0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IMC302AF064XUMA1

IMC302AF064XUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    LQFP-64

  • 描述:

    IC MCU 32BIT 128KB FLASH 64LQFP

  • 数据手册
  • 价格&库存
IMC302AF064XUMA1 数据手册
IMC301A, IMC302A IMC300A Data Sheet Motor control IC series with an add itional microcontroller Features Dual core computation – Motion Control Engine (MCE) and ARM® Cortex®-M0 based user application controller (MCU) Motion Control Engine (MCE)  MCE offers a ready-to-use solution with easy configuration for variable speed motor control − Space Vector PWM with sinusoidal commutation and integrated protection features − Current sensing via single or leg shunt configuration − Sensorless and/or hall sensor (analog/digital) based operation − Integrated and/or external temperature sensor − Optional boost or totem pole PFC control − Integrated Script language for additional MCE and I/O control. − Flexible host interface options for motor control command: user UART, JCOM − High speed communication interface between MCE and ARM® core processor (JCOM) − Parameter programming and debug support with MCEWizard and MCEDesigner User Application Controller  CPU Subsystem − 32-bit Arm® Cortex®-M0 core for user application control − 48/96 MHz core/peripherals clock − Nested Vectored Interrupt Controller (NVIC) − Event Request Unit (ERU) for event interconnections − MATH Co-processor: 24-bit trigonometric calculation (CORDIC), 32-bit division unit  On-Chip Memories − 8 Kbyte ROM − 16 Kbyte SRAM (with parity) − 128 Kbyte FLASH memory (with ECC)  Supply, Reset and Clock − 3.3 V to 5.5 V supply with power on reset and brownout detector − On-chip clock monitor − Internal slow and fast oscillators − External crystal oscillator support (32 kHz and 4 to 20 MHz)  System Control − Window watchdog − Real Time Clock (RTC) modue − Pseudo random number generator 12-Dec-19 Please read the Important Notice and Warnings at the end of this document www.infineon.com/iMOTION Revision 1.0 2019-12-12 IMC301A/302A Datasheet About this document  Communication Peripherals − Universal Serial Interface Channels (USIC), usable as UART, double-SPI, IIC, IIS and LIN interfaces − MultiCAN+, Full-CAN/Basic-CAN with 2 nodes, 32 message objects (up to 1 MBaud)  Analog Frontend Peripherals − 12-bit ADC converter with adjustable gain, up to 1 MS/s and up to 7 analog inputs − 0 V to 5.5 V input voltage range − 2 fast analog comparators − DAC with one-bit sigma-delta generator, external low-pass filter and up to 7 outputs − Temperature sensor  High Speed Timers − 2x Capture Compare Unit with 4 timer channels each (CCU4) − Clock up to 96 MHz − Up to 8 capture inputs − Up to 8 PWM outputs (center/edge aligned)  Input/Output Lines With Individual Bit Controllability − Tri-stated in input mode − Push/pull or open drain output mode − Configurable pad hysteresis  Debug System − 4 breakpoints, 2 watchpoints − ARM serial wire debug (SWD), single-pin debug (SPD) interfaces − Independent operation of the MCE Potential applications  AirConditioner  Refrigerators Product validation Industrial Ordering Information Product Type IMC301A-F048 IMC301A-F064 IMC302A-F048 IMC302A-F064 Application Single motor Single motor + PFC (boost, totem pole) 2 2019-12-12 Package LQFP-48 LQFP-64 LQFP-48 LQFP-64 Revision 1.0 IMC301A/302A Datasheet About this document Description iMOTION™ IMC300 is a family of highly integrated ICs for the control of variable speed motor control system with an additional user programmable microcontroller. By integrating the required hardware, software and user program to perform control of a permanent magnet synchronous motor (PMSM) it offers a high flexibility of motor control system at the lowest system and development cost. 3 2019-12-12 Revision 1.0 IMC301A/302A Datasheet About this document Table of Contents Features ........................................................................................................................................ 1 Potential applications ..................................................................................................................... 2 Product validation .......................................................................................................................... 2 Ordering Information ...................................................................................................................... 2 Description .................................................................................................................................... 3 Table of Contents ........................................................................................................................... 4 About this document ....................................................................................................................... 6 1 Block Diagram Reference ........................................................................................................ 7 2 2.1 2.2 2.3 Pin Configuration ................................................................................................................... 8 Pin Configuration IMC301A/IMC302A ..................................................................................................... 8 Pin Configuration Drawing IMC301A..................................................................................................... 11 Pin Configuration Drawing IMC302A..................................................................................................... 13 3 3.1 3.2 3.3 Functional Description........................................................................................................... 