0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CY7C9537B-BLC

CY7C9537B-BLC

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

  • 描述:

    CY7C9537B-BLC - OC-48/STM-16 Framer-POSIC2G - Cypress Semiconductor

  • 数据手册
  • 价格&库存
CY7C9537B-BLC 数据手册
CONFIDENTIAL CY7C9537B OC-48/STM-16 Framer–POSIC2G™ Features • OC-48/STS-48/STM-16, OC-12/STS-12/STM-4, OC-3/STS3/STM-1 rates, concatenated and non-concatenated — Complies with ITU-Standards G.707/Y.1322 and G.783[1,2] — Complies with Bellcore GR253 rev.1, 1997[3] — Channelized operation: supports 16xSTS-3c/VC4, 4xSTS-12c/VC4-4c, 2xSTS-24c/VC4-8c, and 1xSTS-48c/VC4-16c within OC-48 stream — Supports TUG3 mapping in SDH mode • Full duplex mapping of ATM cells over SONET/SDH — Complies with ITU-Standards I.432.2[4,5,6] • Full duplex mapping of packet-over-SONET/SDH: IETF RFC 1619/1662/2615 (HDLC/PPP)[7,8,9] • Generic Protocol Encapsulator/Decapsulator delineates packets/frames with length-CRC frame construct — Generic Framing Procedure (GFP) per ANSI T1X1.5[10,11,12] — GFP 268r1 — Simple Data Link (SDL) - IETF RFC2823 [13] — Cypress Hybrid Data Transport (HDT) [14] • User-programmable encapsulation • User-programmable clear channel transport • User-programmable SONET/SDH bypass • Programmable frame tagging engine for packet preclassification enables such features as — MPLS label lookup and tagging — PPP: LCP and NCP tagging — PPP control packets optionally sent to host CPU interface — MAC/layer 3 address look up and tagging • Programmable A1A2 processing bypass in Rx direction with frame sync input • Complete section overhead (SOH), line overhead (LOH), and path overhead (POH) processing • APS extraction, CPU interrupt generation, and programmable insertion of APS byte • Line side APS port interface • Provision for protection switching on SONET/SDH port • Programmable PRBS generator and receiver • Serial port to access line/section data communication channel (DCC) and voice communication channel (VCC) • Full duplex UTOPIA/OIF-SPI (POS-PHY) level 3 interface [15,16] • 16-bit/32-bit host CPU interface bus • JTAG and boundary scan • Glue-less interface with Cypress CYS25G0101DX OC-48 PHY • 0.18-µm CMOS, 504-pin BGA package • +1.8V for core, +3.3V for LVTTL I/O, +1.5V/+3.3V for HSTL/LVPECL I/O supply, and +0.75V/2.0V reference Applications • Multiservice nodes • ATM switches and routers • Packet routers • Multi-service routers • SONET/SDH add-drop mux for packet/data applications • SONET/SDH/ATM/POS test equipment Notes: 1. ITU-T Recommendation G.707. “Network Node Interface for the Synchronous Digital Hierarchy.” 1996. 2. ITU-T Recommendation G.783. “Characteristics of Synchronous Digital Hierarchy (SDH) Equipment Functional Blocks.” 2000. 3. Bellcore Publication GR-253-Core. “Synchronous Optical Network (SONET) Transport Systems: Common Generic Criteria.” 1997. 4. ITU-T Recommendation I.432.3. “B-ISDN User-Network Interface—Physical Layer Specification: 1544 kbit/s and 2048 kbit/s operation.” 1999. 5. American National Standards Institute. “Synchronous Optical Network (SONET)—Basic Description including Multiplex Structure, Rates and Formats.” ANSI T1.105–1995. 6. American National Standards Institute. “Synchronous Optical Network (SONET)—Payload Mappings.” ANSI T1.105.02–1998. 7. Simpson, W. “PPP Over SONET/SDH.” RFC 1619. May 1994. 8. Simpson, W., ed. “PPP in HDLC-like Framing.” RFC 1662. Daydreamer. July 1994. 9. Malis, A. and Simpson, W. “PPP Over SONET/SDH.” RFC 2615. June 1999. 10. Hernandez-Valencia, E. Lucent Technologies. “A Generic Frame Format for Data Over SONET (DoS).” March 2000. 11. Gorshe, C. and Steven. T1X1.5/99-204, T1 105.02. Draft Text for Mapping IEEE 802.3 Ethernet MAC Frames to SONET Payload. July 1999. 12. Hernandez-Valencia, E. Lucent Technologies. T1X1.5/2000-209. “Generic Framing Procedure (GFP) Specification.” October 9–13, 2000. 13. Carlson, J., P. Langner, E.J. Hernandez-Valencia, and J. Manchester. “PPP over Simple Data Link (SDL) using SONET/SDH with ATM-like Framing.” rfc2823.txt, May 2000. 14. Pankaj, K. “A Hybrid Data Transport Protocol for Optical Networks.” RFC draft-jha-optical-hdt-00.txt. November 2000. Cypress Semiconductor Corporation Document #: 38-02079 Rev. *F • 3901 North First Street • San Jose, CA 95134 • 408-943-2600 Revised May 3, 2005 CONFIDENTIAL CY7C9537B LAN & CBR W AN D a ta L in k D e v ic e or ATM SAR CY7C9537B U T O P IA P O S -P H Y HBST P O S IC E /O CYS25G 0101DX O C -4 8 T ra n s c e iv e r O /E CPU Figure 1. POSIC2G System Application Diagram POSIC2G Logic Block Diagram SONETTX_PAROUT TXFRAME_PULSE TX SONET Line Interface POHSDIN TOHSDIN TE1STROBE TE2STROBE SONET Transmit SONET Framing Overhead Processor Bypass Pointer Processor Transmit SONET Text Framer TXCLKI TXCLKOUT TXD[31:0] RXCLKs RXD[31:0] LFI RXFRAME RXCLK I _PULSE RX SONET Line Interface Receive SONET Receiv e De-Framer SONET SONE Receive SONET Framing T Overhead Overhe Processor Bypass ad Pointer Insertio Processor n SONETRXPARIN Clk2MHz Clk16MHz POHSDOUT RPOHSTART TPOHSTART RE1STROBE RE2STROBE TOHSDOUR TX ATM Encapsulator TX TX Generic HDLC Protocol Encapsulator Encapsulator RX RX RX Generic ATM HDLC Protocol Decapsulator Decapsulator Decapsulator Programmable Frame Tagging Engine TCK TRST TDI TMS TDO General Pins JTAG Interface Transmit UTOPIA/SPI-3 Interface CPU Interface Receive UTOPIA/SPI-3 Interface RST_n SYSCLK RSTOUT_n CLKOUT TEST[2:0] MISC[15:0] POSIC_OEN SCAN_ENA TFCLK TERR TDAT[31:0] TPRTY TADD[3:0] TMOD[1:0] TSOP TEOP STPA PTCA TENB TSX DTCA[3:0] CpuClk CpuTs_n/CpuAds_n CpuSel CpuBlast_n CpuTa_n ChipSel CpuInt CpuClkFail CpuWrRd CpuAD[31:0] Mode RVAL RENB RFCLK RDAT[31:0] RADD[70] RMOD[1:0] RPRTY RERR REOR RSOP RCA RSX Document #: 38-02079 Rev. *F Page 2 of 43 CONFIDENTIAL Overview The CY7C9537B (POSIC2G) is a highly integrated SONET/SDH framer device for transport of ATM and IP packets over SONET/SDH links. It features special functions and architecture to support next-generation optical networking protocols for both SONET/SDH and direct data-over-fiber networks. UTOPIA level 3, OIF-SPI (POS-PHY) level 3 and high-bandwidth synchronous transfer (HBST) interfaces are provided on the system side. POSIC2G performs complete SOH, LOH, and POH processing. Complete access to all overhead bytes is provided through register access via the host CPU interface. Access to selected overhead bytes is also available through the serial port. Optional frame sync input and Transport Overhead (TOH) bypass enables better interface with SPE/VC switched streams. POSIC2G supports packet over SONET/SDH as PPP in HDLC-like frame as per IETF rfc 1619/1662/2615 (PPP). POSIC2G also supports full-duplex ATM over SONET/SDH transport in compliance with ITU I432.2. The Generic Protocol Encapsulator/Decapsulator features wire rate framing, frame delineation and deframing with length-CRC pair header construct. Optional payload scrambling/descrambling and payload FCS are also provided. This enables POSIC2G to support many new-generation protocols like SDL, GFP, and HDT over SONET/SDH. Clear channel mode enables transport of any raw byte streams on selected channels, while the rest of the channels are transporting data through any one of encapsulation/decapsulation engines. The Programmable Frame Tagging Engine enables wire-rate tagging of packets/frames. For new-generation networking features such as MPLS, this engine can be programmed to tag based on existence/lack of specific label/field values, in the first 64 bytes of each packet. This way, packets are tagged for a variety of conditions, all programmable by the user, enabling sorting of packets in the incoming data stream and buffering packets accordingly. In a PPP application, control packets can optionally be sent over the host CPU interface directly. SONET/SDH bypass mode allows use of this device for data transport in non-SONET/SDH point-to-point and mesh optical networks. CY7C9537B POSIC2G supports three basic types of encapsulation, namely (i) ATM, (ii) HDLC frame, and (iii) frames with length-CRC pair header construct based delineation. SDL, GFP and HDT frames are delineated based on length-CRC pair header construct and they are supported by POSIC2G. Clear channel or transparent mode (no encapsulation) is also supported. While in operation, only one type of encapsulation can be enabled for all channels. Some or all of the channels can be programmed as clear channels. For Clear Channels, the encapsulator engine will bypass the encapsulation and pass the packets without any processing to the next block. Since POSIC2G does not have a packet storage memory on-chip, a channel bandwidth balanced packet flow is expected from the system side. To enable such a balanced transfer, POSIC2G has internal FIFO of 512 bytes per channel. The status of FIFO is provided through pins to the link layer. Finally, the SONET/SDH framer inserts the packet/cells into the SONET/SDH frame. All overhead bytes are added. All alarm bits and status bits are inserted based on the status of incoming frames as well as programming done by the host CPU. The scrambler meets relevant