0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE9255WLCXUMA1

TLE9255WLCXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TSON14_4.5X3MM_EP

  • 描述:

    TRANSCEIVER

  • 数据手册
  • 价格&库存
TLE9255WLCXUMA1 数据手册
TLE9255W HS CAN Transceiver with Partial Networ king 1 Overview Features • Fully compliant to ISO 11898-2 (2016) • HS CAN standard data rates up to 1MBit/s • CAN FD data rates up to 5 MBit/s • Wide common mode range for electromagnetic immunity (EMI) • Very low electromagnetic emission (EME) • Excellent ESD robustness, ± 10 kV according to IEC 61000-4-2 • Independent supply concept on VCC and VBAT pins • Fail safe features – TxD-timeout – overtemperature shutdown – overtemperature warning • Extended supply range on VCC and VIO supply • CAN short circuit proof to ground, battery and VCC • Overtemperature protection • Advanced bus biasing according to ISO 11898-2 (2016) • Wake filter time 0.5µs < tFilter < 1.8µs meeting worldwide OEM requirements • Wake-up pattern (WUP) detection in all low-power modes • Wake-up frame (WUF) detection according to ISO 11898-2 (2016) • Wake-up frame detection with CAN FD tolerant feature • Local wake-up input • SPI clock frequency up to 4 MHz • Green Product (RoHS compliant) Potential applications • HS CAN networks in automotive applications • HS CAN networks in industrial applications Product validation Qualified for automotive applications. Product validation according to AEC-Q100. Data Sheet www.infineon.com/automotive-transceiver 1 Rev. 1.04 2021-08-04 TLE9255W HS CAN Transceiver with Partial Networking Overview Description As an interface between the physical bus layer and the CAN protocol controller, the TLE9255W drives the signals to the bus and protects the microcontroller from interference generated within the network. Based on the high symmetry of the CANH and CANL signals, the TLE9255W provides a very low level of electromagnetic emission within a wide frequency range, allowing the operation of the TLE9255W without a common mode choke in automotive and industrial applications. The TLE9255W is enclosed in an RoHS compliant PG-DSO-14 or PG-TSON-14 package and fulfills the requirements of the ISO11898-2 (2016). The TLE9255W is part of the Infineon standard HS CAN transceiver family and provides beside CAN partial networking functions also a CAN FD capability up to 5 MBit/s in HS CAN networks. Configured as a partial networking HS CAN transceiver the TLE9255W can drive and receive CAN FD messages. it can also be used to block the payload of CAN FD messages. This CAN FD tolerant feature allows the usage of microcontrollers in CAN FD networks, which are not CAN FD capable. The SPI of TLE9255W controls the setup of the wake-up messages and the status message generated by the internal state machine. Most of the functions, including wake-up functions, INH output control, mode control, undervoltage control are configurable by the SPI. This allows a very flexible usage of the TLE9255W in different applications. The two non-low power modes (Normal-operating Mode and Receive-only Mode) and the two low power modes (Sleep Mode and Stand-by Mode) provide minimum current consumption based on the required functionality. In Sleep Mode the TLE9255W can detect a wake-up pattern (WUP) on the HS CAN and then change the mode of operation accordingly; even at a quiescent current below 26 µA over the full temperature range. In Selective-wake Sub-mode the TLE9255W monitors the CAN messages on the HS CAN bus. If the TLE9255W detects a matching wake-up frame, then it triggers a mode change. The TLE9255W monitors wake-up identifiers up to 29 bit as well as up to 64 bit wide data. The internal protocol handler counts all bus errors. The SPI indicates failures, error counter overflow and synchronization failures to the microcontroller. The unique power-supply management allows the application to use the TLE9255W without the battery supply VBAT connected. In this case the TLE9255W is supplied over the VCC pin. The VIO voltage reference supports 3.3 V and 5 V supplied microcontrollers. Based on Infineon Smart Power Technology (SPT), the TLE9255W provides excellent immunity together with a very high electromagnetic immunity (EMI). The TLE9255W and the Infineon SPT are AEC qualified and tailored to withstand the harsh conditions of the automotive environment. Type Package Marking TLE9255WSK PG-DSO-14 9255W TLE9255WLC PG-TSON-14 9255W Data Sheet 2 Rev. 1.04 2021-08-04 TLE9255W Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 4.1 High Speed CAN Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 High Speed CAN Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.5 5.6 5.7 5.7.1 5.7.2 5.7.3 5.8 5.8.1 5.8.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normal-operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive-only Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stand-by Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sleep WUP Sub-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selective Wake Sub-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selective Sleep Sub-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Automatic Bus Voltage Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wake-up event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wake-up pattern (WUP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wake-up frame (WUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local Wake-up (LWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RxD pin wake-up behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RxD permanent “low” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RxD Toggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 13 14 15 17 19 20 22 23 25 26 26 27 28 29 29 30 6 6.1 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.3 6.4 6.5 6.6 Fail Safe Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage detection on VBAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short-term Undervoltage detection on VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Long-term undervoltage detection on VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short-term Undervoltage detection on VIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Long-term Undervoltage detection on VIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unconnected Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TxD Time-out Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Delay Time for Mode Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 31 31 31 33 34 34 36 37 38 39 39 7 7.1 7.1.1 7.1.2 7.2 7.3 7.4 CAN Partial Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wake-up frame evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wake-up frame identifier evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLC and data field evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activation of Selective Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selective Wake Configuration Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 40 40 41 42 43 43 Data Sheet 3 Rev. 1.04 2021-08-04 TLE9255W 7.5 7.6 7.6.1 7.6.2 7.6.3 7.6.4 7.6.5 7.6.6 CAN Flexible Data Rate (CAN FD) Tolerant Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selective wake SPI flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SysErr Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SYNC Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CANTO Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CANSIL Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SWK_ACTIVE Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CFG_VAL Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 45 45 45 46 46 46 46 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.7.1 8.7.2 8.7.3 Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control and Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status Information Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Invalid SPI Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CSN Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selective Wake Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 48 49 50 50 50 51 51 53 57 64 9 9.1 9.2 9.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 68 70 71 10 10.1 10.2 10.2.1 10.2.2 10.2.3 10.3 10.4 10.4.1 10.4.2 10.4.3 10.5 10.5.1 10.5.2 10.6 10.6.1 10.6.2 10.6.3 10.7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Timing Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INH Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAN Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitter and Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Transceiver Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selective Wake Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAN FD Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wake-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WUP detection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local Wake-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 72 72 72 76 77 77 79 79 81 82 86 86 87 88 88 89 90 90 11 11.1 11.2 11.3 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD Robustness according to IEC 61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Adaption to the Microcontroller Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 93 94 95 Data Sheet 4 Rev. 1.04 2021-08-04 TLE9255W 11.4 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 12 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 13 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Data Sheet 5 Rev. 1.04 2021-08-04 TLE9255W Block Diagram 2 Block Diagram VCC 3 VBAT VIO 5 GND 2 10 7 Power Supply Interface INH Voltage Monitor VIO 14 Transmitter 6 Host Interface 11 8 CANH CANL 13 12 Receiver Data Sheet MISO MOSI SCLK Central State Machine VIO Low Power Receiver Figure 1 CSN Wake-Up Logic CAN Controller Interface 1 Local Wake Receiver 9 4 TxD RxD WAKE Block Diagram 6 Rev. 1.04 2021-08-04 TLE9255W Pin Configuration 3 Pin Configuration 3.1 Pin Assignment TxD 1 14 CSN GND 2 13 CANH VCC 3 12 CANL RxD 4 11 MOSI VIO 5 10 TxD 1 GND 2 CSN 13 CANH PAD VCC 3 12 CANL RxD 4 11 MOSI VIO 5 10 VBAT MISO 6 9 WAKE 7 8 SCLK VBAT MISO 6 9 WAKE INH 7 8 SCLK Figure 2 Pin configuration for PG-DSO-14 and PG-TSON-14 3.2 Pin Definitions Table 1 Pin definitions and functions INH (Top-side x-ray view) Pin Symbol Function 1 TxD Transmit Data Input; integrated pull-up current source to VIO, “low” to drive a dominant signal on CANH and CANL 2 GND Ground. 