15 Application Connection for IMC301A with Single Shunt Current Sensing .......................................... 15 Application Connection for IMC302A with Single Shunt Current Sensing .......................................... 16 Application Connection for IMC302A with Leg Shunt Current Sensing ............................................... 17 4 Electrical characteristics and parameters ................................................................................ 18 4.1 General Parameters .............................................................................................................................. 18 4.1.1 Parameter Interpretation ................................................................................................................ 18 4.1.2 Absolute Maximum Ratings ............................................................................................................. 18 4.1.3 Pin Reliability in Overload................................................................................................................ 19 4.1.4 Operating Conditions ....................................................................................................................... 21 4.1.5 Input/Output Characteristics........................................................................................................... 22 4.1.6 Analog to Digital Converter (ADC).................................................................................................... 24 4.1.7 Power Supply Current ...................................................................................................................... 25 4.1.8 Flash Memory Parameters ............................................................................................................... 25 4.2 AC Parameters ....................................................................................................................................... 26 4.2.1 Testing Waveforms ........................................................................................................................... 26 4.2.2 Power-Up and Supply Threshold Characteristics ........................................................................... 27 4.2.3 On-Chip Oscillator Characteristics .................................................................................................. 29 4.3 Motor Control Parameters .................................................................................................................... 30 4.3.1 PWM Characteristics ........................................................................................................................ 30 4.3.2 Current Sensing Characteristics ...................................................................................................... 30 4.3.3 Fault Timing ..................................................................................................................................... 31 4.3.4 Analog Hall Sensing Characteristics ................................................................................................ 31 4.4 Power Factor Correction (PFC) parameters ......................................................................................... 32 4.4.1 Boost PFC characteristics ................................................................................................................ 32 4.4.2 Totem Pole PFC characteristics ....................................................................................................... 32 4.4.3 PFC current sensing characteristics ................................................................................................ 32 4.4.4 PFC Fault timing ............................................................................................................................... 32 4.5 Control Interface Parameters (MCE) ..................................................................................................... 33 4.5.1 UART Interface.................................................................................................................................. 33 4.5.2 Over Temperature Input .................................................................................................................. 33 4.5.3 Pulse Output..................................................................................................................................... 34 4 2019-12-12 Revision 1.0 IMC301A/302A Datasheet About this document 4.5.4 5 LED Output ....................................................................................................................................... 34 Quality declaration ............................................................................................................... 35 6 Device and Package specification ............................................................................................ 36 6.1 SBSL and Chip-IDs ................................................................................................................................. 36 6.2 Package drawings ................................................................................................................................. 37 6.2.1 PG-LQFP-48-11 ................................................................................................................................. 