standards and can optionally be disabled. Frames are finally sent out on the fiber side interface. If programmed to do so, the SONET/SDH framer can be bypassed and encapsulated packets/frames can be sent directly to the fiber-side interface. Receive In the receive direction, SONET/SDH frames are received from the fiber side. Data packets/frames are extracted from the payload and passed onto the selected decapsulator engine. If the SONET/SDH framer is bypassed, the incoming data stream is directly passed over to the decapsulator engine. Data packets/frames are then decapsulated and sent to the Programmable Frame Tagging Engine. They are then analyzed and tagged before being sent out to the system side via the UTOPIA, OIF-SPI level 3, or HBST interface. Tagging of frames is optional. SONET/SDH frames entering from the fiber side are synchronized and the frame boundary is identified with A1A2 bytes. Frames can be optionally synchronized with Frame_Sync_Input to identify the boundary. Descrambling is performed to retrieve scrambled frames. Complete processing of all overhead bytes, Section, Line, and Path, is performed and all alarm bits are verified and alarms are raised as programmed. Full access to all overhead bytes is provided through register access. Access to selected overhead bytes is also provided through serial bus. The SONET/SDH deframing can be entirely bypassed. The extracted payload is transferred to the decapsulator. The selected decapsulator engine delineates the payload stream, decapsulates and extracts packets/cells from the stream. Descrambling of packets/cells is optional. The packets/cells are then sent out to the programmable Frame Tagging Engine. The Frame Tagging Engine optionally tags the packet/cell as programmed. The packet/cell is then transferred to the link layer device, through the System Interface (UTOPIA/OIF-SPI level 3, or HBST), with an additional eight bits of information. Four bits specify the channel and the other four bits specify the tag. Transmit In the transmit direction, packets are received from the system side, encapsulated/framed and mapped into the SONET/SDH payload. Finally the TOH is added and SONET/SDH frames are passed onto the fiber side/line side interface on a parallel bus. The system side interface can be programmed either as UTOPIA level 3, or OIF-SPI level 3, or HBST modes. In the UTOPIA mode, ATM cells can be received either in 54- (8-bit interface) or 56- (8-bit and 32-bit interfaces) byte format. The sixth byte carries the channel number of the cell. In case of packets, the interface can be programmed as OIF-SPI level 3 or HBST operations. In these cases, the channel number is always carried in the first data transfer. Document #: 38-02079 Rev. *F Page 3 of 43 CONFIDENTIAL Protocol / Frame Types "Clear Channel Transport" CY7C9537B ATM Framer ATM Deframer HDLC Framer HDLC Deframer Generic Protocol Framer Frame Tagger SPI-3/ UTOPIA SONET/ SDH Framer SONET/ SDH Framer Generic Protocol Deframer "Clear Channel Transport" Note: Only one protocol type can be active SPI-3/ UTOPIA Figure 2. Protocol Framers . Generic Frame Encapsulation/Decapsulation POSIC2G supports a variety of protocols/packets/frames to transport over a SONET/SDH link. For clarity of reference, in this document, framing of packets/cells into these protocols is called “encapsulation,” and the engine performing encapsulation is called an “encapsulator.” Similarly, deframing is called “decapsulation,” and the engine performing decapsulation is called a “decapsulator.” Three different encapsulator and decapsulator engines are integrated into POSIC2G. The ATM encapsulator computes and adds the HEC field, scrambles the cells and passes on to the SONET/SDH block. In case of underflow, ATM encapsulator also creates programmable idle cells. The ATM decapsulator checks for HEC and integrity of the cell. It descrambles the cells, isolates and discards idle cells, and passes ATM cells to the Programmable Frame Tagging Engine. The HDLC encapsulator performs Asynchronous Control Character Mapping (ACCM), stuffing, flag sequence insertion, and scrambling. Optionally, up to 16 bytes of header is inserted ahead of the packet while framing the packet. The host CPU can program this 16-byte header through register programming. Such programmable header insertion enables encapsulation of PPP, frame relay, or other protocol. The HDLC decapsulator descrambles the incoming byte stream and searches the flag sequence. Upon finding the boundary, the decapsulator performs destuffing and ACCM demapping before passing the packets to the Programmable Frame Tagging Engine. The Generic Protocol Encapsulator/Decapsulator supports all the protocols with delineation based on length-CRC pair header construct. In the transmit direction, it computes a 16-bit header CRC based on 2-byte length value received from the link layer device. The length and CRC fields are inserted as header of the frame ahead of the packet. Scrambling of the payload and 32-bit payload CRC computation and insertion are optional. In the receive direction, frames are delineated based on the length-CRC construct pair header, integrity verified, payload extracted, optionally descrambled and sent to the Programmable Frame Tagging Engine. The Generic Protocol Encapsulator/Decapsulator can support many protocols with length-CRC pair header construct as the frame delineation mechanism. For example, Simple Data Link (SDL), Generic Framing Procedure (GFP) in Data Over SONET (DOS) and Cypress Hybrid Data Transport (HDT) have frame structure supporting length-CRC construct based delineation. Any selected channel can be programmed to become a clear channel. The encapsulator and decapsulator remain in transparent mode for the clear channel and data passes through without any modification. This feature can be used to transport any raw data streams on a portion of bandwidth while the rest of the bandwidth is utilized for protocol traffic. Document #: 38-02079 Rev. *F Page 4 of 43 CONFIDENTIAL Programmable Frame Tagging Engine The Programmable Frame Tagging Engine provides preclassification of the packets/frames at the wire rate. This helps in utilizing the link layer device more efficiently. The Programmable Frame Tagging Engine enables the user to perform preclassification of all the incoming packets into one of the 16 possible categories. Since each channel can have up to 16 different categories, and up to 16 concatenated channels are possible, this engine supports up to 256 different categories. For classification, two-pass comparison can be specified. For each comparison a field of up to six bytes can be selected within the first 64 bytes of the packet and compared with up to 16 programmed values. The comparison is on a bit by bit basis and any bit comparison can be masked with a user programmable mask register. A four-bit tag is attached to the cell/packet, based on the match. Host CPU can program these parameters through register programming. CY7C9537B The following functions can be achieved with the help of the Programmable Frame Tagging Engine: • Incoming packet analysis to parse packets/frames/cells at wire speed. • User-programmable routing of control packets to CPU for processing. • Incoming frames tagged based on bits (such as congestion) in incoming packets. • User-programmable offset to locate Ethernet and other frames within DOS and other proprietary M.AN networking protocols to allow MPLS processing. SONET/SDH Bypass POSIC2G supports the SONET/SDH framer/deframer bypass mode. Host CPU can program such bypass. In this mode, the data frames/packets, encapsulated by one of the encapsulators, will be transmitted transparently through SONET/SDH blocks to the fiber side and vice versa. System Memory at Host System Tag #0 Control Packets Data Tag #1 Tagging enables sorting of packets by Host System Data Packets POSIC Data Packets not belonging to this Node Tag #2 Rx Processing SPI-3 Interface Data SONET/SDH ........ Tag #n Data TTL-expired and other discard packets Tag #13 Data Errored packets (CRC and Parity) Tag #14 Data Node-sourced packets to be sinked Data Tag #15 Figure 3. Frame Tagging Engine Data Sorting Diagram Document #: 38-02079 Rev. *F Page 5 of 43 CONFIDENTIAL System Interface The system interface is programmable. For an application in an ATM system, the POSIC2G system interface can be programmed to be a PHY side interface as per UTOPIA level 3 specifications. For variable length packets, the POSIC2G system interface can be programmed to be OIF-SPI level 3. ATM cells can also be transferred over a OIF-SPI level 3 bus. The system interface can be programmed in HBST mode. In this case, a separate set of address pins are supported on the system side. This mode supports high-speed burst access. CY7C9537B POSIC2G provides APS byte information to the host CPU. The host CPU is expected to take a protection switching decision and provide necessary instructions to both POSIC2G devices. In case of protection switching, in the transmit direction, the main POSIC2G will perform all other operations as programmed, except some of the line and section processing of SONET/SDH framing. The main POSIC2G device will then pass on the SPEs to the standby device through the APS port. The standby device will then perform the rest of the line and section processing and transport SONET/SDH frames over standby fiber. Similarly, in case of protection switched mode, on the receive side, the standby device will process some of the line and section overhead and transfer the frames to main device through the APS port. The main device will perform the rest of the processing in the receive side. RxS RxS RxM PHY STANDBY POSIC STANDBY CPU Interface POSIC2G can interface with a 16-bit or 32-bit CPU. The CPU interface can be pin configured to be compatible with a Motorola or Intel bus interface. The CPU interface provides access to all registers of POSIC2G, collates all interrupt generated by various blocks and also supports control packet transfers. Line Interface The line interface/fiber side interface is configurable as 8-bit, 16-bit, or 32-bit, depending on the clock frequency and data rate. The options shown in Table 1 are available. Table 1. Configuration Options Bus Width 8 bits 8 bits 16 bits 16 bits 32 bits Clock Frequency 19.44 MHz 77.76 MHz 38.88 MHz 155.52 MHz 77.76 MHz Line Rate OC-3/STM-1 OC-12/STM-4 OC-12/STM-4 OC-48/STM-16 OC-48/STM-16 TxS TxS RxS RxM PHY MAIN RxM POSIC MAIN TxS TxM TxM LINK LAYER DEVICE Clock Source The transmit clock can be programmed to be one of the following sources: • Received clock supplied by the PHY. • External transmit clock source. Working Channel Protection Figure 4. POSIC2G APS Implementation using Two POSIC Devices Single Framer APS Implementation A main and slave PHY device can be interfaced directly to the main and APS ports of a single POSIC2G device. In this case, the main PHY is connected to the main line interface and the standby PHY is connected to the APS port. In the POSIC2G transmit path, SONET/SDH data is bridged across the main and APS ports (per linear 1+1 APS requirements). When protection switching, POSIC2G can be programmed to switch line inputs from the main receive port to the APS receive port, or vice versa. This APS scheme provides solely optical/PHY link level protection. APS Port POSIC2G provides a 16-bit APS port for 1+1 protection. The support of a main and standby PHY interface connectivity allows several different APS implementation options using POSIC2G. Multi-Framer APS Implementation Two POSIC2G devices can be connected to two different transceivers, optics and fibers. POSIC2G enables protection switching with only one device being main and connected to link layer. The standby POSIC2G device is connected to the main POSIC2G device and it is controlled by host CPU. Document #: 38-02079 Rev. *F Page 6 of 43 CONFIDENTIAL OSC LVPECL 155.52MHz CY7C9537B Main OC-48 PHY REFCLK TXCLKI TXCLKO TXD[15:0] M TXCLKO TXCLKI TXD [15:0] RXD[15:0] RXCLK LFI LFI M SFF Optical Module RXD[15:0] RXCLK POSIC2G Standby PHY REFCLK TXCLKO LFI TXCLKI TXD[31:16] TXD [15:0] RXD[15:0] RXCLK SFF Optical Module RXD[31:16] RXCLKS Figure 5. POSIC2G APS Implementation Using a Single POSIC Device Document #: 38-02079 Rev. *F Page 7 of 43 CONFIDENTIAL Pin Configuration 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 CY7C9537B 4 3 2 1 A VSS1 VSS1 VSS2 VCC1 VSS2 VCC3 VSS2 VCC2 VCC2 VSS2 VCC3 VSS2 VCC3 VCC2 VSS2 VCC2 VSS2 VCC3 VCC2 VSS2 VCC3 VSS1 VCC3 VSS1 VSS1 A B VSS1 VCC3 VSS1 VCC3 VSS1 VSS1 VCC3 VSS2 VSS2 VCC1 VCC2 VCC1 VSS2 VSS1 B C VSS2 VCC2 VCC3 VCC1 VSS2 VSS1 CLK_OUT VSS2 VCC1 VCC3 C D VSS2 VSS1 VCC1 VCC1 VCC1 VCC3 VCC3 VCC1 VSS1 VCC1 D E VCC1 VCC2 RXFRAME _PULSE VCC1 VCC3 VCC3 VSS2 VCC1 VSS2 VCC3 E F VSS2 VSS1 RDAT RDAT VCC3 F G VCC1 VCC2 VREF VCC3 SONETRx_ PARIN LFI RDAT RDAT VSS2 RDAT RDAT VSS2 G H VCC1 RXD RXD RXCLKS RDAT RDAT RDAT VCC3 RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT VCC3 RDAT RDAT RDAT RDAT H J VSS1 RXD RXD RXD RXD RXD VSS2 J K RXD RXD VSS1 RXD RXD VCC3 RDAT RDAT K L VCC1 RXD RXD RXD RXD L M VSS1 RXD RXD RXD VREF M N RXD RXCLK RXD RXD RXD RADD RADD N P VSS1 RXD RXD VREF RXD R VSS2 RXD TXCLKIN RXD RXD T VCC5 TXD TXD RXD RXD U TXD TXD VREF RXD RXD CY7C9537B (POSIC) Ball Assignment (Bottom View) TDAT TDAT TDAT RPOHSTA RT TDO CLK16MH z VSS2 RADD RADD RADD RADD VSS2 P RADD RADD RMOD RMOD VCC3 RSOP/RSO C REOP R RPRTY RERR VSS2 T RSX RCA TDAT RENB RVAL U V VCC5 TXD TXD TXD TXD TXCLKOU T TXD TXD TXD TDAT TDAT RFCLK TDAT TDAT V W VSS2 TDAT TDAT TDAT TDAT TDAT W TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT Y TXD TXD TXD VCC5 VSS2 VCC3 Y AA VCC5 TXD TXD TXD TXD TXD VSS2 AA AB VCC5 TXD TXD TXD TXD TXD VCC2 TDAT TDAT VCC3 AB AC VSS2 TXD TXD TXD TXD SONETTx _PAROUT TXD VSS2 AC AD VCC5 TXD TXD TXD TMS POSIC_OE N MODE CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD STPA TMOD TEOP VSS1 VCC2 AD AE VSS2 VCC1 TXFRAME POHSDOU _PULSE T VCC5 TOHSDIN SYSCLK TEST CPUTA_N DTCA TFCLK TENB VCC2 TDAT TADD TADD VSS1 AE AF VSS2 VSS1 VSS2 VCC1 RE1STRO TE2STRO BE CLK2MHz BE TRST TCK CPUCLK CHIPSEL VCC2 SCAN _ENA CPUINT CPUAD CPUAD VSS2 TMOD TSOP TERR VCC1 TADD VCC2 VCC1 AF AG VCC3 VCC5 VCC3 TOHSDOU RE2STRO T BE VSS1 RSTOUT_ N POHSDIN TEST TDI CPUAD CPUWRD CPUSEL VSS1 CPUAD PTCA DTCA TSX TPRTY TADD VCC2 VCC1 VCC2 AG AH VSS2 VSS2 VCC1 VSS1 TPOHSTA TE1STRO RT BE VSS1 VCC2 VSS1 VSS1 TEST CPURST_ CPUBLAS CPUAD N T_N VSS1 CPUCLKF AIL DTCA DTCA VSS1 VSS1 VCC1 VCC2 VCC2 AH AJ VSS1 VSS1 VSS2 VCC1 VCC3 VCC3 VSS2 VSS2 VSS2 VCC3 VSS1 VSS1 CPUTS_N VSS2 VCC3 VSS2 VSS2 VCC3 VSS2 VCC3 VSS2 VCC3 VCC1 VSS1 VSS2 VSS1 VSS1 AJ 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Document #: 38-02079 Rev. *F Page 8 of 43 CONFIDENTIAL Pin Description Signal Name RXFRAME_PULSE TXFRAME_PULSE RXD[31:0] RXCLK RXCLKs TXCLKOUT I/O I Pad Type HSTL/LVTTL /LVPECL HSTL/LVTTL /LVPECL HSTL/LVTTL /LVPECL HSTL/LVTTL /LVPECL Pins JTAG 1 1 32 1 1 1 N N N N N N Description Line Interface Signals CY7C9537B Optional Frame pulse input for line interface. Active HIGH. Frame pulse output for line interface. Active HIGH. 32-bit single ended receive data bus for SONET/SDH link. This bus can be configured as two 16-bit buses in APS operation. Receive clock input from the PHY device for line interface. Receive clock input from the Slave PHY device for SONET/SDH link to support APS. Transmit Clock to physical layer device for line interface. This will be RXCLK or the TXCLKI based on the clock selection in the SONET Tx block register. During loopback this is same as the RXCLK. Input transmit clock from physical layer device for line interface. 32-bit single ended transmit data bus for line interface. This bus can be configured as two 16-bit buses in APS operation. SONET Tx Parity Output. Can be ODD/EVEN parity, as programmed in the SONET/SDH Tx block register. SONET Rx Parity Input. Can be ODD/EVEN parity, as programmed in the SONET/SDH Rx block register. Line fault indicator. When LOW, this signal indicates that the PHY has detected Loss of Optical signal on the SONET link. TOH Serial Port Clock Output. TOHDout is clocked out on the rising edge of this clock and TOHDin is latched-in with the falling edge of this clock. The frequency is 2.048 MHz, derived from SysClk. POH Serial Port Clock Output. POHDout is clocked out on rising edge of this clock and POHDin is latched-in with falling edge of this clock. The frequency is 16.625 MHz, derived from SysClk Transmit E1 Strobe. Transmit TOH serial port data start indication. Active HIGH pulse generated once in every 125 ms. Indicates the first bit of E1 Byte. Transmit E2 Strobe. Active HIGH pulse generated once in every 125 ms. Indicates the first bit of E2 Byte. Transmit POH Serial Port Data Start Indication. Active HIGH pulse generated once in every 125 ms. Transport over head serial port data input. Path over head serial port data input. Receive E1 Strobe. Receive TOH serial port data start indication. Active HIGH pulse generated once in every 125 ms. Indicates that the POSIC2G expects the first bit of the first byte of E1 should accompany the next clock edge. MSB is transmitted first. Receive E2 Strobe. Active HIGH pulse generated once in every 125 ms. Indicates that the POSIC2G expects the first bit of the first byte of E2 should accompany the next clock edge. MSB is transmitted first. Receive POH Serial Port Data Start Indication. Active HIGH pulse generated once in every 125 ms. Indicates that the POSIC2G expects the first bit of the first byte of RPOH should accompany the next clock edge. Transport over head serial port data output. Path over head serial port data output. Page 9 of 43 O HSTL/LVTTL I I I O HSTL/LVTTL TXCLKI TXD[31:0] SONETTX_PAROU T SONETRX_PARIN LFI_n I HSTL/LVTTL /LVPECL 1 32 1 1 1 N N N N N O HSTL/LVTTL O HSTL/LVTTL I I HSTL/LVTTL /LVPECL LVTTL Overhead Bytes Access – Serial Ports Clk2MHz O LVTTL 1 N Clk16MHz O LVTTL 1 N TE1STROBE O LVTTL 1 N TE2STROBE TPOHSTART TOHSDIN POHSDIN RE1STROBE O LVTTL O LVTTL I I LVTTL LVTTL 1 1 1 1 1 N N N N N O LVTTL RE2STROBE O LVTTL 1 N RPOHSTART O LVTTL 1 N TOHSDOUT POHSDOUT O LVTTL O LVTTL 1 1 N N Document #: 38-02079 Rev. *F CONFIDENTIAL Pin Description (continued) Signal Name I/O Pad Type Pins JTAG Description System Interface (OIF-SPI level 3/UTOPIA level 3/HBST) signals (in this section, POS = OIF-SPI Level 3, ATM = Utopia level 3 mode) RVAL O LVTTL 1 N CY7C9537B POS: Receive Data Valid (RVAL) signal. RVAL indicates the validity of receive data signals. RVAL will transition LOW when receive FIFO is empty or at the end of a packet. When RVAL is HIGH, the RDAT[31:0], RPRTY, RMOD[1:0], RSOP, REOP, and RERR signals are valid. When RVAL is LOW, the RDAT[31:0], RPRTY, RMOD[1:0], RSOP, REOP, and RERR signals are invalid and must be disregarded. HBST: Receive Data Valid (RDVAL) signal. The RDATA, RBVAL, RSOP, REOP, RERR, and RADDR are valid when this signal is active. POS: Receive Read Enable (RENB) signal. The RENB signal is used to control the flow of data from the receive FIFOs. During data transfer, RVAL must be monitored as it will indicate if the RDAT[31:0], RPRTY, MOD[1:0], RSOP, REOP, RERR and RSX are valid. The system may deassert RENB at anytime if it is unable to accept data from POSIC2G. When RENB is sampled LOW by POSIC2G, a read is performed from the receive FIFO and the RDAT[31:0], RPRTY, RMOD[1:0], RSOP, REOP, RERR, RSX and RVAL signals are updated on the following rising edge of RFCLK. When RENB is sampled HIGH by POSIC2G, a read is not performed and the RDAT[31:0], RPRTY, RMOD[1:0], RSOP, REOP, RERR, RSX and RVAL signals will not be updated. ATM: Enable Data Transfers (RxENb*) signal Enables port selection. HBST: Receive Data Ready (RREADY_n) signal Active LOW signal, indicates ready to accept data. The device will send valid data 2 clocks after the assertion of this signal. POS: Receive FIFO Write Clock (RFCLK). RFCLK is used to synchronize data transfer transactions between the LINK Layer device and the POSIC2G. RFCLK may cycle at a rate up to 100 MHz. ATM: Transfer/interface clock (RxClk) HBST: Receive Clock (RCLK). Max 104-MHz Receive Clock for level-3 operation. All signals are latched out on the rising edge of this clock. RENB I LVTTL 1 N RFCLK I LVTTL 1 N Document #: 38-02079 Rev. *F Page 10 of 43 CONFIDENTIAL Pin Description (continued) Signal Name RDAT[31:0] I/O Pad Type Pins JTAG 32 N Description O LVTTL CY7C9537B POS: Receive Packet Data Bus (RDAT[31:0]) The RDAT[31:0] bus carries the packet octets that are read from the receive FIFO and the in-band port address of the selected receive FIFO. RDAT[31:0] is considered valid only when RVAL is asserted. Given the defined data structure, bit 31 is received first and bit 0 is received last. ATM: Receive Cell Data Bus (RxData[31:0]) The RDAT[31:0] bus carries the cell octets that are read from the receive FIFO. RDAT[31:0] is considered valid only when RENB is asserted. Given the defined data structure, bit 31 is received first and bit 0 is received last RDAT[31:0] is updated on the rising edge of RCLK. This bus is big-endian in format. HBST: Receive Data Bus (RDATA[31:0]) 32-bit Data Bus, the data is valid when RDVAL signal is active. HBST: Receive Port Address (RADDR[7:0]). When RDVAL signal is active, this address on this bus indicates port address in RADDR[3:0] and tag value in RADDR[7:4]. In single-channel mode all 8 bits will contain the tag value. RADDR is considered valid only when RDVAL is asserted POS: Receive Word Modulo (RMOD[1:0]) signal. RMOD[1:0] indicates the number of valid bytes of data in RDAT[31:0]. The RMOD bus should always be all zero, except during the last double-word transfer of a packet on RDAT[31:0]. When REOP is asserted, the number of valid packet data bytes on RDAT[31:0] is specified by RMOD[1:0] RMOD[1:0] = “00” RDAT[31:0] valid RMOD[1:0] = “01” RDAT[31:8] valid RMOD[1:0] = “10” RDAT[31:16] valid RMOD[1:0] = “11” RDAT[31:24] valid RMOD[1:0] is considered valid only when RVAL is asserted. HBST: Receive Data Byte Valid (RBVAL[1:0]) signals. This indicates the number of bytes data bytes valid on the RDATA bus, 00 = 4 bytes valid, 11 = 1 byte valid. POS: Receive Parity (RPRTY) signal. The receive parity (RPRTY) signal indicates the parity calculated over the RDAT bus. RPRTY supports both odd and even parity. ATM: Receive Parity (RxPrty) signal. Data bus odd parity. HBST: Receive Bus Parity (RPARITY) signal. Receive bus parity, Even/Odd parity calculated on the data bus alone or on all the bus signals (RDATA, RADDR, RDVAL, RBVAL, RSOP, REOP, RERR). RADD[7:0] O LVTTL 8 N RMOD[1:0] O LVTTL 2 N RPRTY O LVTTL 1 N Document #: 38-02079 Rev. *F Page 11 of 43 CONFIDENTIAL Pin Description (continued) Signal Name RERR I/O Pad Type Pins JTAG 1 N Description O LVTTL CY7C9537B POS: Receive Error Indicator (RERR) signal. RERR is used to indicate that the current packet is aborted and should be discarded. RERR shall only be asserted when REOP is asserted. Conditions that can cause RERR to be set may be, but are not limited to, FIFO overflow, abort sequence detection, and FCS error. RERR is considered valid only when RVAL is asserted. HBST: Receive Error Indicator (RERR) signal. A HIGH indicates the current packet or cell has error. POS: Receive End Of Packet (REOP) signal. REOP is used to delineate the packet boundaries on the RDAT bus. When REOP is HIGH, the end of the packet is present on the RDAT bus. REOP is required to be present at the end of every packet and is considered valid only when RVAL is asserted. HBST: End of Packet/Cell (REOP) signal. A HIGH indicates the end of packet or cell. POS: Receive Start of Packet (RSOP) signal. RSOP is used to delineate the packet boundaries on the RDAT bus. When RSOP is HIGH, the start of the packet is present on the RDAT bus. RSOP is required to be present at the start of every packet and is considered valid when RVAL is asserted. ATM: Receive Start of Cell (RxSOC). This signal marks the start of a cell structure on the RxData bus. The first word of the cell structure is present on the RxData[31:0] bus when RxSOC is HIGH. RxSOC is updated on the rising edge of RxClk. HBST: Receive Start of Packet/Cell (RSOP) signal. A HIGH indicates start of packet or start of cell. ATM: UTOPIA Receive Cell Available (RxClav). RxClav will be asserted, whenever a minimum of 1 cell of data is available in the Receive FIFO. HBST: Receive FIFO Available (RSTFA) signal. RSTFA indicates when data is available in the receive FIFO. RSTFA will be asserted, whenever receive FIFO has at least predefined number of bytes to be read (the number of bytes is user programmable). RSTFA is updated on the rising edge of RCLK. POS: Receive Start of Transfer signal. RSX indicates when the in-band port address is present on the RDAT bus. When RSX is HIGH and RVAL is LOW, the value of RDAT[7:0] is the address of the receive FIFO to be selected by POSIC2G. Subsequent data transfers on the RDAT bus will be from the port as specified by the in-band address. REOP O LVTTL 1 N RSOP/RSOC O LVTTL 1 N RCA O LVTTL 1 N RSX O LVTTL 1 N Document #: 38-02079 Rev. *F Page 12 of 43 CONFIDENTIAL Pin Description (continued) Signal Name TFCLK I/O I Pad Type LVTTL Pins JTAG 1 N Description CY7C9537B POS: Transmit FIFO Write Clock (TFCLK). TFCLK is used to synchronize data transfer transactions between the LINK Layer device and POSIC2G. TFCLK may cycle at a rate up to 100 MHz. ATM: Transfer/Interface Clock (TxClk). HBST: Transmit Clock (TCLK). Max. 104-MHz Transmit Clock for level-3 operation. All transmit signals are sampled on rising edge of the clock. POS: Transmit Error Indicator (TERR) signal. TERR is used to indicate that the current packet should be aborted. When TERR is set HIGH, the current packet is aborted. TERR should only be asserted when TEOP is asserted. HBST: Transmit Error Indicator (TERR) signal. A HIGH indicates the current packet or cell has error. POS: Transmit Write Enable (TENB) signal. The TENB signal is used to control the flow of data to the transmit FIFOs. When TENB is HIGH, the TDAT, TMOD, TSOP, TEOP, and TERR signals are invalid and are ignored by POSIC2G. The TSX signal is valid and is processed by POSIC2G when TENB is HIGH. When TENB is LOW, the TDAT, TMOD, TSOP, TEOP and TERR signals are valid and are processed by POSIC2G. Also, the TSX signal is ignored by POSIC2G when TENB is LOW. ATM: Transmit Write Enable (TxEnb*). This signal is an active LOW input which is used to initiate writes to the transmit FIFOs. When TxEnb* is sampled HIGH, the information sampled on the TxData, TxPrty, and TxSOC signals are invalid. When TxEnb* is sampled LOW, the information sampled on the TxData, TxPrty, and TxSOC signals are valid and are written into the transmit FIFO. TxEnb* is sampled on the rising edge of TxClk. HBST: Transmit Data Valid (TDVAL_n) signal. The TDVAL_n signal is used to control the flow of data to the transmit FIFOs. When TDVAL_n is HIGH, the TDATA, TBVAL, TSOP, TADDR, TSOP, TEOP, and TERR signals are valid and are processed by POSIC2G. TERR I LVTTL 1 N TENB I LVTTL 1 N Document #: 38-02079 Rev. *F Page 13 of 43 CONFIDENTIAL Pin Description (continued) Signal Name TDAT[31:0] I/O I Pad Type Pins JTAG 32 N Description CY7C9537B POS: Transmit Packet Data Bus (TDAT) bus. This bus carries the packet octets that