0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE82642EXUMA2

TLE82642EXUMA2

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

  • 描述:

    IC SYSTEM BASIS CHIP DSO-36

  • 数据手册
  • 价格&库存
TLE82642EXUMA2 数据手册
D a t a S h e e t , R e v. 1 . 0 , M ar c h 2 00 9 TLE8264-2E U ni v e r s a l S y s t e m B as i s C h i p H ER M ES R ev . 1 . 0 A u to m o t i v e P o w e r TLE8264-2E Table of Contents Table of Contents 1 HERMES Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 4.1 4.2 State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 State Machine Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 5.1 5.2 5.3 5.4 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16 17 18 19 6 6.1 6.2 6.3 6.4 6.5 Internal Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Voltage Regulator Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Voltage Regulator Modes with SBC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 21 21 22 23 7 7.1 7.2 7.3 7.4 7.5 External Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Voltage Regulator Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Voltage Regulator State by SBC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 24 24 24 25 27 8 8.1 8.2 8.3 8.4 8.5 8.6 High Speed CAN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High-speed CAN Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAN Cell Mode with SBC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Failure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPLIT Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 29 29 32 33 34 36 9 9.1 9.2 9.3 WK Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wake-Up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 40 40 42 10 10.1 10.2 10.3 10.4 10.5 10.6 LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIN Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIN Cell Mode with SBC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Failure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 43 43 45 46 47 49 11 11.1 Supervision Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Data Sheet 2 Rev. 1.0, 2009-03-31 TLE8264-2E Table of Contents 11.2 11.3 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 12 12.1 12.2 12.3 12.4 12.5 Interrupt Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Modes with SBC Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 60 64 64 64 65 13 13.1 13.2 13.3 13.4 13.5 13.6 Limp Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limp Home output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activation of the Limp Home Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Release of the Limp Home Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vcc1µC undervoltage time-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 66 66 68 68 68 70 14 14.1 14.2 Configuration Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Configuration select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Config Hardware Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Corrupted data in the SPI data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 72 72 73 74 74 82 84 16 16.1 16.2 16.3 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ZthJA Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hints for SBC Factory Flash Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 89 90 91 17 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 18 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Data Sheet 3 Rev. 1.0, 2009-03-31 Universal System Basis Chip HERMES Rev. 1.00 1 TLE8264-2E HERMES Overview Scalable System Basis Chip Family • • • • • Six products for complete scalable application coverage Complete compatibility (hardware and software) across the family TLE8264-2E (3LIN), TLE8263-2E (2LIN) - 3 Limp Home outputs TLE8264E (3LIN), TLE8263E (2LIN) - 1 Limp Home output TLE8262E (1LIN), TLE8261E (no LIN) - 1 Limp Home output Basic Features • • • • • • • • • • • Very low quiescent current in Stop and Sleep Modes Reset input, output Power on and scalable undervoltage reset generator Standard 16-bit SPI interface Overtemperature and short circuit protection Short circuit proof to GND and battery One universal wake-up input Wide input voltage and temperature range Cyclic wake in Stop Mode Green Product (RoHS compliant) AEC Qualified PG-DSO-36-38 Description The devices of the SBC family are monolithic integrated circuits in an enhanced power package with identical software functionality and hardware features except for the number of LIN cells. The devices are designed for CAN-LIN automotive applications e.g. body controller, gateway applications. To support these applications, the System Basis Chip (SBC) provides the main functions, such as HS-CAN transceiver and LIN transceivers for data transmission, low dropout voltage regulators (LDO) for an external 5 V supply, and a 16-bit Serial Peripheral Interface (SPI) to control and monitor the device. Also implemented are a Time-out or a Window Watchdog circuit with a reset feature, Limp Home circuitry output, and an undervoltage reset feature. The devices offer low power modes in order to support application that are connected permanent to the battery. A wake-up from the low power mode is possible via a message on the buses or via the bi-level sensitive monitoring/wake-up input as well as from the SPI command. Each wake-up source can be inhibited. The device is designed to withstand the severe conditions of automotive applications. Type Package Marking TLE8264-2E PG-DSO-36-38 TLE8264-2E Data Sheet 4 Rev. 1.0, 2009-03-31 TLE8264-2E HERMES Overview HS CAN Transceiver • • • • • • • • • Compliant to ISO 11898-2 and 11898-5 as well as SAE J2284 CAN data transmission rate up to 1 MBaud Supplied by dedicated input VccHSCAN Low power mode management Bus wake-up capability via CAN message Excellent EMC performance (very high immunity and very low emission) Bus pins are short circuit proof to ground and battery voltage 8 kV ESD gun test on CANH / CANL / SPLIT Bus failure detection LIN Transceiver • • • • • LIN2.1 conformance, LIN2.1 is back compatible to LIN1.3 and LIN2.0 SAE J2602-2 conformance Compatible to ISO 9141 (K-L-Line) Transmission rate up to 20 kBaud, LIN Flash Mode 115kBaud 8 kV ESD gun test on Bus pins Voltage Regulators • • • • • Low-dropout voltage regulator Vcc1µC, 200 mA, 5 V ±2% for external devices, such as microcontroller and RF receiver Vcc2, 200 mA, 5 V ±2% for external devices or the internal HS CAN cell Vcc3, current limitation by shunt resistor (up to 400 mA with 220 mΩ shunt resistor), 5 V ±4% with external PNP transistor; for example: to supply additional external CAN transceivers Vcc1µC, undervoltage Time-out Supervision • • • • • Reset output with integrated pull-up resistor Time-out or Window Watchdog, SPI configured Watchdog Timer from 16 ms to 1024 ms Check sum bit for Watchdog configuration Reset due to Watchdog failure can be inhibited with Test pin (SBC SW Development Mode) Interrupt Management • • Complete enabling / disabling of interrupt sources Timing filter mechanism to avoid multiple / infinite Interrupt signals Limp Home • • • • • • Open drain Limp Home outputs Dedicated internal logic supply Maximum safety architecture for Safety Operation Mode Configurable Fail-Safe behavior Dedicated side indicators signal 1.25Hz 50% duty cycle Dedicated PWM signal 100Hz 20% duty cycle Data Sheet 5 Rev. 1.0, 2009-03-31 TLE8264-2E Block Diagram 2 Block Diagram The simplified block diagram illustrates only the basic elements of the SBC devices. Please refer to the information for each device in the product family for more specific hardware configurations. V CC2 VCC1µC V CC3ref VS VCC3S HUNT VS VCC3B ASE VS VS Vcc1µC V cc2 Vcc3 GND Vint. Vint. SDI SDO CLK SPI CSN SBC STATE MACHINE LH_PL/test Limp Home Limp home LHO_SI INT Interrupt Control RO RESET GENERATOR WK TxD1 RxD1 BUS1 BUS2 TxD2 RxD2 WAKE REGISTER CAN cell Data Sheet TxD CAN RxD CAN CAN_H SPLIT CAN_L LIN1 cell LIN3 cell LIN2 cell TxD3 RxD3 BUS3 Block diagram_TLE8264-2E.vsd GND Figure 1 VCCH SCAN Vs WK Simplified Block Diagram 6 Rev. 1.0, 2009-03-31 TLE8264-2E Pin Configuration 3 Pin Configuration 3.1 Pin Assignments 52   /+B3/7HVW &61   /LPSKRPH &/.   :. 6', 6'2   /+B6,   %XV *1' %XV   *1'   9V   5['/,1 7['/,1 9V   5['/,1 %XV   7['/,1 9FFVKXQW 9FFEDVH     5['/,1 7['/,1 *1'   5['&$1 9FF5()   7['&$1 ,17   *1' 9FF—&   &$1/ 9FF   63/,7 9FF+6&$1   &$1+ 7/(( '62([SRVHG3DG ([SRVHG 'LH 3DG 3LQRXWBB(VYJ Figure 2 Data Sheet Pin Configuration 7 Rev. 1.0, 2009-03-31 TLE8264-2E Pin Configuration 3.2 Pin Definitions and Functions Pin Symbol Function 1 RO Reset Input/Output; open drain output, integrated pull-up resistor; active low. 2 CSN SPI Chip Select Not Input; CSN is an active low input; serial communication is enabled by pulling the CSN terminal low; CSN input should be set to low only when CLK is low; CSN has an internal pull-up resistor and requires CMOS logic level inputs. 3 CLK SPI Clock Input; clock input for shift register; CLK has an internal pull-down resistor and requires CMOS logic level inputs. 