0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FDMS8690

FDMS8690

  • 厂商:

    FAIRCHILD(仙童半导体)

  • 封装:

  • 描述:

    FDMS8690 - N-Channel Power Trench® MOSFET 30V, 27A, 9.0mΩ - Fairchild Semiconductor

  • 数据手册
  • 价格&库存
FDMS8690 数据手册
FDMS8690 N-Channel Power Trench® MOSFET February 2007 FDMS8690 N-Channel Power Trench® MOSFET 30V, 27A, 9.0mΩ Features General Description Max rDS(on) = 9.0mΩ at VGS = 10V, ID = 14.0A Max rDS(on) = 12.5mΩ at VGS = 4.5V, ID = 11.5A High performance trench technology for extremely low rDS(on) and gate charge Minimal Qgd (2.9nC typical) RoHS Compliant tm This device has been designed specifically to improve the efficiency of DC/DC converters. Using new techniques in MOSFET construction, the various components of gate charge and capacitance have been optimized to reduce switching losses. Low gate resistance and very low Miller charge enable excellent performance with both adaptive and fixed dead time gate drive circuits. Very low rDS(on) has been maintained to provide an extremely versatile device. Application High Efficiency DC-DC converters. Notebook CPU power supply Multi purpose Point of Load Pin 1 S S S G D D D D D D D D Power 56 (Bottom view) 5 6 7 8 4G 3S 2S 1S MOSFET Maximum Ratings TA = 25°C unless otherwise noted Symbol VDS VGS Parameter Drain to Source Voltage Gate to Source Voltage Drain Current ID -Continuous (Package limited) -Continuous (Silicon limited) -Continuous -Pulsed PD TJ, TSTG Power Dissipation Power Dissipation TC = 25°C TA = 25°C (Note 1a) TC = 25°C TC = 25°C TA = 25°C (Note 1a) Ratings 30 ±20 27 52 14 100 37.8 2.5 -55 to +150 W °C A Units V V Operating and Storage Junction Temperature Range Thermal Characteristics RθJC RθJA Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient (Note 1a) 3.3 50 °C/W Package Marking and Ordering Information Device Marking FDMS8690 Device FDMS8690 Package Power 56 Reel Size 13’’ Tape Width 12mm Quantity 3000 units ©2007 Fairchild Semiconductor Corporation FDMS8690 Rev.C2 1 www.fairchildsemi.com FDMS8690 N-Channel Power Trench® MOSFET Electrical Characteristics TJ = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Units Off Characteristics BVDSS ∆BVDSS ∆TJ IDSS IGSS Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current ID = 250µA, VGS = 0V ID = 250µA, referenced to 25°C VDS = 24V , VGS = 0V VGS = ±20V, VDS = 0V 30 34 1 ±100 V mV/°C µA nA On Characteristics VGS(th) ∆VGS(th) ∆TJ rDS(on) Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Drain to Source On Resistance VGS = VDS, ID = 250µA ID = 250µA, referenced to 25°C VGS = 10V, ID = 14.0A VGS = 4.5V, ID = 11.5A VGS = 10V, ID = 14.0A, TJ = 125°C 1 1.6 -4.5 7.4 9.9 10.6 9.0 12.5 13.3 mΩ 3 V mV/°C Dynamic Characteristics Ciss Coss Crss Rg Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance VDS = 15V, VGS = 0V, f = 1MHz f = 1MHz 1260 535 80 1.1 1680 715 120 5.0 pF pF pF Ω Switching Characteristics td(on) tr td(off) tf Qg(TOT) Qg(5) Qgs Qgd Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge at 10V Total Gate Charge at 5V Gate to Source Gate Charge Gate to Drain “Miller” Charge VGS = 0V to 10V VGS = 0V to 5V VDD = 15V ID = 14.0A VDD = 15V, ID = 1.0A VGS = 10V, RGEN = 6Ω 8 1.8 26 19 18.8 10 3.5 2.9 16 10 42 35 27 14 ns ns ns ns nC nC nC nC Drain-Source Diode Characteristics VSD trr Qrr Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge VGS = 0V, IS = 2.1A (Note 2) 0.7 1.2 45 33 V ns nC IF = 14.0 A, di/dt = 100A/µs Notes: 1: RθJA is determined with the device mounted on a 1in2 pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. RθJC is guaranteed by design while RθCA is determined by the user's board design. a. 50°C/W when mounted on a 1 in2 pad of 2 oz copper b. 125°C/W when mounted on a minimum pad of 2 oz copper 2: Pulse Test: Pulse Width < 300µs, Duty cycle < 2.0%. FDMS8690 Rev.C2 2 www.fairchildsemi.com FDMS8690 N-Channel Power Trench® MOSFET Typical Characteristics TJ = 25°C unless otherwise noted VGS = 10V NORMALIZED DRAIN TO SOURCE ON-RESISTANCE 100 80 60 40 20 0 0.0 VGS = 3.5V PULSE DURATION = 80µs DUTY CYCLE = 0.5%MAX VGS = 4.5V VGS = 3V 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0 20 40 60 ID, DRAIN CURRENT(A) 80 100 VGS = 10V VGS = 4.5V VGS = 3.5V VGS = 3V PULSE DURATION = 80µs DUTY CYCLE = 0.5%MAX ID, DRAIN