0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MB89675AR

MB89675AR

  • 厂商:

    FUJITSU(富士通)

  • 封装:

  • 描述:

    MB89675AR - 8-bit Proprietary Microcontroller - Fujitsu Component Limited.

  • 数据手册
  • 价格&库存
MB89675AR 数据手册
FUJITSU SEMICONDUCTOR DATA SHEET DS07-12537-1E 8-bit Proprietary Microcontroller CMOS F2MC-8L MB89670R/670AR Series MB89673R/673AR/675R/675AR MB89677AR/P677A/PV670A s OUTLINE The MB89670R/670AR series has been developed as a line of proprietary 8-bit, single-chip microcontrollers. In addition to the F2MC*-8L family CPU core which can operate at low voltage but at high speed, the microcontrollers contain pheripheral functions such as timers, a serial interface, a 10-bit A/D converter, a UART, an 8/16-bit up/down counter/timer, and an external interrupt. The MB89670R/670AR series is applicable to a wide range of applications from consumer appliances to industrial equipment, including portable devices. *: F2MC stands for FUJITSU Flexible Microcontroller. s FEATURES • F2MC-8L family CPU core Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions Bit manipulation instructions, etc. Instruction set optimized for controllers • High-speed processing at low voltage • Minimum execution time: 0.4 µs@3.5 V, 0.8 µs@2.7 V, 2.0 µs@2.2 V • I/O ports: max. 69 channels (Continued) s PACKAGE 80-pin Plastic QFP 80-pin Plastic LQFP 80-pin Ceramic MQFP (FPT-80P-M06) (FPT-80P-M06) (FPT-80P-M11) (FPT-80P-M11) (MQP-80C-P01) (MQP-80C-P01) MB89670R/670AR Series (Continued) • Timers: 9 channels (MB89675AR/677AR/P677A/PV670A: 12 channels) 8-bit PWM timer: 3 channels (MB89675AR/677AR/P677A/PV670A: 6 channels) (also usable as a reload timer or 8-bit PWM timer) 16-bit timer/counter 21-bit timebase timer 8/16-bit timer (8 bits × 2 channels or 16 bits) 8/16-bit up/down counter/timer (8 bits × 2 channels or 16 bits) • 2-channel serial interfaces 8-bit synchronized serial: 1 channel (Switchable transfer direction allows communication with various equipment.) UART: 1 channel (internal full-duplex double buffer) • External interrupts: 8 channels Eight channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function). • Buzzer output • 10-bit A/D converter Input: 8 channels • Low-power consumption modes Stop mode (Oscillation stops to minimize the current consumption.) Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.) • Bus interface function Including hold and ready functions 2 MB89670R/670AR Series s PRODUCT LINEUP Part number MB89673R*1 MB89673AR MB89675R*1 MB89675AR MB89677AR MB89P677A MB89PV670A Item Classification Mass-produced products (mask ROM products) 8 K × 8 bits (internal mask ROM) 384 × 8 bits 16 K × 8 bits (internal mask ROM) 512 × 8 bits One-time PROM product (for development) Piggyback/ evaluation product (for development) ROM size 32 K × 8 bits (internal mask ROM) 1 K × 8 bits 48 K × 8 bits (external ROM) RAM size CPU functions The number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time: Output ports (N-channel open-drain): Output ports (CMOS): I/O ports (N-channel open-drain): I/O ports (CMOS): Input ports: Total: 136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.4 µs@10 MHz to 6.4 µs@10 MHz 3.6 µs@10 MHz to 57.6 µs@10 MHz 14 (12 also serve as peripherals.) 8 (All also serve as peripherals.) 7 (All also serve as peripherals.) 32 (All also serve as peripherals.) 8 (All also serve as peripherals.) 69 Set with EPROM programmer Setting not possible Ports Option Specify when ordering masking Timebase timer 8/16-bit up/down counter/timer 16-bit timer/counter 8/16-bit timer/counter 8-bit PWM timer 1, 2 21 bits (0.81 ms, 3.27 ms, 26.21 ms, 419 ms@10 MHz) 8 bits × 2 channels or 16 bits × 1 channel Timer operation Up/down counter operation Phase difference counting (double mode, quadruple mode) 16-bit timer operation 16-bit event counter operation (edge selectable) 8 bits × 2 channels or 16 bits × 1 channel Reload timer operation (toggled output capable) Event counter operation 8 bits × 2 channels reload timer operation (toggled output capable) 8 bits × 2 channels PWM operation (four frequencies fixed) 8 bits × 1 channel PPG operation (variable frequency) Capable of output switching between 2 channels in any mode 8-bit reload timer operation (toggled output capable) 8-bit PWM operation (four frequencies fixed) Capable of output switching between 2 channels in any mode 8 bits LSB first/MSB first selectable One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks) 8-bit PWM timer 3, 4, 5, 6 8-bit serial I/O (Continued) 3 MB89670R/670AR Series (Continued) Part number MB89673R*1 MB89673AR MB89675R*1 MB89675AR MB89677AR MB89P677A MB89PV670A Item UART Variable data length (7 or 8 bits) On-chip baud rate generator Error detection function On-chip full-duplex double buffer NRZ transfer format CLK synchrnous/asynchronous data transfer capable 10 bits × 8 channels 8 channels (Rising edge/falling edge) 2.2 V to 6.0 V — 2.7 V to 6.0 V MBM27C512 -20TV 10-bit A/D converter External interrupt Power supply voltage*2 EPROM for use *1: 8-bit PWM timer 4, 5, and 6 are not provided for the MB89673R/MB89675R. *2: The minimum operating voltage varies with the operating frequency, the function, and the connected ICE. s PACKAGE AND CORRESPONDING PRODUCTS Package FPT-80P-M06 FPT-80P-M11 MQP-80C-P01 : Available × × × MB89673R MB89675R MB89673AR MB89675AR MB89677AR MB89P677A MB89PV670A × ×* × : Not available * : Lead pitch converter sockets (manufacturer: Sun Hayato Co., Ltd.) are available 80QF-80QF2-8L-UP + (MQP-80C-P01 or FPT-80P-M06) → for conversion to FPT-80P-M11 80QF-80QF2-8L-DWN Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403 FAX: (81)-3-5396-9106 Note: For more information about each package, see section “s Package Dimensions.” 4 MB89670R/670AR Series s DIFFERENCES AMONG PRODUCTS 1. Memory Size Before evaluating using the piggyback product, make sure of its differences from the product that will actually be used. Take particular care on the following points: • On the MB89P677A, the program area starts from address 8007H, while on the MB89677AR and MB89PV670A starts from 8000H. (On the MB89P677A, the option setting data can be read by reading the addresses “8000H” to “8006H”, while on the MB89677AR and MB89PV670A, addresses 8000H to 8006H could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P677A.) • The stack area, etc., is set at the upper limit of the RAM. • The external area is used. 2. Current Consumption • In the case of the MB89PV670A, add the current consumed by the EPROM which is connected to the top socket. • When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM. However, the current consumption in sleep/stop modes is the same. (For more information, see sections “s Electrical Characteristics” and “s Example Characteristics.”) 3. Mask Options Functions that can be selected as options and how to designate these options vary by the product. Before using options check section “s Mask Options.” Take particular care on the following point: • Options are fixed on the MB89PV670A. 4. Differences between the MB89670/670A and MB89670R/670AR Series • Memory access area Memory access area of both the MB89677A and MB89677AR is the same. The access are of the MB89673 is different from that of the MB89673R and MB89673AR respectively in the external bus mode. See below. Address 0000H to 007FH 0080H to 01FFH 0200H to 027FH 0280H to BFFFH C000H to DFFFH E000H to FFFFH I/O area Memory area MB89673 RAM area External area ROM area MB89673R/673AR I/O area RAM area Access prohibited External area Access prohibited ROM area 5 MB89670R/670AR Series • Electrical specifications/characteristics Electrical specifications/characteristics of the MB89673R/673AR/677AR are the same with that of the MB89670/670A series. • The other specifications Both the MB89673R/673AR/677AR and the MB89670/670A series are the same. s CORRESPONDENCE BETWEEN THE MB89670/670A SERIES AND MB89670R/670AR SERIES • The MB89670R/670AR series is the reduction version of the MB89670/670A series. • The MB89670/670A and MB89670R/670AR sereis consist of the following products: MB89670/ 670A series MB89670R/ 670AR series MB89673 — — — MB89677A MB89P677A MB89PV670A MB89673R MB89673AR MB89675R MB89675AR MB89677AR • Differences between the MB89670A/670AR series and MB89670/670R series 8-bit PWM timer 4, 5, and 6 is not provided for the MB89670/670R series. See the table below for the provided 8-bit PWM timer and the corresponding