4 SDI SPI Data Input; receives serial data from the control device; serial data transmitted to SDI is a 16-bit control word with the Least Significant Bit (LSB) transferred first: the input has a pull-down resistor and requires CMOS logic level inputs; SDI will accept data on the falling edge of the CLK signal. 5 SDO SPI Data Output; this tri-state output transfers diagnostic data to the control device; the output will remain tri-stated unless the device is selected by a low on Chip Select Not (CSN). 6 GND Ground 7 Bus3 LIN Bus 3; Bus line for the LIN interface, according to ISO 9141 and LIN specification 2.1 as well as SAE J2602-2. 8 Vs Power Supply Input; block to GND directly at the IC with ceramic capacitor. Ensure to have no current flow from PIN8 to PIN9. PIN8 and PIN9 can be directly connected. 9 Vs Power Supply Input; block to GND directly at the IC with ceramic capacitor. Ensure to have no current flow from PIN8 to PIN9. PIN8 and PIN9 can be directly connected. 10 Bus1 LIN Bus 1; Bus line for the LIN interface, according to ISO. 9141 and LIN specification 2.1 as well as SAE J2602-2. 11 PNP Shunt; External PNP emitter voltage. 12 Vcc3 shunt Vcc3 base 13 GND Ground 14 Vcc3REF External PNP Output Voltage 15 INT Interrupt Output, configuration Input; used as wake-up flag from SBC Stop Mode and indicating failures. Active low. Integrated pull up. During start-up used to set the SBC configuration. External Pull-up sets config 1/3, no external Pull-up sets config 2/4. 16 Vcc1 µc Voltage Regulator Output; 5 V supply; to stabilize block to GND with an external capacitor. 17 Vcc2 Voltage Regulator Output; 5 V supply; to stabilize block to GND with an external capacitor. 18 VccHSCAN Supply Input; for the internal HS CAN cell. 19 CANH CAN High Line; High in dominant state. 20 SPLIT Termination Output; to support recessive voltage level of the bus lines. 21 CANL CAN Low Line; Low in dominant state. 22 GND Ground 23 TxDCAN CAN Transmit Data Input; integrated pull-up resistor. 24 RxDCAN CAN Receive Data Output Data Sheet PNP Base; External PNP base voltage. 8 Rev. 1.0, 2009-03-31 TLE8264-2E Pin Configuration Pin Symbol Function 25 TxDLIN LIN Transceiver Data input; according to ISO 9141 and LIN specification 2.1 as well as SAE J2602-2. integrated pull-up resistor. 26 RxDLIN LIN Transceiver Data Output; according to the ISO 9141 and LIN specification 2.1 as well as SAE J2602-2; push-pull output; LOW in dominant state. 27 TxDLIN2 LIN Transceiver Data Input; according to ISO 9141 and LIN specification 2.1 as well as SAE J2602-2. integrated pull-up resistor. 28 RxDLIN2 LIN Transceiver Data Output; according to the ISO 9141 and LIN specification 2.1 as well as SAE J2602-2; push-pull output; LOW in dominant state. 29 TxDLIN3 LIN Transceiver Data Input; according to ISO 9141 and LIN specification 2.1 as well as SAE J2602-2. integrated pull-up resistor. 30 RxDLIN3 LIN Transceiver Data Output; according to the ISO 9141 and LIN specification 2.1 as well as SAE J2602-2; push-pull output; LOW in dominant state. 31 GND Ground 32 Bus2 LIN Bus 2; Bus line for the LIN interface, according to ISO 9141 and LIN specification 2.1 as well as SAE J2602-2. 33 LH_SI Limp Home side indicator; Side indicators 1.25Hz 50% duty cycle output; Open drain. Active LOW. 34 WK Monitoring / Wake-Up Input; bi-level sensitive input used to monitor signals coming from, for example, an external switch panel; also used as wake-up input; 35 Limp Home Fail-Safe Function Output; Open drain. Active LOW. 36 LH_PL/Test SBC SW Development Mode entry; Connect to GND for activation; Integrated pullup resistor. Connect to VS or leave open for normal operation. Limp Home Pulsed Light output: Brake/rear light 100Hz 20% duty cycle output; Open drain. Active LOW. EDP - Exposed Die Pad; For cooling purposes only, do not use it as an electrical ground.1) 1) The exposed die pad at the bottom of the package allows better dissipation of heat from the SBC via the PCB. The exposed die pad is not connected to any active part of the IC and can be left floating or it can be connected to GND for the best EMC performance. Data Sheet 9 Rev. 1.0, 2009-03-31 TLE8264-2E State Machine 4 State Machine 4.1 Block Description First battery connection (POR) AND config0 not active Condition / event SBC Init mode (256ms max after reset relaxation) SPI cmd Vcc1 on Vcc2/3 off WD conf L.H. inact CAN inact LIN inact SBC action SPI cmd SPI cmd SBC SW Flash mode Vcc1 on Vcc2/3 on/off WD fixed Vcc1 on Vcc2/3 on/off WD conf L.H. act/inact CAN Tx/Rx LIN Flash mode L.H. act/inact CAN conf LIN conf WD trig SPI cmd SPI cmd NOT reset clamped (high or low) OR NOT undervoltage at Vcc1 Detection of falling edge at reset pin (any mode) OR undervoltage reset at VCC1µC (any mode) SBC Sleep mode Vcc1 off WK event stored LH entry condition stored OR Restart entry condition stored L.H. act/inact Vcc1 on Vcc2/3 on/off Reset act. L.H. act/inact CAN LIN waked or off waked or off Vcc2/3 off SBC Stop mode WD off CAN LIN Wakable/ off Wakable/ off SPI cmd Vcc1 on Vcc2/3 on/off L.H. act/inact WD WD trig fixed/off CAN LIN wakable/ off wakable/ off Wake up event SBC Restart mode Config 1/3: Reset clamped LOW (any mode) WD trig SPI cmd SPI cmd OR WD failed 1st (config1) or 2nd (config3) WD trig failure in Normal / Stop / SW Flash mode SBC Normal mode reset (initiated by SBC ) Init mode not successful First battery connection (POR) AND config0 Config 1/3: Reset clamped HIGH during restart / init SBC SW Development mode Vcc1 Vcc2/3 WD mode set mode set mode set CAN, LIN, WK Wake-up OR Release of over temperature at Vcc1 (Wake-up event stored) (LH entry condition stored) L.H. CAN LIN mode set mode set mode set SBC Fail-Safe mode 1st (config2) or 2nd (config4) WD trig failure in Normal / Stop / SW Flash mode Vcc1 off Vcc2/3 off WD off Config 2/4: Reset clamped LOW (any mode) L.H. act CAN sleep LIN sleep SBC Factory Flash mode Config 2/4: Reset clamped HIGH during Restart or Init mode Vcc1 over temperature shutdown OR V S > VUV_ON & Undervoltage time out on VCC1 Vcc1 ext. Vcc2/3 off WD off L.H. inact. CAN off LIN off Power mode managment.vsd Figure 3 Data Sheet Power Mode Management 10 Rev. 1.0, 2009-03-31 TLE8264-2E State Machine 4.2 State Machine Description The System Basis Chip (SBC) offers ten operating modes: Power On Reset, Init, Normal, Restart, Software Flash, Sleep, Stop, Fail-Safe, Software Development, and Factory Flash Mode. The modes are controlled with one test pin and via three mode select bits MS2..0, within the SPI. Additionally, the SBC allows five configurations, accessed via two external pins and one SPI bit. 4.2.1 Configuration Description Table 1 provides descriptions and conditions for entry to the different configurations of the SBC. Table 1 SBC Configuration Configuration Description Test pin INT Pin WD to LH bit config 0 Software Development Mode 0V n.a n.a config 1 After missing the WD trigger for the first time, the state of Vcc1µC Open / VS External 0 remain unchanged, LH pin is active, SBC in Restart Mode pull-up config 2 After missing the WD trigger for the first time, Vcc1µC turns OFF, LH pin is active, SBC in Fail-Safe Mode No ext. pull-up config 3 After missing the WD trigger for the second time, the state of Vcc1µC remain unchanged, LH pin is active, SBC in Restart Mode External 1 pull-up config 4 After missing the WD trigger for the second time, Vcc1µC turns OFF, LH pin is active, SBC in Fail-Safe Mode No ext. pull-up 0 1 In SBC SW Development Mode, Config 1 to 4 are accessible. 4.2.2 SBC Power ON Reset (POR) At VS > VUVON, the SBC starts to operate, by reading the test pin and then by turning ON Vcc1µC. When Vcc1µC reaches the reset threshold VRT1, the reset output remains activated for tRD1 and the SBC enters then the Init Mode. In the event that Vs decreases below VUVOFF, the device is completely disabled. For more details on the disable behavior of the SBC blocks, please refer to the chapter specific to each block. 4.2.3 SBC Init Mode At entering the SBC Init Mode, the SBC starts to read the Test pin. The SBC starts-up in SBC Init Mode, and, after powering-up, waits for the microcontroller to finish its startup and initialization sequences. Vcc2/3 are OFF and the Watchdog is configurable but not active. CAN and LIN modules are inactive and Limp Home output is inactive. From this transition mode, the SBC can be switched via SPI command to the desired operating mode, SBC Normal or Software Flash Mode. If the SBC does not receive any SPI command, or receive wrong SPI command (i.e. not send the device to SBC Normal or SBC SW Flash Mode) within a 256 ms time frame after the reset relaxation, it will enter into SBC Restart Mode and activate the Limp Home output. Note: In Init Mode it is recommended to send one SPI command that sets the device to Normal Mode, triggers the watchdog the first time and sets the required watchdog settings. Data Sheet 11 Rev. 1.0, 2009-03-31 TLE8264-2E State Machine 4.2.4 SBC Normal Mode SBC Normal Mode is used to transmit and receive CAN and LIN messages. In this mode, Vcc1µC is always “ON” Vcc2 and Vcc3 can be turned-on or off by SPI command. In Normal Mode the watchdog needs to be triggered. It can be configured via SPI, window watchdog and time-out watchdog is possible (default value is time-out 256 ms). All the wake-up sources can be inhibited in this mode. The Limp Home output can be enabled or disabled via SPI command. Via SPI command, the SBC can enter Sleep, Stop or Software Flash Mode. A reset is triggered by the SBC when entering the Software Flash Mode. It is recommended to send at first SPI command the watchdog setting. Please refer to Chapter 13.4. 