37 6.2.2 PG-LQFP-64-29 ................................................................................................................................. 38 6.3 Thermal Characteristics ........................................................................................................................ 39 6.4 Part marking .......................................................................................................................................... 40 Revision history............................................................................................................................. 40 5 2019-12-12 Revision 1.0 IMC301A/302A Datasheet About this document About this document Scope and purpose This Datasheet describes the mechanical, electrical and functional characteristics of the iMOTION™ IMC300 series of motor control ICs. If no specific device is given the characteristics are valid for all devices within the iMOTION™ IMC300 series. For a detailed description of the functionality and configuration options please refer to the device HW reference manual and the relevant MCE SW reference manual. Intended audience The Datasheet is targeting developers implementing a variable speed drive system. 6 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Block Diagram Reference 1 Block Diagram Reference The block diagram below gives an overview on the available functional units in the iMOTION™ IMC300 family. Not all units are required in all applications and some modules might share pins in smaller packages. Please refer to the pin configuration for the individual packages and the application schematic examples given Figure 1 Block Diagram 7 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Pin Configuration 2 Pin Configuration The following tables give the pin configurations of the individual devices of the IMC300 series in the available packages. The pin type is specified as follows:  P – power and ground pins  I - digital input  O - digital output  IO – digital input or output  AIN - analog input  AO – analog output Each of the IMC300 cores has control over a different set of pins. The MCE core pins are labeled by system function which can be a single fixed function or multiple function options that are selected according to the MCE software configuration. The MCE functions and configuration options are described in the MCE Software reference manual. The User Application core pins are labeled by port number (Pn.m) and have peripheral I/O functions selected according to the user software. The peripheral I/O function selection and configuration options are described in the IMC300 hardware reference manual. Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Note: The reference voltage for motor current trip protection is generated by an internal DAC, therefore pins like REFU, REFV, and REFW only require a blocking capacitor. 2.1 Pin Configuration IMC301A/IMC302A Type IMC301A- IMC301A- IMC302A- IMC302A- Description F064 F048 F064 F048 VDD P 24,25,35, 50 21,28,38 24,25,35, 50 21,28,38 VSS P 23,49 20,37 23,49 20,37 Ground PWMUL O 29 22 29 22 PWM output phase U low PWMUH O 30 23 30 23 PWM output phase U high PWMVL O 31 24 31 24 PWM output phase V low PWMVH O 32 25 32 25 PWM output phase V high PWMWL O 33 26 33 26 PWM output phase W low PWMWH O 34 27 34 27 PWM output phase W high GK I 36 29 36 29 Motor gate kill input VDC AIN 14 11 14 11 DC bus sensing input Signal Supply Pins Supply Voltage Motor control 8 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Pin Configuration IU/ISS AIN 18 15 18 15 Current sense input phase U / single shunt IV AIN 15 12 15 12 Current sense input phase V IW AIN 11 8 11 8 Current sense input phase W REFU AO 17 14 17 14 Itrip phase U reference output REFV AIN 16 13 16 13 Itrip phase V reference REFW AIN 10 7 10 7 Itrip phase W reference Hall sensor inputs AHALL1+ AIN 10 7 10 7 analog Hall sensor Input1+ AHALL1- AIN 11 8 11 8 analog Hall sensor input 1- AHALL2+ AIN 16 13 16 13 analog Hall sensor input 2+ AHALL2- AIN 15 12 15 12 analog Hall sensor input 2- HALL1 IO 26 - 26 - Digital Hall sensor input 1 HALL2 IO 27 - 27 - Digital Hall sensor input 2 HALL3 IO 28 - 28 - Digital Hall sensor input 3 Power Factor Correction PFCG0 O - - 44 33 PFC gate drive 0 PFCG1 O - - 43 32 PFC gate drive 1 (totem pole PFC) IPFC AIN - - 12 9 PFC current sensing IPFCREF AIN - - 21 18 PFC Itrip reference IPFCTRIP AIN - - 22 19 PFC Trip VAC1 AIN - - 20 17 AC voltage sensing input 1 VAC2 AIN - - 19 16 AC voltage sensing input 2 PGOUT O 42 31 42 31 Pulse output NTC/ AIN4 AIN 13 10 13 10 External thermistor input /analog input LED O 41 30 41 30 Status LED Interface Communication RXD0 I 45 35 45 35 UART0 reception for SW download TXD0 O 46 36 46 36 UART0 transmission for SW download AIN1 AIN 10 7 10 7 Analog input AIN2 AIN 11 8 11 8 Analog input AIN3 AIN 12 9 - - Analog input AIN4 AIN 13 10 13 10 Analog input AIN7 AIN 16 13 16 13 Analog input AIN10 AIN 19 16 - AIN11 AIN 20 17 - - Analog input GPIO2 IO - 32 - - User configurable I/O, digital Scripting 9 2019-12-12 Analog input Revision 1.0 IMC301A/302A Datasheet Pin Configuration GPIO3 IO - 33 - - User configurable I/O, digital GPIO4 IO - 34 - 34 User configurable I/O, digital GPIO5 IO - 18 - - User configurable I/O, digital GPIO6 IO - 19 - - User configurable I/O, digital GPIO7 IO 21 - - - User configurable I/O, digital GPIO8 IO 22 - - - User configurable I/O, digital GPIO9 IO 26 - 26 - User configurable I/O, digital GPIO10 IO 27 - 27 - User configurable I/O, digital GPIO11 IO 