pin for the MB89670A/670AR series and MB89670/670R series. Function 8-bit PWM timer 1 8-bit PWM timer 2 8-bit PWM timer 3 8-bit PWM timer 4 8-bit PWM timer 5 8-bit PWM timer 6 Pin name for MB89670A/670AR series P40/PWM00 P42/PWM10/BZ2 P30/PWM20 P31/PWM21 P41/PWM01 P43/PWM11 Pin name for MB89670/670R series P40/PWM00, P41/PWM01 P42/PWM10/BZ2, P43/PWM11 P30/PWM20, P31/PWM21 — — — 6 MB89670R/670AR Series s PIN ASSIGNMENT (Top view) P74/SCK P75/SO P76/SI AVSS AVR AVCC P50/AN0 P51/AN1 P52/AN2 P53/AN3 P54/AN4 P55/AN5 P56/AN6 P57/AN7 P60/INT0/ADST P61/INT1 P62/INT2 P63/INT3 P64/INT4 P65/INT5 P73/UI P72/UO P71/UCK P70/BZ1 P83 P82 P81 P80 MOD0 MOD1 X0 X1 VSS RST P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 P66/INT6 P67/INT7 P84 P85 VSS P40/PWM00 P41/PWM01 VCC P42/PWM10/BZ2 P43/PWM11 P44/TCI P45/TCO1 P46/TCO2 P47/EC P30/PWM20 P31/PWM21 P32/UDZ1 P33/UDB1 P34/UDA1 P35/UDZ2 P21/HAK P20/BUFC P17/A15 P16/A14 P15/A13 P14/A12 P13/A11 P12/A10 P11/A09 P10/A08 P07/AD7 P06/AD6 P05/AD5 P04/AD4 P03/AD3 P02/AD2 P01/AD1 P00/AD0 P37/UDA2 P36/UDB2 (FPT-80P-M11) 7 MB89670R/670AR Series (Top view) P76/SI AVSS AVR AVCC P50/AN0 P51/AN1 P52/AN2 P53/AN3 P54/AN4 P55/AN5 P56/AN6 P57/AN7 P60/INT0/ADST P61/INT1 P62/INT2 P63/INT3 P75/SO P74/SCK P73/UI P72/UO P71/UCK P70/BZ1 P83 P82 P81 P80 MOD0 MOD1 X0 X1 VSS RST P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ P21/HAK P20/BUFC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 101 102 103 104 105 106 107 108 109 93 92 91 90 89 88 87 86 85 Each pin inside the dashed line is for the MB89PV670A only. P64/INT4 P65/INT5 P66/INT6 P67/INT7 P84 P85 VSS P40/PWM00 P41/PWM01 VCC P42/PWM10/BZ2 P43/PWM11 P44/TCI P45/TCO1 P46/TCO2 P47/EC P30/PWM20 P31/PWM21 P32/UDZ1 P33/UDB1 P34/UDA1 P35/UDZ2 P36/UDB2 P37/UDA2 • Pin assignment on package top (MB89PV670A only) Pin no. 81 82 83 84 85 86 87 88 Pin name N.C. A15 A12 A7 A6 A5 A4 A3 Pin no. 89 90 91 92 93 94 95 96 Pin name A2 A1 A0 N.C. O1 O2 O3 VSS Pin no. 97 98 99 100 101 102 103 104 Pin name N.C. O4 O5 O6 O7 O8 CE A10 Pin no. 105 106 107 108 109 110 111 112 Pin name OE/VPP N.C. A11 A9 A8 A13 A14 VCC N.C.: Internally connected. Do not use. 8 P17/A15 P16/A14 P15/A13 P14/A12 P13/A11 P12/A10 P11/A09 P10/A08 P07/AD7 P06/AD6 P05/AD5 P04/AD4 P03/AD3 P02/AD2 P01/AD1 P00/AD0 (FPT-80P-M06) (MQP-80C-P01) 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 110 111 112 81 82 83 84 100 99 98 97 96 95 94 MB89670R/670AR Series s PIN DESCRIPTION Pin no. LQFP*1 11 12 9 10 14 QFP*2 MQFP*3 13 14 11 12 16 X0 X1 MOD0 MOD1 RST C B Operating mode selection pins Connect directly to VCC or VSS. Reset I/O pin This pin is of a N-ch open-drain output type with pull-up resistor and a hysteresis input type. “L” is output from this pin by an internal reset source. The internal circuit is initialized by the input of “L”. General-purpose I/O ports When an external bus is used, these ports function as multiplex pins of lower address output and data I/O. General-purpose I/O ports When an external bus is used, these ports function as upper address output pins. General-purpose output port When an external bus is used, this port can also be used as a buffer control output by setting the BCTR. General-purpose output port When an external bus is used, this port can also be used as a hold acknowledge output by setting the BCTR. General-purpose output port When an external bus is used, this port can also be used as a hold request input by setting the BCTR. General-purpose output port When an external bus is used, this port functions as a ready input. General-purpose output port When an external bus is used, this port functions as a clock output. General-purpose output port When an external bus is used, this port functions as a write signal output. General-purpose output port When an external bus is used, this port functions as a read signal output. General-purpose output port When an external bus is used, this port functions as an address latch signal output. Pin name Circuit type A Clock oscillator pins Function 38 to 31 40 to 33 P00/AD0 to P07/AD7 P10/A08 to P17/A15 P20/BUFC D 30 to 23 32 to 25 D 22 24 F 21 23 P21/HAK F 20 22 P22/HRQ D 19 21 P23/RDY D 18 20 P24/CLK F 17 19 P25/WR F 16 18 P26/RD F 15 17 P27/ALE F *1: FPT-80P-M11 *2: FPT-80P-M06 *3: MQP-80C-P01 (Continued) 9 MB89670R/670AR Series Pin no. LQFP*1 46 QFP*2 MQFP*3 48 Pin name P30/PWM20 Circuit type D Function General-purpose I/O port Also serves as the PWM20 output for the 8-bit PWM timer. General-purpose I/O port Also serves as the PWM21 output for the 8-bit PWM timer. General-purpose I/O port Also serves as the Z-phase input for the 8/16-bit up/down counter/timer. General-purpose I/O port Also serves as the B-phase input for the 8/16-bit up/down counter/timer. General-purpose I/O ports Also serves as the A-phase input for the 8/16-bit up/down counter/timer. General-purpose I/O port Also serves as the Z-phase input for the 8/16-bit up/down counter/timer. General-purpose I/O port Also serves as the B-phase input for the 8/16-bit up/down counter/timer. General-purpose I/O port Also serves as the A-phase input for the 8/16-bit up/down counter/timer. General-purpose I/O port Also serves as the PWM00 output for the 8-bit PWM timer. General-purpose I/O port Also serves as the PWM01 output for the 8-bit PWM timer. General-purpose I/O port Also serves as the PWM10 and the BZ2 output for the 8-bit PWM timer. General-purpose I/O port Also serves as the PWM11 output for the 8-bit PWM timer. General-purpose I/O port Also serves as the TCI input for the 8/16-bit timer/counter. General-purpose I/O port Also serves as the TCO1 output for the 8/16-bit timer/counter. General-purpose I/O port Also serves as the TCO2 output for the 8/16-bit timer/counter. 45 47 P31/PWM21 D 44 46 P32/UDZ1 E 43 45 P33/UDB1 E 42 44 P34/UDA1 E 41 43 P35/UDZ2 E 40 42 P36/UDB2 E 39 41 P37/UDA2 E 55 57 P40/PWM00 D 54 56 P41/PWM01 D 52 54 P42/PWM10/ BZ2 P43/PWM11 D 51 53 D 50 52 P44/TCI E 49 51 P45/TCO1 D 48 50 P46/TCO2 D *1: FPT-80P-M11 *2: FPT-80P-M06 *3: MQP-80C-P01 10 (Continued) MB89670R/670AR Series (Continued) Pin no. LQFP*1 47 QFP*2 MQFP*3 49 Pin name P47/EC Circuit type E Function General-purpose I/O port Also serves as the input for the16-bit timer/counter. The EC input is of a hysteresis input type. N-ch open-drain output ports Also serve as the analog inputs for the 10-bit A/D converter. General-purpose input port The software pull-up resistor is provided. Also serves as an external interrupt input (INT0) and an 10-bit A/D converter external start-up. This port is of a hysteresis input type. General-purpose input ports A software pull-up resistor is provided. Also serve as external interrupt inputs (INT1 to INT7). These ports are of a hysteresis input type. N-ch open-drain I/O port Also serves as a buzzer output. N-ch open-drain I/O port Also serves as a UART clock I/O (UCK), switchable to CMOS. N-ch open-drain I/O port Also serves as a UART data output (UO), switchable to CMOS. N-ch open-drain I/O port Also serves as a UART data input (UI). N-ch open-drain I/O port Also serves as the clock I/O (SCK) for the 8-bit serial I/O, switchable to CMOS. N-ch open-drain I/O port Also serves as the data output (SO) for the 8-bit serial I/O, switchable to CMOS. N-ch open-drain I/O port Also serves as the data input (SI) for the 8-bit serial I/O. N-ch open-drain output ports 74 to 67 76 to 69 P50/AN0 to P57/AN7 P60/INT0/ ADST I 66 68 J 65 to 59 67 to 61 P61/INT1 to P67/INT7 J 4 3 6 5 P70/BZ1 P71/UCK G K 2 4 P72/UO K 1 80 3 2 P73/UI P74/SCK G K 79 1 P75/SO K 78 8 to 5, 57, 58 53 13, 56 75 76 77 80 10 to 7, 59, 60 55 15, 58 77 78 79 P76/SI P80 to P83, P85, P84 VCC VSS AVCC AVR AVSS G H — — — — — Power supply pin Power supply (GND) pin A/D converter power supply pin Use this pin at the same voltage as VCC. A/D converter reference voltage input pin A/D converter power supply pin Use this pin at the same voltage as VSS. *1: FPT-80P-M11 *2: FPT-80P-M06 *3: MQP-80C-P01 11 MB89670R/670AR Series • External EPROM pins (MB89PV670A only) Pin no. 82 83 84 85 86 87 88 89 90 91 93 94 95 96 98 99 100 101 102 103 104 105 107 108 109 110 111 112 81 92 97 106 Pin name A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 O1 O2 O3 VSS O4 O5 O6 O7 O8 CE A10 OE/VPP A11 A9 A8 A13 A14 VCC N.C. I/O O Address output pins Function I Data input pins O I Power supply (GND) pin Data input pins O O O O ROM chip enable pin Outputs “H” during standby. Address output pin ROM output enable