4.2.5 SBC Sleep Mode During SBC Sleep Mode, the lowest power consumption is achieved by having the main and external voltage regulators switched-off. As the microcontroller is not supplied, the integrated Watchdog is disabled in Sleep Mode. The last Watchdog configuration is not stored. The CAN and LIN modules are in their respective Wake-capable or OFF modes and the Limp Home output is unchanged, as before entering the Sleep Mode. If a wake-up appears in this mode, the SBC goes into Restart Mode automatically. In Sleep Mode, not all wake-up sources should be inhibited, this is required to not program the device in a mode where it can not wake up. If all wake sources are inhibited when sending the SBC to Sleep Mode, the SBC does not go to Sleep Mode, the microcontroller is informed via the INT output, and the SPI bit “Fail SPI” is set. The first SPI output data when going to SBC Normal Mode will always indicate the wake up source, as well as the SBC Sleep Mode to indicate where the device comes from and why it left the state. Note: Do not change the transceiver settings in the same SPI command that sends the SBC to Sleep Mode. 4.2.6 SBC Stop Mode The Stop Mode is used as low power mode where the µC is supplied. In this mode the voltage regulator Vcc1µC remains active. The other voltage regulator (Vcc2/3) can be switched on or off. The watchdog can be used or switched off. If the watchdog is used the settings made in Normal Mode are also valid in Stop Mode and can not be changed. The CAN and LIN modules are not active. They can be selected to be off or used as wake-up source. If all wake up sources are disabled, (CAN, LIN, WK, cyclic wake) the watchdog can not be disabled, the SBC stays in Normal Mode and the watchdog continues with the old settings. If a wake-up event occurs the INT pin is set to low. The µC can react on the interrupt and set the device into Normal Mode via SPI. There is no automatic transition to SBC Normal Mode. There are 4 Options for SBC Stop Mode • • • • WD on (the watchdog needs to be served as in Normal Mode WD off (special sequence required see Chapter 11.2.4) Cyclic Wake up with acknowledge (interrupt is sent after set time and needs to be acknowledged by SPI read) Cyclic Wake-up, Watchdog off (interrupt is sent after set time) Cyclic Wake-Up Feature SBC Stop Mode supports the cyclic wake-up feature. By default, the function is OFF. It is possible to activate the cyclic wake-up via “Cyclic WK on/off” SPI bit. This feature is useful to monitor battery voltage, for example, during parking of the vehicle or for tracking RF data coming via the RF receiver. The Cyclic Wake-up feature sends an interrupt via the pin INT to the µC after the set time. The cyclic wake-up feature shares the same clock as the Watchdog. The time base set in the SPI for the Watchdog will be used for the cyclic wake-up. The timer has to be set before activating the function. With the cyclic wake-up feature the watchdog is not working as known from the other modes. In the case that both functions (Watchdog and cyclic wake-up) are selected, the cyclic wake-up is activated and each interrupt has to be acknowledged by reading the SPI Wake register before the next Cyclic Wake-Up comes. Otherwise, the SBC goes to SBC Restart Mode. Data Sheet 12 Rev. 1.0, 2009-03-31 TLE8264-2E State Machine 4.2.7 SBC Software Flash Mode SBC Software Flash Mode is similar to SBC Normal Mode regarding voltage regulators. In this mode, the Limp Home output can be set to active LOW via SPI and the communication on CAN and LIN modules is activated to receive flash data. In the LIN module the slope control mechanism is switched off. The Watchdog configuration is fixed to the settings used before entering the SBC SW Flash Mode. When the device comes from SBC Normal Mode, a reset is generated at the transition. From the SBC Software Flash Mode, the SBC goes into SBC Restart Mode, the config setting has no influence on the behavior. A mode change to SBC Restart Mode can be caused by a SPI command, a time-out or Window Watchdog failure or an undervoltage reset. When leaving the SBC Software Flash Mode a reset is generated. 4.2.8 SBC Restart Mode They are multiple reasons to enter the SBC Restart Mode and multiple SBC behaviors described in Table 2. In any case, the purpose of the SBC Restart Mode is to reset the microcontroller. • • • • • From SBC SW Flash Mode, it is used to start the new downloaded code. From SBC Normal, SBC Stop Mode and SBC SW Flash Mode it is reached in case of undervoltage on Vcc1µC, or due to incorrect Watchdog triggering. From SBC Sleep Mode it is used to ramp up Vcc1µC after wake From SBC Init Mode, it is used to avoid the system to remain undefined. From SBC Fail-safe Mode it is used to ramp up Vcc1µC after wake or cool down of Vcc1µC. From SBC Restart Mode, the SBC goes automatically to SBC Normal Mode. The delay time tRDx is programmable by the “Reset delay” SPI bit. The Reset output (RO) is released at the transition. SBC Restart Mode is left automatically by the SBC without any microcontroller influence. The first SPI output data will provide information about the reason for entering Restart Mode. The reason for entering Restart Mode is stored and kept until the microcontroller reads the corresponding “LH0..2” or “RM0..1” SPI bits. In case of a wake up from Sleep Mode the wake source is seen at the interrupt bits (Configuration select 000), an interrupt is not generated. Entering or leaving the SBC Restart Mode will not result in deactivation of the Limp Home output (if activated). The first SPI output data when going to SBC Normal Mode will always indicate the reason for the SBC Restart event. Data Sheet 13 Rev. 1.0, 2009-03-31 TLE8264-2E State Machine Table 2 SBC Restart Mode Entry Reasons and Actions SBC Mode and Configuration Entering reason Actions Mode LH output Vcc1µC Init Mode Config Init Mode time-out ON remains ON LOW LH 0..2 n.a. Reset low from outside Unchanged remains ON LOW RM 0..1 config 1/3 Reset clamped ON remains ON LOW LH 0..2 n.a undervoltage reset unchanged ramping up RM 0..1 config 3 Software Flash Sleep WD trigger failure config 4 Software Development Mode ON LH 0..2 OFF after 1st remains ON LOW ON after 2nd RM 0..1 after 1st LH 0..2 after 2nd OFF after 1st RM 0..1 after 1st2) Reset low from outside Unchanged remains ON LOW RM 0..1 config 1/3 Reset clamped ON remains ON LOW LH 0..2 n.a undervoltage reset unchanged remains ON LOW RM 0..1 n.a SPI cmd unchanged remains ON LOW RM 0..1 n.a WD trigger failure unchanged remains ON LOW RM 0..1 n.a. Reset low from outside Unchanged remains ON LOW RM 0..1 config 1/3 Reset clamped ON remains ON LOW LH 0..2 n.a Wake-up event unchanged ramping up LOW WK bits register n.a undervoltage reset unchanged ramping up LOW RM 0..1 config 3 Fail-Safe LOW n.a. config 1 Stop1) SPI Out Bits n.a config 1 Normal1) RO WD trigger failure config 4 ON LH 0..2 OFF after 1st remains ON LOW ON after 2nd RM 0..1 after 1st LH 0..2 after 2nd OFF after 1st RM 0..1 after 1st2) n.a. Reset low from outside Unchanged remains ON LOW RM 0..1 config 1/3 Reset clamped ON remains ON LOW LH 0..2 n.a. Wake-up event ON ramping up LOW LH 0..2 n.a undervoltage reset unchanged ramping up LOW RM 0..1 n.a. Reset low from outside Unchanged remains ON LOW RM 0..1 config 1/3 Reset clamped ON remains ON LOW LH 0..2 1) Config 2 will never enter Restart Mode in case of WD failure but directly Fail-Safe Mode 2) Goes to Fail-Safe Mode after the second consecutive failure Data Sheet 14 Rev. 1.0, 2009-03-31 TLE8264-2E State Machine 4.2.9 SBC Fail-Safe Mode In SBC Fail-Safe Mode, all voltage regulators are OFF and the transceivers are in Wake-Capable Mode. The Limp Home output is active. Conditions to enter the SBC Fail-Safe Mode are: • • • • Watchdog trigger failure in configuration 2 or 4 Vcc1µC undervoltage time-out in any configuration if VS is above VLHUV range. Temperature shutdown of Vcc1µC in any configuration. Reset clamped in Config. 