ O Imax 100 (2) Copyright © 2011–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 13 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 www.ti.com TPS76301-Q1 VI 1 µF 1 IN OUT ≥2 V ≤ 0.5 V 3 5 VO R1 EN 4 + FB 4.7 µF GND 2 R2 CSR = 1 Ω Figure 21. TPS76301-Q1 Adjustable LDO Regulator Programming Table 4. Output Voltage Programming Guide OUTPUT VOLTAGE (V) (1) DIVIDER RESISTANCE (kΩ) (1) R1 R2 2.5 187 169 3.3 301 169 3.6 348 169 4 402 169 5 549 169 6.45 750 169 1% values shown. dv 1V = 10 ms dt 7 6 5 CO = 4.7 µF ESR = 0.25 Ω TJ = 25°C ∆ VO − Change in Output Voltage − mV 50 0 −50 −100 200 CO = 4.7 µF ESR = 0.25 Ω TJ = 25°C 100 0 150 100 0 −100 −200 0 50 100 150 200 250 300 350 400 450 500 t − Time − µs Figure 22. TPS76350-Q1 Line Transient Response 14 I O − Output Current − mA 8 ∆ VO − Change in Output Voltage − mV VI − Input Voltage − V 9.2.3 Application Curves Submit Documentation Feedback 0 20 40 60 80 100 120 140 160 180 200 t − Time − µs Figure 23. TPS76350-Q1 Load Transient Response Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 www.ti.com SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 10 Power Supply Recommendations These devices are designed to operate from an input voltage supply range from 2.7 V to 10 V. The input voltage range must provide adequate headroom in order for the device to have a regulated output. This input supply must be well-regulated and stable. Although not required, a 0.047-μF or larger ceramic bypass input capacitor, connected between IN and GND and located close to the TPS763xx-Q1, is recommended to improve transient response and noise rejection. A higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source. 11 Layout 11.1 Layout Guidelines Layout is a critical part of good power-supply design. There are several signal paths that conduct fast-changing currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade the power-supply performance. To help eliminate these problems, the IN pin should be bypassed to ground with a low ESR ceramic bypass capacitor with an X5R or X7R dielectric. Equivalent series inductance (ESL) and equivalent series resistance (ESR) must be minimized to maximize performance and ensure stability. Every capacitor (CIN, COUT) must be placed as close as possible to the device and on the same side of the PCB as the regulator itself. Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. The use of vias and long traces is strongly discouraged because these circuits may impact system performance negatively, and even cause instability. 11.2 Layout Example Input Plane Output Ground IN Input Ground Output Plane OUT GND EN FB Figure 24. Recommended Layout 11.3 Power Dissipation and Junction Temperature Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature allowable to avoid damaging the device is 150°C. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, PD(max) and the actual dissipation, PD, which must be less than or equal to PD(max). The maximum-power-dissipation limit is determined using Equation 3. PD(max) = TJ(max) – TA / RθJA where • • • TJ(max) is the maximum allowable junction temperature RθJA is the thermal resistance junction-to-ambient for the package, see Thermal Information TA is the ambient temperature Copyright © 2011–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 (3) 15 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 www.ti.com Power Dissipation and Junction Temperature (continued) Use Equation 4 to calculate the regulator dissipation. PD = (VI – VO) × IO (4) Power dissipation resulting from quiescent current is negligible. 12 Device and Documentation Support 12.1 Device Support 12.1.1 Third-Party Products Disclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE. 12.2 Documentation Support 12.2.1 Related Documentation TPS793xx-Q1 Ultralow-Noise, High-PSRR, Fast RF 200-mA Low-Dropout Linear Regulators, SGLS162 12.3 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 5. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY TPS763-Q1 Click here Click here Click here Click here Click here TPS76301-Q1 Click here Click here Click here Click here Click here TPS76316-Q1 Click here Click here Click here Click here Click here TPS76318-Q1 Click here Click here Click here Click here Click here TPS76325-Q1 Click here Click here Click here Click here Click here TPS76330-Q1 Click here Click here Click here Click here Click here TPS76333-Q1 Click here Click here Click here Click here Click here TPS76350-Q1 Click here Click here Click here Click here Click here 12.4 Community Resource The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.5 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 16 Submit Documentation Feedback Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 TPS763-Q1, TPS76301-Q1, TPS76316-Q1, TPS76318-Q1 TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 www.ti.com SGLS247B – SEPTEMBER 2011 – REVISED MARCH 2016 12.6 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.7 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2011–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS763-Q1 TPS76301-Q1 TPS76316-Q1 TPS76318-Q1 TPS76325-Q1 TPS76330-Q1 TPS76333-Q1 TPS76350-Q1 17 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TPS76301QDBVRG4Q1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BAN TPS76301QDBVRQ1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BAN TPS76316QDBVRG4Q1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BAO TPS76318QDBVRG4Q1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BAP TPS76318QDBVRQ1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BAP TPS76325QDBVRG4Q1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BAQ TPS76330QDBVRG4Q1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BAT TPS76333QDBVRG4Q1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BAU TPS76333QDBVRQ1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BAU TPS76350QDBVRG4Q1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BAW TPS76350QDBVRQ1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BAW (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TPS76325QDBVRQ1 价格&库存

很抱歉,暂时无法提供与“TPS76325QDBVRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货