pin Outputs “L” at all times. Address output pins O O O — Internally connected pins Be sure to leave them open. 12 MB89670R/670AR Series s I/O CIRCUIT TYPE Type A X1 Circuit Remarks • Crystal or ceramic oscillation type • Oscillation feedback resistor of approximately 1 MΩ at 5.0 V X0 Standby control signal B C R P-ch • Output pull-up resistor (P-ch) of approximately 50 kΩ at 5.0 V • Hysteresis input N-ch D R P-ch P-ch • CMOS output • CMOS inout N-ch • Pull-up resistor optional (except P22 and P23) E R P-ch P-ch • CMOS output • CMOS input • The peripheral is of a hysteresis input type. N-ch Peripheral Port • Pull-up resistor optional (Continued) 13 MB89670R/670AR Series (Continued) Type F P-ch Circuit • CMOS output Remarks N-ch G R P-ch • N-ch open-drain output • Hysteresis input P-ch N-ch • Pull-up resistor optional H N-ch • N-ch open-drain output I P-ch • N-ch open-drain output • Analog input N-ch Analog input J R P-ch Pull-up control signal • Hysteresis input • With software pull-up resistor K R P-ch P-ch • CMOS output • Hysteresis input N-ch • Pull-up resistor optional 14 MB89670R/670AR Series s HANDLING DEVICES 1. Preventing Latchup Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum Ratings” in section “s Electrical Characteristics” is applied between VCC and VSS. When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings. Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital power supply (VCC) when the analog system power supply is turned on and off. 2. Treatment of Unused Input Pins Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor. 3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use. 4. Treatment of N.C. Pins Be sure to leave (internally connected) N.C. pins open. 5. Power Supply Voltage Fluctuations Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 Hz to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched. 6. Precautions when Using an External Clock When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode. 15 MB89670R/670AR Series s PROGRAMMING TO THE EPROM ON THE MB89P677A The MB89P677A is an OTPROM version of the MB89670R/670AR series. 1. Features • 32-Kbyte PROM on chip • Options can be set using the EPROM programmer. • Equivalency to the MBM27C256A in the EPROM mode (when programmed with the EPROM programmer) 2. Memory Space Memory space in the EPROM mode is diagrammed below. Address 0000H Single chip EPROM mode (Corresponding addresses on the EPROM programmer) I/O 0080H RAM 0480H External area 8000H Not available 8007H 0000H Option area 0007H PROM 32 KB EPROM 32 KB FFFFH 7FFFH 16 MB89670R/670AR Series 3. Programming to the EPROM In EPROM mode, the MB89P677A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter. • Programming procedure (1) Set the EPROM programmer to the MBM27C256A. (2) Load program data into the EPROM programmer at 0007H to 7FFFH (note that addresses 8007H to FFFFH while operating as a single chip assign to 0007H to 7FFFH in the EPROM mode). Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each corresponding option, see “7. Setting OTPROM Options.”) (3) Program with the EPROM programmer. 4. Recommended Screening Conditions High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program. Program, verify Aging +150°C, 48 Hrs. Data verification Assembly 5. Programming Yield Due to the nature of the blanked OTPROM microcomputer, bit programming test can’t be conducted as Fujitsu’s shipping test. Therefore a programming yield of 100% cannot be assured at all times. 6. EPROM Programmer Socket Adapter Part number Package Compatible socket adapter Sun Hayato Co., Ltd. MB89P677APF QFP-80 ROM-80QF-28DP-8L2 MB89P677PFM QFP-80 ROM-80QF2-28DP-8L Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403 FAX: (81)-3-5396-9106 Note: Depending on the EPROM programmer, inserting a capacitor of about 0.1 µF between VPP and VSS or VCC and VSS can stabilize programming operations. 17 MB89670R/670AR Series 7. Setting OTPROM Options The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map: • OTPROM option bit map Address 0000H Bit 7 Vacancy Readable P17 Pull-up 1: No 0: Yes P37 Pull-up 1: No 0: Yes P47 Pull-up 1: No 0: Yes Vacancy 0004H Readable Vacancy 0005H Readable Vacancy 0006H Readable Bit 6 Vacancy Readable P16 Pull-up 1: No 0: Yes P36 Pull-up 1: No 0: Yes P46 Pull-up 1: No 0: Yes Vacancy Readable Vacancy Readable Vacancy Readable Bit 5 Vacancy Readable P15 Pull-up 1: No 0: Yes P35 Pull-up 1: No 0: Yes P45 Pull-up 1: No 0: Yes Vacancy Readable Vacancy Readable Vacancy Readable Bit 4 Vacancy Readable P14 Pull-up 1: No 0: Yes P34 Pull-up 1: No 0: Yes P44 Pull-up 1: No 0: Yes Vacancy Readable P74 Pull-up 1: No 0: Yes Vacancy Readable Bit 3 Reset pin output 1: Yes 0: No P13 Pull-up 1: No 0: Yes P33 Pull-up 1: No 0: Yes P43 Pull-up 1: No 0: Yes Vacancy Readable P73 Pull-up 1: No 0: Yes P04 to P07 Pull-up 1: No 0: Yes Bit 2 Power-on reset 1: Yes 0: No P12 Pull-up 1: No 0: Yes P32 Pull-up 1: No 0: Yes P42 Pull-up 1: No 0: Yes Vacancy Readable P72 Pull-up 1: No 0: Yes P00 to P03 Pull-up 1: No 0: Yes Bit 1 00: 24/FC 10: 217/FC P11 Pull-up 1: No 0: Yes P31 Pull-up 1: No 0: Yes P41 Pull-up 1: No 0: Yes Vacancy Readable P71 Pull-up 1: No 0: Yes P76 Pull-up 1: No 0: Yes Bit 0 01: 214/FC 11: 218/FC P10 Pull-up 1: No 0: Yes P30 Pull-up 1: No 0: Yes P40 Pull-up 1: No 0: Yes Vacancy Readable P70 Pull-up 1: No 0: Yes P75 Pull-up 1: No 0: Yes Oscillation stabilization time 0001H 0002H 0003H Notes: • Each bit is set to “1” as the initialized value. • Do not write “0” to the vacant bit. The read value of the vacant bit is “1”, unless “0” is written to it. 18 MB89670R/670AR Series s PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE 1. EPROM for Use MBM27C512-20TV 2. Programming Socket Adapter To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below. Package LCC-32(Rectangle) Adapter socket part number ROM-32LC-28DP-YG Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403 FAX: (81)-3-5396-9106 3. Memory Space Memory space in each mode is diagrammed below. Address 0000H Single chip EPROM mode (Corresponding address on the EPROM programmer) 0000H I/O 0080H RAM 0480H External area 4000H 4000H Not available 8000H * 8007H 8000H * 8007H PROM 48 KB EPROM 48 KB FFFFH FFFFH *: Note: For the MB89P677A, this area is an option setting area. 4. Programming to the EPROM (1) Set the EPROM programmer to the MBM27C512. (2) Load program data into the EPROM programmer at 4000H to FFFFH. (3) Program to 4000H to FFFFH with the EPROM programmer. 19 MB89670R/670AR Series s BLOCK DIAGRAM 1. Block Diagram of MB89673R/89675R X0 X1 Oscillator Timebase timer Clock controller CMOS I/O port 16-bit up/down counter/timer Internal data bus 8-bit up/down counter/timer P37/UDA2 P36/UDB2 P35/UDZ2 P34/UDA1 P33/UDB1 P32/UDZ1 RST Reset circuit (WDT) RAM 8-bit up/down counter/timer F2MC-8L CPU 16-bit timer/counter ROM 8/16-bit timer CMOS I/O port 8 P00/AD0 to P07/AD7 8 P10/A08 to P17/A15 MOD0 MOD1 P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ P21/HAK P20/BUFC 6 P80 to P85 8 External bus interface 16 8-bit timer 8-bit timer P46/TCO2 P45/TCO1 P44/TCI P47/EC 2-channel 8-bit PWM timer 8-bit timer #2 8-bit timer #1 P43/PWM11 P42/PWM10/BZ2 P41/PWM01 P40/PWM00 P31/PWM21 8-bit PWM timer #3 P30/PWM20 CMOS output port N-ch open-drain output port 8 10-bit A/D converter UART P73/UI P72/UO P71/UCK 8-bit serial I/O P76/SI P75/SO P74/SCK P50/AN0 to P57/AN7 AVR AVCC AVSS Buzzer output Input port P60/INT0/ADST to P67/INT7 8 8 External interrupt N-ch open-drain I/O port P70/BZ1 The other pins VCC, VSS, MOD0, MOD1 20 MB89670R/670AR Series 2. Block Diagram of MB89673AR /89675AR/89677AR/89P677A/89PV670A X0 X1 Timebase timer Oscillator CMOS I/O port Clock controller 16-bit up/down counter/timer Internal data bus RST Reset circuit (WDT) 8-bit up/down counter/timer P37/UDA2 P36/UDB2 P35/UDZ2 P34/UDA1 P33/UDB1 P32/UDZ1 RAM 8-bit up/down counter/timer F2MC-8L CPU 16-bit timer/counter P47/EC 8/16-bit timer ROM 8-bit timer CMOS I/O port 8 P00/AD0 to P07/AD7 8 P10/A08 to P17/A15 MOD0 MOD1 P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ P21/HAK P20/BUFC 6 P46/TCO2 P45/TCO1 P44/TCI 8-bit timer 16 8-bit PWM timer #3 P30/PWM20 8-bit PWM timer #4 P31/PWM21 External bus interface 8-bit PWM timer #5 P41/PWM01 8-bit PWM timer #6 2-channel 8-bit PWM timer 8-bit timer #1 CMOS output port N-ch open-drain output port 8 P43/PWM11 8-bit timer #2 P40/PWM00 P42/PWM10/BZ2 P80 to P85 8 8-bit serial I/O P76/SI P75/SO P74/SCK