2/4 In case of Vcc1µC overtemperature shutdown, the SBC will latch and wait to cool down below the thermal hysteresis, and will go back to SBC Restart Mode. In case of a wake-up event, the SBC will go to SBC Restart Mode (not in case of Vcc1µC overtemperature shutdown), storing the wake-up event and resetting the Watchdog trigger failure counter. The first SPI output data when going to SBC Normal Mode will always indicate the reason for the SBC Fail-Safe Mode. 4.2.10 SBC Software Development Mode If the Test pin is connected to GND (Config 0 active) during powering-up, the SBC enters SBC Software Development Mode. SBC Software Development Mode is a super set of the other modes so it is possible to use all the modes of the SBC with the following difference. In SBC Software Development Mode, no reset is generated and VCC1µC is not switched off due to Watchdog trigger failure. If a Watchdog trigger failure occurs, it will be indicated by the INT output (reset bit). The SBC Fail-Safe Mode or SBC Restart Mode are not reached in case of wrong Watchdog trigger but the other reasons to enter these modes are still valid. 4.2.11 SBC Factory Flash Mode In this mode, the SBC is completely powered OFF and the microcontroller is supplied externally. The mode is detected when VCC1µC is powered from external and the voltage on Vs is not powered from external. The current flow out of Vs must be limited to the maximum rating. The external supply voltage should be below the absolute maximum rating stated in Chapter 5.1. The reset can be driven by an external circuit, or pulled high with a pull-up resistor. Note: Please respect the absolute maximum ratings when the device is in SBC Factory Flash Mode. Data Sheet 15 Rev. 1.0, 2009-03-31 TLE8264-2E General Product Characteristics 5 General Product Characteristics 5.1 Absolute Maximum Ratings Absolute Maximum Ratings 1) Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Test Conditions – Min. Max. -0.3 40 V -0.5 5 V/µs – -0.3 5.5 V – -27 40 V – 5.1.5 VS dVS/dt Supply Voltage Slew Rate Regulator Output Voltage Vcc1µC/2/3 CAN Bus Voltage (CANH, CANL) VCANH/L Differential Voltage CANH, CANL, SPLIT VdiffESD -40 40 V CANH-CANL VUV OFF; 5.2.5 Junction Temperature -40 150 °C – 5.2.6 Undervoltage “OFF” 3 4 V -1) 5.2.7 Undervoltage “ON 4.5 5.5 V -1) 5.2.8 Supply Voltage for Limp Home Output Active fclkSPI fclkSPI Tj VUV OFF VUV ON VS_LH 5.5 40 V Pull up to VS RLHO = 40kΩ tpulse = 400 ms 40 V load dump; Ri = 2Ω 1) In the case Vs < VUVOFF, the SBC is switched OFF and will restart in INIT Mode at next Vs rising. 2) During load dump, the others pins remains in their absolute maximum ratings 3) Not subject to production test, specified by design Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. Data Sheet 17 Rev. 1.0, 2009-03-31 TLE8264-2E General Product Characteristics 5.3 Pos. 5.3.1 5.3.2 Thermal Characteristics Parameter Symbol Limit Values Min. Typ. Unit Test Conditions Max. Junction Ambient RthJA_1L – 40 K/W 1) 3) 300 mm2 cooling area Junction Ambient RthJA_4L – 25 K/W 2) 3) Junction to Soldering Point RthJSP – 5 – K/W 3) 2s2p + 600 mm2 cooling area Thermal Prewarning and Shutdown Junction Temperatures; 5.3.3 VCC1µC, Thermal Pre-warning 5.3.4 VCC1µC, Thermal Prewarning 5.3.5 VCC1µC, VCC2 Thermal Shutdown TjPW 120 145 170 °C -3) ∆TPW – 25 – K 3) TjSDVcc 150 185 200 °C 3) ON Temperature Hysteresis Temperature 5.3.6 VCC1µC, VCC2 Thermal Shutdown Hysteresis ∆TSDVcc – 35 – K 3) 5.3.7 VCC1µC, Ratio of SD to PW Temperature TjSDVcc/ – 1.20 – – 3) 5.3.8 CAN Transmitter Thermal Shutdown Temperature TjSDCAN 150 – 200 °C 3) 5.3.9 CAN Transmitter Thermal Shutdown Hysteresis ∆TCAN – 10 – K 3) 5.3.10 LIN Transmitter Thermal Shutdown TjSDLIN Temperature 150 – 200 °C 3) 5.3.11 LIN Transmitter Thermal Shutdown ∆TLIN Hysteresis – 10 – K 3) TjPW 1) Specified Rthja value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 single layer. The product (chip + package) was simulated on a 76.4 x 114.3 x 1.5 mm board. 2) According to Jedec JESD51-2,-5,-7 at natural convection on 2s2p board for 2W. Board: 76.2x114.3x1.5mm³ with 2 inner copper layers (35µm thick)., with thermal via array under the exposed pad contacted the first inner copper layer and 600mm2 cooling are on the top layer (70µm) 3) Not subject to production test; specified by design; Data Sheet 18 Rev. 1.0, 2009-03-31 TLE8264-2E General Product Characteristics 5.4 Current Consumption VS = 5.5 V to 28 V; all outputs open; Without VCC3; Tj = -40 °C to +150 °C; all voltages with respect to ground; positive current defined flowing into pin; unless otherwise specified. Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Test Condition Normal Mode; 5.4.1 Current Consumption for Internal Logic IVS_logic – – 2 mA SBC Normal Mode ICC1µC = ICC2 = 0mA; CAN OFF mode; LIN OFF mode 5.4.2 IVS_CAN Additional current Consumption for CAN Cell – – 10 mA CAN Normal Mode; Recessive state; VCC2 connected to VCCHSCAN VTxD = Vcc1µC; without RL – – 12 mA CAN Normal Mode; dominant state; VCC2 connected to VCCHSCAN VTxD = low; without RL; – – 3.0 mA LIN Normal Mode; recessive state; without RL; VTxD = Vcc1µC – – 5.0 mA LIN Normal Mode; dominant state; without RL; VTxD = low – 58 75 µA SBC Stop Mode; Vs = 13.5 V; VCC1µC“ON”; VCC2/3“OFF” CAN/LIN wake capable; Tj = 25°C 65 85 – 70 90 – 78 100 5.4.3 Additional Current IVS_LIN Consumption per LIN Cell Stop Mode 5.4.4 Current Consumption Data Sheet IVS 19 Tj = 85°C1) µA SBC Stop Mode; Vs = 13.5 V; VCC1µC/2“ON”; VCC3“OFF” CAN/LIN wake capable; Tj = 25°C Tj = 85°C1) Rev. 1.0, 2009-03-31 TLE8264-2E General Product Characteristics 5.4 Current Consumption (cont’d) VS = 5.5 V to 28 V; all outputs open; Without VCC3; Tj = -40 °C to +150 °C; all voltages with respect to ground; positive current defined flowing into pin; unless otherwise specified. Pos. Parameter Symbol Limit Values Min. Unit Test Condition µA SBC Sleep Mode; Tj = 25°C Vs = 13.5 V; VCC1µC/2/3“OFF” CAN/LIN wake capable; Typ. Max. 28 40 32 50 1 – µA 1) 12 – µA 1) Sleep Mode 5.4.5 5.4.6 5.4.7 Current consumption, all Wake Up Sources available. Quiescent Current Reduction when one Wake Capable LIN Cell Disabled Quiescent Current Reduction when Wake Capable CAN Cell Disabled IVS_sleep_ – SBC IVS_sleep_ 0.5 Tj = 85°C1) LIN IVS_sleep_ 5 CAN SBC Sleep Mode; Tj = 25°C; VS = 13.5 V; VCC1µC/2/3“OFF” CAN/LIN 1_2 wake capable; LIN3 OFF SBC Sleep Mode; Tj = 25°C; VS = 13.,5 V; VCC1µC/2/3“OFF” LIN 1..3 wake capable; CAN OFF 1) Not subject to production test; specified by design Data Sheet 20 Rev. 1.0, 2009-03-31 TLE8264-2E Internal Voltage Regulator 6 Internal Voltage Regulator 6.1 Block Description V CC 1µC Vs V CC2 Vref 1 State Machine Overtemperature Shutdown Bandgap Reference INH 1 Vref Charge Pump INTE RNA L RE GULA TOR DIA GRA M. V S D GND Figure 4 Functional Block Diagram The internal voltage regulators are dual low-drop voltage regulators that can supply loads up to ICC1µC/2_max. An input voltage up to VSMAX is regulated to Vcc1µC/2_nom = 5.0 V with a precision of ±2%. Due to its integrated reset circuitry, featuring two SPI configurable power-on timing (tRDx) and three SPI configurable output voltages (VRTx) monitoring, the device is well suited for microcontroller supply. The design enables stable operation even with ceramic output capacitors down to 470nF, with ESR < 1 Ω @ f = 10 kHz. The device is designed for automotive applications, therefore it is protected against overload, short circuit, and overtemperature conditions. Figure 4 shows the functional block diagram. If the VS voltage is lower than VUV_OFF, the DMOS of the voltage regulator is switched to high impedance. The body diodes of the DMOS might go into conduction when VCC1µC or VCC2 > VS (no reverse protection). 6.2 Internal Voltage Regulator Modes It is possible to turn Vcc1µC via SBC Modes and Vcc2 activity ON or OFF via SPI command or by entering SBC modes. The limiting current for the both regulators is ICC1µC_max/ICC2. 6.3 Internal Voltage Regulator Modes with SBC Mode Depending on the SBC Mode in use, Vcc1µC and Vcc2 can be either ON or OFF by definition, Vcc2 can be also turned ON or OFF, via SPI. Table 3 identifies the possible states of the voltage regulators, based on the various SBC modes. Data Sheet 21 Rev. 1.0, 2009-03-31 TLE8264-2E Internal Voltage Regulator Table 3 Internal Voltage Regulators States SBC Mode Vcc1µC INIT Mode ON OFF Normal Mode ON ON Sleep Mode OFF OFF Restart Mode ON unchanged Software Flash Mode ON ON OFF Stop Mode ON ON OFF Fail-Safe Mode OFF OFF 6.4 Application information 6.4.1 Timing Diagram Vcc2 OFF Figure 5 shows the ramp up and down of the VS, and the dependency of Vcc1µC. At the first ramp up from SBC Init Mode, the reset threshold VRT and time tRO are set to the default value. See Chapter 11.1 Vs VUV ON V UV OFF t Vcc1µC VRTx,r VRTx,f t GND RO SBC OFF SBC Init Any mode SBC OFF t Figure 5 Ramp up / Down of Main Voltage Regulator An undervoltage time-out on Vcc1µC is implemented. Refer to Chapter 13 for more information on this function. 