3 VCC Transmitter Supply Voltage; 100 nF decoupling capacitor to GND is recommended Data Sheet 14 7 Rev. 1.04 2021-08-04 TLE9255W Pin Configuration Table 1 Pin definitions and functions (cont’d) Pin Symbol Function 4 RxD Receive Data Output; “low” while a dominant signal is on the HS CAN bus, output voltage adapted to the voltage on the VIO level shift input 5 VIO Level Shift Input; reference voltage for the digital input and output pins, 100 nF decoupling capacitor to GND is recommended 6 MISO SPI Serial Data Output; tri-state while CSN is “high” 7 INH Inhibit Output; open drain output to control external circuitry 8 SCLK SPI Clock Input; integrated pull-down current source to GND 9 WAKE Wake-up Input; local wake-up input, terminated against GND and VBAT, wake-up input sensitive to signal changes in both directions 10 VBAT Battery Supply Voltage; 100 nF decoupling capacitor to GND is recommended 11 MOSI SPI Serial Data Input; integrated pull-down current source to GND 12 CANL Low-level HS CAN Bus Line 13 CANH High-level HS CAN Bus Line 14 CSN SPI Chip Select Not Input; integrated pull-up current source to VIO PAD - Connect to PCB heat sink area. Do not connect to other potential than GND. Data Sheet 8 Rev. 1.04 2021-08-04 TLE9255W High Speed CAN Functional Description 4 High Speed CAN Functional Description High speed CAN (HS CAN) is a serial bus system that connects microcontrollers, sensors and actuators for realtime control applications. ISO 11898-2 (2016) describes the use of the Controller Area Network (CAN) within road vehicles. According to the 7-layer OSI reference model the physical layer of a HS CAN bus system specifies the data transmission from one CAN node to all other available CAN nodes within the network. The CAN transceiver is part of the physical layer. The physical layer specification of a CAN bus system includes all electrical specifications of a CAN network. The TLE9255W supports: • standard bus wake-up functionality • CAN Partial Networking with selective wake-up functionality according to ISO 11898-2 (2016) • CAN Flexible data rate (CAN FD) transmission up to 5 MBit/s 4.1 High Speed CAN Physical Layer VIO = VCC = TxD = TxD VIO RxD = CANH = t CANH CANL CANL = VDiff = VCC Digital supply voltage Transmitter supply voltage Transmit data input from the microcontroller Receive data output to the microcontroller Bus level on the CANH input/output Bus level on the CANL input/output Differential voltage between CANH and CANL VDiff = VCANH – VCANL t VDiff VCC “dominant” receiver threshold “recessive” receiver threshold td(L)T td(H)T td(L)R td(H)R t RxD VIO tLoop(H,L) Figure 3 Data Sheet tLoop(L,H) t High speed CAN bus signals and logic signals 9 Rev. 1.04 2021-08-04 TLE9255W High Speed CAN Functional Description The TLE9255W is a HS CAN transceiver operating as an interface between the CAN controller and the physical bus medium. A HS CAN network is a two wire, differential network which allows data transmission rates up to 5 MBit/s. HS CAN networks have two signal states on the CAN bus (see Figure 3): • dominant • recessive The CANH and CANL pins are the interface to the CAN bus and operate both as an input and as an output. The RxD and TxD pins are the interface to the microcontroller. The TxD pin is the serial data input from the CAN controller. The RxD pin is the serial data output to the CAN controller. The HS CAN transceiver TLE9255W includes a receiver and a transmitter unit, allowing the transceiver to send data to the bus medium and monitoring the data from the bus medium at the same time (see Figure 1). The TLE9255W converts the serial data stream, which is available on the transmit data input TxD, to a differential output signal on the CAN bus, provided by the CANH and CANL pins. The receiver stage of the TLE9255W monitors the data on the CAN bus and converts it to a serial, single-ended signal on the RxD output pin. A “low” signal on the TxD pin creates a dominant signal on the CAN bus, followed by a “low” signal on the RxD pin (see Figure 3). The feature of broadcasting data to the CAN bus and listening to the data traffic on the CAN bus simultaneously is essential to support the bit-to-bit arbitration within CAN networks. ISO 11898-2 (2016) defines the voltage levels for HS CAN transceivers. Whether a data bit is dominant or recessive depends on the voltage difference between the CANH and CANL pins: VDiff = VCANH - VCANL To transmit a dominant signal to the CAN bus the amplitude of the differential signal VDiff is ≥ 1.5 V. To receive a recessive signal from the CAN bus the amplitude of the differential VDiff is ≤ 0.5 V. Partially supplied High-Speed CAN networks have CAN bus nodes with different power supply conditions. Some nodes are connected to the common power supply, while other nodes are disconnected from the power supply and in power-down state. Regardless of whether the CAN bus subscriber is supplied or not, each subscriber connected to the common bus media must not interfere with the communication. The TLE9255W is designed to support Partially supplied networks. In power-down state, the receiver input resistors are switched off and the transceiver input has a high resistance. For permanently supplied ECUs, the TLE9255W provides low power modes. In these low power modes, the current consumption of the TLE9255W is optimized to a minimum, while the TLE9255W can still recognize wake-up patterns or wake-up frames on the CAN bus and signal the wake-up event to the external microcontroller. The voltage level on the digital input TxD and the digital output RxD is determined by the reference supply level at the VIO pin. Depending on the voltage level at the VIO pin, the signal levels on the logic pins (CSN, SCLK, MOSI, MISO, TxD and RxD) are compatible to microcontrollers having a 5 V or 3.3 V I/O supply. It is highly recommended that the digital power supply of VIO of the transceiver is connected to the I/O power supply of the microcontroller; this is the way it is intended to be used (see Figure 53). Data Sheet 10 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5 Modes of Operation The TLE9255W supports four different Modes of operation (see Figure 4): • Normal-operating Mode (Chapter 5.1) • Receive-only Mode (Chapter 5.2) • Stand-by Mode (Chapter 5.3) • Sleep Mode (Chapter 5.4) SPI MC command Normal-operating Mode Receive-only Mode SPI MC command SPI MC command SPI MC command SPI MC command Stand-by Mode VBAT OR VCC is in the functional range for at least tPON Wake-up detected OR SPI MC command OR ECNT > 31 Sleep Mode VIO undervoltage AND tVIO_UV_T expired AND tSilence expired Power on Reset VCC < VCC_POD AND VBAT < VBAT_POD SPI MC command VCC undervoltage Any Mode AND Any Mode tCC_UV_T expired AND tSilence expired Any Mode Any Mode Figure 4 Data Sheet Mode of operation 11 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation Table 2 Types of Modes and Sub-Modes Type of mode Mode Sub-Mode Normal power mode Normal-operating mode – Receive-only Mode – Stand-by Mode – Sleep Mode Sleep WUP Sub-Mode Low power mode Selective Wake Sub-Mode Selective Sleep Sub-Mode Data Sheet 12 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.1 Normal-operating Mode In Normal-operating mode all functions of the TLE9255W are available. The TLE9255W can receive data from the HS CAN bus as well as transmit data to the HS CAN bus. • The transmitter is active and drives the serial data stream on the TxD input pin to the bus pins CANH, CANL. • The normal mode receiver is active and converts the signals from the bus to a serial data stream on the RxD output pin. • The bus biasing is on. • The TxD timeout function is enabled (Chapter 6.4). • The overtemperature protection is enabled (Chapter 6.5). • The undervoltage detection on VBAT is enabled(Chapter 6.2.1) • The undervoltage detection on VCC is enabled (Chapter 6.2.2). • The undervoltage detection on VIO is enabled (Chapter 6.2.4). • The INH output pin is “high”. • A valid wake-up pattern is not signalled in the SPI bit WUP (Chapter 5.7.1). • Only if the selective wake function is enabled (SWK_EN = 1), then the HS CAN bus will be continuously monitored for a valid WUF (Chapter 5.7.2). • Local wake-up function is disabled (Chapter 5.7.3). Conditions for entering the Normal-operating Mode: • Normal-operating Mode can be entered via an SPI MC command from any mode of operation. Conditions for leaving the Normal-operating Mode: • If VIO < VIO_UV AND tVIO_UV_T has expired ANDtsilence has expired, then this triggers a mode change to Sleep Mode • If VCC < VCC_UV AND tVCC_UV_T has expired AND tsilence has expired, then this triggers a mode change to Sleep