P50/AN0 to P57/AN7 AVR AVCC AVSS 10-bit AD converter UART P73/UI P72/UO P71/UCK Input port Buzzer output P60/INT0/ADST to P67/INT7 8 8 P70/BZ1 External interrupt N-ch open-drain I/O port The other pins VCC, VSS, MOD0, MOD1 21 MB89670R/670AR Series s CPU CORE 1. Memory Space The microcontrollers of the MB89670R/670AR series offer 64 Kbytes of memory for storing all of I/O, data, and program areas. The I/O area is allocated at the lowest address. The data area is allocated immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is allocated from exactly the opposite end of I/O area, that is, near the highest address. The tables of interrupt reset vectors and vector call instructions are allocated from the highest address within the program area. The memory space of the MB89670R/670AR series is structured as illustrated below. • Memory Space MB89673R MB89673AR 0000H 0080H 0100H 0200H Not available 0280H 0280H I/O RAM Register 384 B 0200H 0000H 0080H 0100H I/O RAM 0100H Register 512 B 0200H MB89675R MB89675AR 0000H 0080H I/O RAM Register 1 KB 0200H MB89677AR MB89P677A 0000H 0080H 0100H I/O RAM Register 1 KB MB89PV670A 0480H External area External area External area 0480H External area 4000H 8000H * 8007H External area C000H Not available E000H ROM 8 KB FFFFH 8000H * 8007H External area C000H 8000H Option PROM (One-time PROM product)* 8000H * 8007H 8007H ROM 16 KB Programmable ROM 32 KB Programmable ROM 48 KB FFFFH FFFFH FFFFH *: Since addresses 8000H to 8006H for the MB89P677A comprise an option area, pay attention to use this area for the other products in this series. 22 MB89670R/670AR Series 2. Registers The F2MC-8L family has two types of registers; dedicated hardware registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided: Program counter (PC): Accumulator (A): Temporary accumulator (T): Index register (IX): Extra pointer (EP): Stack pointer (SP): Program status (PS): A 16-bit register for indicating the instruction storage positions A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8-bit data processing instruction, the lower byte is used. A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used. A 16-bit register for index modification A 16-bit pointer for indicating a memory address A 16-bit register for indicating a stack area A 16-bit register for storing a register pointer, a condition code 16 bits PC A T IX EP SP PS : Program counter : Accumulator : Temporary accumulator : Index register : Extra pointer : Stack pointer : Program status Initial value FFFDH Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate I-flag = 0, IL1, IL0 = 11 The other bit values are indeterminate. The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.) • Structure of the Program Status Register 15 PS 14 13 RP 12 11 10 9 8 7 H 6 I 5 4 3 N 2 Z 1 V 0 C Vacancy Vacancy Vacancy IL1, IL0 RP CCR 23 MB89670R/670AR Series The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below. • Rule for Conversion of Actual Addresses of the General-purpose Register Area RP Lower OP codes b1 ↓ b0 ↓ “0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt. H-flag: Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to ‘0’ otherwise. This flag is for decimal adjustment instructions. I-flag: Interrupt is enabled when this flag is set to ‘1’. Interrupt is disabled when the flag is cleared to ‘0’. Cleared to ‘0’ at the reset. IL1, IL0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit. IL1 0 0 1 1 IL0 0 1 0 1 Interrupt level 1 2 3 High-low High Low N-flag: Set to ‘1’ if the MSB becomes ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ when the bit is cleared to ‘0’. Z-flag: V-flag: Set to ‘1’ when an arithmetic operation results in 0. Cleared to ‘0’ otherwise. Set to ‘1’ if the complement on 2 overflows as a result of an arithmetic operation. Cleared to ‘0’ if the overflow does not occur. C-flag: Set to ‘1’ when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to ‘0’ otherwise. Set to the shift-out value in the case of a shift instruction. 24 MB89670R/670AR Series The following general-purpose registers are provided: General-purpose registers: An 8-bit register for storing data The general-purpose registers are of 8 bits each and allocated in the register banks of the memory. One bank contains eight registers and up to 32 banks can be used on every product of the MB89670R/670AR series. The bank currently in use is indicated by the register bank pointer (RP). • Register Bank Configuration This address = 0100H + 8 × (RP) R0 R1 R2 R3 R4 R5 R6 R7 32 banks Memory area 25 MB89670R/670AR Series s I/O MAP Address 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH to 1FH (R/W) (R/W) SMR SDR (R/W) (W) (R/W) (W) (R/W) (R) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) PDR3 DDR3 PDR4 DDR4 PDR5 PDR6 PPCR PDR7 PDR8 BZCR CNTR #3 COMP #3 TMCR TCHR TCLR (R/W) (R/W) (R/W) (R/W) SYCC STBC WDTC TBTC Read/Write (R/W) (W) (R/W) (W) (R/W) (W) Register abbreviation PDR0 DDR0 PDR1 DDR1 PDR2 BCTR Register name Port 0 data register Port 0 data direction register Port 1 data register Port 1 data direction register Port 2 data register External bus pin control register (Vacancy) System clock control register Standby control register Watchdog timer control register Timebase timer control register (Vacancy) Port 3 data register Port 3 data direction register Port 4 data register Port 4 data direction register Port 5 data register Port 6 data register Port 6 pull-up control register Port 7 data register Port 8 data/port 7 swiching register Buzzer register PWM control register #3 PWM compare register #3 16-bit timer control register 16-bit timer count register (H) 16-bit timer count register (L) (Vacancy) Serial mode register Serial data register (Vacancy) (Continued) 26 MB89670R/670AR Series Address 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH to 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH to 3FH Read/Write (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (W) (W) Register abbreviation ADC1 ADC2 ADCH ADCL T2CR T1CR T2DR T1DR CNTR1 CNTR2 CNTR3 COMR2 COMR1 Register name A/D converter control register 1 A/D converter control register 2 A/D converter data register H A/D converter data register L Timer 2 control register Timer 1 control register Timer 2 data register Timer 1 data register PWM 1 control register PWM 2 control register PWM 3 control register PWM 2 compare register PWM 1 compare register (Vacancy) (R) (W) (R) (W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) UDCR1 RCR1 UDCR2 RCR2 CCRA1 CCRA2 CCRB1 CCRB2 CSR1 CSR2 EIC1 EIC2 EIE2 EIF2 Up/down counter register 1 Reload compare register1 Up/down counter register 2 Reload compare register2 Counter control register A1 Counter control register A2 Counter control register B1 Counter control register B2 Counter status register 1 Counter status register 2 External interrupt 1 control register 1 External interrupt 1 control register 2 External interrupt 2 control register External interrupt 2 flag register (Vacancy) (Continued) 27 MB89670R/670AR Series (Continued) Address 40H 41H 42H 43H 44H 45H 46H to 47H 48H* 49H* 4AH* 4BH* 4CH* 4DH* 4E to 7BH 7CH 7DH 7EH 7FH * : For the MB89673R/675R, these are (vacancies). Note: Do not use (vacancies). (W) (W) (W) ILR1 ILR2 ILR3 (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) CNTR #4 COMP #4 CNTR #5 COMP #5 CNTR #6 COMP #6 (R/W) RRDR Read/Write (R/W) (R/W) (R/W) (R) (W) Register abbreviation USMR USCR USTR RXDR TXDR Register name UART serial mode register UART serial rate control register UART status register UART receiving data register UART transmitting data register (Vacancy) Baud rate generator reload data register (Vacancy) PWM control register #4 PWM compare register #4 PWM control register #5 PWM compare register #5 PWM control register #6 PWM compare register #6 (Vacancy) Interrupt level setting register 1 Interrupt level setting register 2 Interrupt level setting register 3 (Vacancy) 28 MB89670R/670AR Series s ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings (AVSS = VSS = 0.0 V) Parameter Power supply voltage A/D converter reference input voltage Input voltage Output voltage “L” level maximum output current Symbol VCC AVCC AVR VI VO1 VO2 IOL IOLAV1 Rated value Min. VSS – 0.3 VSS – 0.3 VSS – 0.3 VSS – 0.3 VSS – 0.3 VSS – 0.3 — — — — — — — — — — –40 –55 Max. VSS + 7.0 VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 VSS + 7.0 20 4 8 100 40 –20 –4 –50 –20 300 +85 +150 Unit V V V V V V mA mA mA mA mA mA mA mA mA mW °C °C * * Remarks AVR must not exceed “AVCC + 0.3 V”. Except P80 to P85 P80 to P85 Average value (operating current × operating rate) Average value (operating current × operating rate) P80 to P85 “L” level average output current IOLAV2 “L” level total maximum output current “L” level total average output current “H” level maximum output current “H” level average output current “H” level total maximum output current “H” level total average output current Power consumption Operating temperature Storage temperature ∑IOL ∑IOLAV IOH IOHAV ∑IOH ∑IOHAV PD TA Tstg Average value (operating current × operating rate) Average value (operating current × operating rate) Average value (operating current × operating rate) * : Use AVCC and VCC set at the same voltage. Take care that AVR does not exceed “AVCC + 0.3 V” and AVCC does not exceed VCC, such as when power is turned on. WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. 