6.4.2 Under voltage detection at Vcc2 The Vcc2 voltage regulator integrates an under voltage detection. When Vcc2 voltage goes below VUV_VCC2, the failure is indicated by an interrupt and the failure is reported into the diagnosis frame of the SPI. Data Sheet 22 Rev. 1.0, 2009-03-31 TLE8264-2E Internal Voltage Regulator 6.5 Electrical Characteristics VS = 5.5 V to 28 V; CCC1µC = CCC2 = 470 nF; all outputs open; SBC Normal Mode; Tj = -40 °C to +150 °C; all voltages with respect to ground; positive current defined flowing into pin; unless otherwise specified. Pos. Parameter Symbol Limit Values Unit Test Condition Min. Typ. Max. Voltage Regulator; Pin Vcc1 µC 6.5.1 Output Voltage VCC1µC 4.9 5.0 5.1 V 0 mA VUVON until Init Mode is left). If the pin is low for the Init Mode time, Software Development Mode is reached. The mode is stored during the complete time where VS is above VUVOFF. It means to leave Software Development Mode, the SBC must go back to SBC OFF mode. Data Sheet 67 Rev. 1.0, 2009-03-31 TLE8264-2E Limp Home 13.3 Activation of the Limp Home Outputs The reason to activate the Limp Home pins and the consequences are listed in Table 12 and Table 13. Table 12 Limp Home, Function of the SBC Mode SBC Mode Limp Home Outputs INIT Mode OFF Normal Mode OFF ON via SPI Stop Mode Unchanged Sleep Mode Unchanged Restart Mode Unchanged Fail-Safe Mode ON SW Flash Mode Unchanged Table 13 ON if it was ON until the successful Watchdog setting and deactivation via SPI. Automatic Activation of Limp Home Output SBC Mode Reason INIT Mode INIT time-out (tINITTO) Normal Mode 1st Watchdog failure (config 1/2) 2nd Watchdog failure (config 3/4) Restart Mode Reset output permanent short circuit to Vcc1µC Reset output permanent short circuit to GND Vcc1µC undervoltage time-out Any mode If previously turned ON in SBC Normal Mode, via SPI command Vcc1µC thermal shutdown 13.4 Release of the Limp Home Outputs When Limp Home is activated via SPI command, then it is released via SPI command. This is useful for diagnosis purpose for example. Otherwise, the Limp Home outputs are released only in SBC Normal Mode with the following conditions: After the device has been set to SBC Restart Mode, automatically entering SBC Normal Mode, a successful Watchdog trigger must be sent via SPI. At this point, the Limp Home outputs remain active. Then the microcontroller needs to send by SPI command the deactivation of the Limp Home. 13.5 Vcc1µC undervoltage time-out A Vcc1µC undervoltage time-out condition is given, when 1) the Vcc1µC output voltage is below the reset threshold (VRT1, VRT2, VRT3), 2) VS is higher then the threshold (VSthUV1, VSthUV2, VSthUV3) and 3) the condition is valid longer then the Vcc1µC under voltage time-out (tVcc1UVTO). A Vcc1µC undervoltage time-out will sent the device into Fail-Safe Mode. Limp Home output stag will be activated (for Vs > VLHUV) Figure 34 gives an example of the Limp Home output activation, due to a Vcc1µC undervoltage time-out. Data Sheet 68 Rev. 1.0, 2009-03-31 TLE8264-2E Limp Home Vs VSthUVx t Vcc1µC VRTx VRTx GND t RO tVcc1UVTO SBC Sleep Limp home SBC Restart Wake Up tRDx SBC Normal SBC Restart SBC Fail safe t tRR GND t undervoltage time out.vsd Figure 34 Data Sheet Vcc1µC undervoltage time-out timing 69 Rev. 1.0, 2009-03-31 TLE8264-2E Limp Home 13.6 Electrical Characteristics VS = 5.5 V to 28 V; Tj = -40 °C to +150 °C; SBC Normal Mode; all voltages with respect to ground; positive current defined flowing into pin unless otherwise specified. Pos. Parameter Symbol Limit Values Min. Typ. Max. – 1 – Unit Test Condition – With SPI set. Limp Home /LH _SI; Watchdog edge count difference to set Limp Home activated nLH 13.6.2 Limp Home low output voltage (active) VLHLO – 0.2 0.4 V ILH = 1mA 13.6.3 Limp Home high output current (inactive) ILHHI 0 – 2 µA VLH = 28V 13.6.4 INIT Time-out 256 – ms 1) 13.6.5 Vcc1µC under voltage Time-out tINITTO – tVcc1UVTO 900 1024 1150 ms 13.6.6 Vs threshold for Vcc1µC VSthUV1 5.3 – 6.3 V VRT1 default setting under voltage Time-out (Vs needs to be above, to V SthUV2 activate Vcc1µC under VSthUV3 voltage Time-out) 4.3 – 5.3 V 4.0 – 5.0 V VRT2 SPI option VRT3 SPI option 4.5 – 5.5 V – 0.2 – V – 13.6.1 2 13.6.7 Threshold for Limp Home VLHUV minimum Vs 13.6.8 Limp Home Vs voltage hysteresis VLHUVhys – Default Setting LH _SI; 13.6.9 Limp Home side indicator fLHSI frequency 1.125 1.25 1,375 Hz – 13.6.10 Limp Home side indicator dSI duty cycle – 50 – % – – – 3 V – VTest,hys VTest,LO 100 300 700 mV – 1 – – V – RTest 20 40 80 kΩ VLH_PL/Test = 0V LH_PL/Test 13.6.11 HIGH Level Input Voltage VTest,HI Threshold 13.6.12 Input Hysteresis 13.6.13 LOW Level Input Voltage Threshold 13.6.14 Pull-up Resistor SBC Init Mode 13.6.15 Limp Home pulsed light frequency fLH_PL 90 100 110 Hz – 13.6.16 Limp Home pulsed light duty cycle dPL - 20 - % – 1) Not subject to production test, specified by design. Data Sheet 70 Rev. 1.0, 2009-03-31 TLE8264-2E Configuration Select 14 Configuration Select 14.1 Configuration select The Configuration select is used to set the device for two different SBC behaviors; please refer to Chapter 4.2.1 for detailed information. Depending on the requirements of the application, the Vcc1µC is switched off and the device goes to Fail-Safe Mode in case of watchdog fail (1 or 2 fail) or reset clamped. To turn Vcc1µC OFF (Config 2/4), the INT pin is not connected to a pull up resistor externally. In case the Vcc1µC is not switched off (Config 1/3) the INT pin is connected to Vcc1µC with a pull up resistor. The configuration is only read during Init Mode, after that the configuration is stored. 14.2 Config Hardware Descriptions In Init Mode before the RO pin goes high the INT pin is pulled to low with a weak pull down resistor RCFG, the pull up resistor RINT is switched off. When Vcc1µC is high, above the reset threshold VRT1 and before the RO pin goes high the level on the INT pin is monitored to select the configuration. With RO going high in Init Mode the pull up resistor RINT is switched on. Figure 35 gives the electrical equivalents to the configuration function of the INT pin. Vc c 1µC Configuration logic R INT Interrupt logic INT Time out R CFG INTERRUPT BLOCK_CONFIG.VSD Figure 35 Config Logic Diagram Electrical characteristics are listed in chapter Chapter 12.5 Data Sheet 71 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface 15 Serial Peripheral Interface 15.1 SPI Description The 16-bit wide Control Input Word is read via the data input SDI, which is synchronized with the clock input CLK supplied by the microcontroller. The output word appears synchronously at the data output SDO (see Figure 36). The transmission cycle begins when the chip is selected by the input CSN (Chip Select Not), LOW active. After the CSN input returns from LOW to HIGH, the word that has been read in becomes the new control word. The SDO output switches to tri-state status (high impedance) at this point, thereby releasing the SDO bus for other use. The state of SDI is shifted into the input register with every falling edge on CLK. The state of SDO is shifted out of the output register after every rising edge on CLK. The number of received input clocks is supervised by a modulo-16 operation and the Input / Control Word is discarded in case of a mismatch. This error is flagged in the following SPI output by a “HIGH” at the data output (SDO pin, bit FO) before the first rising edge of the clock is received. The SPI of the SBC is not daisy chain capable. CSN high to low: SDO is enabled. Status information transferred to output shift register CSN time CSN low to high: data from shift register is transferred to output functions CLK time Actual data SDI FI - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 New data FI 0 1 + + time SDI: will accept data on the falling edge of CLK signal Actual status SDO FO - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 New status FO 0 + 1 + time SDO: will change state on the rising edge of CLK signal Figure 36 SPI Data Transfer Timing 15.2 Corrupted data in the SPI data input When the microcontroller send a wrong SPI command to the SBC, the SBC ignores the information. Wrong SPI command can be either a number of bits different of 16, the mode selection (MS2..0) = 000 or requesting to go to an SBC mode which is not allowed by the state machine, for example from SBC Stop Mode to SBC SW Flash Mode. In that case, an interrupt is generated (if not inhibited) and the bit SPI Fail is set. Since the SPI data is corrupted, the next SPI output data will remain the former one (the information is then repeated). Data Sheet 72 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface 15.3 SPI Input Data MSB Input Data LSB 15 14 13 12 11 10 9 8 7 6 WD refresh Configuration Registers 3 2 CS2 CS1 CS0 MS2 Configuration Select WK 1 WK 0 WK WK pin WK pin LIN3 WK LIN2 WK LIN1 WK CAN 000 Fail SPI ICC3 > ICC3max UV VCC2 OT VCC2 OT OTP Vcc 1µC 001 HS CAN LIN3 LIN3 LIN 2 LIN2 LIN1 LIN1 failure failure failure failure failure failure 1 0 1 0 1 0 CAN Bus CAN CAN failure failure 1 0 010 Res. Wrong Reset WD set UV Vcc3 Reserved WD to LH REGISTER 4 Res. Res. INTERRUPT MASK 5 LIN 10.4k Cyclic L.H. VCC2 WK PIN VCC3 Reset WK On/off On/Off On/off On/off Delay On /off CAN 1 CAN 0 Ti. CHK WD Out / SUM On/Off Win. LIN3 1 Set to 1 LIN 3 0 LIN2 1 LIN 2 0 RT1 RT0 LIN1 1 LIN 1 0 Window /Time out Watchdog Timing Bit Position: 10 .. 