Mode. • An SPI MC command triggers a mode change. Figure 5 shows possible mode changes. VIO undervoltage AND tVIO_UV_T expired AND tSilence expired Sleep Mode SPI MC command Normal-operating Mode Any Mode Any Mode Figure 5 Data Sheet VCC undervoltage AND tVCC_UV_T expired AND tSilence expired SPI MC command Mode changes in Normal-operating Mode 13 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.2 Receive-only Mode In Receive-only Mode the transmitter is disabled and the receiver is enabled. The TLE9255W can receive data from the HS CAN bus, but cannot transmit data to the HS CAN bus. • The transmitter is disabled and the data available on the TxD input is blocked. • The RxD output pin indicates the data received by the normal-mode receiver. • The bus biasing is on. • The TxD timeout function is disabled (Chapter 6.4). • The overtemperature protection is disabled (Chapter 6.5). • The undervoltage detection on VBAT is enabled(Chapter 6.2.1) • The undervoltage detection on VCC is enabled (Chapter 6.2.2). • The undervoltage detection on VIO is enabled (Chapter 6.2.4). • The INH output pin is “high”. • A valid wake-up pattern is not signalled in the SPI bit WUP (Chapter 5.7.1). • Only if the selective wake function is enabled (SWK_EN = 1), then the HS CAN bus is continuously monitored for a valid WUF (Chapter 5.7.2). • Local wake-up function is disabled (Chapter 5.7.3). Conditions for entering the Receive-only Mode: • Receive-only Mode can be entered via an SPI MC command from any mode of operation. Conditions for leaving the Received-only Mode: • If VIO < VIO_UV AND tVIO_UV_T has expired AND tsilence has expired, then this triggers a mode change to Sleep Mode. • If VCC < VCC_UV AND tVCC_UV_T has expired AND tsilence has expired, then this triggers a mode change to Sleep Mode. • An SPI MC command triggers a mode change. Figure 6 shows possible mode changes. VIO undervoltage AND tVIO_UV_T expired AND tSilence expired Sleep Mode SPI MC command Receive-only Mode VCC undervoltage AND tVCC_UV_T expired AND tSilence expired Any Mode Any Mode SPI MC command Figure 6 Data Sheet Mode changes in Receive-only Mode 14 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.3 Stand-by Mode Stand-by Mode is a low power mode of the TLE9255W with both the transmitter and the receiver disabled. In Stand-by Mode the transceiver can neither send data to the HS CAN bus nor can it receive data from the HS CAN bus: • The transmitter is disabled and the data available on the TxD input is blocked. • The RxD output pin indicates a wake-up event (Chapter 5.8). If no wake-up event is pending, then the default value of the RxD output pin is “high”. • After Power on Reset the bus biasing is off. Chapter 5.6 describes the conditions for the bus biasing. • The TxD timeout function is disabled (Chapter 6.4). • The overtemperature protection is disabled (Chapter 6.5). • The undervoltage detection on VBAT is enabled(Chapter 6.2.1) • The undervoltage detection on VCC is enabled (Chapter 6.2.2). • The undervoltage detection on VIO is enabled (Chapter 6.2.4). • The INH output pin is “high”. • If the selective wake function is disabled (SWK_EN = 0), then the HS CAN bus is continuously monitored for a valid wake-up pattern (Chapter 5.7.1). If the selective wake function is enabled, then a valid wake-up pattern is not signalled in the SPI bit WUP. • Only if the selective wake function is enabled (SWK_EN = 1), then the HS CAN bus is continuously monitored for a valid WUF (Chapter 5.7.2). • Local wake-up function is enabled (Chapter 5.7.3). • If VIO > VIO_UV, then a mode change is possible. Data Sheet 15 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation Conditions for entering the Stand-by Mode: • After Power on Reset: If VCC OR VBAT is within the functional range for at least tPON, then the TLE9255W enters Stand-by Mode. • If a wake-up (WUP, WUF, LWU) is detected in Sleep Mode, then the TLE9255W enters Stand-by Mode. • If the selective wake unit is active (Selective wake Sub-Mode) AND if the value of the error counter is 32 (see Chapter 7.3), then the TLE9255W enters Stand-by Mode. • Stand-by Mode can be entered via an SPI MC command from any mode of operation. Conditions for leaving the Stand-by Mode: • If VIO < VIO_UV AND tVIO_UV_T has expired AND tsilence has expired, then this triggers a mode change to Sleep Mode. • If VCC < VCC_UV AND tVCC_UV_T has expired AND tsilence has expired, then this triggers a mode change to Sleep Mode. • An SPI MC command triggers a mode change. Figure 7 shows possible mode changes. VIO undervoltage AND tVIO_UV_T expired AND tSilence expired Sleep Mode Wake-up event OR ECNT > 31 VBAT OR VCC is in the functional range for at least tPON SPI MC Power on Reset command Stand-by Mode Data Sheet VCC undervoltage AND tVCC_UV_T expired AND tSilence expired Any Mode SPI MC command Any Mode Figure 7 Sleep Mode Mode changes in Stand-by Mode 16 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.4 Sleep Mode Sleep mode is a low power mode with minimized quiescent current. If the TLE9255W detects a wake-up event in Sleep Mode, then it changes to Stand-by Mode. Sleep Mode has three Sub-Modes. VIO undervoltage AND tVIO_UV_T expired AND tSilence expired Wake-up event OR ECNT > 31 Stand-by Mode SPI MC command Any Mode Sleep Mode Any Mode VCC undervoltage AND tVCC_UV_T expired AND tSilence expired Figure 8 SPI MC command Mode change in Sleep Mode Any Mode SPI MC command SPI MC command (VIO < VIO_UV AND VIO_UV_T expired AND tSilence expired) Any Mode Stand-by Mode VCC undervoltage AND tVCC_UV_T expired AND tSilence expired SPI MC command WUP OR LWU detection Sleep WUP Sub-Mode SPI MC command WUF OR LWU detection OR ECNT > 31 LWU detection Selective Wake Sub-Mode (WUF detection in SPI configured) WUP detection SPI MC command tSilence expired Selective Sleep Sub-Mode (WUF detection in SPI configured) Sleep Mode Figure 9 Data Sheet Sub-Modes in Sleep Mode 17 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation Figure 10 shows the internal behavior of the TLE9255W in case the microcontroller sends a change to Sleep Mode SPI command. Change into the Sleep Mode by a SPI Command Yes No Is Selective Wake enabled Is WUF pending Yes Is WUP pending No No Is Local Wake up pending Yes Is Local Wake up pending No Enter Selective Wake Sub-Mode Figure 10 Data Sheet No Enter Stand-by Mode Enter Sleep WUP Sub-Mode Internal behavior of the TLE9255W after receiving a change to Sleep Mode SPI command 18 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.4.1 Sleep WUP Sub-Mode Sleep WUP Sub-Mode is a low power mode of the TLE9255W. Sleep WUP Sub-Mode reduces current consumption. The following conditions are valid for the Sleep WUP Sub-Mode: • The transmitter is disabled and the data available on the TxD input is blocked. • The value of the RxD output pin depends on the power supply circuit of VIO. – Permanent power supply of VIO (INH pin is not used) The RxD output pin is “high” – The INH pin controls the power supply of VIO The RxD output pin is “low” • If the tSilence timer has expired, then the bus biasing is off. • The TxD timeout function is disabled (Chapter 6.4). • The overtemperature protection is disabled (Chapter 6.5). • The undervoltage detection on VBAT (Chapter 6.2.1) is not signalled in the SPI bit VBAT_UV. • The undervoltage detection on VCC is disabled(Chapter 6.2.2). • The undervoltage detection on VIO (Chapter 6.2.4) is not signalled in the SPI bits VIO_LTUV and VIO_STUV. • The INH output pin is “low”. The SPI bit VBAT_CON in the register SWK_CTRL_1 controls the behavior of the INH pin. • The HS CAN bus is continuously monitored for a valid wake-up pattern (Chapter 5.7.1). • The HS CAN bus is not monitored for a valid WUF (Chapter 5.7.2). • Local wake-up function is enabled. Conditions for entering the Sleep WUP Sub-Mode: • If VIO < VIO_UV (VIO undervoltage) AND tVIO_UV_T has expired AND tsilence has expired, then the TLE9255W enters Sleep WUP Sub-Mode. • If VCC < VCC_UV (VCC undervoltage) AND tVCC_UV_T has expired AND tsilence has expired, then the TLE9255W enters Sleep WUP Sub-Mode. The SPI bit STTS_EN controls this state transition. • The Sleep WUP Sub-Mode can be entered via an SPI MC command from any mode of operation. Conditions for leaving the Sleep WUP Sub-Mode: • If a wake-up (WUP, LWU) is detected in Sleep WUP Sub-Mode, then the TLE9255W enters Stand-by Mode. • An SPI MC command triggers a mode change to any mode of operation. VIO undervoltage AND tVIO_UV_T expired AND tSilence expired Any Mode SPI MC command WUP OR LWU detection Sleep WUP Sub-Mode VCC undervoltage AND tVCC_UV_T expired AND tSilence expired Figure 11 Data Sheet Stand-by Mode SPI MC Any Mode command Mode change in Sleep WUP Sub-Mode 19 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.4.2 Selective Wake Sub-Mode Selective Wake Sub-Mode is a low power mode of the TLE9255W. Only if the selective wake function is enabled (SWK_EN= 1), then the TLE9255W can enter Selective Wake Sub-Mode. Chapter 7 describes the partial networking functionality and the configuration. The following conditions are valid for the Selective Wake SubMode: • The transmitter is disabled and the data available on the TxD input is blocked. • The default value of the RxD output pin depends on the power supply circuit of VIO. – Permanent power supply of VIO (INH pin is not used) The RxD output pin is “high” – The INH pin controls the power supply of VIO The RxD output pin is “low” • The bus biasing is on. • The TxD timeout function is disabled (Chapter 6.4). • The overtemperature