29 MB89670R/670AR Series 2. Recommended Operating Conditions (AVSS = VSS = 0.0 V) Parameter Symbol Rated value Min. 2.2* Max. 6.0 6.0 6.0 AVCC +85 Unit V V V V °C Remarks Normal operation assurance range MB89673R/673AR/675R/675AR/677AR Normal operation assurance range MB89PV670A/P677A Retains the RAM state in the stop mode Power supply voltage VCC AVCC 2.7* 1.5 A/D converter reference input voltage Operating temperature AVR TA 0.0 –40 * : These values vary with the operating frequency, and analog assurance range. See Figure 1 and “5. A/D Converter Electrical Characteristics.” Figure 1 Operating Voltage vs. Clock Operating Frequency 6 5 Operation assurance range Operating voltage (V) 4 A/D converter accuracy assured in the VCC = AVCC = 3.5 V to 6.0 V range. 3 2 1 Clock operating frequency (MHz) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Minimum execution time (µs) 4.0 2.0 0.8 0.4 Note: The shaded area is additional operating assurance range only for the MB89673R/673AR/675R/675AR/677AR. 30 MB89670R/670AR Series The horizontal line of the graph in the figure 1 indicates the operating frequency of the external oscillator and the lower horizontal line indicates the min. instruction execution time = 4/FC. In the case of changing the operating clock with the clock gear function, be sure to convert it into the min. instruction execution time on the lower horizontal line since the operating voltage range is dependent on the min. instruction execution time. WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device’s electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand. 31 MB89670R/670AR Series 3. DC Characteristics (AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Pin name P00 to P07, P10 to P17, P30 to P37, P40 to P47 Condition Rated value Min. 0.7 VCC Typ.  Max. VCC + 0.3 Unit Remarks P32 to P37, P44, and P47 are of a port input type. P32 to P37, P44, and P47 are of a peripheral input type. P32 to P37, P44, and P47 are of a port input type. P32 to P37, P44, and P47 are of a peripheral input type. VIH “H” level input voltage VIHS V RST, MOD0, MOD1, P32 to P37, P44, P47, P60 to P67, P70 to P76 0.8 VCC  VCC + 0.3 V VIL “L” level input voltage VILS Open-drain output VD pin applied voltage “H” level output voltage VOH P00 to P07, P10 to P17, P30 to P37, P40 to P47 — VSS − 0.3  0.3 VCC V RST, MOD0, MOD1, P32 to P37, P44, P47, P60 to P67, P70 to P76 VSS − 0.3  0.2 VCC V P80 to P85 P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P71, P72, P74, P75 P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P76 P80 to P85 RST P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P76, MOD0, MOD1 P80 to P85 P00 to P07, P10 to P17, P30 to P37, P40 to P47, P60 to P67, P70 to P76, RST VSS − 0.3   VSS + 6.0 V V IOH = –2.0 mA 4.0  VOL1 “L” level output voltage VOL2 VOL3 Input leakage current (Hi-z output leakage current) Pull-up resistance ILI1 ILI2 RPULL IOL = 4.0 mA IOL = 10 mA IOL = 4.0 mA 0.0 V < VI < VCC   — — — 25   — — — 50 0.4 0.5 0.4 ±5 ±1 100 V V V µA µA kΩ Without pull-up resistor option With pull-up resistor option 0.0 V < VI < VCC VI = 0.0 V (Continued) 32 MB89670R/670AR Series (Continued) Parameter Symbol (AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Pin name Condition FC = 10 MHz VCC = 5.0 V tinst*2 = 0.4 µs Rated value Min. — Typ. 12 Max. 20 Unit mA Remarks ICC1 ICC2 VCC ICCS1 Power supply current*1 ICCS2 ICCH IA AVCC IAH Other than AVCC, AVSS, VCC, and VSS FC = 10 MHz VCC = 3.0 V tinst*2 = 6.4 µs — — 1 1.5 3 1 — 6 2 2.5 7 1.5 1 8 mA mA mA mA mA mA MB89673R/ 673AR/ 675R/675AR/ 677AR/ PV670A MB89P677A Sleep mode FC = 10 MHz VCC = 5.0 V tinst*2 = 0.4 µs FC = 10 MHz VCC = 3.0 V tinst*2 = 6.4 µs — — — — VCC = 3.0 V TA = +25°C Stop mode FC = 10 MHz When A/D converter starts FC = 10 MHz TA = +25°C When A/D converter is at a stop f = 1 MHz — — 1 µA Input capacitance CIN — 10 — pF *1: The measurement conditions of the power supply current are as follows. The external clock is used. The output pins are open. VCC is upon the condition above the table. *2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.” Note: The current consumption of connected EPROM and ICE is not considered on MB89PV670A. 33 MB89670R/670AR Series 4. AC Characteristics (1) Reset Timing (AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter RST “L” pulse width Symbol tZLZH Condition — Rated value Min. 48 tHCYL Max. — Unit ns Remarks tZLZH 0.8 VCC RST 0.2 VCC 0.2 VCC (2) Specifications for Power-on Reset (AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Power supply rising time Power supply cut-off time Symbol tR tOFF Condition Rated value Min. — Max. 50 — Unit ms ms Remarks Power-on reset function only Min. internal time to next power-on reset — 1 Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended. tR 2.0 V tOFF VCC 0.2 V 0.2 V 0.2 V 34 MB89670R/670AR Series (3) Clock Timing (AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Clock frequency Clock cycle time Input clock pulse width Input clock rising/falling time Symbol FC tXCYL PWH PWL tCR tCF Pin name X0, X1 X0, X1 X0 X0 Condition Rated value Min. 1 100 Max. 10 1000 — 10 Unit MHz ns ns ns Remarks — 20 — External clock External clock • Clock Timing Conditions tXCYL PWH tCR 0.8 VCC X0 0.2 VCC 0.2 VCC 0.2 VCC 0.8 VCC tCF PWL • Clock Configurations When a crystal or ceramic resonator is used When an external clock is used X0 FC X1 X0 X1 Open C1 C2 (4) Instruction Cycle (AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Rated value (typical) 4/FC, 8/FC, 16/FC, 64/FC Unit µs Remarks (4/FC) tinst = 0.4 µs when operating at FC = 10 MHz Instruction cycle tinst (minimum execution time) 35 MB89670R/670AR Series (5) Clock Output Timing (AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Cycle time CLK ↑ → CLK ↓ Symbol tCYC tCHCL Pin name CLK CLK Condition — Rated value Min. 1/2 tinst* 1/4 tinst – 0.07 Max. — 1/4 tinst Unit µs µs Remarks * : For information on tinst, see “(4) Instruction Cycle.” tCYC tCHCL 2.4 V CLK 0.8 V 2.4 V 36 MB89670R/670AR Series (6) Bus Read Timing (AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Valid address → RD ↓ time RD pulse width Valid address → Data read time RD ↑ → Data hold time RD ↑ → ALE ↑ time RD ↑ → Address loss time RD ↓ → CLK ↑ time CLK ↓ → RD ↑ time RD ↓ → BUFC ↓ time BUFC ↑ → Valid address time Symbol tAVRL tRLRH tAVDV Pin name RD, A15 to A08, AD7 to AD0 RD AD7 to AD0, A15 to A08 RD, AD7 to AD0 AD7 to AD0, RD RD, ALE RD, A15 to A08 RD, CLK RD, CLK RD, BUFC A15 to A08, AD7 to AD0, BUFC Condition Rated value Min. 1/4 tinst* – 0.06 1/2 tinst *– 0.02 Max. — — 1/2 tinst * 1/2 tinst *– 0.08 Unit Remarks µs µs µs µs ns µs µs µs ns ns ns No wait No wait — — 0 — 1/4 tinst* – 0.04 1/4 tinst* – 0.04 1/4 tinst* – 0.04 RD ↓ → Data read time tRLDV tRHDX tRHLH tRHAX tRLCH tCLRH tRLBL tBHAV — — — — — — — 0 –5 5 * : For information on tinst, see “(4) Instruction Cycle.” 