6 LH Reserved 2 LH 1 LH 0 Test 2 Test 1 Test 0 1 MS1 0 MS0 Mode Selection Bits not valid Restart SW Flash 011 Normal 100 Sleep 101 Stop 110 Fail safe 111 Read Only 000 001 010 011 100 101 110 111 SPI data input TLE8264.vsd Figure 37 Data Sheet 16-Bit SPI Input Data / Control Word 73 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface 15.4 SPI Output Data MSB LSB Output 15 14 13 12 11 10 Data WK state 8 7 6 Configuration Registers INT Status or INTERRUPT event 9 Res. Wrong Reset WD set Cyclic WK 1 WK 0 WK WK WK pin WK pin LIN3 Fail SPI ICC3 > ICC3max UV Vcc3 UV VCC2 LIN3 LIN3 LIN 2 LIN2 LIN1 LIN1 failure failure failure failure failure failure 1 0 1 0 1 0 LIN 10.4k CAN 0 LIN3 1 CHK WD SUM On/Off Ti. Out / Win. Set to 1 Res. RM0 LH 2 LIN 3 0 LIN2 1 3 2 CS2 CS1 CS0 MS2 WK LIN2 WK LIN1 WK CAN 000 OT VCC2 OT OTP Vcc1µC 001 HS CAN CAN CAN failure failure 1 0 010 CAN Bus Cyclic L.H. VCC2 WK PIN VCC3 Reset WK On/off On/Off On/off On/off Delay On /off CAN 1 4 Configuration Select Reserved WD to LH 5 LIN 2 0 RT1 RT0 LIN1 1 LIN 1 0 1 MS1 0 MS0 Mode Selection Bits Init Restart SW Flash 011 Normal 100 Sleep 101 Stop 110 Fail Safe 111 Reserved 000 001 010 011 100 101 REGISTER RM1 Window /Time out Watchdog Timing Bit Position: 10 .. 6 LH 1 LH 0 Test 2 Test 1 Test 0 110 111 SPI_Settings_out_TLE8264.vsd Figure 38 16-bit SPI Output Data / Control Word 15.5 SPI Data Encoding 15.5.1 WD Refresh bit / WK state The WD Refresh bit is used to trigger the Watchdog. The first trigger should be a 1, and then a 0. For more details, please refer to Chapter 11.2. The WK state bit gives the voltage level at the WK pin. A 1 indicates a high level, a 0 a low level. Data Sheet 74 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface 15.5.2 SBC Configuration Setting and Read Out 15.5.2.1 Mode selection bits and configuration select Table 14 lists the encoding of the possible SBC mode. Except SBC Restart and Init Mode which are most of time entered automatically, all others SBC mode are accessible on request of the microcontroller. The microcontroller should send the correct mode selection bits to set the SBC in the respective mode. The output indicates the SBC mode where the SBC currently is or was, depending on the situation. Table 14 Mode Selection Bits MS2 MS1 MS0 Data Input Data Output 0 0 0 Not valid (the complete SPI word is ignored) Show the device was in Init previous SPI data 0 0 1 Set the SBC to SBC Restart Mode. (In SW Flash mode only) 0 1 0 Set the SBC to Software Flash Mode Show the device is SBC Software Flash Mode 0 1 1 Set the SBC to SBC Normal Mode Show the device is in SBC Normal Mode 1 0 0 Set the SBC to SBC Sleep Mode Show the device was in SBC Sleep Mode 1 0 1 Set the SBC to SBC Stop Mode Show the device is in SBC Stop Mode 1 1 0 Set the SBC to SBC Fail-Safe Mode Show the device was in SBC Fail-Safe Mode (In SBC Software Development mode only) 1 1 1 Set the SBC to Read Only SPI access. The Reserved configuration register needs to be selected. The SPI information on SDO is provided in the same SPI frame. No write access is done in this mode. Bit 15 (Watchdog) has to be served correctly. Show the device was in Restart previous SPI data Table 15 lists the eight possible configuration selection. Some are related to event or state of the different part of the SBC, others are used to configure the SBC in the application specific set up. Table 15 Configuration Select Encoder (for Data Input and Output) CS2 CS1 CS0 Configuration Register Select 0 0 0 Wake Register Interrupt 0 0 1 SBC Failure Interrupt 0 1 0 Communication Failure Interrupt 0 1 1 Reserved 1 0 0 SBC Configuration Register 1 0 1 Communication Setup Register 1 1 0 Watchdog Configuration Register 1 1 1 Limp Home / Diagnosis Register Data Sheet 75 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface 15.5.2.2 Interrupt Register Encoder Table 16 lists all interrupts the SBC can generates. The microcontroller should read the correct register to release the INT pin. By default, all interrupt sources are enabled. The microcontroller can decide to inhibit a specific interrupt source. Table 16 CS Interrupt Register encoder 1) Bit Name Default Value (INPUT) Default Value Data Input Data Output (OUT) Configuration select 000 (Wake register interrupt) 000 WK CAN 1 0 Interrupt enabled (1) disabled (0) for wake event on CAN Wake on CAN (1) WKLINx 1 0 Interrupt enabled (1) disabled (0) for wake event on LIN Wake on LINx (1) WK 1 WK pin WK 0 WK pin 11 00 Interrupt enabled (1) disabled (0) for wake pin event. 00 No interrupt 10 Interrupt for a LOW to HIGH transition on WK 01 Interrupt for HIGH to LOW transition on WK 11 Interrupt for both HIGH to LOW and LOW to HIGH on WK Wake on WK pin 00 No wake 10 Interrupt for a LOW to HIGH transition on WK 01 Interrupt for HIGH to LOW transition on WK 11 Interrupt for both HIGH to LOW and LOW to HIGH on WK Cyclic WK n.a 0 n.a Cyclic WK (1) INT n.a 0 n.a Indicates that there is a status bit or uncleared event in configuration select 001 and/or 010. If set read the two register Data Sheet 76 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface Table 16 CS Interrupt Register encoder (cont’d)1) Bit Name Default Value (INPUT) Default Value Data Input Data Output (OUT) Configuration select 001 (SBC Failure interrupt) 001 OTP_Vcc1µC 1 0 Interrupt enabled (1) disabled Vcc1µC temperature pre warning (0) for temperature pre-warning (1) OT_HSCAN 1 0 Interrupt enabled (1) disabled (0) for temperature shutdown HS CAN temperature shutdown (1) OT_Vcc2 1 0 Interrupt enabled (1) disabled (0) for temperature shutdown Vcc2 temperature shutdown (1) UV_Vcc3 1 0 Interrupt enabled (1) disabled Undervoltage detection on Vcc3 (0) for undervoltage detection (1) or due to back to normal voltage SPI Fail 1 0 Interrupt enabled (1) disabled (0) for SPI corrupted data. SPI input corrupted data (1) Reset 1 0 Interrupt enabled (1) disabled (0) for reset information (only in SBC Software Development Mode) Reset (1) (only in SBC Software Development Mode) Wrong WD set 1 0 Interrupt enabled (1) disabled (0) for incorrect Watchdog setting Incorrect WD programming for data output UV Vcc2 1 0 Interrupt enabled (1) disabled Under voltage detected at Vcc2 (0) for undervoltage detection at Vcc2 ICC3 > ICC3max 1 0 Interrupt enable (1) disabled (0) Over current detected at Vcc3 for over current at Vcc3 Configuration select 010 (Communication failure interrupt) 010 CAN failure 1 CAN failure 0 n.a 1 0 0 Interrupt enabled (1) disabled (0) for CAN failure CAN failure Refer to Table 17 CAN Bus 1 0 Interrupt enabled (1) disabled (0) for CAN bus failure CAN bus failure detected (1) LINx failure 1 LINx failure 0 n.a 1 0 0 Interrupt enabled (1) disabled (0) for LIN failure LIN failure. Refer to Table 17 1) A value of 0 will set the SBC into the opposite state. Data Sheet 77 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface 15.5.2.3 CAN / LIN failure encoder Table 17 describes the encoding of the possible internal CAN and LIN failures. Table 17 CAN / LIN Failure Encoder CAN / LINx 1 Failure CAN / LINx 0 Failure Fault 0 0 No failure 0 1 TxD shorted to GND or bus dominant clamped 1 0 RxD shorted to Vcc 1 1 TxD shorted to RxD 15.5.2.4 Configuration encoder Table 18 lists the configuration register of the SBC. The microcontroller can change the settings. If no settings are changed the default values are used. The current value can be read on the SPI Data Out. Table 18 Configuration Encoder Configuration Bit Name Select Default Default Value Value (INPUT) (OUT) State Configuration select 100 (SBC Configuration Register) 100 Data Sheet RT10 01 01 Reset threshold setting. Please refer to Table 19 Reset delay 1 1 Long reset window Vcc3 ON /OFF 0 0 Vcc3 is activated (1) WK pin ON / OFF 1 1 The wake pin will wake the SBC Vcc2 On / Off 0 0 Vcc2 is activated (1) LH ON / OFF 0 0 Limp Home output state. Activated (1) when entry condition is met. Cyclic WK On / Off 0 0 Activation (1) of the cyclic wake WD to LH 1 1 Watchdog failure to Limp Home active. 0 = only one Watchdog failure brings to Limp Home activated. 1 = two consecutive Watchdog failures bring to Limp Home activated. 78 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface Table 18 Configuration Encoder Configuration Bit Name Select Default Default Value Value (INPUT) (OUT) State Configuration select 101 (SBC communication set up register) 101 LIN 10.4k 1 1 LIN cells are in LIN Low slope Mode (1) CAN 1.0 00 00 The CAN cell is in: 00 = CAN OFF 01 = CAN is Wake Capable 10 = CAN Receive Only Mode 11 = CAN Normal Mode LINx 1.0 00 00 The LIN cell is in: 00 = LIN OFF 01 = LIN is Wake Capable 10 = LIN Receive Only Mode 11 = LIN Normal Mode Configuration select 110 (SBC Watchdog register) 110 Ti. Out / Win. 1 1 Time-out Watchdog is activated Set to 1 1 1 Bit is reserved and fix set to “1”. Set to 1 in SW. WD ON / OFF 1 1 Watchdog is activated CHK SUM 1 1 Check sum of the bit 13...6 In case the CHK SUM is wrong, the device remains in previous valid state. CHKSUM = Bit13 ⊕ … ⊕ Bit6 Configuration select 111 (Limp Home / Diagnosis register) 111 - 15.5.2.5 Reserved for input For output, refer to Table 21, Table 22 and Table 23 Reset encoder Table 19 lists the three possible reset thresholds. Please also refer to Chapter 11.3 to get the exact voltage threshold. Table 19 Reset Encoder RT1 RT0 Threshold Selected 0 0 Not Valid. Device remains at previous threshold 0 1 VRT1 (default setting at SBC Init), 1 0 VRT2 1 1 VRT3 15.5.2.6 SBC Watchdog encoder Table 20 list the 32 possible watchdog timer. Data Sheet 79 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface Table 20 Watchdog Encoder Bit 10...6 Decimal calculation (ms) 00000 0 00001 1 00010 2 ... ... ... 