protection is disabled (Chapter 6.5). • The undervoltage detection on VBAT is enabled (Chapter 6.2.1). • The undervoltage detection on VCC is disabled(Chapter 6.2.2). • The undervoltage detection on VIO is enabled (Chapter 6.2.4). • The INH output pin is “low”. The SPI bit VBAT_CON in the register SWK_CTRL_1 controls the behavior of the INH pin. • A valid wake-up pattern is not signalled in the SPI bit WUP (Chapter 5.7.1). • The HS CAN bus is continuously monitored for a valid WUF (Chapter 5.7.2). • Local wake-up function is enabled. Data Sheet 20 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation Conditions for entering the Selective Wake Sub-Mode: • The Selective Wake Sub-Mode can be entered via an SPI MC command from any mode of operation. • If the TLE9255W detects a WUP in Selective Sleep Sub-Mode, then it enters Selective Wake Sub-Mode. Conditions for leaving the Selective Wake Sub-Mode: • If a wake-up (WUF, LWU) is detected in Selective Wake Sub-Mode, then Stand-by Mode is entered. • If the error counter > 31 (Chapter 7.3) in Selective Wake Sub-Mode, then Stand-by Mode is entered. • If tSilence has expired, then Selective Sleep Sub-Mode is entered. • An SPI MC command will trigger a mode change to any mode of operation. Selective Sleep Sub-Mode tSilence expired Selective Sleep Sub-Mode WUP detection Selective Wake Sub-Mode SPI MC command (WUF detection in SPI configured) Any Mode Figure 12 Data Sheet WUF OR LWU detection OR ECNT > 31 SPI MC command Stand-by Mode Any Mode Mode change in Selective Wake Sub-Mode 21 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.4.3 Selective Sleep Sub-Mode Selective Sleep Sub-mode is a low power mode with optimized quiescent current. The following conditions are valid for the Selective Wake Sub-Mode: • The transmitter is disabled and the data available on the TxD input is blocked. • The default value of the RxD output pin depends on the power supply circuit of VIO. – Permanent power supply of VIO (INH pin is not used) The RxD output pin is “high” – The INH pin controls the power supply of VIO The RxD output pin is “low” • The bus biasing is off. • The TxD timeout function is disabled (Chapter 6.4). • The overtemperature protection is disabled (Chapter 6.5). • The undervoltage detection on VBAT (Chapter 6.2.1) is not signalled in the SPI bit VBAT_UV. • The undervoltage detection on VCC is disabled(Chapter 6.2.2). • The undervoltage detection on VIO (Chapter 6.2.4) is not signalled in the SPI bits VIO_LTUV and VIO_STUV. • The INH output pin is “low”. The SPI bit VBAT_CON in the register SWK_CTRL_1 controls the behavior of the INH pin. • The HS CAN bus is continuously monitored for a valid wake-up pattern (Chapter 5.7.1), but a valid wakeup pattern is not signalled in the SPI bit WUP (Chapter 5.7.1). • The HS CAN bus is not monitored for a valid WUF (Chapter 5.7.2). • Local wake-up function is enabled. Conditions for entering the Selective Sleep Sub-Mode: • If there is no communication on the HS CAN bus for longer than tSilence in the Selective Wake Sub-Mode, then the TLE9255W enters the Selective Sleep Sub-Mode. Conditions for leaving the Selective Sleep Sub-Mode: • If a WUP is detected, then Selective Wake Sub-Mode is entered. • If an LWU has been detected, then Stand-by Mode will be entered. • An SPI MC command triggers a mode change to any mode of operation. tSilence expired Selective Sleep Sub-Mode (WUF detection in SPI configured) WUP detection Selective Wake Sub-Mode LWU detection Stand-by Mode Selective Wake Sub-Mode SPI MC command Figure 13 Data Sheet Any Mode Mode change in Selective Sleep Sub-Mode 22 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.5 Power On Reset Power on Reset is a transition state of the TLE9255W after power is applied and the transceiver is not yet fully functional. • The transmitter and receiver are disabled. • The bus biasing is off. • The TxD timeout function is disabled. • The overtemperature protection is disabled. • The undervoltage detection on VBAT is enabled (Chapter 6.2.1), but it is not signalled in the SPI bit VBAT_UV. • The undervoltage detection on VCC is disabled. • The undervoltage detection on VIO is enabled (Chapter 6.2.4), but it is not signalled in the SPI bits VIO_LTUV and VIO_STUV. • The SPI communication is blocked (MOSI, SCLK, CSN), • RxD and MISO pins are high impedance. • TxD pin is blocked • If VBAT > VBAT_POD OR VCC > VCC_POD, then the INH output pin is switched on • All SPI registers are reset to default values. • The HS CAN bus is not continuously monitored for a valid wake-up pattern (Chapter 5.7.1) • The HS CAN bus is not monitored for a valid WUF (Chapter 5.7.2). • Local wake-up function is disabled. Conditions for entering the Power on Reset: • VBAT < VBAT_POD AND VCC < VCC_POD threshold. Conditions for leaving the Power on Reset: • If VBAT is within the functional range for at least tPON OR if VCC is within the functional range for at least tPON, then the TLE9255W enters Stand-by Mode Figure 14 shows power up behavior and power down behavior: VCC < VCC_POD AND VBAT < VBAT_POD Power on Reset Stand-by Mode VBAT OR VCC is in the functional range for at least tPON Any Mode Figure 14 Power down and power up behavior SPI bit POR The POR flag indicates that all registers are reset and the state machine is in the default mode (Stand-by Mode) If all of the following conditions are fulfilled, then the POR flag is set: Data Sheet 23 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation • VBAT is within the functional range for at least tPON OR VCC is within the functional range for at least tPON, then the TLE9255W enters Stand-by Mode • VIO is within the functional range (SPI communication is possible) Any of the following events resets the POR flag: • an SPI clear command • a transition to the Normal-operating Mode Data Sheet 24 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.6 Automatic Bus Voltage Biasing The automatic bus voltage biasing improves EMC performance of the entire network and increases the reliability of communication performance in networks using CAN partial networking. The automatic bus voltage biasing is enabled in all low power modes. The biasing unit operates independently from all other transceiver functions and only depending on the network activity (tSilence). If tSilence has expired, then there is no activity on the CAN bus. The tSilence timer is restarted under the following conditions: • If tSilence has expired in Sleep WUP Sub-Mode AND a WUP is detected • If tSilence has not expired in Sleep WUP Sub-Mode AND a rising or falling edge is detected AND the pulse width (dominant or recessive) is greater than tFilter • If a WUP is detected in Selective Sleep Sub-Mode • If tSilence has expired in Stand-by Mode AND a WUP is detected • If the tSilence has not expired in Stand-by Mode AND a rising edge or a falling edge is detected AND the pulse width (dominant or recessive) is greater than tFilter • If a rising or falling edge is detected in any other mode AND the pulse width (dominant or recessive) is greater than tFilter If there is no activity on the bus for longer than tSILENCE, then the internal resistors bias the bus pins towards GND. On detection of a valid wake-up pattern (WUP), the internal biasing is enabled and terminates the biasing resistors towards 2.5 V within t > tRW_Bias. Figure 15 Data Sheet Bus Biasing and tSilence 25 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.7 Wake-up event Valid wake-up events are: • a Wake-up pattern (WUP) in Sleep WUP Sub-Mode • a Wake-up frame (WUF) in Selective Wake Sub-Mode • a Local Wake-up (LWU) in Sleep WUP Sub-Mode, Selective Sleep Sub-Mode or Selective Wake Sub-Mode If a valid wake-up event is detected, then this triggers a mode change to Stand-by Mode. 5.7.1 Wake-up pattern (WUP) Within the maximum wake-up time tWAKE, the wake-up pattern consists of the following sequence (see Figure 16): • a dominant signal with pulse width t > tFilter • a recessive signal with pulse width t > tFilter • a dominant signal with pulse width t > tFilter t < tWake VDiff VDiff_LP_D t > tFilter t > tFilter VDiff_LP_R t > tFilter t wake-up detected Figure 16 Wake-up pattern Entering Sleep WUP Mode or Selective Sleep Sub-Mode Bus recessive > tFilter Ini Wait Bus dominant > tFilter tWake expired 1 Bus recessive > tFilter tWake expired 2 Bus dominant > tFilter 3 Wake up detected Figure 17 Data Sheet WUP detection 26 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation The WUP bit in the register WAKE_STAT indicates detection of a wake-up pattern on the HS CAN bus. If the transceiver is not in the Selective Sleep Sub-Mode AND if the transceiver detects a valid wake-up pattern, then the WUP bit is set. An SPI clear command resets the bit. A wake-up is not executed under the following conditions: • A mode change to Normal-operating Mode is performed during the wake-up pattern. • The maximum wake-up time tWAKE expires before a valid WUP is detected. • The transceiver is powered down (VCC < VCC_POD AND VBAT < VBAT_POD). 