CURRENT (A) 0.5 1.0 1.5 2.0 2.5 VDS, DRAIN TO SOURCE VOLTAGE (V) 3.0 Figure 1. On-Region Characteristics Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage 20 rDS(on), DRAIN TO SOURCE ON-RESISTANCE (mΩ) PULSE DURATION = 80µs DUTY CYCLE = 0.5%MAX NORMALIZED DRAIN TO SOURCE ON-RESISTANCE 1.6 PULSE DURATION = 80µS DUTY CYCLE = 0.5% MAX 1.4 1.2 1.0 0.8 0.6 -75 ID = 14A VGS = 10V ID = 14A 16 TJ = 150oC 12 8 TJ = 25oC -50 -25 0 25 50 75 100 125 150 o TJ, JUNCTION TEMPERATURE ( C) 4 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10 Figure 3. Normalized On- Resistance vs Junction Temperature 100 PULSE DURATION = 80µs DUTY CYCLE = 0.5%MAX Figure 4. On-Resistance vs Gate to Source Voltage 200 100 VGS = 0V ID, DRAIN CURRENT (A) 80 60 40 20 0 1.0 IS, REVERSE DRAIN CURRENT (A) 10 TJ = 150oC 1 TJ = 25oC TJ = 150oC TJ = 25oC TJ =-55oC 0.1 TJ = -55oC 1.5 2.0 2.5 3.0 3.5 4.0 0.01 0.2 VGS, GATE TO SOURCE VOLTAGE (V) 0.4 0.6 0.8 1.0 1.2 VSD, BODY DIODE FORWARD VOLTAGE (V) Figure 5. Transfer Characteristics Figure 6. Source to Drain Diode Forward Voltage vs Source Current FDMS8690 Rev.C2 3 www.fairchildsemi.com FDMS8690 N-Channel Power Trench® MOSFET Typical Characteristics TJ = 25°C unless otherwise noted VGS,GATE-SOURCE VOLTAGE(V) 10 ID= 14A 4000 CISS VDD= 10V VDD= 15V 8 6 4 2 0 0 5 CAPACITANCE (pF) 1000 COSS VDD= 20V 100 CRSS f = 1MHz VGS = 0V 10 15 Qg,GATE CHARGE (nC) 20 10 0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 30 Figure 7. Gate Charge Characteristics Figure 8. Capacitance vs Drain to Source Voltage 15 12 VGS = 10V 50 IAS, AVALANCHE CURRENT(A) TJ = 25oC 10 TJ = 100oC ID, DRAIN CURRENT (A) 9 6 VGS = 4.5V TJ = 125oC 3 RθJA = 50 C/W o 1 1E-3 0.01 0.1 1 10 100 300 0 25 tAV, TIME IN AVALANCHE(ms) 50 75 100 125 TA, AMBIENT TEMPERATURE (oC) 150 Figure 9. Unclamped Inductive Switching Capability 200 100 ID, DRAIN CURRENT (A) 100us Figure 10. Maximum Continuous Drain Current vs Ambient Temperature 2000 1000 P(PK), PEAK TRANSIENT POWER (W) VGS = 10V FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 10 1ms 100 I = I25 150 – T A ---------------------125 TA = 25oC 1 10ms 100ms 1s DC 10 0.1 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(on) SINGLE PULSE TJ = MAX RATED TA = 25oC 0.01 0.1 1 10 100 SINGLE PULSE 1 0.5 -4 -3 -2 10 10 10 10 -1 10 0 10 1 10 2 10 3 VDS, DRAIN-SOURCE VOLTAGE (V) t, PULSE WIDTH (s) Figure 11. Forward Bias Safe Operating Area Figure 12. Single Pulse Maximum Power Dissipation FDMS8690 Rev.C2 4 www.fairchildsemi.com FDMS8690 N-Channel Power Trench® MOSFET Typical Characteristics TJ = 25°C unless otherwise noted 2 1 DUTY CYCLE - DESCENDING ORDER D = 0.5 0.2 0.1 0.05 0.02 0.01 NORMALIZED THERMAL IMPEDANCE ZθJA 0.1 PDM 0.01 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 1E-3 5E-4 -4 10 10 -3 10 -2 10 10 t, RECTANGULAR PULSE DURATION (s) -1 0 10 1 10 2 10 3 Figure 13. Transient Thermal Response Curve FDMS8690 Rev.C2 5 www.fairchildsemi.com FDMS8690 N-Channel Power Trench® MOSFET FDMS8690 Rev.C2 6 www.fairchildsemi.com TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx Across the board. Around the world.™ ActiveArray™ Bottomless™ Build it Now™ CoolFET™ CROSSVOLT™ CTL™ Current Transfer Logic™ DOME™ 2 E CMOS™ ® EcoSPARK EnSigna™ FACT Quiet Series™ ® FACT ® FAST FASTr™ FPS™ ® FRFET GlobalOptoisolator™ GTO™ ® HiSeC™ i-Lo™ ImpliedDisconnect™ IntelliMAX™ ISOPLANAR™ MICROCOUPLER™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ ® OPTOLOGIC ® OPTOPLANAR PACMAN™ POP™ ® Power220 ® Power247 PowerEdge™ PowerSaver™ PowerTrench Programmable Active Droop™ ® QFET QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ ScalarPump™ SMART START™ ® SPM SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 TCM™ ® The Power Franchise ™ ® TinyLogic TINYOPTO™ TinyPower™ TinyWire™ TruTranslation™ μSerDes™ ® UHC UniFET™ VCX™ Wire™ ® TinyBoost™ TinyBuck™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Preliminary Product Status Formative or In Design First Production Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only. Rev. I23 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. No Identification Needed Full Production Obsolete Not In Production © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
FDMS8690 价格&库存

很抱歉,暂时无法提供与“FDMS8690”相匹配的价格&库存,您可以联系我们找货

免费人工找货