28 - 28 - User configurable I/O, digital GPIO12 IO 37 - 37 - User configurable I/O, digital GPIO13 IO 38 - 38 - User configurable I/O, digital GPIO14 IO 39 - 39 - User configurable I/O, digital GPIO15 IO 40 - 40 - User configurable I/O, digital GPIO16 IO 43 - - - User configurable I/O, digital GPIO17 IO 44 - - - User configurable I/O, digital Microcontroller P0.8 IO 51 39 51 39 Programmable I/O P0.9 IO 52 40 52 40 Programmable I/O P0.10 IO 53 41 53 41 Programmable I/O P0.11 IO 54 42 54 42 Programmable I/O P0.12 IO 55 43 55 43 Programmable I/O P0.13 IO 56 44 56 44 Programmable I/O P0.14/ SWDIO IO 57 45 57 45 Programmable I/O / User serial debug I/O P0.15/ SWDCLK I 58 46 58 46 Programmable I/O / User serial debug clock P1.0 IO 48 - 48 - Programmable I/O P1.1 IO 47 - 47 - Programmable I/O P2.0/ (TXD2_A) IO/ AIN 2 Programmable I/O / UART2 transmission / analog input P2.1/ (RXD2_A) IO/ AIN 4 3 4 3 Programmable I/O / UART2 reception/ analog input P2.2 IO/AIN 5 4 5 4 Programmable I/O or analog input P2.6 IO/AIN 6 5 6 5 Programmable I/O or analog input P2.8 IO/AIN 7 - 7 - Programmable I/O or analog input P2.10 IO/AIN 8 - 8 - Programmable I/O or analog input P2.11 IO/AIN 9 6 9 6 Programmable I/O or analog input P4.0 IO 59 - 59 - Programmable I/O P4.1 IO 60 47 60 47 Programmable I/O P4.2 IO 61 48 61 48 Programmable I/O 3 2 3 10 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Pin Configuration P4.3 IO 62 1 62 1 Programmable I/O P4.4/ (RXD1_A) I 63 - 63 - Programmable I/O / UART1 transmission / P4.5/ (TXD1_A) O 64 - 64 - Programmable I/O / UART1 reception P4.6 IO 1 - 1 - Programmable I/O P4.7 IO 2 - 2 - Programmable I/O VSS VDD P0.8 P0.9 P0.10 P0.11 P0.12 P0.13 SWDIO SWDCLK 48 47 46 45 44 43 42 41 40 39 38 37 1 36 TXD0 P2.0 2 35 RXD0 P2.1 3 34 GPIO4 P2.2 4 33 PGIO3 P2.6 5 32 GPIO2 P2.11 6 31 PGOUT REFW/AHALL1+/AIN1 7 30 LED IW/AHALL1-/AIN2 8 29 GK AIN3 9 28 VDD NTC/AIN4 10 27 PWMWH VDC 11 26 PWMWL IV/AHALL2- 12 25 13 14 15 16 17 18 19 20 21 22 23 24 PWMVH IMC301A-F048 PWMUH PWMUL VDD VSS GPIO6 GPIO5 AIN11 AIN10 ISS/IU REFU/AIN8 (Top View) PWMVL P4.3 REFV/AHALL2+/AIN7 Figure 2 P4.1 Pin Configuration Drawing IMC301A P4.2 2.2 IMC301-F048 11 2019-12-12 Revision 1.0 IMC301A/302A Datasheet VSS VDD P0.8 P0.9 P0.10 P0.11 P0.12 P0.13 SWDIO SWDCLK P4.0 P4.1 P4.2 P4.3 P4.4/(RXD1_A) P4.5/(TXD1_A) Pin Configuration 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 P4.6 1 48 P1.0 P4.7 2 47 P1.1 P2.0 3 46 TXD0 P2.1 4 45 RXD0 P2.2 5 44 GPIO17 P2.6 6 43 GPIO16 P2.8 7 42 PGOUT P2.10 8 41 LED P2.11 9 40 GPIO15 REFW/AHALL1+/AIN1 10 39 GPIO14 IW/AHALL1-/AIN2 11 38 GPIO13 AIN3 12 37 GPIO12 NTC/AIN4 13 36 GK VDC 14 35 VDD 15 34 PWMWH 33 PWMWL IV/AHALL2REFV/AHALL2+/AIN7 (Top View) IMC301A-F064 16 PWMVH PWMVL PWMUH PWMUL HALL3/GPIO11 HALL2/GPIO10 HALL1/GPIO9 VDD VDD VSS GPIO8 GPIO7 AIN11 AIN10 ISS/IU REFU/AIN8 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Figure 3 IMC301A-F064 Note: The recommended alternative pin assignment functions are within the parenthesis symbol (). 12 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Pin Configuration VSS VDD P0.8 P0.9 P0.10 P0.11 P0.12 P0.13 SWDIO SWDCLK P4.1 Pin Configuration Drawing IMC302A P4.2 2.3 P4.3 48 47 46 45 44 43 42 41 40 39 38 37 1 36 TXD0 P2.0 2 35 RXD0 P2.1 3 34 GPIO4 P2.2 4 33 PFCG0 P2.6 5 32 PFCG1 P2.11 6 31 PGOUT 30 LED IMC302A-F048 (Top View) PWMWH VDC 11 26 IV/AHALL2- 12 25 13 14 15 16 17 18 19 20 21 22 23 24 Figure 4 PWMWL PWMVH PWMVL PWMUH 27 PWMUL 10 VDD NTC/AIN4 VSS VDD IPFCTRIP 9 28 IPFCREF GK IPFC VAC1 29 VAC2 8 ISS/IU IW/AHALL1-/AIN2 REFU/AIN8 7 REFV/AHALL2+/AIN7 REFW/AHALL1+/AIN1 IMC302A-F048 13 2019-12-12 Revision 1.0 IMC301A/302A Datasheet VSS VDD P0.8 P0.9 P0.10 P0.11 P0.12 P0.13 SWDIO SWDCLK P4.0 P4.1 P4.2 P4.3 P4.4/(RXD1_A) P4.5/(TXD1_A) Pin Configuration 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 P4.6 1 48 P1.0 P4.7 2 47 P1.1 P2.0/(TXD0_A) 3 46 TXD0 P2.1/(RXD0_A) 4 45 RXD0 P2.2 5 44 PFCG0 P2.6 6 43 PFCG1 P2.8 7 42 PGOUT P2.10 8 41 LED P2.11 9 40 GPIO15 REFW/AHALL1+/AIN1 10 39 GPIO14 IW/AHALL1-/AIN2 11 38 GPIO13 IPFC 12 37 GPIO12 NTC/AIN4 13 36 GK VDC 14 35 VDD 15 34 PWMWH 33 PWMWL IV/AHALL2REFV/AHALL2+/AIN7 (Top View) IMC302A-F064 16 PWMVH PWMVL PWMUH PWMUL HALL3/GPIO11 HALL2/GPIO10 HALL1/GPIO9 VDD VDD VSS IPFCTRIP IPFCREF VAC1 VAC2 ISS/IU REFU/AIN8 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Figure 5 IMC302A-F064 Note: The recommended alternative pin assignment functions are within the parenthesis symbol (). 14 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Functional Description 3 Functional Description The IMC300 architecture is based on the combination of the Motion Control Engine (MCE) for sensored/sensorless motor control and PFC regulation and an additional microcontroller (MCU) based on an Arm® Cortex®-M0 core. The MCE contains an embedded motor control algorithm with fast angle sensing at startup and enables low and ultra-high speed operation, and offers either single shunt current sensing or leg shunt current sensing. PFC control supports two topologies, namely a single stage boost mode PFC and a totem-pole PFC with 50 kHz fast switching application to minimize the inductor size. User can configure the motor and PFC parameters for each specific motors and store into the onboard Flash memory. The MCE also contains the UL 607310-1 Software Safety certified library and modules. The MCU is based on an Arm® Cortex®-M0 core and provides 128 Kbyte of flash and 16 Kbyte of RAM memory. The peripheral set is targeting communicaton and system application tasks. Both