5.7.2 Wake-up frame (WUF) If the selective wake unit is enabled (SWK_EN =1), then the selective wake unit continuously monitors the HS CAN Bus for a valid wake-up frame. If a valid WUF is detected, then the WUF bit in the register WAKE_STAT is set to “1”. An SPI clear command resets the WUF bit. Chapter 7 describes the selective wake feature. Data Sheet 27 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.7.3 Local Wake-up (LWU) The WAKE input pin can detect a rising edge as well as a falling edge as a wake-up event (configurable in LWU_NEG, LWU_POS). The LWU bit in the register WAKE_STAT indicates that a local wake-up is detected on the local wake-up pin. The transceiver sets the LWU bit. An SPI command resets the LWU bit. The LWU_DIR bit in the register WAKE_STAT indicates on which edge a local wake-up has been detected. The transceiver sets the LWU_DIR flag and it is only valid, if a local wake-up has been detected. Chapter 10.6.3 describes the local wake-up timing. V on WAKE pin VBAT tWAKE_Filter VWAKE_TH t wake-up detected Figure 18 Local wake-up negative edge V on WAKE pin VBAT VWAKE_TH tWAKE_Filter t wake-up detected Figure 19 Data Sheet Local wake-up positive edge 28 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.8 RxD pin wake-up behavior The RxD output pin indicates a wake-up event to the microcontroller. On detection of a valid wake-up event the RxD output pin reacts with one of the following behaviors, depending on the WAKE_TOG bit in the SPI register HW_CTRL: • RxD output pin is set to “low” • RxD output pin starts to toggle If Stand-by Mode is re-entered by a mode change (microcontroller) the previous indication of a valid wake-up event is not signalled on the RxD pin. Only if a new wake-up event has been detected, the RxD pin indicates the wake-up event. The clearing of a WUP, WUF or LWU has no influence on the behavior of the RxD pin. 5.8.1 RxD permanent “low” If a valid wake-up event is detected AND if SPI bit WAKE_TOG = 0, then the RxD output pin is set to “low”. If a mode change occurs, then the RxD output pin behavior is defined by the new state. wake-up event detected Sleep Mode Mode Stand-by Mode tMode_Change RxD RxD remains permanently logical „low“ t Figure 20 RxD “low” after wake-up event wake-up event detected Mode Sleep Mode Stand-by Mode tMode_Change RxD 30% VIO RxD remains permanently logical „low“ t Figure 21 Data Sheet RxD “low” after wake-up event (permanently supplied VIO) 29 Rev. 1.04 2021-08-04 TLE9255W Modes of Operation 5.8.2 RxD Toggle If WAKE_TOG is set to 1 AND if a valid wake-up event is detected AND if VIO is within the functional range, then the RxD output pin starts to toggle from “low” to “high” and “high” to “low” with time period of tToggle. Figure 22 and Figure 23 show this behavior. If a mode change occurs, then the RxD output pin behavior is defined by the new state. wake-up event detected Mode Sleep Mode Stand-by Mode tMode_Change tToggle tToggle tToggle tToggle RxD 70% VIO 30% VIO t Figure 22 RxD toggling behavior after wake-up event wake-up event detected Mode Sleep Mode Stand-by Mode tMode_Change RxD tToggle tToggle tToggle tToggle t 70% VIO 30% VIO t Figure 23 Data Sheet RxD toggling behavior after wake-up event (permanently supplied VIO) 30 Rev. 1.04 2021-08-04 TLE9255W Fail Safe Functions 6 Fail Safe Functions 6.1 Short Circuit Protection The CANH and CANL bus pins are proven to cope with a short circuit fault to GND and to the supply voltages. A current limiting circuit protects the transceiver from damage. 6.2 Undervoltage detection The TLE9255W has independent undervoltage detection on VBAT, VCC and VIO. Undervoltage events at these pins may have impact on the functionality of the device and also may change the mode of operation. 6.2.1 Undervoltage detection on VBAT If the power supply VBAT < VBAT_UV for more than the glitch filter time tVBAT_filter, then an undervoltage is detected. On detection of undervoltage the TLE9255W performs the following actions: • disable Local wake-up • Set the bit VBAT_UV in the SPI register TRANS_UV_STAT to “1”. After the completion of a Power on Reset or after a transition from Sleep Mode to Stand-by Mode the VBAT supply stabilization period must be completed before an undervoltage notification can be recorded in the VBAT_UV bit. The undervoltage notification is only possible once the VBAT supply has exceeded the threshold VBAT_UV, that is VBAT > VBAT_UV. Figure 25 shows this scenario. Only an SPI command can reset the undervoltage bit VBAT_UV (see Chapter 8.2). The glitch filter is implemented in order to prevent an undervoltage detection due to short voltage transients on VBAT. Figure 24 shows the effect of glitch filter time in different undervoltage scenarios. VIO and VCC are within the functional range VBAT VBAT_UV tVBAT_filter tVBAT_filter t Status Bit: VBAT_UV Figure 24 Data Sheet „0" „1" Undervoltage detection VBAT 31 Rev. 1.04 2021-08-04 TLE9255W Fail Safe Functions VIO and VCC are within the functional range VBAT VBAT_UV tVBAT_filter t Status Bit: VBAT_UV Figure 25 Notification disabled „0" „1" Undervoltage detection VBAT during VBAT supply stabilization period After power up the application can set the VBAT_CON to “0” in the SPI Register SUPPLY_CTRL in order to disable undervoltage detection. Data Sheet 32 Rev. 1.04 2021-08-04 TLE9255W Fail Safe Functions 6.2.2 Short-term Undervoltage detection on VCC If the power supply VCC < VCC_UV for more than the glitch filter time tVCC_filter, then a short-term undervoltage on VCC is detected. The glitch filter prevents an undervoltage detection due to short voltage transients on VCC. On detection of short-term undervoltage the TLE9255W performs the following actions: • Set short-term undervoltage bit VCC_STUV to “1” in the SPI register TRANS_UV_STAT. Only after the completion of a Power on Reset, the VCC supply stabilization period must be completed before an undervoltage notification can be recorded in the VCC_STUV bit. After Power on Reset the undervoltage notification is only possible once the VCC supply has exceeded the threshold VCC_UV, that is VCC > VCC_UV. Figure 27 shows this scenario. • disable the transmitter An SPI command can reset the undervoltage bit VCC_STUV. If VCC > VCC_UV for more than the glitch filter time tVCC_filter AND if the transmitter recovery time tVCC_recovery has expired, then the transmitter is re-enabled. VIO and VBAT are within the functional range VCC VCC_UV tVCC_filter tVCC_filter tVCC_filter tVCC_recovery t Figure 26 Transmitter: enabled Status Bit VCC_STUV: „0" disabled enabled „1" VCC undervoltage detection VIO and VBAT are within the functional range VCC VCC_UV tVCC_filter t Status Bit: VCC_STUV Figure 27 Data Sheet Notification disabled „0" „1" Undervoltage detection VCC during VCC supply stabilization period after Power on Reset 33 Rev. 1.04 2021-08-04 TLE9255W Fail Safe Functions 6.2.3 Long-term undervoltage detection on VCC If VCC < VCC_UV for more than the glitch filter time tVCC_filter, then the undervoltage detection timer is started. If tVCC_UV_T has expired, then a long-term undervoltage is detected and the bit VCC_LTUV is set to “1”. Besides, if the SPI bit STTS_EN = 1 (default value) AND if tSilence has expired, then a state transition to Sleep WUP SubMode is triggered. If VCC > VCC_UV for more than the glitch filter time tVCC_filter, then the timer tVCC_UV_T is stopped and reset. Only an SPI command can reset the undervoltage bit VCC_LTUV. The tVCC_UV_T can be configured in the SPI register SUPPLY_CTRL. VBAT is in the functional range VCC VCC_UV tVCC_filter tVCC_UV_T t Status Bit: VCC_LTUV „0" Mode (SPI Bit STTS = 1) „1" POR Stand-by Mode POR Sleep WUP Sub-Mode1 Stand-by Mode 1) State transition will be performed if the tSilence timer has expired (no CAN bus communication) Figure 28 VCC long-term undervoltage detection after power up VIO and VBAT are within the functional range VCC VCC_UV tVCC_filter tVCC_UV_T t Status Bit VCC_LTUV: „0" Figure 29 VCC long-term undervoltage detection during operation 6.2.4 Short-term Undervoltage detection on VIO „1" If the power supply VIO < VIO_UV for more than the glitch filter time tVIO_filter, then short-term undervoltage on VIO is detected. The glitch filter prevents an undervoltage detection due to short voltage transients on VIO. On detection of short-term undervoltage the TLE9255W performs the following actions: Data Sheet 34 Rev. 1.04 2021-08-04 TLE9255W Fail Safe Functions • Set the short-term undervoltage bit VIO_STUV to “1” in the SPI register TRANS_UV_STAT. After the completion of a Power on Reset, the VIO supply stabilization period must be completed before an undervoltage notification can be recorded in the VIO_STUV bit. After Power on Reset the undervoltage notification is only be possible once the VIO supply has exceeded the threshold VIO_UV, that is VIO > VIO_UV. Figure 31 shows this scenario. • set the RxD pin to “low” • disable SPI communication by switching the MISO pin to high impedance • TLE9255W ignores all signals on the input TxD pin Only an SPI command can reset the undervoltage bit VIO_STUV. If VIO has recovered (VIO > VIO_UV) for more than the glitch filter time tVIO_filter AND if the tVIO_recovery time has expired, then the RxD pin returns to normal functionality depending on the mode of operation and the SPI communication is restored. VCC OR VBAT are within the functional range VIO VIO_UV tVIO_filter tVIO_filter tVIO_filter tVIO_recovery t RxD pin: MISO: TxD pin: Status Bit VIO_STUV: Figure 30 Data Sheet RxD pin normal functional depending on mode of operation Logical „low“ RxD pin normal functional depending on mode of operation SPI Communicaiton No SPI communication (High impedance) SPI Communicaiton Any signal will be processed Any signal will be ignored Any signal will be processed „0" „1" VIO short-term undervoltage detection 35 Rev. 1.04 2021-08-04 TLE9255W Fail Safe Functions VCC and VBAT are within the functional range VIO VIO_UV tVIO_filter t Status Bit: VIO_UV Notification disabled „0" „1" Figure 31 Undervoltage detection VIO during VIO supply stabilization