2.4 V 0.8 V CLK tRHLH ALE 0.8 V AD 2.4 V 0.8 V tAVDV 2.4 V 0.7 VCC 0.3 VCC 0.7 VCC 0.3 VCC tRHDX 2.4 V 0.8 V A 0.8 V tAVRL tRLCH tRLDV tRLRH 2.4 V tCLRH 0.8 V tRHAX 2.4 V 0.8 V RD 0.8 V tRLBL 2.4 V tBHAV 2.4 V BUFC 0.8 V 37 MB89670R/670AR Series (7) Bus Write Timing (AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Valid address → ALE ↓ time ALE ↓ time → Address loss time Valid address → WR ↓ time Symbol tAVLL tLLAX tAVWL tWLWH tDVWL tWHAX Pin name AD7 to AD0, ALE, A15 to A08 AD7 to AD0, ALE, A15 to A08 WR, ALE WR AD7 to AD0, WR WR, A15 to A08 AD7 to AD0, WR WR, ALE WR, CLK WR, CLK ALE ALE, CLK Condition Rated value Min. 1/4 tinst* 2 – 0.064 Max. — — — — — — — — — — — — Unit Remarks µs ns µs µs µs µs µs µs µs ns µs µs 5*1 1/4 tinst* 2 – 0.06 1/2 tinst* 2 – 0.02 1/2 tinst* 2 – 0.06 WR pulse width Writing data → WR ↑ time WR ↑ → Address loss time — 1/4 tinst* 2 – 0.04 1/4 tinst* 2 – 0.04 1/4 tinst* – 0.04 1/4 t inst* 2 WR ↑ → Data hold time tWHDX WR ↑ → ALE ↑ time WR ↓ → CLK ↑ time CLK ↓ → WR ↑ time ALE pulse width ALE ↓ → CLK ↑ time tWHLH tWLCH tCLWH tLHLL tLLCH – 0.04 0 1/4 tinst* 2 – 0.035 1/4 tinst* 2 – 0.03 *1: These characteristics are also applicable to the bus read timing. *2: For information on tinst, see “(4) Instruction Cycle.” CLK tLHLL 2.4 V ALE 0.8 V tAVLL 2.4 V 2.4 V AD 0.8 V 0.8 V 0.8 V tLLAX 2.4 V tLLCH 2.4 V 0.8 V tWHLH 0.8 V 2.4 V 0.8 V tWHDX 2.4 V tCLWH 0.8 V tWHAX tWLWH tDVWH 2.4 V A 0.8 V tAVWL tWLCH WR 0.8 V 2.4 V 38 MB89670R/670AR Series (8) Ready Input Timing (AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter RDY valid → CLK ↑ time CLK ↑ → RDY loss time Symbol tYVCH tCHYX Pin name RDY, CLK Condition Rated value Min. 60 Max. — — Unit ns ns Remarks * * — RDY, CLK 0 * : These characteristics are also applicable to the read cycle. CLK 2.4 V 2.4 V ALE AD Address Data A WR tYVCH tCHYX 2.4 V RDY 0.8 V 0.8 V tYVCH tCHYX Note: The bus cycle is also extended in the read cycle in the same manner. 2.4 V 39 MB89670R/670AR Series (9) Serial I/O Timing (AVCC = 5.0 V ±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C) Parameter Serial clock cycle time SCK ↓ → SO time Valid SI → SCK ↑ SCK ↑ → valid SI hold time Serial clock “H” pulse width Serial clock “L” pulse width SCK ↓ → SO time Valid SI → SCK ↑ SCK ↑ → valid SI hold time Symbol tSCYC tSLOV tIVSH tSHIX tSHSL tSLSH tSLOV tIVSH tSHIX Pin name SCK SCK, SO SI, SCK SCK, SI SCK SCK SCK, SO SI, SCK SCK, SI Condition Rated value Min. 2 tinst* –200 1/2 tinst* 1/2 tinst* 1 tinst* 1 tinst* Max. — 200 — — — — 200 — — Unit µs ns µs µs µs µs ns µs µs Remarks Internal shift clock mode External shift clock mode 0 1/2 tinst* 1/2 tinst* * : For information on tinst, see “(4) Instruction Cycle.” • Internal Shift Clock Mode SCK 2.4 V 0.8 V 0.8 V tSCYC tSLOV 2.4 V SO 0.8 V tIVSH 0.8 VCC SI 0.2 VCC tSHIX 0.8 VCC 0.2 VCC • External Shift Clock Mode tSLSH SCK 0.8 VCC 0.2 VCC 0.2 VCC 0.8 VCC tSHSL tSLOV 2.4 V SO 0.8 V tIVSH 0.8 VCC SI 0.2 VCC tSHIX 0.8 VCC 0.2 VCC 40 MB89670R/670AR Series (10) Peripheral Input Timing (AVCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Peripheral input “H” pulse width 1 Peripheral input “L” pulse width 1 Peripheral input “H” pulse width 2 Peripheral input “L” pulse width 2 Peripheral input “H” pulse width 3 Peripheral input “L” pulse width 3 Peripheral input “H” pulse width 3 Peripheral input “L” pulse width 3 Symbol tILIH1 tIHIL1 tILIH2 tIHIL2 tILIH3 tIHIL3 tILIH3 tIHIL3 Pin name TCI TCI EC, INT0 to INT7 EC, INT0 to INT7 ADST ADST ADST ADST Condition Rated value Min. 1 tinst* 1 tinst* Max. — — — — — — — — Unit µs µs µs µs µs µs µs µs Remarks — 2 tinst* 2 tinst* A/D mode Sense mode 64 tinst* 64 tinst* 64 tinst* 64 tinst* * : For information on tinst, see “(4) Instruction Cycle.” tIHIL1 tILIH1 TCI 0.2 VCC 0.8 VCC 0.2 VCC 0.8 VCC tIHIL2 tILIH2 EC INT0 to INT7 0.8 VCC 0.2 VCC 0.2 VCC 0.8 VCC tIHIL3 tILIH3 ADST 0.2 VCC 0.8 VCC 0.2 VCC 0.8 VCC 41 MB89670R/670AR Series (11) Up/down Counter Input Timing (AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter AIN input “1” pulse width AIN input “0” pulse width BIN input “1” pulse width BIN input “0” pulse width AIN ↑ → BIN ↑ time BIN ↑ → AIN ↓ time AIN ↓ → BIN ↓ time BIN ↓ → AIN ↑ time BIN ↑ → AIN ↑ time AIN ↑ → BIN ↓ time BIN ↓ → AIN ↓ time AIN ↓ → BIN ↑ time ZIN input “1” pulse width ZIN input “0” pulse width Symbol tAHL tALL tBHL tBLL tAUBU tBUAD tADBD tBDAU tBUAU tAUBD tBDAD tADBU tZHL tZLL Pin name Condition Rated value Min. 2 tinst* 2 tinst* 2 tinst* 2 tinst* 1 tinst* 1 tinst* Max. — — — — — — — — — — — — — — Unit µs µs µs µs µs µs µs µs µs µs µs µs µs µs Remarks P33, P34, P36, P37 — 1 tinst* 1 tinst* 1 tinst* 1 tinst* 1 tinst* 1 tinst* 1 tinst* 1 tinst* P32, P35 * : For information on tinst, see “(4) Instruction Cycle.” 42 MB89670R/670AR Series tAHL tALL AIN 0.8 VCC 0.8 VCC 0.2 VCC 0.2 VCC tBDAU tAUBU tBUAD 0.8 VCC tADBD 0.8 VCC BIN tBHL 0.2 VCC tBLL 0.2 VCC tBHL tBLL 0.8 VCC BIN 0.8 VCC 0.2 VCC 0.2 VCC tADBU 0.8 VCC tBUAU tAUBD 0.8 VCC tBDAD 0.8 VCC AIN tAHL 0.2 VCC tALL 0.2 VCC 0.8 VCC 0.8 VCC tZHL ZIN tZLL 0.2 VCC 0.2 VCC 43 MB89670R/670AR Series 5. A/D Converter Electrical Characteristics (AVCC = VCC = 3.5 V to 6.0 V, FC = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Resolution Linearity error Differential linearity error Total error Zero transition voltage Full-scale transition voltage Interchannel disparity A/D mode conversion time Sense mode conversion time Analog port input current Analog input voltage Reference voltage Reference voltage supply current Symbol Pin name Rated value Min. — — Typ. — — — — AVSS + 0.5 LSB AVR – 1.5 LSB Max. 10 ±2.0 ±1.5 ±3.0 AVSS + 2.5 LSB AVR + 0.5 LSB Unit bit LSB LSB LSB mV mV LSB µs µs µA V V µA Remarks — — — — VOT VFST AN0 to AN7 AN0 to AN7 AVSS – 1.5 LSB AVR – 3.5 LSB AVCC = AVR = VCC — — — — — IAIN AN0 to AN7 — AN0 to AN7 AVR IR AVR — 0 0 — — — — — — — 200 4 13.2 7.2 10 AVR AVCC  At 10 MHz oscillation At 10 MHz oscillation AVR = 5.0 V 6. Notes on Using A/D Converter • The smaller | AVR – AVSS |, the greater the error would become relatively. • The output impedance of the external circuit for the analog input must satisfy the following conditions: Output impedance of the external circuit < Approx. 10 kΩ If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time = 6 µs at 10 MHz oscillation). An analog input equivalent circuit is shown below. • Analog Input Equivalent Circuit Sample hold circuit R ≤ 10 kΩ is recommended. Analog input pin C 60 pF 3 kΩ Comparator R Analog channel selector If R > 10 kΩ, it is recommended to connect an external capacitor of approx. 0.1 µF. closes for approx. 15 instruction cycles after starting A/D conversion. Microcontrollers internal circuit 44 MB89670R/670AR Series Since the A/D converter contains a sample hold circuit, the level of the analog input pin might not stabilize within the sampling period after starting A/D, resulting in inaccurate A/D conversion values, if the input impedance to the analog pin is too high. Be sure to maintain an appropriate input impedance to the analog pin. It is recommended to keep the input impedance to the analog pin from exceeding 10 kΩ. If it exceeds 10 kΩ, it is recommended to connect a capacitor of approx. 0.1 µF to the analog input pin. Except for the sampling period after starting A/D, the input leakage current of the analog input pin is less than 10 µA. 7. A/D Converter Glossary • Resolution Analog-change that are identifiable with the A/D converter. • Linearity error The deviation of the straight line connecting the zero transition point (“00 0000 0000” ↔ “00 0000 0001”) with the full-scale transition point (“11 1111 1111” ↔ “11 1111 1110”) from actual conversion characteristics • Differential linearity error The deviation of the input voltage needed to change the output code by 1 LSB from the theoretical voltage • Total error The difference between theoretical and actual conversion values, caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise. Theoreticall I/O characteristics 3FF 3FE 3FD Digital output 1.5 LSB Digital output VFST 3FF 3FE 3FD Total error Actual conversion value {1 LSB × N + 0.5 LSB} 004 003 002 001 0.5 LSB AVSS Analog input AVR 004 VNT 003 Actual conversion value Theoretical value 001 VOT 1 LSB 002 AVSS Analog input AVR 1 LSB = VFST – VOT 1022 (V) Total error of digital output N = VNT – {1 LSB × N + 0.5 LSB } 1 LSB (Continued) 45 MB89670R/670AR Series (Continued) Zero transition error 004 Actual conversion value 003 Digital output Digital output 3FE 3FF Full-scale transition error Theoretical value Actual conversion value 002 Theoretical value 001 VFST (Actual measured value) 3FD Actual conversion value 3FC Actual conversion value VOT (Actual measured value) AVSS Analog input Analog input AVR Linearity error 3FF 3FE {1 LSB × N + VOT} 3FD Digital output Digital output VFST (Actual measured value) N Actual conversion value N+1 Differential linearity error Theoretical value Actual conversion value V(N + 1)T VNT 004 003 002 001 Actual conversion value Theoretical value N–1 VNT Actual conversion value N–2 VOT (Actual