units – MCE and MCU – run largely independantly up to the fact that the MCU can be debuged while the motor is still running. Communication between the two units is using a fast serial interface called JCOM. 3.1 Application Connection for IMC301A with Single Shunt Current Sensing The following figure shows the application connection for a single motor configuration. This example is based on a single shunt resistor current sensing configuration. Figure 6 IMC301A Application Connection 15 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Functional Description 3.2 Application Connection for IMC302A with Single Shunt Current Sensing The following figure shows the application connection for an air conditioner outdoor unit configuration with single shunt current sensing and a boost mode PFC configuration. Hall sensor feedback options support applications requiring high starting torque. Figure 7 IMC302A Application Connection (Single Shunt Current Sensing) 16 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Functional Description 3.3 Application Connection for IMC302A with Leg Shunt Current Sensing The following figure shows the application connection for an air conditioner outdoor unit configuration with leg shunt current sensing and a boost mode PFC configuration. Figure 8 IMC302A Application Connection (Leg Shunt Current Sensing) 17 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4 Electrical characteristics and parameters 4.1 General Parameters 4.1.1 Parameter Interpretation The parameters listed in this section represent partly the characteristics of the IMC300 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the “Symbol” column: • CC Such parameters indicate Controller Characteristics, which are distinctive feature of the IMC300 and must be regarded for a system design. • SR Such parameters indicate System Requirements, which must be provided by the application system in which the IMC300 is designed in. 4.1.2 Absolute Maximum Ratings Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 3 Absolute Maximum Rating Parameters Parameter Symbol Values Min. Unit Typ. Max. Note or Test Condition Ambient temperature TA SR -40 – 105 °C – Junction temperature TJ SR -40 – 115 °C – Storage temperature TST SR -40 – 125 °C – Voltage on power supply pin with respect to VSS VDD SR -0.3 – 6 V – Voltage on pins with respect to VIN SR -0.3 – VDDP + 0.3 V Input current on any pin during overload condition IIN SR -5 – 5 mA – Absolute maximum sum of all input currents during overload condition ΣIIN SR – 25 mA – VSS 18 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.1.3 Pin Reliability in Overload When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification. Table 4 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met: • full operation life-time is not exceeded • Operating Conditions are met for - pad supply levels (VDDP) - temperature If a pin current is outside of the Operating Conditions but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters. Note: An overload condition on one or more pins does not require a reset. Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery. Table 4 Overload Parameters Parameter Symbol Values Min. Unit Typ. Max. Input current on analog port pins during overload condition IOVA SR -3 – 3 mA Input current on any port pin during overload condition IOV -5 – 5 mA Absolute sum of all input circuit currents during overload condition IOVS SR – – 25 mA SR Note or Test Condition Figure 10 shows the path of the input currents during overload via the ESD protection structures. The diodes against VDDP and ground are a simplified representation of these ESD protection structures. 19 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters VDDP VDDP Pn.y IOVx GND ESD Figure 10 GND Pad Input Overload Current via ESD structures Table 5 and Table 6 list input voltages that can be reached under overload conditions. Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload. Table 5 PN-Junction Characterisitics for positive Overload Pad Type IOV = 5 mA Standard, High-current, AN/DIG_IN VIN = VDD +(0.3 ... 0.5) V VAIN = VDD + 0.5 V VAREF = VDD + 0.5 V Table 6 PN-Junction Characterisitics for negative Overload Pad Type IOV = 5 mA Standard, High-current, AN/DIG_IN VIN = VSS - (0.3 … 0.5) V VAIN = VSS - 0.5 V VAREF = VSS - 0.5 V 20 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.1.4 Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the IMC300. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise. Table 7 Operating Conditions Parameters Parameter Symbol Values Min. Unit Typ. Max. Ambient Temperature TA SR -40 – 105 °C Junction temperature TJ SR -40 – 115 °C 3.0 3.3 5.5 V -5 – 5 mA Digital supply voltage1) VDDP SR SR Note or Test Condition All VDD pins need to be connected on the circuit board. Short circuit current of digital outputs2) ISC Absolute sum of short circuit currents of the device2) ΣISC_D SR – – 25 mA For MCE peripheral pins Absolute sum of short circuit currents of the device3) ΣISC_D SR – – 25 mA For MCU peripheral pins See also the Supply Monitoring thresholds Power-Up and Supply Threshold Characteristics. Applicable for digital outputs. 2 See also section "Pin Reliability in Overload" for overload current definitions. 3 See also section "Pin Reliability in Overload" for overload current definitions. 1 2 21 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.1.5 Input/Output Characteristics The table below provides the characteristics of the input/output pins of the IMC300. Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis. Table 8 Input/Output Characteristics (Operating Conditions apply) Parameter Output low voltage on port pins Symbol VOLP Limit Values CC Min. Max. – 1.0 Unit Test Conditions V IOL = 11 mA (5 V) IOL = 7 mA (3.3 V) – 0.4 V IOL = 5 mA (5 V) IOL = 3.5 mA (3.3 V) Output low voltage on PWM outputs Output high voltage on port pins VOLP1 CC – 1.0 V IOL = 50 mA (5 V) IOL = 25 mA (3.3 V) VOHP CC – 0.32 V IOL = 10 mA (5 V) – 0.4 V IOL = 5 mA (3.3 V) VDDP - 1.0 – V IOH = -10 mA (5 V) IOH = -7 mA (3.3 V) VDDP - 0.4 – V IOH = -4.5 mA (5 V) IOH = -2.5 mA (3.3 V) Output high voltage on PWM outputs Rise/fall time on PWM outputs1) Rise/fall time on standard pad Pin capacitance (digital inputs/outputs) 1 VOHP1 CC tHCPR, tHCPF CC tR, tF CC CIO CC VDDP - 0.32 – V IOH = -6 mA (5 V) VDDP - 1.0 – V IOH = -8 mA (3.3 V) VDDP - 0.4 – V IOH = -4 mA (3.3 V) – 9 ns 50 pF @ 5 V – 12 ns 50 pF @ 3.3 V – 12 ns 50 pF @ 5 V – 15 ns 50 pF @ 3.3 V. – 10 pF Rise/Fall time parameters are taken with 10% - 90% of supply. 22 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters Table 8 Input/Output Characteristics (Operating Conditions apply) (continued) Parameter Symbol Limit Values Min. Max. Unit Test Conditions Pull-up/-down resistor on port pins (if enabled in software) RPUP CC 20 50 kΩ VIN = VSSP Input leakage current 1) IOZP CC -1 1 µA 0 < VIN < VDDP, TA 105°C Maximum current per pin standard pin IMP SR -10 11 mA – Maximum current per PWM outputs pins IMP1A SR -10 50 mA – Maximum current into VDDP / out of VSS IMVDD / SR – 260 mA 1 IMVSS An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. 23 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.1.6 Analog to Digital Converter (ADC) The following table shows the Analog to Digital Converter (ADC) characteristics. This specification applies to all analog input as given in the pin configuration list. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 9 ADC Characteristics (Operating Conditions apply)1) Parameter Symbol Values Min. Unit Typ. Supply voltage range VDD SR 3.0 Analog input voltage range VAIN SR VSSP- 0.05 – VDDP+ 0.05 V Conversion time tC12 CC – 1.0 1.6 μs Total capacitance of an analog input CAINT CC – – 10 pF Total capacitance of the reference input CAREFT CC – – 10 pF Sample time tsample CC – 200 – ns RMS noise ENRMS CC – 1.5 – LSB12 DNL error EADNL CC – ±2.0 – LSB12 INL error EAINL CC – ±4.0 – LSB12 Gain error EAGAIN CC – ±0.5 – % Offset error EAOFF CC – ±8.0 – mV 1 – Max. 5.5 Note or Test Condition V VDD = 3.3V All parameters are defined for the full supply range if not stated otherwise. 24 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.1.7 Power Supply Current The total power supply current defined below consists of a leakage and a switching component. Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations). Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 10 Power Supply parameter table; VDDP = 5V Parameter Symbol Values Min. Unit Typ. Note or Test Condition Max. Active mode current motor control only IDDPWM CC − 15 40 mA MCE clock 48MHz MPU clock 1 – 48Mhz Active mode current motor control plus PFC IDDPFC CC − 19 40 mA IMC302A only Deep Sleep mode current1) IDDPDS CC − 0.54 − mA Both cores Wake-up time from Sleep to Active mode tSSA CC − 6 − cycles Wake-up time from Deep Sleep to Active mode tDSA CC − 290 − μsec 4.1.8 Flash Memory Parameters Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 11 Flash Memory Parameters Parameter Symbol Values Min. Typ. Unit Note or Test Condition years Max. 100 erase / program cycles Sum of page and sector erase cycles Max. Data Retention Time tRET CC Erase Cycles2) NECYC CC 5*104 cycles Total Erase Cycles NTECYC CC 2*106 cycles 1 2 10 CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wakeup. Sum of page erase and sector erase cycles a page sees. 25 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.2 AC Parameters 4.2.1 Testing Waveforms VDDP VSS 90% 90% 10% 10% tR Figure 11 tF Rise/Fall Time Parameters VDDP VDDP /2 Test Points VDDP /2 VSS Figure 12 Testing Waveform, Output Delay VLOAD +0.1 V VLOAD -0.1 V Figure 13 Timing Reference Points VOH -0.1 V VOL +0.1 V Testing Waveform, Output High Impedance 26 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.2.2 Power-Up and Supply Threshold Characteristics This chapter provides the characteristics of the supply threshold in IMC300. The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while VDDP is outside its operating range. The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop. Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Operating Conditions apply. Table 12 Power-Up and Supply Threshold Parameters Parameter Values Symbol Min. VDDP ramp-up time tRAMPUP SR VDDP/ Typ. Unit Note or Test Condition Max. – 107 μs SVDDPrise VDDP slew rate VDDP prewarning voltage 9 10 SVDDPOP SR 0 – 0.1 V/μs Slope during normal operation SVDDP10 SR 0 – 10 V/μs Slope during fast transient within +/-10% of VDDP SVDDPrise SR 0 – 10 V/μs Slope during power-on or restart after brownout event SVDDPfall9) SR 0 – 0.25 V/μs Slope during supply falling out of the +/-10% limits10) VDDPPW CC 2.1 2.25 2.4 V ANAVDEL.VDEL_SELECT = 00B 2.85 3 3.15 V ANAVDEL.VDEL_SELECT = 01B 4.2 4.4 4.6 V ANAVDEL.VDEL_SELECT = 10B A capacitor of at least 100 nF has to be added between VDDP and VSSP to fulfill the requirement as stated for this parameter. Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current. 