period after Power on Reset 6.2.5 Long-term Undervoltage detection on VIO If VIO < VIO_UV for more than the glitch filter time tVIO_filter, then the undervoltage detection timer is started. If tVIO_UV_T expires, then a long-term undervoltage is detected. On detection of long-term undervoltage the TLE9255W performs the following actions: • set the bit VIO_LTUV to “1” • perform a mode change to Sleep WUP Sub-Mode only after tSilence has expired (no bus communication) If VIO > VIO_UV for more than the glitch filter time tVIO_filter, then the timer tVIO_UV_T is stopped and reset. Only an SPI command can reset the undervoltage bit VIO_LTUV. The tVIO_UV_T is configurable in the SPI Register SUPPLY_CTRL. VBAT OR VCC is in the functional range VIO VIO_UV tVIO_filter tVIO_UV_T t Status Bit: VIO_UV Mode „0" POR „1" Stand-by Mode Sleep WUP Sub-Mode1 1) State transition will be performed if the tSilence timer has expired (no CAN bus communication) Figure 32 Data Sheet VIO long-term undervoltage detection after power up 36 Rev. 1.04 2021-08-04 TLE9255W Fail Safe Functions VBAT OR VCC is in the functional range VIO VIO_UV tVIO_UV_T tVIO_filter t Status Bit: VIO_UV Mode „0" POR „1" Sleep WUP Sub-Mode1 Stand-by Mode 1) State transition will be performed if the tSilence timer has expired (no CAN bus communication) Figure 33 VIO long-term undervoltage detection during operation 6.3 Unconnected Logic Pins If the input pins are not connected and floating, the integrated pull-up and pull-down resistors at the digital input pins force the TLE9255W into fail safe behavior (see Table 3). Table 3 Logical Inputs when unconnected Input Signal Default State Comment TxD “high” pull-up current source to VIO MOSI “low” pull-down current source to GND SCLK “low” pull-down current source to GND CSN “high” pull-up current source to VIO Data Sheet 37 Rev. 1.04 2021-08-04 TLE9255W Fail Safe Functions 6.4 TxD Time-out Function If the logical signal on the TxD pin is permanently “low”, then the TxD time-out feature protects the CAN bus from blocked communication due to this errant logic signal on TxD. A permanent “low” signal on the TxD pin can occur due to a locked-up microcontroller or in a short circuit on the printed circuit board, for example. In Normal-operating Mode, a “low” signal on the TxD pin for the time t > tTXD_TO enables the TxD time-out feature and the TLE9255W disables the transmitter (see Figure 34) and sets the TXD_TO bit in the register TRANS_STAT. The timer tTXD_TO is configurable in SPI register TXD_TO_CTRL. The receiver is still active and the RxD output pin continues monitoring data on the bus. TxD t t > tTXD_TO TxD time-out CANH CANL TxD time–out released t RxD t Figure 34 TxD time-out function Figure 34 shows how the transmitter is deactivated and re-activated.To release the transmitter after a TxD time-out event, the TLE9255W requires a signal change on the TxD input pin from “low” to “high”. Data Sheet 38 Rev. 1.04 2021-08-04 TLE9255W Fail Safe Functions 6.5 Overtemperature Protection Integrated overtemperature detection protects the TLE9255W from thermal overstress of the transmitter. The overtemperature protection is active in Normal-operating Mode only. The temperature sensor provides the temperature threshold TJSD. If the junction temperature exceeds the upper threshold TJSD, then the TLE9255W disables the transmitter and sets the bit TSD, indicating that a critical temperature situation is reached. After the device cools down the transmitter is re-enabled. Only an SPI command can reset the TSD bit. A hysteresis is implemented within the temperature sensor. Figure 35 Overtemperature protection 6.6 Delay Time for Mode Change The TLE9255W performs mode changes within the time window tMode_Change. During mode changes (tMode_Change) the RxD output pin is permanently set to “high” and does not reflect the status on the CANH and CANL input pins. After the mode change is completed, the TLE9255W releases the RxD output pin. Data Sheet 39 Rev. 1.04 2021-08-04 TLE9255W CAN Partial Networking 7 CAN Partial Networking Partial networking allows to exclude nodes from the CAN communication in a CAN network. If the TLE9255W is in the Selective Wake Sub-Mode, then a CAN frame can wake-up the TLE9255W. This feature is called selective wake and the CAN frame is called wake-up frame (WUF). The selective wake unit implements the selective wake feature. 7.1 Wake-up frame evaluation For a WUF detection the TLE9255W evaluates, whether a received CAN frame is a valid wake-up frame. This wake-up frame evaluation consists of the following parts: • CAN ID evaluation • Frame data length code (DLC) and data field evaluation If both parts are evaluated successfully AND if the CRC of the CAN Frame is valid, then a valid wake-up frame is detected (see Figure 36). The following chapter describes the process in more detail. CAN Frame CRC Field ACK EOF Wake-up detected Figure 36 WUF detection 7.1.1 Wake-up frame identifier evaluation If all relevant CAN ID bits of a CAN frame match the configured CAN ID bits in the TLE9255W, then a valid WUF CAN ID is received. The CAN ID mask excludes CAN ID bits from the evaluation. The CAN ID bits of a received CAN frame are compared bit by bit with the CAN ID configured in register SWK_ID0_CTRL to SWK_ID3_CTRL. If the received CAN ID is equal to the configured CAN ID, then the wake-up frame identifier evaluation is successful. The CAN ID mask (registers SWK_MASK_ID0_CTRL to SWK_MASK_ID3_CTRL) defines which bits the comparison considers. Figure 37 shows an example of the CAN ID evaluation (11 bit CAN ID). The green background color defines the CAN ID bits which are not considered in the comparison. Data Sheet 40 Rev. 1.04 2021-08-04 TLE9255W CAN Partial Networking Figure 37 Configured CAN ID 1 0 0 1 0 1 1 1 0 1 0 CAN ID mask 1 1 1 1 1 1 1 1 1 1 0 1st valid WUF CAN ID 1 0 0 1 0 1 1 1 0 1 0 2nd valid WUF CAN ID 1 0 0 1 0 1 1 1 0 1 1 Example of an invalid WUF CAN ID 1 0 0 1 0 1 1 0 0 1 1 CAN ID and CAN ID mask The registers SWK_ID0_CTRL, SWK_ID1_CTRL, SWK_ID2_CTRL and SWK_ID3_CTRL configure the CAN ID. The IDE bit defines the CAN ID format (11 bit or 29 bit identifier). The registers SWK_MASK_ID0_CTRL, SWK_MASK_ID1_CTRL, SWK_MASK_ID2_CTRL and SWK_MASK_ID3_CTRL configure the CAN-ID mask. 7.1.2 DLC and data field evaluation If all of the following conditions are fulfilled, then the DLC and data field evaluation is successful: • the DLC of the received CAN frame is equal to the DLC configured in the DLC field of the register SWK_DLC_CTRL • At least one bit within the data field of the received CAN frame is “1” and matches to a bit (“1”) of the configured data field. If one bit matches, then the evaluation is stopped. The registers SWK_DATA0_CTRL, SWK_DATA1_CTRL, SWK_DATA2_CTRL, SWK_DATA3_CTRL, SWK_DATA4_CTRL, SWK_DATA5_CTRL, SWK_DATA6_CTRL and SWK_DATA7_CTRL configure the data field. Figure 38 shows an example for the data field evaluation. The DLC in this example is 1. Data byte 0 Configured data mask 0 0 1 1 1 0 1 1 Received CAN data bytes 1 0 1 0 0 1 1 0 These bits can be ignored Data matches. The evaluation process can be stopped time Figure 38 Data Sheet Data field evaluation 41 Rev. 1.04 2021-08-04 TLE9255W CAN Partial Networking 7.2 Activation of Selective Wake Figure 39 shows the recommended way to activate the selective wake function in the TLE9255W. Power on Reset SWK Unit is not enabled Set Baudrate for the SWK unit The selective wake unit will acquire CAN bus synchronization within 4 classical CAN frames. On the first successfully synchronized classical CAN frame the SYNC bit is set to 1. Enable Selective Wake (SWK_EN = 1) Set SWK wake data. e.g. ID, ID_Mask, DATA Confirm SWK configuration (CFG_VAL = 1) Any mode SWK Unit is enabled SWK configuration must be checked by MC Yes Check SYSERR 1 SWK Config Error (CFG_VAL = 0) No Frame could not be detected by the selective wake unit. MC must make a diagnosis to find the reason (e.g. wrong baudrate). 0 Check WK_STAT register WUP, LWU or WUF pending MC decides how to procceed No WUP, LWU or WUF pending Change into the Sleep Mode by a SPI command MC still wants to change into Sleep Mode Clear WK_STAT register Transceiver enters Sleep Mode Figure 39 Data Sheet Activation of selective wake function 42 Rev. 1.04 2021-08-04 TLE9255W CAN Partial Networking 7.3 Frame Error Counter The frame error counter indicates, whether received classical CAN frames are valid. CAN FD frames are not evaluated and therefore CAN FD frame errors do not affect the frame error counter. If the selective wake unit detects a classical CAN frame error, then the frame error counter is increased by 1. If the selective wake unit detects a valid classical CAN frame, then the error counter is decreased by 1. The following types of errors cause invalid classical CAN Frames: • Bit stuffing error • CRC error • CRC delimiter error If the SPI bit SWK_EN = 1, then the frame error counter is active in any mode of operation. The error counter value can be read via SPI (register SWK_ECNT_STAT). Each time that the Selective Wake Unit is enabled (SWK_EN = 1) OR if the tsilence timer has expired, then the error counter is reset to zero. If the TLE9255W repeatedly receives invalid classical CAN frames in the Selective Wake Sub-Mode, then the frame error counter ensures that a wake-up is performed. If the TLE9255W is in the Selective Wake Sub-Mode and the error counter reaches the value 32, then a wake-up is performed. 