01111 15 256 (default setting) 10000 16 10001 17 352 ... ... ... 11110 30 976 11111 31 1024 15.5.3 (n+1) × 16 n = decimal value of setting n × 48 - 464 Timer (ms) 16 32 48 304 SBC Diagnostic encoder The SBC offers diagnostics information. The encoding of the different possible failures are listed in the following table. The description apply only to data output. 15.5.3.1 Reason for restart and reset Reason for reset, without activation of the Limp Home and the way it is encoded are summed up in Table 21. The bits are cleared by reading the register with Read-Only command. When coming from Sleep Mode or Fail Safe Mode the bits are cleared. Table 21 RM1 Reason to Enter SBC Restart Mode without Limp HomeLimp Home activation RM0 Cause for entering SBC Restart Mode 0 0 No reset has occurred or Limp Home activated 0 1 Undervoltage on Vcc1µC 1 0 First Watchdog failure (config 3 and 4) or no acknowledge of the Cyclic Wake-up 1 1 SPI command in SBC Software Flash Mode or reset low from outside Data Sheet 80 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface 15.5.3.2 Limp Home failure encoder Table 22 describes the encoding of all possible reason to activate automatically the Limp Home output. Bits are set back to “000” when switching Limp Home off via SPI. Table 22 LH2 Limp Home Failure Diagnosis LH1 LH0 Failure1) 0 0 0 No failure 0 0 1 Vcc1µC undervoltage Time-out 0 1 0 One Watchdog failure (config 1 and 2) 0 1 1 Two consecutive Watchdog failures (config 3 and 4) 1 0 0 INIT Mode Time-out 1 0 1 Temperature shutdown at Vcc1µC 1 1 0 Reset clamped 1 1 1 Reserved 15.5.3.3 Test pin and failure to Limp Home configuration read out The SBC allows to read the hardware setting of the configuration that is done via the INT pin, as well as the test pin and the WD to LH bit. Table 23 describes the encoding of these informations. Table 23 Test pin and SBC Configuration Test1 Test0 Test Read Out1) 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 Vcc1µC remains ON in SBC Restart Mode after one Watchdog failure (config 1) Vcc1µC is OFF in SBC Fail-Safe Mode after one Watchdog failure (config 2) Vcc1µC remains ON in SBC Restart Mode after two Watchdog failures (config 3) Vcc1µC is OFF in SBC Fail-Safe Mode after two Watchdog failures (config 4) Software Development Mode. In case of watchdog failure Vcc1µC remains ON, no Test2 reset is generated and Restart Mode or Fail-Safe Mode are not entered. 1 0 1 Software Development Mode. In case of watchdog failure Vcc1µC remains ON, no reset is generated and Restart Mode or Fail-Safe Mode are not entered. 1 1 0 Software Development Mode. In case of watchdog failure Vcc1µC remains ON, no reset is generated and Restart Mode or Fail-Safe Mode are not entered. 1 1 1 Software Development Mode. In case of watchdog failure Vcc1µC remains ON, no reset is generated and Restart Mode or Fail-Safe Mode are not entered. 1) Refer also to Chapter 4.2.1 Data Sheet 81 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface 15.6 SPI Output Data 15.6.1 First SPI output data Since the SPI output data is sent when the SBC is receiving data, the output data are dependent of the previous SPI command, if no Read Only command is used. Under some conditions there is no “previous command”. Table 24 gives the first SPI output data that is sent to the microcontroller when entering SBC Normal Mode, depending on the mode where the SBC was before receiving the first SPI command. . Table 24 First SPI output data frame Previous SBC mode Mode selection bits (MS2...0) Configuration select (CS 2..0) Sleep mode Sleep mode Wake Register interrupt1) Fail-Safe mode Fail-Safe mode Limp Home register1) Restart mode when failure and config 1 / 3 Restart mode Limp Home register1) Restart mode when microcontroller has sent to Restart mode Restart mode SBC Configuration Register SBC Init mode Init mode SBC Configuration Register 1) This does not clear the bits. It will be reset when the microcontroller requests the read out Data Sheet 82 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface 15.6.2 Read Only command In the Mode Selection Bits a Read Only can be selected. The Read Only access clears the INT bits that are selected in the Configuration Select (some interrupt bits show a state, and can not be cleared with a SPI read). With this SPI command no write access is done to the SBC, and the mode of the SBC is not changed. The watchdog can also be triggered with a Read Only command. The Read Only command delivers the information requested with the Configuration Select in the same SPI command on the SDO pin. As all other SPI commands deliver the requested information with the next SPI command. Figure 39 shows an example of a Read Only access. The bits are shown with LSB first, on the left side in difference to the register description. DI 0 1 2 3 4 5 MS0 MS1 MS2 CS0 CS1 CS2 Mode Selection Bits 1 DO 1 1 0 0 x x 6 7 8 9 10 11 12 13 14 15 2 3 4 5 CS0 CS1 CS2 0 0 x x x x x x x x x x x x x 1 2 3 4 5 MS1 MS2 CS0 CS1 CS2 1 DO 1 0 x 6 7 1 x x 1 1 x x x 6 7 8 9 10 11 12 13 14 15 x x 0 1 2 3 4 5 MS1 MS2 CS0 CS1 CS2 1 1 0 0 0 9 10 11 12 13 14 15 x x WD refresh x x x x x x x x WK state Configuration Registers Configuration Select 1 8 Configuration Registers Configuration Select MS0 Mode Selection Bits WK state Configuration Registers Configuration Select 0 x 0 MS0 Mode Selection Bits WD refresh Configuration Registers x MS2 DI 10 11 12 13 14 15 x 1 0 9 x MS1 1 8 0 0 1 7 Configuration Select MS0 Mode Selection Bits 6 x x x TIME Figure 39 Read Only Command Figure 40 shows an example of an SPI write access in normal mode for comparison. The requested information is sent out with the next SPI command. DI 0 1 2 3 4 5 MS0 MS1 MS2 CS0 CS1 CS2 Mode Selection Bits 1 DO 1 0 0 0 x x 6 7 8 9 10 11 12 13 14 15 2 3 4 5 CS0 CS1 CS2 0 0 x x x x x x x x x x x x x 1 2 3 4 5 MS1 MS2 CS0 CS1 CS2 1 DO 1 0 x 1 1 WD refresh Configuration Registers x x 6 7 8 9 10 11 12 13 14 15 2 3 4 5 CS0 CS1 CS2 0 x x x x x x x x x x x x WK state Configuration Registers Configuration Select 0 10 11 12 13 14 15 x MS2 0 9 x 1 0 8 x MS1 1 7 1 0 1 6 Configuration Select MS0 Mode Selection Bits WK state Configuration Registers Configuration Select 1 x 0 MS0 Mode Selection Bits WD refresh Configuration Registers x MS2 DI 10 11 12 13 14 15 x 1 0 9 x MS1 1 8 0 0 1 7 Configuration Select MS0 Mode Selection Bits 6 x x x TIME Figure 40 Data Sheet Write Command 83 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface 15.7 Electrical Characteristics VS = 5.5 V to 28 V; Tj = -40 °C to +150 °C; SBC Normal Mode; all voltages with respect to ground; positive current defined flowing into pin; unless otherwise specified. Pos. Parameter Symbol Limit Values Min. Typ. Max. – 0.7 x Unit Test Condition V – V – V –1) SPI Interface; Logic Inputs SDI, CLK and CSN 15.7.1 15.7.2 H-input Voltage Threshold VIH – L-input Voltage Threshold VIL 0.3 x VCC1µC – – VCC1µC Hysteresis of input Voltage VIHY 15.7.4 Pull-up Resistance at pin CSN RICSN 20 40 80 kΩ VCSN = 0.7 × VCC1µC 15.7.5 Pull-down Resistance at pin SDI and CLK RICLK/SDI 20 40 80 kΩ VSDI/CLK = 0.2 × VCC1µC 15.7.6 Input Capacitance at pin CSN, SDI or CLK CI – 10 - pF -1) VSDOH VCC1µC - VCC1µC - – V IDOH = -1.6 mA 15.7.3 0.12 x VCC1µC Logic Output SDO 15.7.7 H-output Voltage Level 0.4 0.2 – 0.2 0.4 V IDOL = 1.6 mA -10 – 10 µA VCSN = VCC1µC; 0 V < VDO < VCC1 CSDO – 10 15 pF 1) VSDOL 15.7.8 L-output Voltage Level 15.7.9 Tri-state Leakage Current ISDOLK 15.7.10 Tri-state Input Capacitance Data Input Timing1) 15.7.11 Clock Period tpCLK 250 – – ns – 15.7.12 Clock High Time tCLKH 125 – – ns – 15.7.13 Clock Low Time tCLKL 125 – – ns – 15.7.14 Clock Low before CSN Low tbef 125 – – ns – 15.7.15 CSN Setup Time tlead 250 – – ns – 15.7.16 CLK Setup Time tlag 250 – – ns – 15.7.17 Clock Low after CSN High tbeh 125 – – ns – 15.7.18 SDI Set-up Time tDISU 100 – – ns – 15.7.19 SDI Hold Time tDIHO 50 – – ns – Data Sheet 84 Rev. 1.0, 2009-03-31 TLE8264-2E Serial Peripheral Interface 15.7 Electrical Characteristics (cont’d) VS = 5.5 V to 28 V; Tj = -40 °C to +150 °C; SBC Normal Mode; all voltages with respect to ground; positive current defined flowing into pin; unless otherwise specified. Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Test Condition 15.7.20 Input Signal Rise Time at pin SDI, CLK and CSN trIN – – 50 ns – 15.7.21 Input Signal Fall Time at pin SDI, CLK and CSN tfIN – – 50 ns – 15.7.22 Delay Time for Mode Change from Normal Mode to Sleep Mode tfIN – – 10 µs – 15.7.23 CSN High Time tCSN(high) 10 – – µs - trSDO tfSDO tENSDO tDISSDO tVASDO – 30 80 ns CL = 100 pF – 30 80 ns CL = 100 pF – – 50 ns low impedance – – 50 ns high impedance – – 60 ns CL = 100 pF Data Output Timing 1) 15.7.24 SDO Rise Time 15.7.25 SDO Fall Time 15.7.26 SDO Enable Time 15.7.27 SDO Disable Time 15.7.28 SDO Valid Time 1) Not subject to production test; specified by design 23 CSN 14 15 12 16 13 17 CLK 18 DI 26 DO Figure 41 19 LSB not defined MSB 27 28 Flag LSB MSB SPI Timing Diagram Note: Numbers in drawing correlate to the last 2 digits of the Pos. number in the Electrical Characteristics table. Data Sheet 85 Rev. 1.0, 2009-03-31 TLE8264-2E Application Information 16 Application Information Note: The following information is given only as a hint for the implementation of the device and should not be regarded as a description or warranty of a certain functionality, condition or quality of the device. V DD VBAT VS D1 T1 R1 IC2 V IO V CC VBAT C1 C3 C2 C 12 GND VCC IC3 VS C13 D2 R2 Bus 1 BUS1 VS V CC3shunt VCC3base GND V CC3ref VS VDD C4 V cc1µC C9 VS D3 R3 Bus 2 BUS2 TLE8264-2 C5 VS D4 R4 BUS3 VBAT C10 R 12 LOGIC State Machine Bus 3 C6 CSN V DD CLK SDI µC SDO TxD LIN 1 RxD LIN1 TxD LIN 2 RxD LIN2 TxD LIN 3 RxD LIN3 TxD CAN RxD CAN CSN CLK SDO SDI TxD LIN 1 RxD LIN 1 TxD LIN2 RxD LIN2 TxD LIN3 RxD LIN3 TxD CAN RxD CAN INT INT Reset VSS RO S1 VS WK V DD V CC2 WK R9 R5 C 14 CAN cell V CCHSCAN VDD VBB C 11 CANH CANH R7 C8 VS Limp Home SPLIT T2 R8 CANL VBAT R 10 C7 VS CANL LH_SI LH_PL/Test T3 DEVICE GROUND CS SCLK SI SO LHI IN0 IN1 IN2 IN3 IN4 IN5 IC1 GND VS GND D5 S2 T4 Application _information _TLE8264 -2E.vsd Figure 42 Data Sheet Application Example for a Body Controller Module 86 Rev. 1.0, 2009-03-31 TLE8264-2E Application Information Note: This is a very simplified example of an application circuit and bill of material. The function must be verified in the actual application. Table 25 Ref. Bills of material Option Vendor Value Purpose 68µF optional depending on application Cut off battery spike 100nF EMC 10µF ceramic cap low ESR Stability of the VCC3 Capacitance C1 Y C2 Y C3 N C4 N 1nF OEM dependent LIN Master Termination C5 N 1nF OEM dependent LIN Master Termination C6 N 1nF OEM dependent LIN Master Termination C7 Y 22nF 50V EMC C8 Y 47nF OEM dependent Improve SPLIT pin stability C9 Y 10µF Buffer of the VCC1µC depending on load. (µC) C10 N 100nF Stability of the VCC1µC C11 N 10µF CAN transceiver dependent Buffering of the VCC2 for CAN Transceiver C12 Y 100nF Improve stability of the logic C13 Y 100nF Improve stability of the logic C14 Y 100nF Improve stability of the logic 220mΩ VCC3 current measurement for ICC3 Kemet Murata Resistance R1 N 400mA max R2 Y 1kΩ / OEM dependent LIN master termination R3 Y 1kΩ / OEM dependent LIN master termination R4 Y 1kΩ / OEM dependent LIN master termination R5 Y 1kΩ Wetting current of the switch R7 Y 60Ω / OEM dependent CAN bus termination R8 Y 60Ω / OEM dependent CAN bus termination R9 Y 10kΩ Limit the WK pin current in ISO pulses R10 Y 500Ω Insulation of the VDD supply R12 Y 47kΩ Set config 1/3. If not connected config 2/4 is selected Data Sheet 87 Rev. 1.0, 2009-03-31 TLE8264-2E Application Information Table 25 Ref. Bills of material Option Vendor Value Purpose ON Semi MJD253 Power element of VCC3 Infineon BCP52-16 Alternative power element of VCC3, current limit to be adapted R1 to be changed. Active components T1 N T2 N Infineon BCR191W High active Limp Home T3 N Infineon BCR191W High active Limp Home T4 N Infineon BCR191W High active Limp Home D1 N Infineon BAS 3010A Reverse polarity protection D2 N Infineon BAS70 06 (dual) BAS70 (single) Requested by LIN norm. Protect the application in reverse polarity. D3 N BAS70 06 (dual) BAS70 (single) Requested by LIN norm. Protect the application in reverse polarity. D4 N Infineon BAS70 06 (dual) BAS70 (single) Requested by LIN norm. Protect the application in reverse polarity. µC N Infineon XC2xxx micro-controller IC1 Y Infineon SPOC - BTS5672E high side switches IC2 Y Infineon TLE 6254-3G Low speed CAN IC3 Y Infineon TLE 6251DS High speed CAN Data Sheet Infineon 88 Rev. 1.0, 2009-03-31 TLE8264-2E Application Information 16.1 ZthJA Curve 60 Zth-JA(Ch4; 600) 50 Zth-JA(Ch4; 300) Zth-JA(Ch4; 100) Zth-JA [K/W] 40 Zth-JA(Ch4; footprint) 30 20 10 0 0,00001 0,0001 0,001 0,01 0,1 1 10 100 1000 10000 tim e (s) Zthja curves.vsd Figure 43 ZthJA Curve, Function of Cooling Area 600mm² cooling area 300mm² cooling area 100mm² cooling area minimum footprint PCB set up.vsd Figure 44 Board Set-up Board set-up is done according to JESD 51-3, single layer FR4 PCB 70 µm. Data Sheet 89 Rev. 1.0, 2009-03-31 TLE8264-2E Application Information 16.2 Hints for SBC Factory Flash Mode The mode is used during production of the module to flash the µC. The idea is that the µC is not supplied from the SBC but from an external 5V power supply. The reset of the µC that is connected to the RO pin of the SBC can be driven from an external source and the SBC does not give a reset signal. Also no interrupt at the pin INT and no signal on the SPI SDO pin is generated by the SBC. The SPI pins can be driven externally. The mode is reached by applying 5V to the VCC1µC pin and no voltage to the Vs pin. The Vs pin will show a voltage of about 4.5V because of the internal diode from VCC1µC to Vs. The current drawn at Vs must not exceed the maximum rating of Ivs,max = -500mA. The function is designed for ambient temperature. In case the Vs was supplied before going to FF Mode, the voltage on pin Vs must be set below 3 V before applying 5V to VCC1µC (discharging the C) Not supplied Not supplied 5V Vs VBAT C Reset signal VCC1µC IVS Internal supply The current flowing to other devices from Vs should be limited to not exceed the maximum ratings. Other Devices CSN CLK SDO SDI TxD LIN1 RxD LIN1 TxD LIN2 RxD LIN2 TxD LIN3 RxD LIN3 TxD CAN RxD CAN CSN V DD CLK SDI µC SDO TxD LIN1 RxD LIN1 TxD LIN2 RxD LIN2 TxD LIN3 RxD LIN3 TxD CAN RxD CAN INT INT RO Reset V SS Application_ FF_Mode _2.vsd Figure 45 Data Sheet Application Hint for Factor Flash Mode 90 Rev. 1.0, 2009-03-31 TLE8264-2E Application Information Table 26 PIN in Factory Flash Mode Pin Level Comment Vs typ. 4.5V Voltage output from SBC. No voltage applied from external. Vcc1µC 5V ± 2% To be applied from external RO Pull-up resistor Can be driven from external INT Pull-up resistor Can be driven from external if required LH High impedance Can be driven from external if required SDO High impedance Can be driven from external if required CLK, SDI Pull-down resistor Can be driven from external if required CSN Pull-up resistor Can be driven from external if required TxDCAN, TxDLIN1, TxDLIN2, TxDLIN3 Pull-up resistor Can be driven from external if required RxDCAN, RxDLIN1, RxDLIN2, RxDLIN3 High impedance Can be driven from external if required 16.3 ESD Tests Tests for ESD robustness according to IEC61000-4-2 “gun test” (150pF, 330Ω) have been performed. The results and test condition is available in a test report. The values for the test are listed in Table 27 below. Table 27 ESD “Gun test” Performed Test Result Unit Remarks ESD at pin CANH, CANL, BUSx, Vs versus GND >8 kV positive pulse1) ESD at pin CANH, CANL, BUSx, Vs versus GND < -8 kV negative pulse 1) ESD susceptibility “ESD GUN” contact discharge (R=330Ohm C=150pF) (DIN EN 61000-4-2) tested according LIN EMC 1.3 Test Specification and ICT EMC Evaluation of CAN Transceiver. Tested by external test house (IBEE Zwickau, EMC Test report Nr. 06-02-09a) Data Sheet 91 Rev. 1.0, 2009-03-31 TLE8264-2E Package Outline Package Outline 8˚ MAX. 1.1 7.6 -0.2 1) 0.65 0.7 ±0.2 C 17 x 0.65 = 11.05 0.33 ±0.08 2) 0.23 +0.09 0.35 x 45˚ 2.55 MAX. 3) 0...0.10 STAND OFF 2.45 -0.2 17 0.1 C 36x SEATING PLANE 10.3 ±0.3 0.17 M A-B C D 36x D Bottom View A 19 19 Ejector Mark Cavity ID 36 Exposed Diepad Y 36 18 1 18 B X 1 Index Marking 12.8 -0.21) Index Marking Ejector Mark Polish Finish Exposed Diepad Dimensions 4) Leadframe X Y Package PG-DSO-36-24, -41, -42 A6901-C001 7 5.1 A6901-C003 7 5.1 PG-DSO-36-38 A6901-C007 5.2 4.6 PG-DSO-36-38 PG-DSO-36-24 A6901-C008 6.0 5.4 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion of 0.05 max. per side 3) Distance from leads bottom (= seating plane) to exposed diepad 4) Exclunding the mold flash allowance of 0.3mm MAX per side PG-DSO-36-24, -38, -41, -42-PO V08 Figure 46 PG-DSO-36-38 (Leadframe A6901-003);) Note: For the SBC product family the package PG-DSO-36-38 with the leadframe A6901-C003 is used. Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations, the Universal System Basis Chip is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD020). For information about packages and types of packing, refer to the Infineon Internet Page “Products”: http://www.infineon.com/products. Data Sheet 92 Dimensions in mm Rev. 1.0, 2009-03-31 TLE8264-2E Revision History 18 Revision History Version Date 1.0 2009-01-30 First Rev. after Preliminary Data Sheet 1.0 2009-03-31 Editorial changes Data Sheet Parameter Changes 93 Rev. 1.0, 2009-03-31 Edition 2009-03-31 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
TLE82642EXUMA2 价格&库存

很抱歉,暂时无法提供与“TLE82642EXUMA2”相匹配的价格&库存,您可以联系我们找货

免费人工找货