measured value) AVSS Analog input AVR AVSS Analog input AVR Linearity error of digital output N = VNT – {1 LSB × N + VOT} 1 LSB Differential linearity error of digital output N = V(N+1)T – VNT 1 LSB –1 46 MB89670R/670AR Series s EXAMPLE CHARACTERISTICS (1) “L” Level Output Voltage VOL1 (V) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1 2 VOL1 vs. IOL VOL2 (V) 0.8 VCC = 2.5 V VCC = 3.0 V VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 2 VOL2 vs. IOL VCC = 2.5 V VCC = 3.0 V VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V 3 4 5 6 IOL (mA) 4 6 8 10 12 IOL (mA) (2) “H” Level Output Voltage (3) “H” Level Input Voltage/“L” Level Input Voltage (CMOS Input) VCC – VOH (V) 1.0 TA = +25°C 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 –0.5 VCC – VOH vs. IOH VCC = 2.5 V VIN (V) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 VIN vs. VCC TA = +25°C VCC = 3.0 V VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V –1.0 –1.5 –2.0 –2.5 –3.0 IOH (mA) 0 1 2 3 4 5 6 7 VCC (V) 47 MB89670R/670AR Series (4) “H” Level Input Voltage/“L” Level Input Voltage (Hysteresis Input) VIN vs. VCC VIN (V) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 1 2 3 4 5 6 7 VCC (V) VILS TA = +25°C VIHS VIHS: Threshold when input voltage in hysteresis characteristics is set to “H” level VILS: Threshold when input voltage in hysteresis characteristics is set to “L” level (5) Power Supply Current (External Clock) ICC (mA) 20 ICC vs. VCC ICCS vs. VCC ICCS (mA) 10 15 ICC1 8 6 4 2 0 ICC2 0 3 4 5 6 VCC (V) 3 4 5 6 VCC (V) ICCS1 10 5 ICCS2 (6) Pull-up Resistance RPULL vs. VCC RPULL (kΩ) 1000 500 TA = +25°C 100 50 10 1 2 3 4 5 6 VCC (V) 48 MB89670R/670AR Series s INSTRUCTIONS (136 instructions) Execution instructions can be divided into the following four groups: • • • • Transfer Arithmetic operation Branch Others Table 1 lists symbols used for notation of instructions. Table 1 Symbol dir off ext #vct #d8 #d16 dir: b rel @ A AH AL T TH TL IX Direct address (8 bits) Offset (8 bits) Extended address (16 bits) Vector table number (3 bits) Immediate data (8 bits) Immediate data (16 bits) Bit direct address (8/3 bits) Branch relative address (8 bits) Register indirect (e.g.: @A, @IX, @EP) Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.) Upper 8 bits of accumulator A (8 bits) Lower 8 bits of accumulator A (8 bits) Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.) Upper 8 bits of temporary accumulator T (8 bits) Lower 8 bits of temporary accumulator T (8 bits) Index register IX (16 bits) Instruction Symbols Meaning (Continued) 49 MB89670R/670AR Series (Continued) Symbol EP PC SP PS dr CCR RP Ri × (×) (( × )) Extra pointer EP (16 bits) Program counter PC (16 bits) Stack pointer SP (16 bits) Program status PS (16 bits) Accumulator A or index register IX (16 bits) Condition code register CCR (8 bits) Register bank pointer RP (5 bits) General-purpose register Ri (8 bits, i = 0 to 7) indicates that the very × is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.) indicates that the contents at address ‘×’ is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) The contents addressed by the contents at address ‘×’ is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) Meaning Columns indicate the following: Mnemonic: ~: #: Operation: TL, TH, AH: Assembler notation of an instruction The number of instructions. An instruction cycle consists of 2 machine cycles. The number of bytes Operation of an instruction A changed contents of the TL, TH and AH when instruction is executed. Symbols in the column indicate the following: • • • • N, Z, V, C: OP code: “–” indicates no change. dH is the upper 8 bits of the data in the operation. AL and AH must become the contents of AL and AH each prior to the instruction executed. “00” becomes “00”. An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag. Code of an instruction. If an instruction is more than one code, it is written according to the following rule: e.g.: 48 to 4F ← This indicates 48, 49, ... 4F. 50 MB89670R/670AR Series Table 2 Mnemonic MOV dir,A MOV @IX +off,A MOV ext,A MOV @EP ,A MOV Ri,A MOV A,#d8 MOV A,dir MOV A,@IX +off MOV A,ext MOV A,@A MOV A,@EP MOV A,Ri MOV dir,#d8 MOV @IX +off,#d8 MOV @EP ,#d8 MOV Ri,#d8 MOVW dir,A MOVW @IX +off,A MOVW ext,A MOVW @EP ,A MOVW EP ,A MOVW A,#d16 MOVW A,dir MOVW A,@IX +off MOVW A,ext MOVW A,@A MOVW A,@EP MOVW A,EP MOVW EP ,#d16 MOVW IX,A MOVW A,IX MOVW SP ,A MOVW A,SP MOV @A,T MOVW @A,T MOVW IX,#d16 MOVW A,PS MOVW PS,A MOVW SP ,#d16 SWAP SETB dir: b CLRB dir: b XCH A,T XCHW A,T XCHW A,EP XCHW A,IX XCHW A,SP MOVW A,PC ~ 3 4 4 3 3 2 3 4 4 3 3 3 4 5 4 4 4 5 5 4 2 3 4 5 5 4 4 2 3 2 2 2 2 3 4 3 2 2 3 2 4 4 2 3 3 3 3 2 # 2 2 3 1 1 2 2 2 3 1 1 1 3 3 2 2 2 2 3 1 1 3 2 2 3 1 1 1 3 1 1 1 1 1 1 3 1 1 3 1 2 2 1 1 1 1 1 1 Transfer Instructions (48 instructions) Operation (dir) ← (A) ( (IX) +off ) ← (A) (ext) ← (A) ( (EP) ) ← (A) (Ri) ← (A) (A) ← d8 (A) ← (dir) (A) ← ( (IX) +off) (A) ← (ext) (A) ← ( (A) ) (A) ← ( (EP) ) (A) ← (Ri) (dir) ← d8 ( (IX) +off ) ← d8 ( (EP) ) ← d8 (Ri) ← d8 (dir) ← (AH),(dir + 1) ← (AL) ( (IX) +off) ← (AH), ( (IX) +off + 1) ← (AL) (ext) ← (AH), (ext + 1) ← (AL) ( (EP) ) ← (AH),( (EP) + 1) ← (AL) (EP) ← (A) (A) ← d16 (AH) ← (dir), (AL) ← (dir + 1) (AH) ← ( (IX) +off), (AL) ← ( (IX) +off + 1) (AH) ← (ext), (AL) ← (ext + 1) (AH) ← ( (A) ), (AL) ← ( (A) ) + 1) (AH) ← ( (EP) ), (AL) ← ( (EP) + 1) (A) ← (EP) (EP) ← d16 (IX) ← (A) (A) ← (IX) (SP) ← (A) (A) ← (SP) ( (A) ) ← (T) ( (A) ) ← (TH),( (A) + 1) ← (TL) (IX) ← d16 (A) ← (PS) (PS) ← (A) (SP) ← d16 (AH) ↔ (AL) (dir): b ← 1 (dir): b ← 0 (AL) ↔ (TL) (A) ↔ (T) (A) ↔ (EP) (A) ↔ (IX) (A) ↔ (SP) (A) ← (PC) TL – – – – – AL AL AL AL AL AL AL – – – – – – – – – AL AL AL AL AL AL – – – – – – – – – – – – – – – AL AL – – – – TH – – – – – – – – – – – – – – – – – – – – – AH AH AH AH AH AH – – – – – – – – – – – – – – – – AH – – – – AH – – – – – – – – – – – – – – – – – – – – – dH dH dH dH dH dH dH – – dH – dH – – – dH – – AL – – – dH dH dH dH dH NZVC –––– –––– –––– –––– –––– ++–– ++–– ++–– ++–– ++–– ++–– ++–– –––– –––– –––– –––– –––– –––– –––– –––– –––– ++–– ++–– ++–– ++–– ++–– ++–– –––– –––– –––– –––– –––– –––– –––– –––– –––– –––– ++++ –––– –––– –––– –––– –––– –––– –––– –––– –––– –––– OP code 45 46 61 47 48 to 4F 04 05 06 60 92 07 08 to 0F 85 86 87 88 to 8F D5 D6 D4 D7 E3 E4 C5 C6 C4 93 C7 F3 E7 E2 F2 E1 F1 82 83 E6 70 71 E5 10 A8 to AF A0 to A7 42 43 F7 F6 F5 F0 Notes: • During byte transfer to A, the data transfered at “T ← A” is restricted to low bytes. • Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F2MC-8 family) 51 MB89670R/670AR Series Table 3 Mnemonic ADDC A,Ri ADDC A,#d8 ADDC A,dir ADDC A,@IX +off ADDC A,@EP ADDCW A ADDC A SUBC A,Ri SUBC A,#d8 SUBC A,dir SUBC A,@IX +off SUBC A,@EP SUBCW A SUBC A INC Ri INCW EP INCW IX INCW A DEC Ri DECW EP DECW IX DECW A MULU A DIVU A ANDW A ORW A XORW A CMP A CMPW A RORC A ROLC A CMP A,#d8 CMP A,dir CMP A,@EP CMP A,@IX +off CMP A,Ri DAA DAS XOR A XOR A,#d8 XOR A,dir XOR A,@EP XOR A,@IX +off XOR A,Ri AND A AND A,#d8 AND A,dir ~ 3 2 3 4 3 3 2 3 2 3 4 3 3 2 4 3 3 3 4 3 3 3 19 21 3 3 3 2 3 2 2 2 3 3 4 3 2 2 2 2 3 3 4 3 2 2 3 # 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 2 2 1 2 1 1 2 2 Arithmetic Operation Instructions (62 instructions) Operation (A) ← (A) + (Ri) + C (A) ← (A) + d8 + C (A) ← (A) + (dir) + C (A) ← (A) + ( (IX) +off) + C (A) ← (A) + ( (EP) ) + C (A) ← (A) + (T) + C (AL) ← (AL) + (TL) + C (A) ← (A) − (Ri) − C (A) ← (A) − d8 − C (A) ← (A) − (dir) − C (A) ← (A) − ( (IX) +off) − C (A) ← (A) − ( (EP) ) − C (A) ← (T) − (A) − C (AL) ← (TL) − (AL) − C (Ri) ← (Ri) + 1 (EP) ← (EP) + 1 (IX) ← (IX) + 1 (A) ← (A) + 1 (Ri) ← (Ri) − 1 (EP) ← (EP) − 1 (IX) ← (IX) − 1 (A) ← (A) − 1 (A) ← (AL) × (TL) (A) ← (T) / (AL),MOD → (T) (A) ← (A) ∧ (T) (A) ← (A) ∨ (T) (A) ← (A) ∀ (T) (TL) − (AL) (T) − (A) → C→A C ← A← (A) − d8 (A) − (dir) (A) − ( (EP) ) (A) − ( (IX) +off) (A) − (Ri) Decimal adjust for addition Decimal adjust for subtraction (A) ← (AL) ∀ (TL) (A) ← (AL) ∀ d8 (A) ← (AL) ∀ (dir) (A) ← (AL) ∀ ( (EP) ) (A) ← (AL) ∀ ( (IX) +off) (A) ← (AL) ∀ (Ri) (A) ← (AL) ∧ (TL) (A) ← (AL) ∧ d8 (A) ← (AL) ∧ (dir) TL – – – – – – – – – – – – – – – – – – – – – – – dL – – – – – – – – – – – – – – – – – – – – – – – TH – – – – – – – – – – – – – – – – – – – – – – – 00 – – – – – – – – – – – – – – – – – – – – – – – AH – – – – – dH – – – – – – dH – – – – dH – – – dH dH 00 dH dH dH – – – – – – – – – – – – – – – – – – – – NZVC ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ +++– –––– –––– ++–– +++– –––– –––– ++–– –––– –––– ++R– ++R– ++R– ++++ ++++ ++–+ ++–+ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– OP code 28 to 2F 24 25 26 27 23 22 38 to 3F 34 35 36 37 33 32 C8 to CF C3 C2 C0 D8 to DF D3 D2 D0 01 11 63 73 53 12 13 03 02 14 15 17 16 18 to 1F 84 94 52 54 55 57 56 58 to 5F 62 64 65 (Continued) 52 MB89670R/670AR Series (Continued) Mnemonic AND A,@EP AND A,@IX +off AND A,Ri OR A OR A,#d8 OR A,dir OR A,@EP OR A,@IX +off OR A,Ri CMP dir,#d8 CMP @EP ,#d8 CMP @IX +off,#d8 CMP Ri,#d8 INCW SP DECW SP ~ 3 4 3 2 2 3 3 4 3 5 4 5 4 3 3 # 1 2 1 1 2 2 1 2 1 3 2 3 2 1 1 Operation (A) ← (AL) ∧ ( (EP) ) (A) ← (AL) ∧ ( (IX) +off) (A) ← (AL) ∧ (Ri) (A) ← (AL) ∨ (TL) (A) ← (AL) ∨ d8 (A) ← (AL) ∨ (dir) (A) ← (AL) ∨ ( (EP) ) (A) ← (AL) ∨ ( (IX) +off) (A) ← (AL) ∨ (Ri) (dir) – d8 ( (EP) ) – d8 ( (IX) + off) – d8 (Ri) – d8 (SP) ← (SP) + 1 (SP) ← (SP) – 1 Table 4 Mnemonic BZ/BEQ rel BNZ/BNE rel BC/BLO rel BNC/BHS rel BN rel BP rel BLT rel BGE rel BBC dir: b,rel BBS dir: b,rel JMP @A JMP ext CALLV #vct CALL ext XCHW A,PC RET RETI ~ 3 3 3 3 3 3 3 3 5 5 2 3 6 6 3 4 6 # 2 2 2 2 2 2 2 2 3 3 1 3 1 3 1 1 1 TL – – – – – – – – – – – – – – – TH – – – – – – – – – – – – – – – AH – – – – – – – – – – – – – – – NZVC ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++++ ++++ ++++ ++++ –––– –––– OP code 67 66 68 to 6F 72 74 75 77 76 78 to 7F 95 97 96 98 to 9F C1 D1 Branch Instructions (17 instructions) Operation TL – – – – – – – – – – – – – – – – – TH – – – – – – – – – – – – – – – – – AH – – – – – – – – – – – – – – dH – – NZVC –––– –––– –––– –––– –––– –––– –––– –––– –+–– –+–– –––– –––– –––– –––– –––– –––– Restore OP code FD FC F9 F8 FB FA FF FE B0 to B7 B8 to BF E0 21 E8 to EF 31 F4 20 30 If Z = 1 then PC ← PC + rel If Z = 0 then PC ← PC + rel If C = 1 then PC ← PC + rel If C = 0 then PC ← PC + rel If N = 1 then PC ← PC + rel If N = 0 then PC ← PC + rel If V ∀ N = 1 then PC ← PC + rel If V ∀ N = 0 then PC ← PC + reI If (dir: b) = 0 then PC ← PC + rel If (dir: b) = 1 then PC ← PC + rel (PC) ← (A) (PC) ← ext Vector call Subroutine call (PC) ← (A),(A) ← (PC) + 1 Return from subrountine Return form interrupt Table 5 Other Instructions (9 instructions) Operation TL – – – – – – – – – TH – – – – – – – – – AH – dH – – – – – – – NZVC –––– –––– –––– –––– –––– –––R –––S –––– –––– OP code 40 50 41 51 00 81 91 80 90 Mnemonic PUSHW A POPW A PUSHW IX POPW IX NOP CLRC SETC CLRI SETI ~ 4 4 4 4 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 53 54 MB89670R/670AR Series s INSTRUCTION MAP L L H H 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 NOP MULU A ROLC A 1 SWAP DIVU A CMP A 2 RET 3 RETI 4 5 6 7 8 9 SETI SETC A B C D E F PUSHW POPW MOV MOVW CLRI A A A,ext A,PS CLRB BBC INCW DECW JMP MOVW dir: 0 dir: 0,rel A A @A A,PC CLRB BBC INCW DECW MOVW MOVW dir: 1 dir: 1,rel SP SP SP ,A A,SP JMP CALL PUSHW POPW MOV MOVW CLRC addr16 addr16 IX IX ext,A PS,A ADDC A SUBC A XCH XOR AND OR A, T A A A MOV MOV CLRB BBC INCW DECW MOVW MOVW @A,T A,@A dir: 2 dir: 2,rel IX IX IX,A A,IX RORC CMPW ADDCW SUBCW XCHW XORW ANDW ORW MOVW MOVW CLRB BBC INCW DECW MOVW MOVW A A A A A, T A A A @A,T A,@A dir: 3 dir: 3,rel EP EP EP ,A A,EP MOV CMP ADDC SUBC A,#d8 A,#d8 A,#d8 A,#d8 XOR AND OR DAA A,#d8 A,#d8 A,#d8 DAS CLRB BBC MOVW MOVW MOVW XCHW dir: 4 dir: 4,rel A,ext ext,A A,#d16 A,PC MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP CLRB BBC MOVW MOVW MOVW XCHW A,dir A,dir A,dir A,dir dir,A A,dir A,dir A,dir dir,#d8 dir,#d8 dir: 5 dir: 5,rel A,dir dir,A SP ,#d16 A,SP MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP A,@IX +d A,@IX +d A,@IX +d A,@IX +d @IX +d,A A@,IX +d A,@IX +d A,@IX +d @IX +d,#d8 @IX +d,#d8 CLRB BBC MOVW MOVW MOVW XCHW dir: 6 dir: 6,rel A,@IX +d @IX +d,A IX,#d16 A,IX MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP CLRB BBC MOVW MOVW MOVW XCHW ,#d8 @EP ,#d8 A,@EP A,@EP A,@EP A,@EP @EP ,A A,@EP A,@EP A,@EP @EP dir: 7 dir: 7,rel A,@EP @EP ,A EP ,#d16 A,EP MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BNC A,R0 A,R0 A,R0 A,R0 R0,A A,R0 A,R0 A,R0 R0,#d8 R0,#d8 dir: 0 dir: 0,rel R0 R0 #0 rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BC A,R1 A,R1 A,R1 A,R1 R1,A A,R1 A,R1 A,R1 R1,#d8 R1,#d8 dir: 1 dir: 1,rel R1 R1 #1 MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BP A,R2 A,R2 A,R2 A,R2 R2,A A,R2 A,R2 A,R2 R2,#d8 R2,#d8 dir: 2 dir: 2,rel R2 R2 #2 MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BN A,R3 A,R3 A,R3 A,R3 R3,A A,R3 A,R3 A,R3 R3,#d8 R3,#d8 dir: 3 dir: 3,rel R3 R3 #3 rel rel rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BNZ A,R4 A,R4 A,R4 A,R4 R4,A A,R4 A,R4 A,R4 R4,#d8 R4,#d8 dir: 4 dir: 4,rel R4 R4 #4 rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BZ A,R5 A,R5 A,R5 A,R5 R5,A A,R5 A,R5 A,R5 R5,#d8 R5,#d8 dir: 5 dir: 5,rel R5 R5 #5 rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BGE A,R6 A,R6 A,R6 A,R6 R6,A A,R6 A,R6 A,R6 R6,#d8 R6,#d8 dir: 6 dir: 6,rel R6 R6 #6 rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BLT A,R7 A,R7 A,R7 A,R7 R7,A A,R7 A,R7 A,R7 R7,#d8 R7,#d8 dir: 7 dir: 7,rel R7 R7 #7 rel MB89670R/670AR Series s MASK OPTIONS MB89673R MB89673AR MB89675R MB89675AR MB89677AR Specify when ordering masking Selectable by pin Part number No. Specifying procedure Pull-up resistors P10 to P17, P30 to P37, P40 to P47, P70 to P76 Pull-up resistors P00 to P03 Pull-up resistors P04 to P07 Power-on reset With power-on reset Without power-on reset Oscillation stabilization time selection (at 10 MHz) 5 Approx. 218/FC (approx. 26.2 ms) Approx. 217/FC (approx. 13.1 ms) Approx. 214/FC (approx. 1.6 ms) Approx. 24/FC (approx. 0 ms) MB89P677A MB89PV670A Set with EPROM programmer Selectable by pin Selectable in 4-pin unit Selectable in 4-pin unit Selectable Setting not possible 1 2 3 4 Selectable by pin Selectable by pin Selectable Fixed to “without pull-up resistor” Fixed to “with power-on reset” Selectable Selectable Fixed to Approx. 218/FC (Approx. 26.2 ms) FC: Clock frequency 6 Reset pin output With reset output Without reset output Selectable Selectable Fixed to “with reset output” s ORDERING INFORMATION Part number MB89673RPF MB89673ARPF MB89675RPF MB89675ARPF MB89677ARPF MB89P677APF MB89673RPFM MB89673ARPFM MB89675RPFM MB89675ARPFM MB89677ARPFM MB89P677APFM MB89PV670ACF Package Remarks 80-pin Plastic QFP (FPT-80P-M06) 80-pin Plastic LQFP (FPT-80P-M11) 80-pin Ceramic MQFP (MQP-80C-P01) 55 MB89670R/670AR Series s PACKAGE DIMENSIONS 80-pin Plastic QFP (FPT-80P-M06) 23.90±0.40(.941±.016) 64 65 20.00±0.20(.787±.008) 41 40 3.35(.132)MAX (Mounting height) 0.05(.002)MIN (STAND OFF) 14.00±0.20 (.551±.008) INDEX 80 25 17.90±0.40 (.705±.016) 12.00(.472) REF 16.30±0.40 (.642±.016) "A" LEAD No. 1 24 0.80(.0315)TYP 0.35±0.10 (.014±.004) 0.16(.006) M 0.15±0.05(.006±.002) Details of "A" part 0.25(.010) "B" 0.10(.004) 18.40(.724)REF 22.30±0.40(.878±.016) 0.30(.012) 0.18(.007)MAX 0.58(.023)MAX Details of "B" part 0 10° 0.80±0.20 (.031±.008) C 1994 FUJITSU LIMITED F80010S-3C-2 Dimensions in mm (inches) 56 MB89670R/670AR Series 80-pin Plastic LQFP (FPT-80P-M11) 16.00±0.20(.630±.008)SQ 60 14.00±0.10(.551±.004)SQ 41 1.50 −0.10 +.008 .059 −.004 +0.20 (Mounting height) 61 40 12.35 (.486) REF 15.00 (.591) NOM 1 PIN INDEX 80 21 LEAD No. 1 20 "A" 0.30±0.10 (.012±.004) 0.13(.005) M Details of "A" part 0.127 −0.02 +.002 .005 −.001 +0.05 0.65(.0256)TYP 0.10±0.10 (STAND OFF) (.004±.004) 0.10(.004) 0 10˚ 0.50±0.20 (.020±.008) C 1995 FUJITSU LIMITED F80016S-1C-3 Dimensions in mm (inches) 57 MB89670R/670AR Series 80-pin Ceramic MQFP (MQP-80C-P01) 18.70(.736)TYP 12.00(.472)TYP 16.30±0.33 (.642±.013) 15.58±0.20 (.613±.008) 1.50(.059)TYP 1.00(.040)TYP 4.50(.177) TYP 1.20 –0.20 +.016 .047 –.008 +0.40 INDEX AREA 0.80±0.25 (.0315±.010) 0.80±0.25 (.0315±.010) 1.27±0.13 (.050±.005) 22.30±0.33 (.878±.013) 24.70(.972) TYP 0.30(.012) TYP 18.12±0.20 12.02(.473) (.713±.008) TYP 10.16(.400) 14.22(.560) TYP TYP INDEX AREA 18.40(.724) REF INDEX 6.00(.236) TYP 0.30(.012)TYP 7.62(.300)TYP 9.48(.373)TYP 11.68(.460)TYP 0.40±0.10 (.016±.004) 1.50(.059) TYP 1.00(.040) TYP 1.27±0.13 (.050±.005) 0.40±0.10 (.016±.004) 1.20 –0.20 +.016 .047 –.008 +0.40 0.15±0.05 8.70(.343) (.006±.002) MAX C 1994 FUJITSU LIMITED M80001SC-4-2 Dimensions in mm (inches) Dimensions in mm (inches) 58 MB89670R/670AR Series FUJITSU LIMITED All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan. F9803 © FUJITSU LIMITED Printed in Japan
MB89675AR 价格&库存

很抱歉,暂时无法提供与“MB89675AR”相匹配的价格&库存,您可以联系我们找货

免费人工找货