0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
2SJ389

2SJ389

  • 厂商:

    HITACHI-METALS

  • 封装:

  • 描述:

    2SJ389 - Silicon P Channel MOS FET - Hitachi Metals, Ltd

  • 数据手册
  • 价格&库存
2SJ389 数据手册
2SJ389 L , 2SJ389 S Silicon P Channel MOS FET Application DPAK–2 High speed power switching 4 4 Features • • • • Low on–resistance High speed switching Low drive current 4 V gate drive device can be driven from 5 V source • Suitable for Switching regulator, DC – DC converter • Avalanche Ratings 12 2, 4 12 3 3 1 3 1. Gate 2. Drain 3. Source 4. Drain Table 1 Absolute Maximum Ratings (Ta = 25°C) Item Drain to source voltage Gate to source voltage Drain current Drain peak current Body–drain diode reverse drain current Avalanche current Avalanche energy Channel dissipation Channel temperature Storage temperature Symbol VDSS VGSS ID ID(pulse)* IDR IAP*** EAR*** Pch** Tch Tstg Ratings –60 ±20 –10 –40 –10 –10 8.5 30 150 –55 to +150 Unit V V A A A A mJ W °C °C ——————————————————————————————————————————— ——————————————————————————————————————————— ——————————————————————————————————————————— ——————————————————————————————————————————— ——————————————————————————————————————————— ——————————————————————————————————————————— ——————————————————————————————————————————— ——————————————————————————————————————————— ——————————————————————————————————————————— ——————————————————————————————————————————— ——————————————————————————————————————————— * PW ≤ 10 µs, duty cycle ≤ 1 % ** Value at Tc = 25 °C *** Value at Tch = 25 °C, Rg ≥ 50 Ω 2SJ389 L , 2SJ389 S Table 2 Electrical Characteristics (Ta = 25°C) Item Drain to source breakdown voltage Gate to source breakdown voltage Gate to source leak current Zero gate voltage drain current Gate to source cutoff voltage Static drain to source on state resistance Symbol V(BR)DSS V(BR)GSS IGSS IDSS VGS(off) RDS(on) Min –60 Typ — Max — Unit V Test conditions ID = –10 mA, VGS = 0 IG = ±100 µA, VDS = 0 VGS = ±16 V, VDS = 0 VDS = –50 V, VGS = 0 ID = –1 mA, VDS = –10 V ——————————————————————————————————————————— ——————————————————————————————————————————— ±20 — — V ——————————————————————————————————————————— — — –1.0 — — — — 0.1 ±10 –100 –2.25 0.135 µA µA V Ω Ω ——————————————————————————————————————————— ——————————————————————————————————————————— ——————————————————————————————————————————— ID = –5 A VGS = –10 V * ID = –5 A VGS = –4 V * ID = –5 A VDS = –10 V * VDS = –10 V VGS = 0 f = 1 MHz ID = –5 A VGS = –10 V RL = 6 Ω ———————————————————————— — 0.14 0.2 ——————————————————————————————————————————— Forward transfer admittance |yfs| Ciss Coss Crss td(on) tr td(off) tf VDF trr 4 8 — S ——————————————————————————————————————————— Input capacitance Output capacitance Reverse transfer capacitance Turn–on delay time Rise time Turn–off delay time Fall time Body–drain diode forward voltage Body–drain diode reverse recovery time * Pulse Test — — — — — — — — 910 440 170 15 85 220 145 –1.0 — — — — — — — — pF pF pF ns ns ns ns V IF = –10 A, VGS = 0 IF = –10 A, VGS = 0, diF / dt = 50 A / µs ———————————————————————————————— ———————————————————————————————— ——————————————————————————————————————————— ———————————————————————————————— ———————————————————————————————— ———————————————————————————————— ——————————————————————————————————————————— ——————————————————————————————————————————— — 170 — µs ——————————————————————————————————————————— 2SJ389 L , 2SJ389 S Power vs. Temperature Derating 40 Pch (W) –200 –100 I D (A) –50 –20 –10 –5 Maximum Safe Operation