are written to the selected transmit FIFO and the in-band port address to select the desired transmit FIFO. The TDAT bus is considered valid only when TENB is simultaneously asserted. Data is transmitted in big endian order on TDAT[31:0]. Given the defined data structure, bit 31 is transmitted first and bit 0 is transmitted last. ATM: Transmit Data Bus (TxData) bus. This data bus carries the ATM cell. Data on this bus is valid only if TxEnb* is HIGH. TxData[31:0] is three-stated if TxEnb* is LOW. TxData[31:0] is updated on the rising edge of TxClk. HBST: Transmit Data Bus (TDATA) bus. 32-bit Data bus. The data is valid when TDVAL_n signal is active. POS: Transmit Bus Parity (TPRTY) signal. The transmit parity (TPRTY) signal indicates the parity calculated over the TDAT bus. TPRTY is considered valid only when TENB is asserted. TPRTY is supported for both even and odd parity. ATM: Transmit Bus Parity (TxPrty). This signal indicates the parity on the TxData bus. A parity error is indicated by a status bit and a maskable interrupt. TxPrty is considered valid only when TxEnb* is simultaneously asserted. TxPrty is sampled on the rising edge of TxClk. HBST: Transmit Bus Parity (TPARITY) signal. Even/Odd parity calculated on the data bus alone or on all the bus signals (TDATA, TADDR, TDVAL_n, TBVAL, TSOP, TEOP, and TERR). POS: Transmit Address Bus (PTADR) bus. Address driven by Link layer to poll and select the appropriate POSIC2G channel (port). The value for the Transmit and Receive portions of a channel should be identical. Address 31 indicates a null port. ATM: Transmit Address Bus (TxAddr) bus. Address of POSIC2G channel being selected. HBST: Port Address (TADDR) bus. Address driven by the Link Layer to indicate the port address of current data transfer. TPRTY I LVTTL 1 N TADD[3:0] I LVTTL 4 N Document #: 38-02079 Rev. *F Page 14 of 43 CONFIDENTIAL Pin Description (continued) Signal Name TMOD[1:0] I/O I Pad Type LVTTL Pins JTAG 2 N Description CY7C9537B POS: Transmit Word Modulo (TMOD[1:0]) signal. TMOD[1:0] indicates the number of valid bytes of data in TDAT[31:0]. The TMOD bus should always be all zero, except during the last double-word transfer of a packet on TDAT[31:0]. When TEOP is asserted, the number of valid packet data bytes on TDAT[31:0] is specified by TMOD[1:0]. TMOD[1:0] = “00” TDAT[31:0] valid TMOD[1:0] = “01” TDAT[31:8] valid TMOD[1:0] = “10” TDAT[31:16] valid TMOD[1:0] = “11” TDAT[31:24] valid In 16-bit mode, only TMOD[0] is valid. TMOD[0] = “1” TDAT[15:8] valid (16-bit mode) TMOD[0] = “0” TDAT[15:0] valid (16-bit mode) HBST: Transmit Byte Valid (TBVAL[1:0]) signals. This indicates the number of bytes data bytes on the TDATA bus, 00 = 4 bytes valid, 11 = 1 byte valid. POS: Transmit Start of Packet (TSOP) signal. TSOP is used to delineate the packet boundaries on the TDAT bus. When TSOP is HIGH, the start of the packet is present on the TDAT bus. TSOP is required to be present at the beginning of every packet and is considered valid only when TENB is asserted. ATM: Transmit Start of Cell (TxSOC) signal. This signal marks the start of a cell structure on the TxData bus. TxSOC must be present for each cell. TxSOC is considered valid only when TxEnb* is simultaneously asserted. TxSOC is sampled on the rising edge of TxClk. HBST: Transmit Start of Packet (TSOP) signal. A high indicates the start of packet or start of cell. POS: Transmit End of Packet (TEOP) signal. TEOP is used to delineate the packet boundaries on the TDAT bus. When TEOP is HIGH, the end of the packet is present on the TDAT bus. TEOP is required to be present at the end of every packet and is considered valid only when TENB is asserted. HBST: Transmit End of Packet (TEOP) signal. A HIGH indicates the end of packet or end of cell. POS: Transmit Packet Available (DTPA) bus. This signal provides direct status indication of the fill status of the transmit FIFO. Note that, regardless of what fill level TPA is set to indicate “full” at, the transmit packet processor can store 256 bytes of data. When DTPA transitions HIGH, it indicates that the transmit FIFO has enough room to store a configurable number of data bytes. This transition level is selected in the CPU programmable registers. When TPA transitions LOW, it indicates that the transmit FIFO is either full or near full as specified by the CPU programmable registers. DTPA is updated on the rising edge of TFCLK. HBST: Polled FIFO Available Status (TFAST) bus. When the signal TSOFST is active, the status of channels 0,4,8,12 is given first followed by 1,5,9,13 and 2,6,10,14 and the last 3,7,11,15. TSOP I LVTTL 1 N TEOP I LVTTL 1 N DTCA[3:0] O LVTTL 4 N Document #: 38-02079 Rev. *F Page 15 of 43 CONFIDENTIAL Pin Description (continued) Signal Name STPA I/O Pad Type Pins JTAG 1 N Description O LVTTL CY7C9537B POS: Selected Channel Transmit Packet Available (STPA) signal. STPA transitions HIGH when a predefined minimum number of bytes are available in the selected transmit FIFO. Once HIGH, STPA indicates that transmit FIFO is not full. When STPA transitions LOW, it optionally indicates that transmit FIFO is full or near full (user programmable). STPA always provides status indication for the selected channel in order to avoid FIFO overflows while polling is performed. STPA is three-stated when TENB is deasserted in the previous cycle. STPA is also deasserted when either the null-port address (0x1F) or an address not matching the POSIC2G address is presented on the TADR[3:0] signals when TENB is sampled HIGH (has been deasserted during the previous clock cycle). STPA is mandatory only if packet-level transfer mode is supported. It is not be driven in byte-level mode. ATM: There is no corresponding pin definition in ATM mode, however, this pin will output the same signal as STPA in POS mode HBST: FIFO Available Status (TSTFA) signal. FIFO available status of the selected port is reflected on this pin two clocks after detecting the port address when the TDVAL signal is active. POS: Polled-Port Transmit Packet Available (PTPA) signal. PTPA transitions HIGH when a predefined (user-programmable) minimum number of bytes are available in the polled transmit FIFO. Once HIGH, PTPA indicates that the transmit FIFO is not full. When PTPA transitions LOW, it optionally indicates that transmit FIFO is full or near full (user-programmable). PTPA allows polling the POSIC2G channel selected by TADR[3:0] when TENB is asserted. PTPA is driven by a POSIC2G when its address is polled by TADR[3:0]. POSIC2G will three-state PTPA when either the null-port address (0x1F) or an address not matching POSIC2G is provided on TADR[3:0]. PTPA is mandatory only if in packet-level transfer mode. It will not be driven in byte-level mode. ATM: UTOPIA Transmit Cell Available (TxClav) The TxClav signal indicates when a cell is available in the transmit FIFO for the port polled by TxAddr[3:0] when TxEnb* is asserted. When HIGH, TxClav indicates that the corresponding transmit FIFO is not full and a complete cell may be written. When TxClav goes LOW, it can be configured to indicate either that the corresponding transmit FIFO is near full or that the corresponding transmit FIFO is full. TxClav is three-stated when either the null-Port address (0x1F) or an address not matching the address space set is latched from the TxAddr[4:0] inputs when TxEnb* is HIGH. TxClav is updated on the rising edge of TxClk. HBST: FIFO Available status on TFAST bus (TSOFST) signal. Active HIGH pulse indicates the start of FIFO available status on TFAST bus. This signal is repeated once in every four clocks. POS: Transmit Start of Transfer (TSX) signal. TSX indicates inband port address on the TDAT bus. When TENB is HIGH and TSX is asserted (HIGH), the value of TADR[3:0] is the address of transmit FIFO selected. TSX is valid only when TENB is deasserted. PTCA O LVTTL 1 N TSX I LVTTL 1 N Document #: 38-02079 Rev. *F Page 16 of 43 CONFIDENTIAL Pin Description (continued) Signal Name CpuClk CpuSel CpuTs_n/CpuAds_n CpuWrRd I/O I I I I Pad Type LVTTL LVTTL LVTTL LVTTL Pins JTAG 1 1 1 1 N Y Y Y CPU Clock. Description CPU Interface Signals CY7C9537B Used to select between Intel and Motorola CPU. ‘0’ = Motorola, ‘1’ = Intel. Transfer Start. Active LOW. Write/Read Signal. In Intel mode, this signal is active HIGH during write operation. In Motorola mode, this signal is active LOW during write operation. Transfer Acknowledge/Data Ready. Active LOW. Open Drain Output Used with Burst Transaction. Active LOW. Interrupt to CPU. Active LOW. CPU Clock fail signal. When LOW indicates failure of CPU clock. Address/Data Bus. The chip select signal for POSIC2G. Active Low 32/16 bit mode select. ‘0’ = 32-bit mode, ‘1’ otherwise JTAG Mode: Test clock JTAG Mode: Test reset JTAG Mode: Test input JTAG Mode: Test mode Select. Pull-down to GND during POSIC2G normal operation. JTAG Mode: Test Output CpuTa_n CpuBlast_n/ CpuBdip_n CpuInt/ CpuClkFail CpuAD[31:0] ChipSel Mode TCK TRST TDI TMS TDO VREF RST_n SYSCLK CLKOUT RSTOUT O LVTTL I LVTTL O LVTTL O LVTTL I/O LVTTL I I I I I I LVTTL LVTTL LVTTL LVTTL LVTTL LVTTL 1 1 1 1 32 1 1 1 1 1 1 1 4 1 1 1 1 Y Y Y Y Y Y Y JTAG Interface Signals O LVTTL I I I VREF LVTTL LVTTL Miscellaneous Signals N N N N Y Reference Voltage for HSTL and LVPECL inputs. Set to GND during LVTTL mode of operation. Active LOW asynchronous reset input. 