7.4 Selective Wake Configuration Error After the microcontroller has confirmed the configuration (CFG_VAL = 1), writing the following registers generates a selective wake configuration error: • Baudrate control register (SWK_CTRL_2) • Identifier control registers (SWK_ID3_CTRL, SWK_ID2_CTRL, SWK_ID1_CTRL and SWK_ID0_CTRL) • Mask identifier control registers (SWK_MASK_ID3_CTRL, SWK_MASK_ID2_CTRL, SWK_MASK_ID1_CTRL and SWK_MASK_ID0_CTRL) • Data Length control register (SWK_DLC_CTRL) • Data control registers (SWK_DATA7_CTRL, SWK_DATA6_CTRL, SWK_DATA5_CTRL, SWK_DATA4_CTRL, SWK_DATA3_CTRL, SWK_DATA2_CTRL, SWK_DATA1_CTRL and SWK_DATA0_CTRL) Data Sheet 43 Rev. 1.04 2021-08-04 TLE9255W CAN Partial Networking The following figure shows a selective wake configuration error. Power on Reset SWK Unit is not enabled Set Baudrate for the SWK unit Enable Selective Wake (SWK_EN = 1) Set SWK wake data. e.g. ID, ID_Mask, DATA Any mode SWK Unit is enabled Confirm SWK configuration (CFG_VAL = 1) Write operation to a SWK configuration Register will cause a selective wake configuration error! Figure 40 Selective wake configuration Error 7.5 CAN Flexible Data Rate (CAN FD) Tolerant Feature The CAN FD tolerant feature means that selective wake unit ignores CAN FD frames. Therefore it is not possible to configure a CAN FD frame for wake-up frame (WUF) detection. At the completion of a detected CAN FD frame, that is, the End of Frame (EOF) is detected, the selective wake unit is ready for detecting the next available classical CAN frame. If at least 6 recessive bits and at most 10 recessive bits are received, then EOF detection is successful. The FDF Bit of the Control Field of a CAN FD frame identifies the type of CAN frame: • FDF bit = 1: CAN FD frame recognized, decoding stops • FDF bit = 0: classical CAN frame recognized, processing of the frame continues In this way it is possible to send mixed CAN frame formats without affecting the selective wake functionality by error counter increment and a misleading wake-up. The CAN FD data phase baud rate must be configured in the SPI field BR_RATIO of the register SWK_CTRL_2 to enable detection of CAN FD frames. Data Sheet 44 Rev. 1.04 2021-08-04 TLE9255W CAN Partial Networking 7.6 Selective wake SPI flags 7.6.1 SysErr Flag The SysErr flag in the register SWK_STAT indicates an error condition in the selective wake unit of the TLE9255W. Only if the SPI bit SWK_EN = 1, then the SysErr flag is set . The SysErr flag does not prevent entering the Sleep Mode by an SPI command. However, the SysErr flag determines, whether the TLE9255W enters the Selective Wake Sub-Mode (SysErr = 0) or Sleep WUP Mode (SysErr = 1). Figure 41 shows this scenario. Change into the Sleep Mode by a SPI command Check SYSERR 0 Enter Selective Wake Sub-Mode 1 Figure 41 Enter Sleep WUP Sub-Mode WUF detected WUF Flag will be set WUP detected WUP Flag will be set Tranceiver perfom the following actions: - CFG_VAL will be cleared - Switch to the Stand by Mode - Inhibit will be switch on if configured. Impact of SysErr flag if a mode change SPI command to Sleep Mode has been sent The SysErr flag is set under any of the following conditions: • Selective wake configuration error is detected (see Chapter 7.4). • The frame error counter value is greater than 31. Only if no configuration error (CFG_VAL = 1) exists AND if the error counter is less than 32, then the TLE9255W resets the SysErr flag. 7.6.2 SYNC Flag The SYNC flag in the register SWK_STAT indicates that a classical CAN frame is detected correctly by the selective wake unit. The SYNC flag works, if all of the following conditions are fulfilled: • Selective Wake is enabled (SWK_EN Bit = 1) • After Power on Reset the configuration is confirmed (CFG_VAL Bit = 1) at least once. Data Sheet 45 Rev. 1.04 2021-08-04 TLE9255W CAN Partial Networking If the selective wake unit detects an invalid classical CAN frame, then the SYNC flag is reset. The SYNC flag has no influence on the transition to the Sleep Mode by an SPI command. After power up SYNC = 0. The SYNC flag is not valid in the Selective Sleep Sub-Mode. 7.6.3 CANTO Flag The CANTO flag in the register SWK_STAT indicates that the TLE9255W has entered Selective Sleep Mode (no bus communication) at least once. Only if the SPI bit SWK_EN = 1, then the CANTO flag can be set. If the TLE9255W is in the Selective Sleep Mode AND if the tSilence timer expires, then the CANTO flag is set . Only an SPI command can reset the CANTO flag . 7.6.4 CANSIL Flag The CANSIL flag in the register SWK_STAT indicates that there is no communication on the CAN bus (tSilence timer has expired). Figure 15 defines the restart conditions for the tSilence timer. 7.6.5 SWK_ACTIVE Flag The SWK_ACTIVE flag in the register SWK_STAT indicates that the TLE9255W is in Selective Wake Sub-Mode. If the TLE9255W enters the Selective Wake Sub-Mode, then the SWK_ACTIVE flag is set. If the TLE9255W exits Sleep Mode, then it resets the SWK_ACTIVE flag. 7.6.6 CFG_VAL Flag The microcontroller sets the CFG_VAL flag in the register SWK_CTRL_1 to confirm the selective wake configuration. This confirmation must be performed each time before a mode change to Sleep Mode by an SPI command (Selective Wake Sub-Mode) is sent. The TLE9255W resets the CFG_VAL bit under any of the following conditions: • If a mode change from Selective Wake Sub-Mode to Stand-by Mode is performed. • If a mode change from Selective Sleep Sub-Mode to Stand-by Mode is performed. • If a selective wake configuration error is detected (Chapter 7.4). Data Sheet 46 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface 8 Serial Peripheral Interface The communication between the microcontroller and the transceiver is implemented via Serial Peripheral Interface (SPI). This communication is configured as a full duplex multi slave data transfer. A valid SPI command consists of 16 bits. Only if VIO > VIO_UV AND if VBAT OR VCC is within the functional range, then SPI communication between the microcontroller and the transceiver can be established. The SPI uses four interface signals for synchronization and data transfer: • CSN: SPI chip select (active low) • SCLK: SPI clock • MOSI: SPI data input • MISO: SPI data output Figure 42 shows the SPI data transfer. CSN high to low: MISO is enabled (low impedance). Status information transferred to output shift register Min. CSN high-time to be ensured CSN time CSN low to high: data from shift register is transferred to output functions SCLK Data will be shifted in MOSI Bit sampling will be performed 15 14 13 12 11 10 9 time Actual data 8 7 6 New data 5 4 3 2 1 0 15 14 time Data will be shifted out MISO Figure 42 Bit sampling will be performed Err 15 14 13 12 11 10 9 New status Actual status 8 7 6 5 4 3 2 1 0 Err 15 14 SPI Data Transfer The SPI command transmission cycle begins when the transceiver is selected by the CSN pin (active low). When the signal of the CSN input pin returns from “low” to “high”, the TLE9255W decodes the data that was shifted in on the MOSI. The data of MOSI and MISO is shifted in and out (MSB comes first) on every rising edge of SCLK. The bit sampling is performed on every falling edge of SCLK. If the CSN input pin is “high”, then the MISO pin has a high impedance. The SPI of the transceiver does not support TLE9255W daisy chaining. The MISO pin signals invalid SPI commands (Chapter 8.5) or SPI failures (Chapter 8.4). If an invalid SPI Data Sheet 47 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface command OR an SPI failure occurs, then the MISO pin is “high” after the CSN pin is “low” and before a clock starts. Chapter 8.4 defines the conditions for an SPI Error. 8.1 SPI command format An SPI command consists of: • MOSI request format • MISO response format Figure 43 shows the SPI command format. MSB LSB 15 14 13 12 11 10 MOSI R/W MISO Figure 43 9 8 7 6 5 4 3 Address Bits Data Bits Status Information Field Data Bits 2 1 0 Command Format of the MOSI and MISO register MOSI Format Frame The MOSI format frame consists of address bits (Bits 14-8) and data bits (Bits 7-0). The R/W bit (Bit15) defines a write operation (R/W = 1) or a read (R/W = 0) operation to the addressed register. For read operations the data bits are not relevant. MISO Format Frame The MISO format frame consists of the status information field (Bits 15-8) and the data bits (Bits 7-0). The data bits contain the data of the addressed register. The status information field contains compressed information about the Status Register (Chapter 8.3). Data Sheet 48 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface 8.2 Control and Status Register There are two types of registers: • Control registers: Control the behavior of the TLE9255W, for example mode change and selective wake configuration. • Status registers: Status registers represent the status of the TLE9255W, for example wake events and failures. The TLE9255W controls the bits of the status register. However, the microcontroller must reset some of these bits. Writing “1” clears the register (w1c). In case of reading the register the address bits for the register must be set, the R/W bit must be set to 0 and the data bits are not relevant. Writing a “1” to the specific bits in the status register resets the status bits in the status register. Figure 44 shows this scenario. Address Bits R/W Data Bits Status Register - 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 SPI Command 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 Status Register after SPI Command - 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 Figure 44 Data Sheet Read and clear command 49 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface 8.3 Status Information Field The Status Information Field informs the microcontroller that status register bits have changed. The Status Information Field is returned during each SPI write or read command in the MISO format frame. Each bit of the Status Information Field represents an OR operation of some bits of a specific status register. If an SPI access occurs while the status register is being updated due to an event, the content of the Status Information Field may not reflect the latest state of the status registers. Table 4 defines the content of the Status Information Field. Table 4 Status Information Field Name Bit Position Reflected Bits Reserved 0 - TRANS_UV_STAT (Transceiver undervoltage status) 1 VBAT_UV OR VCC_LTUV OR VCC_STUV OR VIO_LTUV OR VIO_STUV TEMP_STAT (Temperature status) 2 TSD OR Reserved WAKE_STAT (Wake-up status) 3 LWU OR WUP OR WUF TXD_TO (TxD timeout) 4 TXD_TO CANSIL (CAN Silence) 5 CANSIL POR (Power on Reset) 6 POR ERR_STAT (Error status) 7 CMD_ERR or COM_ERR The ERR_STAT is flagged on the MISO pin. 8.4 SPI Failure The SPI bit COM_ERR signals an SPI failure. Any of the following conditions define the SPI failure: • Register address does not exist • Number of received SPI clocks is neither 0 nor 16 On SPI failure SPI commands are ignored. 