Area 30 10 DC 10 0µ µs Channel Dissipation Drain Current PW Op 20 =1 1m 0m s( s s 10 tio 1s Operation in n( ho Tc –2 this area is = 2 t) 5° limited by R DS(on) C) –1 era –0.5 0 50 100 150 Tc (°C) 200 Ta = 25 °C –0.2 –1 –2 –5 –10 –20 –50 –100 Drain to Source Voltage V DS (V) Case Temperature Typical Output Characteristics –20 –10 V –5 V –4.5 V Pulse Test –4 V (A) –8 –10 Typical Transfer Characteristics V DS = –10 V Pulse Test I D (A) –16 –12 –3.5 V ID Drain Current –6 Drain Current –8 –3 V –4 75 °C 25 °C 0 –1 –2 –3 Gate to Source Voltage –4 –5 V GS (V) Tc = –25 °C –4 VGS = –2.5 V 0 –4 –8 –12 Drain to Source Voltage –16 –20 V DS (V) –2 2SJ389 L , 2SJ389 S Drain to Source Saturation Voltage vs. Gate to Source Voltage Drain to Source On State Resistance R DS(on) ( Ω ) –1.0 Drain to Source Saturation Voltage V DS(on) (V) Pulse Test Static Drain to Source on State Resistance vs. Drain Current 5 Pulse Test 2 1 -0.8 –0.6 I D = –5 A 0.5 0.2 -0.4 –2 A –1 A 0 –4 –8 12 Gate to Source Voltage –16 –20 V GS (V) VGS = –4 V –10 V –2 –5 –10 –20 –50 –100 Drain Current I D (A) –0.2 0.1 0.05 –1 Static Drain to Source on State Resistance R DS(on) ( Ω) Forward Transfer Admittance |y fs | (S) Static Drain to Source on State Resistance vs. Temperature 0.5 Pulse Test 0.4 Forward Transfer Admittance vs. Drain Current 50 20 10 Tc = –25 °C 5 25 °C 75 °C V DS = –10 V Pulse Test 0.3 –2, –1 A I D = –5 A V GS = –4 V –5, –2, –1 A –10 V 0.2 2 1 0.5 –0.1 –0.2 0.1 0 –40 0 40 80 120 160 Case Temperature Tc (°C) –0.5 –1 –2 –5 Drain Current I D (A) –10 2SJ389 L , 2SJ389 S 1000 Reverse Recovery Time trr (ns) 500 Body–Drain Diode Reverse Recovery Time Typical Capacitance vs. Drain to Source Voltage 10000 3000 1000 300 100 300 100 0 Ciss Coss Crss 200 100 50 20 Capacitance C (pF) 10 –0.1 –0.3 –1 –3 –10 –30 –100 Reverse Drain Current I DR (A) di / dt = 50 A / µs VGS = 0, Ta = 25 °C VGS = 0 f = 1 MHz –10 –20 –30 -40 –50 Drain to Source Voltage V DS (V) Dynamic Input Characteristics V DS (V) V DD = –10 V –25 V –50 V I D = –10 A V DS V DD = –50 V –25 V –10 V V GS V GS (V) 0 0 Switching Characteristics 1000 500 Switching Time t (ns) 200 100 50 tr 20 10 –0.1 –0.2 t d(on) –0.5 –1 –2 –5 Drain Current I D (A) –10 tf V GS = –10 V, V DD = –30 V PW = 5 µs, duty < 1 % t d(off) –20 –4 Drain to Source Voltage –40 –8 –60 –12 –80 –16 –20 100 –100 0 80 20 40 60 Gate Charge Qg (nc) Gate to Source Voltage 2SJ389 L , 2SJ389 S Reverse Drain Current vs. Source to Drain Voltage Pulse Test Reverse Drain Current I DR (A) –16 Repetive Avalanche Energy E AR (mJ) –20 10 Maximun Avalanche Energy vs. Channel Temperature Derating I AP = –10 A V DD = –25 V duty < 0.1 % Rg > 50 Ω 8 –12 V GS = –10 V –5 V 0, 5 V 6 –8 4 -4 2 0 25 0 –0.4 –0.8 –1.2 –1.6 –2.0 50 75 100 125 150 Source to Drain Voltage V SD (V) Channel Temperature Tch (°C) Avalanche Test Circuit and Waveform EAR = 1 2 • L • I AP • 2 VDSS VDSS – V DD V DS Monitor L I AP Monitor V (BR)DSS I AP VDD ID V DS Rg Vin –15 V D. U. T 50 Ω 0 VDD 2SJ389 L , 2SJ389 S Normalized Transient Thermal Impedance vs. Pulse Width 3 Normalized Transient Thermal Impedance γ s (t) Tc = 25°C 1 D=1 0.5 0.2 0.1 0.05 0.02 0.0 1 0.3 0.1 θ ch – c(t) = γ s (t) • θ ch – c θ ch – c = 4.17 °C/W, Tc = 25 °C uls e PDM PW T 0.03 1s h P ot D= PW T 0.01 10 µ 100 µ 1m 10 m Pulse Width 100 m PW (S) 1 10 Switching Time Test Circuit Vin Monitor D.U.T. RL Vout Monitor Vin 10% Waveforms 90% Vin –10 V 50 Ω V DD = 30 V Vout td(on) 90% 10% tr td(off) 90% 10% tf
2SJ389 价格&库存

很抱歉,暂时无法提供与“2SJ389”相匹配的价格&库存,您可以联系我们找货

免费人工找货