133-MHz System Clock. SYSCLK Out. Reset Out. This pin will go LOW when writing a “1” to the Device Reset Register (Block Addr = 0x00, Reg Addr = 0xb) to deactivate the chip from the reset condition. Test Mode selection signals. Pull-up to ‘1’ during POSIC2G normal operation. SCAN ENABLE pin. Active HIGH. During POSIC2G normal operation this signal should be LOW. The POSIC2G Output Enable (POSIC_OEN) signal. When set to logic one, all POSIC2G outputs (except CpuTa_n) are held three-state. When POSIC_OEN is set to logic zero, all interfaces are enabled. Pull-down to ‘0’ for normal operation. O LVTTL O LVTTL TEST[2:0] SCAN_ENA POSIC_OEN I I I LVTTL LVTTL LVTTL 3 1 1 Y Y N Total IO Pins Power: VCC Pad+Core Power: GND Pad+Core TOTAL P P 336 85 83 504 I/Os: 336; Power: 168 Document #: 38-02079 Rev. *F Page 17 of 43 CONFIDENTIAL Pin Assignment Pin assignment is tentative. Please check with Cypress for final information. CY7C9537B Pin Assignment Table Signal RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RDAT RADD RADD RADD RADD RADD RADD RADD RADD RERR Document #: 38-02079 Rev. *F Ball F3 F2 J6 J5 J4 J3 J2 K5 K4 K3 K2 L5 G6 L4 L3 L2 L1 M5 M4 M3 M2 M1 N5 G5 N4 N3 G3 G2 H6 H5 H4 H2 N2 N1 P5 P4 P3 P2 R5 R4 T4 Pin Type LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT Page 18 of 43 CONFIDENTIAL Pin Assignment Table (continued) Signal RMOD RMOD RPRTY REOP RCA RSOP/RSOC RSX RVAL RFCLK RENB TADD TADD TADD TADD TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT TDAT Document #: 38-02079 Rev. *F Ball R2 R3 T5 T2 U4 T3 U5 U1 V3 U2 AE3 AE4 AF3 AG4 U3 V1 Y2 Y3 Y4 Y5 AA2 AA3 AA4 AA5 AA6 AB2 V2 AB3 AB4 AB6 AC2 AC3 AC4 AC5 AC6 AD2 AD4 V4 AD5 AE2 V5 W1 W2 W3 CY7C9537B Pin Type LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN Page 19 of 43 CONFIDENTIAL Pin Assignment Table (continued) Signal TDAT TDAT TERR TENB TPRTY TSOP TEOP TSX TFCLK TMOD TMOD DTCA DTCA DTCA DTCA STPA PTCA CPUTA_N CPUCLKFAIL CPUINT CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD Document #: 38-02079 Rev. *F Ball W4 W5 AF5 AE6 AG5 AF6 AD7 AG6 AE7 AF7 AD8 AH6 AE8 AG7 AH7 AD9 AG8 AE9 AH8 AF9 AG9 AH9 AJ11 AE12 AF12 AH12 AE13 AF13 AG13 AH13 AJ13 AE14 AE10 AF14 AG14 AE15 AF15 AG15 AH15 AE16 AF16 AH16 AE17 AF10 CY7C9537B Pin Type LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT Open Drain Output LVTTL_OUT LVTTL_OUT LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO Page 20 of 43 CONFIDENTIAL Pin Assignment Table (continued) Signal CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUAD CPUSEL MODE CPUTS_N CPUWRD CPUBLAST_N CHIPSEL SCAN_ENA POSIC_OEN CPUCLK RST_N TEST TEST TEST TCK SYSCLK TDI TMS TRST TDO RSTOUT CLKOUT TOHSDIN POHSDIN TE1STROBE TE2STROBE TPOHSTART RPOHSTART CLK2MHz CLK16MHz RE1STROBE RE2STROBE POHSDOUT TOHSDOUT TXFRAME_PULSE SONETTx_PAROUT TXD Document #: 38-02079 Rev. *F Ball AF18 AG18 AG10 AH10 AE11 AF11 AG11 AH11 AG16 AE18 AJ17 AG19 AH17 AF19 AG17 AE19 AF20 AH18 AE20 AG21 AH19 AF21 AE21 AG20 AD21 AF22 AD22 AG23 C16 AE22 AG22 AH24 AF23 AH25 AD23 AF24 AE24 AF25 AG25 AE26 AG26 AE27 AD25 AD28 CY7C9537B Pin Type LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IO LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_IN LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_IN LVTTL_IN LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT Page 21 of 43 CONFIDENTIAL Pin Assignment Table (continued) Signal TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXD TXCLKOUT TXCLKI VREF VREF VREF VREF RXCLK RXCLKS RXD RXD RXD RXD RXD Document #: 38-02079 Rev. *F Ball AD27 AB26 AB25 AB24 AA28 AA27 AA26 AA25 AA24 Y29 Y28 AD26 Y27 W27 W26 W25 V28 V27 V26 V25 U29 U28 AC28 T28 T27 AC27 AC26 AC25 AC24 AB28 AB27 W28 R27 U27 P26 M25 G27 N28 H26 H27 H28 K29 L25 L26 CY7C9537B Pin Type HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTL_OUT HSTL/LVTTLLVPECL_IN 0.75V/2.0V INPUT 0.75V/2.0V INPUT 0.75V/2.0V INPUT 0.75V/2.0V INPUT HSTL/LVTT/LLVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN Page 22 of 43 CONFIDENTIAL Pin Assignment Table (continued) Signal RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD RXD SONETRx_PARIN LFI_n RXFRAME_PULSE NC NC NC NC NC NC NC NC NC NC NC NC NC NC Document #: 38-02079 Rev. *F Ball L27 L28 M26 M27 M28 N25 N26 J24 N27 N29 P25 P27 P28 R25 R26 R28 T25 T26 J25 U25 U26 J26 J27 J28 K25 K26 K28 H25 H24 F27 E27 D27 D24 C24 B24 F23 D23 C23 B23 F22 E22 C22 G26 F21 CY7C9537B Pin Type HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN HSTL/LVTTL/LVPECL_IN LVTTL_IN HSTL/LVTTL/LVPECL_IN Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Page 23 of 43 CONFIDENTIAL Pin Assignment Table (continued) Signal NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC Document #: 38-02079 Rev. *F Ball E21 D21 C21 B21 E20 C20 B20 E19 B19 F26 B18 A18 E26 F25 D25 C25 G24 E24 B17 D19 A17 B16 D18 C15 D17 C17 D13 C13 A13 D12 C12 B12 A12 C11 B11 E16 D16 E15 D15 E14 C14 B14 E13 E12 CY7C9537B Pin Type Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Page 24 of 43 CONFIDENTIAL Pin Assignment Table (continued) Signal NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC VSS1 Ball E11 C9 B9 F8 E8 C8 B8 F7 E7 D7 C7 D11 B7 E6 D6 C6 F5 D5 C5 F4 C4 E3 E10 E2 D2 D10 C10 B10 F9 E9 D9 A1, B1, AE1, AJ1, AJ2, AG12, A2, D3, AD3, AH4, AJ4, A4, AH5, AH14, C18, AJ18, AJ19, AH20, AH21, B22, AH23, AG24, B25, AH26, B27, K27, AJ28, AF28, A28, D28, F28, A29, B29, J29, M29, P29, AJ29 G1, J1, P1, T1, AA1, AC1, B2, C3, AJ3, E4, G4, A6, B6, AJ7, AF8, A9, AJ9, A11, AJ12, B13, AJ14, A16, AJ16, E17, C19, A20, AJ21, AJ22, A23, AE23, AJ23, A25, A27, AF27, AJ27, AH28, C29, D29, F29, R29, W29, AC29, AE29, AF29, AH29, Y25 D1, AF1, AG2, C2, B3, AH3, D4, AF4, B5, E5, AJ5, D20, D22, E25, A26, C26, D26, AF26, AJ26, AH27, AE28, E29, G29, H29, L29 AD1, AG1, AH1, AF2, AH2, AG3, B4, AB5, AE5, A7, A10, A14, AF17, A21, A22, AH22, C28, E28, G28 CY7C9537B Pin Type Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Do not use Core + Input Pin GND VSS2 Output Pin GND VCC1 VCC2 Core Voltage, 1.8V LVTTL Input Pin Power Supply, 3.3V Document #: 38-02079 Rev. *F Page 25 of 43 CONFIDENTIAL Pin Assignment Table (continued) Signal VCC3 Ball C1, E1, F1, H1, K1, R1, Y1, AB1, A3, H3, A5, AJ6, A8, D8, AJ8, AJ10, D14, A15, B15, AJ15, E18, A19, AJ20, E23, A24, AJ24, G25, AJ25, B26, C27, AG27, B28, AG29 AE25, AG28, T29, V29, AA29, AB29, AD29, Y26 CY7C9537B Pin Type LVTTL Output Pin Power Supply, 3.3V VCC5 HSTL Output Pin Power Supply, 1.5V/3.3V Document #: 38-02079 Rev. *F Page 26 of 43 CONFIDENTIAL Maximum Ratings (Above which the useful life may be impaired. For user guide-lines, not tested.) Operating range specifies temperature and voltage boundary conditions for safe operation of the device. Operation outside these boundary may affect the performance and life of the device. Table 2. Absolute Maximum Ratings Parameter Case Temperature Storage Temperature Absolute Maximum Junction Temperature Lead Temperature Supply Voltage VCC1 for Core Supply Voltage VCC2 for LVTTL Inputs Supply Voltage VCC3 for LVTTL Outputs Supply Voltage VCC5 for HSTL/LVTTL Outputs VREF All Inputs Values Static Discharge Voltage (ESD) Latch-up Current Maximum output short circuit current for all I/O configurations (VOUT = 0V)[17] Value –40 to 85 150 125 220 2.43 4.785 4.785 4.785 VCC + 0.3 VCC + 0.3 >2000 >200 –100 CY7C9537B Unit °C °C °C °C V V V V V V V mA mA Operating Range Table 3. Operating Range Range Commercial Industrial Ambient Temperature 0°C to +70°C –40°C to +85°C VCC1 1.71V to 1.89V 1.71V to 1.89V VCC5(HSTL) 1.425V to 1.575V 1.425V to 1.575V VCC2, VCC3, VCC5 3.135V to 3.465V 3.135V to 3.465V DC Specifications Table 4. DC Specifications Parameter VCC1 VCC2 VCC3 VCC5 VREF(HSTL) VREF(LVPECL) ICC1 ICC2 ICC3 ICC5 PW IOS[17] Description Power Supply for Core Power Supply for LVTTL Inputs Power Supply for LVTTL Outputs Power Supply for HSTL/LVTTL Outputs Reference Voltage for HSTL Inputs Reference Voltage for LVPECL Inputs VCC1 Supply Current VCC2 Supply Current VCC3 Supply Current VCC5 Supply Current Total Chip Power Output Short Circuit Current for all I/O configurations 20-pF capacitive load 20-pF capacitive load 20 pF capacitive load VOUT = 0V Test Conditions Min. 1.71 3.135 3.135 0.68 VCC2 – 1.4 – – – – – –20 Max. 1.89 3.465 3.465 0.9 VCC2 – 1.2 1 0.1 0.75 0.28 4.57 –100 Unit V V V V V V A A A A Watt mA 1.425/3.135 1.575/3.465 Note: 17. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. Tested initially and after any design or process changes that may affect these parameters. Document #: 38-02079 Rev. *F Page 27 of 43 CONFIDENTIAL Table 4. DC Specifications (continued) Parameter LVTTL I/Os VOHT VOLT VIHT VILT IIHT IILT HSTL I/Os VREF VOH(DC) VOL(DC) VOH(AC) VOL(AC) VIH(DC) VIL(DC) VIH(AC) VIL(AC) IIHH IILH Reference Voltage Output HIGH Voltage Output LOW Voltage Output HIGH Voltage Output LOW Voltage Input HIGH Voltage Input LOW Voltage Input HIGH Voltage Input LOW Voltage Input HIGH Current Input LOW Current VCC1 = 1.71V VCC1 = 1.89V All VCC= Max. VIN = VCC1 All VCC= Max. VIN = 0V All VCC = Min. IOH = –8.0 mA All VCC = Min. IOL = 8.0 mA 0.68 Output HIGH Voltage Output LOW Voltage Input HIGH Voltage Input LOW Voltage Input HIGH Current Input LOW Current All VCC = Max., VIN = VCC2 All VCC = Max., VIN = 0V All VCC = Min. IOH = –8.0 mA All VCC = Min. IOL = 8.0 mA 2.4 – 2.0 –0.3 – – Description Test Conditions Min. CY7C9537B Max. – 0.4 VCC2 + 0.3 0.8 10 –10 0.9 – 0.4 V V V 0.5 – VREF – 0.1 VREF – 0.2 10 –10 V V V V V µA µA Unit V V V V µA µA VCC5 – 0.4 – VCC5 – 0.5 – VREF + 0.1 – VREF + 0.2 – – – LVPECL Inputs VREF VIH(DC) VIL(DC) VIH(AC) VIL(AC) IIHH IILH Reference Voltage Input HIGH Voltage Input LOW Voltage Input HIGH Voltage Input LOW Voltage Input HIGH Current Input LOW Current All VCC= Max. VIN = VCC2 All VCC= Max. VIN = 0V VCC2 – 1.4 VCC2 – 1.1 – VCC2 – 1.0 – – – VCC2 – 1.6 10 –10 VCC2 – 1.2 – VCC2 – 1.5 V V V V V µA µA Reset Requirements Asserting the RST_n signal will asynchronously reset all sequential elements of POSIC2G. Even though the reset is treated as asynchronous signal, it is recommended that a minimum of 1-ms-wide active LOW RST_n is applied after all power supplies have stabilized. Power-up Requirements When HSTL I/O is used, VCC1, VCC2, and VCC3 need to be powered up first at least 300 ms before VCC5 supply. There is no particular power-up sequence requirements among VCC1, VCC2, and VCC3 in this case. There is no particular power-up sequence requirements among VCC1, VCC2, VCC3, and VCC5 if HSTL I/O is not used. RST_n needs to be activated until all the power supplies have stabilized. Document #: 38-02079 Rev. *F Page 28 of 43 CONFIDENTIAL AC Test Loads and Waveform 3.0V Vth= 1.4V GND < 1ns CY7C9537B 1.4V 2.0V 0.8V 2.0V 0.8V Vth= 1.4V < 1ns Output CL . R1 Test Point R1=125 ohm CL < 20pF (a) LvTTL Input Test Waveform (a) LVTTL AC Test Load 1.5V VIHH Vth= 0.75V VIHL < 1ns 80% 20% 80% 20% Vth= 0.75V < 1ns Output 50 ohm T-line CL . R1 Test Point R2 R1=100 ohm R2=100 ohm CL < 12pF (b) HSTL Input Test Waveform (b) HSTL AC Test Load 3.3V VIH Vth= 2.0V VIL < 1ns 80% 20% 80% 20% Vth= 2.0V < 1ns R1 Output 50 ohm T-line R2 R3 Test Point R1=125 ohm R2=79 ohm R3=138 ohm CL C = 7pf L (c) LVPECL Input Test Waveform (c) LVPECL-compliant Termination AC and Timing Specifications The POSIC2G device interfaces to industry standard peripheral devices or buses. Hence the POSIC2G pin timing parameters are governed by the interface requirements of the peripherals or the relevant standards. Table 5 details the timing requirements. Table 5. POSIC2G Pin Timing Requirements POSIC2G Pin Group Line Interface Peripheral Device/ Bus Standard Compatible/ Suggested Part Number Reference/Remarks Refer to PHY data sheet – – Described in this document ATM Forum: BTD-PHY-UL3-01.05 Saturn Group: PMC-980495 Issue Described in this document 16 bits/8 bits HSTL/Single-ended CYS25G0101DX LVPECL interface Overhead Bytes Access LVTTL – Serial Ports System Interface UTOPIA Level 3 / OIF-SPI Level3 HBST Host CPU Interface 16-/32-bit CPU Interface LVTTL Compatible to Intel/Motorola CPUs Document #: 38-02079 Rev. *F Page 29 of 43 CONFIDENTIAL AC Specifications Table 6. Line Interface Timing Parameter Values Parameter fTS[18] Description TXCLKOUT, TXCLKI Frequency (must be frequency coherent to RXCLK when used as the transmit PLL clock source). fTS nominal (fTSN) can be 155.52 MHz, 77.76 MHz, 38.88 MHz, 19.44 MHz—depends on the Bus Width and Line Rate used. TXCLKI Period TXCLKI Duty Cycle TXCLKOUT Period TXCLKOUT Duty Cycle TXCLKOUT Rise Time TXCLKOUT Fall Time TXD Output Delay after ↑ of TXCLKOUT TXFRAME_PULSE Output Delay after ↑ of TXCLKOUT SONETTX_PAROUT Output Delay after ↑ of TXCLKOUT TXFRAME_PULSE Width RXCLK Frequency. fRS nominal (fRSN) can be 155.52 MHz, 77.76 MHz, 38.88 MHz, 19.44 MHz depends on the Bus Width and Line Rate used RXCLK Period RXCLK Duty Cycle RXCLK Rise Time RXCLK Fall Time Recovered Data Set-up to ↑ of RXCLK Recovered Data Hold from ↑ of RXCLK RXFRAME_PULSE Set-up to ↑ of RXCLK RXFRAME_PULSE Hold from ↑ of RXCLK SONETRX_PARIN Set-up to ↑ of RXCLK SONETRX_PARIN Hold from ↑ of RXCLK Min. fTSN * (1 – 0.65%) CY7C9537B Max. fTSN * (1 + 0.65%) Unit MHz tTXCLKIP[18] tTXCLKID tTXCLKP[18] tTXCLKD[18] tTXCLKR[19] tTXCLKF[19] tTXDO tTXFPO tPAROUTO tTXFPPW fRS[18] tRXCLKP[18] tRXCLKOD[18] tRXCLKR[19] tRXCLKF[19] tRXDS tRXDH tRXFPS tRXFPH tPARINS tPARINH 1/(fTS max.) 43 1/(fTS max.) 40 0.3 0.3 0.5 0.5 0.5 6 fRSN * (1 – 0.65%) 1/(fRS max.) 43 – – 1.5 1.25 1.5 1.25 1.5 1.25 1/(fTS min.) 57 1/(fTS min.) 60 1.5 1.5 4.5 4.5 4.5 55 fRSN * (1 + 0.65%) 1/(fRS min.) 57 1.5 1.5 – – – – – – ns % ns % ns ns ns ns ns ns MHz ns % ns ns ns ns ns ns ns ns Table 7. OIF-SPI Level 3 Transmit System Interface Timing Parameter Values Parameter fTFCLK[18] tTFCLKD[18] tTENBS tTENBH tTDATS tTDATH tTPRTYS tTPRTYH tTSOPS TFCLK Frequency TFCLK Duty Cycle TENB Set-up time to TFCLK[20] TENB Hold time to TFCLK[21] TDAT[31:0] Set-up time to TFCLK[20] TDAT[31:0] Hold time to TFCLK[21] TPRTY Set-up time to TFCLK[20] TPRTY Hold time to TFCLK[21] TSOP Set-up time to TFCLK[20] TFCLK[21] Description Min. 40 2 0.5 2 0.5 2 0.5 2 Max. 104 60 – – – – – – – Unit MHz % ns ns ns ns ns ns ns tTSOPH TSOP Hold time to 0.5 – ns Notes: 18. The parameter is guaranteed by design and is not tested during production. 19. The parameter is guaranteed by characterization and is not tested during production. 20. When a set-up time is specified between an input and a clock, the set-up time is the time in nanoseconds from the 1.4V point of the input to the 1.4V point of the clock. 21. When a hold time is specified between an input and a clock, the hold time is the time in the nanoseconds from the 1.4V point of the clock to the 1.4V point of the input. Document #: 38-02079 Rev. *F Page 30 of 43 CONFIDENTIAL Table 7. OIF-SPI Level 3 Transmit System Interface Timing Parameter Values (continued) Parameter tTEOPS tTEOPH tTERRS tTERRH tTSXS tTSXH tTMODS tTMODH tPTADRS tPTADRH tDTPAO tSTPAO tPTCAO Description TEOP Set-up time to TFCLK[20] TEOP Hold time to TFCLK [21] CY7C9537B Min. 2 0.5 2 0.5 2 0.5 2 0.5 2 0.5 1.5 1.5 1.5 Max. – – – – – – – – – – 6 6 6 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns TERR Set-up time to TFCLK[20] TERR Hold time to TFCLK[21] TSX Set-up time to TFCLK[20] TSX Hold time to TFCLK[21] TMOD Set-up time to TFCLK[20] TMOD Hold time to TFCLK[21] PTADR Set-up time to TFCLK[20] PTADR Hold time to TFCLK[21] TFCLK HIGH to DTPA Valid[22, 23] TFCLK HIGH to STPA Valid[22, 23] TFCLK HIGH to PTCA Valid[22, 23] Table 8. OIF-SPI Level 3 Receive System Interface Timing Parameter Values Parameter fRFCLK[18] tRFCLKD[18] tRENBS tRENBH tRDATD tRPRTYD tRSOPD tREOPD tRERRD tRMODD tRSXD RFCLK Frequency RFCLK Duty Cycle RENB Set-up time to RFCLK[20] RENB Hold time to RFCLK [21] RFCLK HIGH to RDAT[31:0] Valid [22, 23] RFCLK HIGH to RPRTY RFCLK HIGH to REOP Valid[22, 23] RFCLK HIGH to RSOP Valid[22, 23] Valid[22, 23] Valid[22, 23] RFCLK HIGH to RERR Valid[22, 23] RFCLK HIGH to RMOD[1:0] RFCLK HIGH to RSX Valid[22, 23] Description Min. – 40 2 0.5 1.5 1.5 1.5 1.5 1.2 1.5 1.5 Max. 104 60 – – 6 6 6 6 6 6 6 Unit MHz % ns ns ns ns ns ns ns ns ns Table 9. UTOPIA Level 3 Receive System Interface Timing Parameter Values Parameter fRxClk [18] Description RxClk Frequency RxClk Duty Cycle RxEnb Set-up Time to RxClk RxEnb Hold Time to RxClk RxClk HIGH to RxData [31:0] Valid RxClk HIGH to RxSoc Valid RxClk HIGH to RxPrty Valid RxClk HIGH to RxClav Valid Min. – 40 2 0.5 – – – – Max. 104 60 – – 6 6 6 6 Unit MHz % ns ns ns ns ns ns tRxClkD[18] tRxEnbS tRxEnbH tRxDataO tRxSocO tRxPrtyO tPxClavO Notes: 22. Output propagation delay time is in nanoseconds from the 1.4V point of the reference signal to the 1.4V point of the output. 