27 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters Table 12 Power-Up and Supply Threshold Parameters (continued) Parameter Values Symbol Min. Typ. Unit Note or Test Condition calibrated, before user code starts running Max. VDDP brownout reset voltage VDDPBO CC 1.55 1.62 1.75 V VDDP voltage to ensure defined pad states VDDPPA CC – 1.0 – V Start-up time from poweron reset tSSW CC − 260 – μs Time to the first user code instruction1) Start-up time to PWM on tPWMON CC 5.2 - 360 ms Time to PWM enabled 5.0 V } VDDP VDDPPW VDDPBO Figure 14 1 Supply Threshold Parameters This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 48 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated. 28 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.2.3 On-Chip Oscillator Characteristics Table 13 provides the characteristics of the 96 MHz digital controlled oscillator DCO1. The DCO1 is used as the time base during normal operation. The MCE core always runs at 48 MHz. The MCU core starts up at 48MHz but can be reduced to 32MHz, 16MHz or 1 MHz after startup. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 13 96 MHz DCO1 Characteristics Parameter Symbol Limit Values Min. Typ. Max. Unit Test Conditions Nominal frequency fNOM CC 95.7 96 96.3 MHz under nominal conditions1) after trimming Short term frequency deviation (over VDDC) ΔfST CC -1 – 1 % with respect to fNOM (typ), at 25°C Accuracy ΔfLT CC -1.7 – 3.4 % with respect to fNOM(typ), over temperature (0°C to 85°C) -3.9 – 4.0 % with respect to fNOM(typ), over temperature (-40°C to 105°C) Table 14 provides the characteristics of the 32 kHz digital controlled oscillator DCO2. The DCO2 is only used internally as a secondary clock source for the internal watchdog and as a fallback in case of failure of DCO1. Table 14 32 kHz DCO2 Characteristics Parameter Symbol Limit Values Min. Typ. Max. Unit Test Conditions Nominal frequency fNOM CC 32.5 32.75 33 kHz under nominal conditions2) after trimming Short term frequency deviation (over VDDC) ΔfST CC -1 – 1 % with respect to fNOM(typ), at 25°C Accuracy ΔfLT CC -1.7 – 3.4 % with respect to fNOM(typ), over temperature (0°C to 85°C) -3.9 – 4.0 % with respect to fNOM(typ), over temperature (-40°C to 105°C) 1 The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25°C. 2 The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25°C. 29 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.3 Motor Control Parameters The following parameters are defined in the iMOTIONTM Motion Control Engine (MCE) software. 4.3.1 Table 1 PWM Characteristics PWM carrier frequency Characteristics Parameter Symbol Motor PWM frequency 4.3.2 Table 2 Limit Values fPWM Min Typ Max 5 16 20 Unit Condition kHz Ta=25C, VDD= nominal Current Sensing Characteristics Motor current sensing Characteristics Parameter Input range Symbol IPWM Limit Values Ta=25C, VDD=nominal Typ Max VSS0.05 - VDD+0.05 V - VDD+0.05 V ±8 - mV - 10 pF 1/3/6/12 IPWMTRIP VSS0.05 Itrip offset Accuraccy REF Input capacitance Condition Min Configurable analog gain Itrip input range Unit CREFIU/V/W - 30 2019-12-12 External capacitance required on REFU,REFV, REFW Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.3.3 Table 3 Fault Timing Gatekill timing Parameter Symbol GK pulse width IPWM GK input to PWM shutoff Limit Values Unit Condition Ta=25C, VDD=nominal Min Typ Max 1 - - µs - 1.3 - µs Motor Fault reset timing tRESET - 1.84 - ms Fault reset command via UART to PWM reactivation Itrip to PWM shutoff tPWMOFF - 1.0 - µs Single shunt configuration Itrip to PWM shutoff tPWMOFF - 1.0 - µs Leg shunt configuration Figure 9 Fault timing 4.3.4 Analog Hall Sensing Characteristics Table 4 Analog Hall input Characteristics Parameter Symbol Limit Values Min Typ Max Unit Condition V Ta=25C, VDD=nominal Input range VH VSS0.05 - VDD+0.05 Comparator Offset VCMPOFF - +/-3 - mV ±15 - mV Comparator Hysteresis 31 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.4 Power Factor Correction (PFC) parameters The following parameters are defined in the iMOTIONTM Motion Control Engine (MCE) software. 4.4.1 Boost PFC characteristics Table 5 PWM carrier frequency Characteristics Parameter Symbol PFC PWM frequency 4.4.2 Table 6 fPWM Typ Max - 20 50 Symbol Motor PWM frequency within specified range Limit Values Unit Condition fPWM Min Typ Max - 20 50 kHz Motor PWM frequency within specified range PFC current sensing Characteristics Symbol Input range IPFC Limit Values Itrip input range Condition Ta=25C, VDD=nominal Typ Max VSS0.05 - VDD+0.05 V - VDD+0.05 V ±3 - mV Input voltage difference > 200mV - 10 pF External capacitor required on IPFCREF Unit Condition 1/3/6/12 IPFCTRIP VSS0.05 Itrip offset REF Input capacitance Unit Min Configurable analog gain Table 8 kHz PFC current sensing characteristics Parameter 4.4.4 Condition PWM carrier frequency Characteristics PFC PWM frequency Table 7 Min Unit Totem Pole PFC characteristics Parameter 4.4.3 Limit Values CREFIPFC - PFC Fault timing PFC Fault timing Parameter Symbol Limit Values Min Typ Max Itrip to PFCPWM shutoff tPFCOFF - 1.18 - µs Motor Fault reset timing tRESET - 1.0 - ms 32 2019-12-12 Fault reset command via UART to PWM reactivation Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.5 Control Interface Parameters (MCE) IMC300 series provides the following communication interfaces. Note: These parameters are not subject to production test, but verified by design and/or characterization. 