8.5 Invalid SPI Command Any attempt to write undefined bit combinations to one of the following SPI registers is an invalid SPI command. • Mode of the register MODE_CTRL • TXD_TO of the register TXD_TO_CTRL • BR_RATIO of the register SWK_CTRL_2 • BR of the register SWK_CTRL_2 • VIO_UV_T of the register SUPPLY_CTRL • VCC_UV_T of the register SUPPLY_CTRL An invalid SPI command is ignored and the CMD_ERR bit is set and signalled on the MISO pin. Only the microcontroller can reset the CMD_ERR bit. Data Sheet 50 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface 8.6 CSN Timeout The CSN timeout (tCSN_TO) prevents the SPI communication from disturbance. After the CSN pin of the TLE9255W is set to “low” (start of the SPI communication and tCSN_TO) the communication must be finished and the CSN pin must be set to “high” within tCSN_TO. If the tCSN_TO timeout occurs, then the TLE9255W sets the MISO pin to high impedance. If the CSN pin is set to “high”, then the tCSN_TO is reset. Figure 45 shows this scenario. tCSN_TO starts tCSN_TO occures tCSN_TO starts CSN time SCLK time MISO High impedance 15 14 13 15 14 13 time Figure 45 CSN Timeout 8.7 SPI Register The following figure gives an overview of the SPI register. Data Sheet 51 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface 4 Data Bit 15…8 D4 3 2 1 0 D3 D2 D1 D0 15 Access Mode 14…8 Address A14…A8 VBAT_CON TXD_TO_0 VCC_UV_T_0 read/write read/write read/write read/write 0000001 0000010 0000011 0000100 7 6 5 D7 D6 D5 MODE_CTRL HW_CTRL TXD_TO_CTRL SUPPLY_CTRL reserved STTS_EN reserved VIO_UV_T_3 reserved LWU_NEG reserved VIO_UV_T_2 reserved LWU_POS reserved VIO_UV_T_1 SWK_CTRL_1 SWK_CTRL_2 SWK_ID3_CTRL SWK_ID2_CTRL SWK_ID1_CTRL SWK_ID0_CTRL SWK_MASK_ID3_CTRL SWK_MASK_ID2_CTRL SWK_MASK_ID1_CTRL SWK_MASK_ID0_CTRL SWK_DLC_CTRL SWK_DATA7_CTRL SWK_DATA6_CTRL SWK_DATA5_CTRL SWK_DATA4_CTRL SWK_DATA3_CTRL SWK_DATA2_CTRL SWK_DATA1_CTRL SWK_DATA0_CTRL reserved SWK_EN reserved IDE23/ID5 IDE15 IDE7 reserved MASK_ID23 MASK_ID15 MASK_ID7 reserved DATA7_7 DATA6_7 DATA5_7 DATA4_7 DATA3_7 DATA2_7 DATA1_7 DATA0_7 reserved reserved reserved IDE22/ID4 IDE14 IDE6 reserved MASK_ID22 MASK_ID14 MASK_ID6 reserved DATA7_6 DATA6_6 DATA5_6 DATA4_6 DATA3_6 DATA2_6 DATA1_6 DATA0_6 reserved BR_RATIO_1 IDE IDE21/ID3 IDE13 IDE5 reserved MASK_ID21 MASK_ID13 MASK_ID5 reserved DATA7_5 DATA6_5 DATA5_5 DATA4_5 DATA3_5 DATA2_5 DATA1_5 DATA0_5 TRANS_STAT TRANS_UV_STAT ERR_STAT POR VBAT_UV reserved reserved reserved reserved reserved VCC_LTUV reserved WAKE_STAT reserved reserved SWK_STAT reserved reserved reserved reserved LWU_DIR LWU SELECTIVE WAKE STATUS REGISTERS reserved SYSERR SYNC CANTO SWK_ECNT_STAT reserved reserved Register Short Name CONTROL REGISTERS reserved reserved reserved VIO_UV_T_0 reserved reserved VCC_UV_T_3 Mode reserved WAKE_TOG TXD_TO_2 TXD_TO_1 VCC_UV_T_2 VCC_UV_T_1 Status Registers Control Registers SELECTIVE WAKE REGISTERS Figure 46 Data Sheet reserved BR_RATIO_0 IDE28/ID10 IDE20/ID2 IDE12 IDE4 MASK_ID28 MASK_ID20 MASK_ID12 MASK_ID4 reserved DATA7_4 DATA6_4 DATA5_4 DATA4_4 DATA3_4 DATA2_4 DATA1_4 DATA0_4 reserved reserved IDE27/ID9 IDE19/ID1 IDE11 IDE3 MASK_ID27 MASK_ID19 MASK_ID11 MASK_ID3 DLC_3 DATA7_3 DATA6_3 DATA5_3 DATA4_3 DATA3_3 DATA2_3 DATA1_3 DATA0_3 reserved BR_2 IDE26/ID8 IDE18/ID0 IDE10 IDE2 MASK_ID26 MASK_ID18 MASK_ID10 MASK_ID2 DLC_2 DATA7_2 DATA6_2 DATA5_2 DATA4_2 DATA3_2 DATA2_2 DATA1_2 DATA0_2 reserved BR_1 IDE25/ID7 IDE17 IDE9 IDE1 MASK_ID25 MASK_ID17 MASK_ID9 MASK_ID1 DLC_1 DATA7_1 DATA6_1 DATA5_1 DATA4_1 DATA3_1 DATA2_1 DATA1_1 DATA0_1 CFG_VAL BR_0 IDE24/ID6 IDE16 IDE8 IDE0 MASK_ID24 MASK_ID16 MASK_ID8 MASK_ID0 DLC_0 DATA7_0 DATA6_0 DATA5_0 DATA4_0 DATA3_0 DATA2_0 DATA1_0 DATA0_0 read/write read/write read/write read/write read/write read/write read/write read/write read/write read/write read/write read/write read/write read/write read/write read/write read/write read/write read/write 0000101 0000110 0000111 0001000 0001001 0001010 0001011 0001100 0001101 0001110 0001111 0010000 0010001 0010010 0010011 0010100 0010101 0010110 0010111 TXD_TO reserved reserved TSD VIO_LTUV COM_ERR reserved VIO_STUV CMD_ERR read/clear read/clear read/clear 0011000 0011001 0011010 WUP WUF read/clear 0011011 CANSIL SWK_ACTIVE read 0011100 ECNT_1 ECNT_0 read 0011101 STATUS REGISTERS ECNT_5 reserved VCC_STUV reserved ECNT_4 reserved reserved reserved ECNT_3 ECNT_2 Register overview 52 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface 8.7.1 Mode Control Register MODE_CTRL Mode Control (01H) 7 6 5 4 Reset Value:0002H 3 2 1 Reserved Mode rw rw Field Bits Type Description Reserved 7:4 rw Reserved Mode 3:0 rw Mode1)2) 0001B, Sleep Mode 0010B, Standby Mode 0100B, Receive Only Mode 1000B, Normal Operation Mode 0 1) Internal state transitions have higher priority than mode change SPI commands 2) The Mode bits are a reflection of the state of the transceiver which includes internal state transitions HW_CTRL Hardware Control (02H) 7 6 5 4 STTS_EN LWU_NEG LWU_POS rw rw rw Reset Value:00E1H 3 2 1 0 Reserved WAKE_TOG VBAT_CON rw rw rw Field Bits Type Description STTS_EN 7 rw State transition to Sleep WUP Sub-Mode if a VCC < VCC_UV AND t > tVCC_UV_T AND tSilence has expired 0B , State transition will not be performed 1B , State transition will be performed LWU_NEG 6 rw Local wake-up direction 0B , Local wake-up will not be performed on the negative edge 1B , Local wake-up will be performed on the negative edge LWU_POS 5 rw Local wake-up direction 0B , Local wake-up will not be performed on the positive edge 1B , Local wake-up will be performed on the positive edge Reserved 4:2 rw Reserved WAKE_TOG 1 rw Toggle RxD Pin if a wake-up event is detected 0B , The RxD Pin will be constant “low” 1B , The RxD Pin will toggle between “low” and “high” Data Sheet 53 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface Field Bits Type Description VBAT_CON 0 rw Transceiver is connected with the battery 0B , INH pin will not be switched off by entering the sleep mode, VBAT_UV is disabled LWU is disabled 1B , INH pin will be switched off by entering the sleep mode VBAT_UV is enabled LWU is enabled Data Sheet 54 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface TXD_TO_CTRL TXD Timeout Control 7 (03H) 6 5 4 Reset Value:0001H 3 0 TXD_TO rw rw Bits Type Description Reserved 7:3 rw Reserved TXD_TO 2:0 rw TXD Timeout (min - max) 001B , 1 - 4 ms 010B , 2 - 8 ms 011B , 5 - 10 ms 100B , disabled SUPPLY_CTRL Supply Control (04H) 6 5 4 Reset Value:00CCH 3 2 1 VIO_UV_T VCC_UV_T rw rw Field Bits Type Description VIO_UV_T 7:4 rw VIO Undervoltage Detection Timer1) 0001B, 100 ms 0010B, 200 ms 0011B, 300 ms 0100B, 400 ms 0101B, 500 ms 0110B, 600 ms 0111B, 700 ms 1000B, 800 ms 1001B, 900 ms 1010B, 1000 ms 1011B, 1100 ms 1100B, 1200 ms 1101B, 1300 ms 1110B, 1400 ms 1111B, 1500 ms Data Sheet 1 Reserved Field 7 2 55 0 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface Field Bits Type Description VCC_UV_T 3:0 rw VCC Undervoltage Detection Timer1) 0001B, 100 ms 0010B, 200 ms 0011B, 300 ms 0100B, 400 ms 0101B, 500 ms 0110B, 600 ms 0111B, 700 ms 1000B, 800 ms 1001B, 900 ms 1010B, 1000 ms 1011B, 1100 ms 1100B, 1200 ms 1101B, 1300 ms 1110B, 1400 ms 1111B, 1500 ms 1) The derivation of the value can be +/- 40% Data Sheet 56 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface 8.7.2 Selective Wake Control Register SWK_CTRL_1 Selective Wake Control 7 (05H) 6 5 4 Reset Value:0000H 3 2 0 Reserved CFG_VAL rw rw Field Bits Type Description Reserved 7:1 rw Reserved CFG_VAL 0 rw Selective Wake Configuration valid 0B , Invalid 1B , Valid Data Sheet 1 57 Rev. 1.04 2021-08-04 TLE9255W Serial Peripheral Interface SWK_CTRL_2 Baudrate Control (06H) 5 4 Reset Value:0004H 7 6 3 2 1 SWK_EN Reserved BR_RATIO Reserved BR rw rw rw rw rw Field Bits Type Description SWK_EN 7 rw Selective Wake Unit 0B , Disabled 1B , Enabled Reserved 6 rw Reserved BR_RATIO 5:4 rw Baudrate ratio from arbitration phase to CAN FD data phase 00B , Ratio
TLE9255WLCXUMA1 价格&库存

很抱歉,暂时无法提供与“TLE9255WLCXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLE9255WLCXUMA1
    •  国内价格
    • 1+20.45412
    • 10+17.66956
    • 30+16.01284
    • 100+14.33700
    • 500+13.56599
    • 1000+13.22190

    库存:10

    TLE9255WLCXUMA1
      •  国内价格 香港价格
      • 5000+12.688355000+1.53776

      库存:0