23. Maximum output propagation delays are measured with 30-pF load on the inputs. Document #: 38-02079 Rev. *F Page 31 of 43 CONFIDENTIAL Table 10.UTOPIA Level 3 Transmit System Interface Timing Parameter Values Parameter fTxClk [18] CY7C9537B Min. – 40 2 0.5 2 0.5 2 0.5 2 0.5 2 0.5 – Max. 104 60 – – – – – – – – – – 6 Unit MHz % ns ns ns ns ns ns ns ns ns ns ns Description TxClk Frequency TxClk Duty Cycle TxEnb Set-up Time to TxClk TxEnb Hold Time to TxClk TxAddr Set-up Time to TxClk TxAddr Hold Time to TxClk TxData [31:0] Set-up Time to TfClk TxData [31:0] Hold Time to TfClk TxPrty Set-up Time to TfClk TxPrty Hold Time to TfClk TxSoc Set-up Time to TfClk TxSoc Hold Time to TfClk TfClk HIGH to PTCA Valid tTxClkD[18] tTxEnbS tTxEnbH tTxAddrS tTxxAddrH tTxDataS tTxDataH tTxPrtyS tTxPrtyH tTxSocS tTxSocH tPTCAO Table 11.HBST Transmit System Interface Timing Parameter Values Parameter fTCLK[18] tTCLKD[18] tTADDRS tTADDRH tTDATAS tTDATAH tTPARITYS tTPARITYH tTBVALS tTBVALH tTDVALS tTDVALH tTSOPS tTSOPH tTEOPS tTEOPH tTERRS tTERRH tTSTFAO tTSOFSTO tTFASTO TCLK Frequency TCLK Duty Cycle TADDR[3:0] Set-up Time to TCLK TADDR[3:0] Hold Time to TCLK TDATA [31:0] Set-up Time to TCLK TDATA [31:0] Hold Time to TCLK TPARITY Set-up Time to TCLK TPARITY Hold Time to TCLK TBVAL[2:0] Set-up Time to TCLK TBVAL[2:0] Hold Time to TCLK TDVAL_n Set-up Time to TCLK TDVAL_n Hold Time to TCLK TSOP Set-up Time to TCLK TSOP Hold Time to TCLK TEOP Set-up Time to TCLK TEOP Hold Time to TCLK TERR Set-up Time to TCLK TERR Hold Time to TCLK TCLK HIGH to TSTFA Valid TCLK HIGH to TSOFST Valid TCLK HIGH to TFAST[3:0] Valid 40 2 0.5 2 0.5 2 0.5 2 0.5 2 0.5 2 0.5 2 0.5 2 0.5 1.5 1.5 1.5 Description Min. Max. 104 60 – – – – – – – – – – – – – – – – 6 6 6 Unit MHz % ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Document #: 38-02079 Rev. *F Page 32 of 43 CONFIDENTIAL Table 12.HBST Receive System Interface Timing Parameter Values Parameter fRCLK [18] CY7C9537B Min. – 40 2 0.5 1.5 1.5 1.5 1.5 1.5 1.2 1.5 1.5 1.5 Max. 104 60 – – 6 6 6 6 6 6 6 6 6 Unit MHz % ns ns ns ns ns ns ns ns ns ns ns Description RCLK Frequency RCLK Duty Cycle RREADY_n Set-up Time to RCLK RREADY_n Hold Time to RCLK RCLK HIGH to RDATA[31:0] Valid RCLK HIGH to RADDR[7:0] Valid RCLK HIGH to RPARITY Valid RCLK HIGH to RSOP Valid RCLK HIGH to REOP Valid RCLK HIGH to RERR Valid RCLK HIGH to RBVAL[2:0] Valid RCLK HIGH to RDVAL Valid RCLK HIGH to RSTFA Valid tRCLKD[18] tRREADYS tRREADYD tRDATAO tRADDRO tRPARITYO tRSOPO tREOPO tRERRO tRBVALO tRDVALO tRSTFAO Table 13.CPU System Interface Timing Parameter Values Parameter fSYSCLK[18] tSYSCLKD[18] fCpuClk[18] tCpuAdsS tCpuAdsH tCpuADS tCpuADH tCpuADZ[18] tCpuADO tCpuWrRdS tCpuWrRdH tCpuTaO tCpuBlastS tCpuBlastH tCpuSelS tCpuSelH tCpuIntO SYSCLK Frequency SYSCLK Duty Cycle CpuClk Freq. CpuAds_n Set-up Time to CpuClk CpuAds_n Hold Time to CpuClk CpuAD Set-up Time to CpuClk CpuAD Hold Time to CpuClk CpuAD Float CpuAD Output Delay after CpuClk Rise CpuWrRd Set-up Time to CpuClk CpuWrRd Hold Time to CpuClk CpuTa_n Valid Delay CpuBlast_n Set-up to CpuClk CpuBlast_n Hold to CpuClk CpuSel Set-up to CpuClk CpuSel Hold to CpuClk CpuInt Valid Delay Description Min. 133 45 – 7 2 7 2 7 2 – 7 2 7 2 – Max. 133.33 55 66 – – – – 14 10.1 – – 10.1 – – – – 10.1 Unit MHz % MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns Table 14.TOH Serial Interface Receive Timing Parameter Values Parameter tClk2MHzH[18] tClk2MHzL[18] tClk2MHzR[19] tClk2MHzF[19] tREPW tREO tTOHSDOUTO Clk2MHz High Period Clk2MHz Low Period Clk2MHz Rise Time Clk2MHz Fall Time RE1STROBE or RE2STROBE Pulse Width RE1STROBE or RE2STROBE Output Delay after Clk2MHZ Rising Edge TOHSDOUT Output Delay after Clk2MHZ Rising Edge Description Min. 31 31 – – 62 – – Max. 34 34 6 6 67 8 8 Unit SYSCLK cycles SYSCLK cycles ns ns SYSCLK cycles ns ns Document #: 38-02079 Rev. *F Page 33 of 43 CONFIDENTIAL Table 15.POH Serial Interface Receive Timing Parameter Values Parameter tClk16MHzH[18] tClk16MHzL[18] tClk16MHzR[19] tClk16MHzF[19] tRPOHPW[19] tRPOHO tPOHSDOUTO Clk16MHz High Period Clk16MHz Low Period Clk16MHz Rise Time Clk16MHz Fall Time RPOHSTART Pulse Width RPOHSTART Output Delay after Clk16MHZ Rising Edge POHSDOUT Output Delay after Clk16MHZ Rising Edge Description Min. 3 3 – – 7 – – Max. 5 5 6 6 9 8 8 CY7C9537B Unit SYSCLK cycles SYSCLK cycles ns ns SYSCLK cycles ns ns Table 16.TOH Serial Interface Transmit Timing Parameter Values Parameter tClk2MHzH tClk2MHzR tTEPW[19] tTEO tTOHSDINS tTOHSDINH [18] Description Clk2MHz High Period Clk2MHz Low Period Clk2MHz Rise Time Clk2MHz Fall Time TE1STROBE or TE2STROBE Pulse Width TE1STROBE or TE2STROBE Output Delay after Clk2MHz Rising Edge Set-up Time of TOHSDIN before the Falling Edge of Clk2 MHz Hold Time of TOHSDIN after the Falling Edge of Clk2 MHz Min. 31 31 – – 62 – 50 50 Max. 34 34 6 6 67 8 – – Unit SYSCLK cycles SYSCLK cycles ns ns SYSCLK cycles ns ns ns tClk2MHzL[18] [19] tClk2MHzF[19] Table 17.POH Serial Interface Transmit Timing Parameter tClk16MHzH[18] tClk16MHzL[18] tClk16MHzR[19] tClk16MHzF[19] tTPOHPW[19] tTPOHO tPOHSDINS tPOHSDINH Clk16MHz High Period Clk16MHz Low Period Clk16MHz Rise Time Clk16MHz Fall Time TPOHSTART Pulse Width TPOHSTART Output Delay after Rising Edge of Clk16MHz Set-up Time of POHSDIN before Falling Edge of Clk16MHz Hold Time of POHSDIN after Falling Edge of Clk16MHz Description Min. 3 3 – – 7 – 20 20 Max. 5 5 6 6 9 8 – – Unit SYSCLK cycles SYSCLK cycles ns ns SYSCLK cycles ns ns ns Document #: 38-02079 Rev. *F Page 34 of 43 CONFIDENTIAL Switching Waveforms Line Transmit and Receive Interface Timing t RXCLKP CY7C9537B t RXCLKH t RXCLKL RXCLK t RXDS RXD[31:0] tRXFPS RXFRAME_PULSE t RXFPH tRXDH t PARINS SONETRX_PARIN t TXCLKR TXCLKOUT t TXCLKP TXD[31:0] t PARINH t TXCLKF t TXDO tTXFPO TXFRAME_PULSE t TXFPPW SONETTX_PAROUT t t PAROUTO TXCLKIP TXCLKI Document #: 38-02079 Rev. *F Page 35 of 43 CONFIDENTIAL Switching Waveforms (continued) Transmit OIF-SPI Level 3 System Interface Timing CY7C9537B TFCLK tTENBS tTENBH TENB tTDATS tTDATH TDAT[31:0] tTPRTYS tTPRTYH TPRTY tTSOPS tTSOPH TSOP tTEOPS tTEOPH TEOP tTERRS tTERRH TERR tTSXS tTSXH tPTADRH TSX tPTADRS PTADR[3:0] tTMODS tTMODH TMOD[1:0] tDTPAO DTPA[3:0] tSTPAO STPA tPTCAO PTCA Document #: 38-02079 Rev. *F Page 36 of 43 CONFIDENTIAL Switching Waveforms (continued) Receive OIF-SPI Level 3 System Interface Timing CY7C9537B RFCLK tRENBS tRENBH RENB tRDATO RDAT[31:0] tRPRTYO RPRTY tRSOPO RSOP tREOPO REOP tRERRO RERR tRVALO RVAL tRMODO RMOD[1:0] tRSXO RSX Transmit UTOPIA Level 3 System Interface Timing TxClk tTxEnbS tTxEnbH TxEnb tTxAddrS tTxAddrH TxAddr[4:0] tTxDataS tTxDataH TxData[31:0] tTxPrtyS tTxPrtySH TxPrty tTxSocS tTxSocH TxSoc tPTCAO PTCA Document #: 38-02079 Rev. *F Page 37 of 43 CONFIDENTIAL Switching Waveforms (continued) Receive UTOPIA Level 3 System Interface Timing CY7C9537B RxClk tRxEnbS tRxEnbH RxEnb tRxDataO RxData[31:0] tRxPrtyO RxPrty tRxSocO RxSoc tRxClavO RxClav Transmit HBST System Interface Timing TCLK tTADDRS tTADDRH TADDR[3:0] tTDATAS tTDATAH TDATA[31:0] tTBVALS tTBVALH TBVAL[1:0] tTDVALS tTDVALH TDVAL_n tTSOPS tTSOPH TSOP tTEOPS tTEOPH TEOP tTERRS tTERRH TERR tTPARITYS tTPARITYH TPARITY tTSTFAO TSTFA tTSOFSTO TSOFST tTFASTO TFAST[3:0] Document #: 38-02079 Rev. *F Page 38 of 43 CONFIDENTIAL Switching Waveforms (continued) Receive HBST System Interface Timing RCLK tRREADYS tRREADYH CY7C9537B RREADY_n tRADDRO RADDR[7:0] tRDATAO RDATA[31:0] tRBVALO RBVAL[1:0] tRDVALO RDVAL tRSOPO RSOP tREOPO REOP tRERRO RERR tRSTFAO RSTFA tRPARITYO RPARITY Document #: 38-02079 Rev. *F Page 39 of 43 CONFIDENTIAL Switching Waveforms (continued) CPU System Interface Timing CY7C9537B CpuClk tCpuAdsH CpuTs_n / CpuAds_n tCpuAdsS tCpuADZ tCpuADS CpuAD[31:0] (Input) tCpuADH CpuAD[31:0] (Output) tCpuADO tCpuWrRdH CpuWrRd tCpuWrRdS CpuTa_n tCpuTaO tCpuBlastH CpuBlast_n / CpuBdip_n ChipSel tCpuSelS tCpuIntO tCpuBlastS tCpuSelH CpuInt Document #: 38-02079 Rev. *F Page 40 of 43 CONFIDENTIAL Switching Waveforms (continued) TOH Serial Interface Timing tClk2MHzP CY7C9537B Clk2MHz tClk2MHzR tClk2MHzF RE1STROBE RE2 STROBE tREO tREPW tREO TOHSDOUT tTOHSDOUTO TE1STROBE TE2 STROBE tTEO tTEPW tTEO TOHSDIN tTOHDINS tTOHDINH POH Serial Interface Timing tClk16MHzP Clk16MHz tClk16MHzR tClk16MHzF RPOHSTART tRPOHO POHSDOUT tRPOHPW tRPOHSDOUTO tRPOHO TPOHSTART tTPOHO tTPOHPW tTPOHO POHSDIN tPOHSDINS tPOHSDINH Document #: 38-02079 Rev. *F Page 41 of 43 CONFIDENTIAL Ordering Information Speed Standard Standard Ordering Code CY7C9537B-BLC CY7C9537B-BLI Package Name BL504 BL504 Package Type 504-pin BGA 504-pin BGA CY7C9537B Operating Range Commercial Industrial Package Diagram 504-Lead L2 Ball Grid Array (37.50 x 37.50 x 1.57 mm) BL504 51-85147-*C Please see Device Manual and errata document for further details on functional description. POSIC2G is a trademark of Cypress Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders. Document #: 38-02079 Rev. *F Page 42 of 43 © Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. CONFIDENTIAL Document History Page Document Title: OC-48/STM-16 Framer–POSIC2G™ Document Number: 38-02079 REV. ** *A ECN NO. 127208 129315 Issue Date 07/03/03 10/17/03 Orig. of Change QJL CFK New Data Sheet Description of Change CY7C9537B Added specification references section Added Single POSIC2G APS implementation scheme description Removed statement that pin assignment is tentative Improved readability of pin diagram Added 16-bit mode operation pin description for TMOD and RMOD Clarified that POSIC_OEn signal three-states all POSIC2G outputs Changed CLK_OUT to CLKOUT in pin assignment table Corrected notes for parameters guaranteed by design/char Changed tRERRD/tRERRO parameter minimum from 1.5 ns to 1.2 ns Changed fSYSCLK to max 133.33 MHz Removed errata section (reference separate errata document) Changed POSIC2GB to POSIC2G Clarified supported channelized operation modes in Features section Changed from Preliminary to Final data sheet Minor Change: MPN uploaded to CAS. No content change. Post to web under NDA. Updated Icc3 to 0.75A. Updated Icc5 to 0.28A. Updated max Ios from TBD to -100mA. Updated Icc1 to 1A. Post to web under NDA. Note that NC pins are “do not use.” *B *C *D *E 131096 132896 215296 317619 12/04/03 01/26/04 See ECN See ECN CFK CFK PIR QJL *F 359676 See ECN QJL Document #: 38-02079 Rev. *F Page 43 of 43
CY7C9537B-BLC 价格&库存

很抱歉,暂时无法提供与“CY7C9537B-BLC”相匹配的价格&库存,您可以联系我们找货

免费人工找货