4.5.1 UART Interface Table 9 Electrical Characteristics Parameter Symbol Limit Values Unit Min Typ Max UART baud rate 1200 57600 - UART mode - 8-N-1 - - 1/16 - UART sampling filter period TUARTFIL Condition BPS Data-parity-stop bit TBAUD T BAUD TXD Start Bit Data and Parity Bit Stop Bit RXD T UARTFIL Figure 10 UART timing 4.5.2 Over Temperature Input The over temperature input can be used to continuously monitor an external temperature sensor like an NTC. Specific type of NTC has to be used. Refer to the MCE Reference Manual for details. Table 10 Over temperature input Parameter Over temperature input threshold Symbol VOT Over temperature to PWM tot shutdown Limit Values Unit Min Typ Max 0.1 1.0 3.0 V - 1.0 2.1 ms 33 2019-12-12 Condition VDD=3.3V, Configurable parameter e.g. via MCEDesigner, default=1.0V Revision 1.0 IMC301A/302A Datasheet Electrical characteristics and parameters 4.5.3 Pulse Output The IMC300 series provide an optional PGOUT pin pulse output. The pulse frequency is proportional to motor revolution. Refer to the MCE Reference Manual for details. Table 11 Pulse Output Parameter Symbol Limit Values Unit Min Typ Max Pulse per Revolution PPR 4 - 24 Pulse duty cycle tPPR - 50 - 4.5.4 Condition PPR % LED Output The IMC300 series provide an output that can be connected to an LED to give a visual indication of the status of the motor drive. Table 12 LED Output Parameter Symbol Limit Values Unit Min Typ Max Fault to LED delay tLEDFAULT - 53 - ms Fault reset to LED delay tLEDRESET - 1.84 - ms LED blinking frequency fLED 1 1000 Hz LED blinking duty cycle tLED 5 95 % 34 2019-12-12 Condition Revision 1.0 IMC301A/302A Datasheet Quality declaration 5 Table 13 Quality declaration Quality Parameters Parameter ESD susceptibility according to Human Body Model (HBM) Symbol VHBM SR Limit Values Min Max - 2000 Unit V Condition Conforming to ANSI/ESDA/JEDEC JS-01 ESD susceptibility according to Charged Device Model (CDM) pins VCDM SR - 500 V Conforming to ANSI/ESDA/JEDEC JS-001 Moisture sensitivity level MSL CC - 3 - JEDEC J-STD-020C Soldering temperature TSDR CC - 260 °C Profile according to JEDEC JSTD-020D 35 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Device and Package specification 6 Device and Package specification 6.1 SBSL and Chip-IDs The table below gives the IDs for the individual devices in the IMC300 family. Depending upon the mode either the SBSL-ID (secure boot loader) or the Chip-ID should be used to identify the device. Both cores of the IMC300 family have a dedicated Chip-ID. The MCE core is programmed via a secure loader using the SBSL-IDs as given below. For details refer to the Reference Manual or the iMOTION™ Programming Manual. Table 14 SBSL and Chip IDs Product Type Core Chip-ID SBSL-ID IMC301A-F048 MCE 0x1B010006 0x026add3f080ad5abfb67af2271ea4973 ARM® Cortex®-M0 0x13011006 - MCE 0x1B01000B 0x0207810c349410e8be51722b81520cf8 ARM® Cortex®-M0 0x1301100B - MCE 0x1B020006 0x024747b4b61060cf95f7b14a05b1decc ARM® Cortex®-M0 0x13021006 - MCE 0x1B02000B 0x0216ebe1d4cc0767684bacceefae29b2 ARM® Cortex®-M0 0x1302100B - IMC301A-F064 IMC302A-F048 IMC302A-F064 36 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Device and Package specification 6.2 Package drawings 6.2.1 PG-LQFP-48-11 Figure 11 PG-LQFP-48-11 37 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Device and Package specification 6.2.2 PG-LQFP-64-29 Figure 12 PG-LQFP-64-29 38 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Device and Package specification 6.3 Thermal Characteristics Table 15 Thermal Characteristics of the packages Parameter Symbol Thermal resistance JunctionAmbient Note: RΘJA CC Limit Values Unit Condition Min Max - 66.7 K/W PG-LQFP-64-26 - TBD K/W PG-LQFP-48-26 For electrical reasons, it is required to connect the exposed pad to the board ground VSSP, independent of EMC and thermal requirements. When operating the IMC300 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage. The maximum heat that can be dissipated depends on the package and its integration into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115°C. The difference between junction temperature and ambient temperature is determined by ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA The internal power consumption is defined as PINT = VDD × IDDP (switching current and leakage current). The static external power consumption caused by the output drivers is defined as PIOSTAT = Σ((VDD - VOH) × IOH) + Σ(VOLIOL) The dynamic external power consumption caused by the output drivers (PIODYN) depends on the capacitive load connected to the respective pins and their switching frequencies. If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:  Reduce VDD, if possible in the system  Reduce the system frequency  Reduce the number of output pins  Reduce the load on active output drivers 1 Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad of VQFN soldered 39 2019-12-12 Revision 1.0 IMC301A/302A Datasheet Device and Package specification 6.4 Part marking Manufacturer Part number IMC302A F064 XXXXX Lot number or -code Figure 13 Part marking Revision history Document version Date of release Description of changes 1.0 2019-12-12 Initial version IMC100 Prisma graphics rev 2.vsdm_marking 40 2019-12-12 Revision 1.0 Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™ Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2019-12-12 Published by Infineon Technologies AG 81726 München, Germany owners. © 2019 Infineon Technologies AG. All Rights Reserved. Do you have a question about this document? Email: erratum@infineon.com Document reference IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.
IMC302AF064XUMA1 价格&库存

很抱歉,暂时无法提供与“IMC302AF064XUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货