0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BB304M

BB304M

  • 厂商:

    HITACHI(日立)

  • 封装:

  • 描述:

    BB304M - Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier - Hitachi Semiconductor

  • 数据手册
  • 价格&库存
BB304M 数据手册
BB304M Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier ADE-208-605C (Z) 4th. Edition August 1998 Features • Build in Biasing Circuit; To reduce using parts cost & PC board space. • High gain; (PG = 29 dB typ. at f = 200 MHz) • Low noise characteristics; (NF = 1.2 dB typ. at f = 200 MHz) • Wide supply voltage range; Applicable with 5V to 9V supply voltage. • Withstanding to ESD; Build in ESD absorbing diode. Withstand up to 200V at C=200pF, Rs=0 conditions. Provide mini mold packages; MPAK-4(SOT-143mod) Outline MPAK-4 2 3 1 4 1. Source 2. Gate1 3. Gate2 4. Drain Note: 1. Marking is “DW–”. 2. BB304M is individual type number of HITACHI BBFET. BB304M Absolute Maximum Ratings (Ta = 25°C) Item Drain to source voltage Gate1 to source voltage Symbol VDS VG1S VG2S ID Pch Tch Tstg Ratings 12 +10 –0 Gate2 to source voltage Drain current Channel power dissipation Channel temperature Storage temperature ±10 25 150 150 –55 to +150 V mA mW °C °C Unit V V Electrical Characteristics (Ta = 25°C) Item Symbol Min 12 +10 ±10 — — 0.4 0.5 Typ — — — — — — — Max — — — +100 ±100 1.0 1.0 Unit V V V nA nA V V Test Conditions I D = 200µA, VG1S = VG2S = 0 I G1 = +10 µA, VG2S = VDS = 0 I G2 = ±10µA, VG1S = VDS = 0 VG1S = +9V, V G2S = VDS = 0 VG2S = ±9V, VG1S = VDS = 0 VDS = 5V, VG2S = 4V I D = 100µA VDS = 5V, VG1S = 5V I D = 100µA Drain to source breakdown voltage V(BR)DSS Gate1 to source breakdown voltage V(BR)G1SS Gate2 to source breakdown voltage V(BR)G2SS Gate1 to source cutoff current Gate2 to source cutoff current Gate1 to source cutoff voltage Gate2 to source cutoff voltage I G1SS I G2SS VG1S(off) VG2S(off) 2 BB304M Electrical Characteristics (Ta = 25°C) Item Input capacitance Output capacitance Symbol Min c iss c oss 2.3 0.9 0.003 9 — 22 — 24 — — — Typ 2.8 1.3 0.02 15 13 27 27 29 29 1.2 1.2 Max 3.6 2.0 0.05 19 — 34 — 32 — 1.9 — Unit pF pF pF mA mA mS mS dB dB dB dB VDS = 5V, VG1 = 5V, VG2S = 4V RG = 180kΩ VDS = 9V, VG1 = 9V, VG2S =6V RG = 470kΩ VDS = 5V, VG1 = 5V, VG2S =4V RG = 180kΩ, f = 1kHz VDS = 9V, VG1 = 9V, VG2S =6V RG = 470kΩ, f = 1kHz VDS = 5V, VG1 = 5V, VG2S =4V RG = 180kΩ, f = 200MHz VDS = 9V, VG1 = 9V, VG2S =6V RG = 470kΩ, f = 200MHz VDS = 5V, VG1 = 5V, VG2S =4V RG = 180kΩ, f = 200MHz VDS = 9V, VG1 = 9V, VG2S =6V RG = 470kΩ, f = 200MHz Test Conditions VDS = 5V, VG1 = 5V, VG2S =4V RG = 180kΩ, f = 1MHz Reverse transfer capacitance c rss Drain current I D(op) 1 I D(op) 2 Forward transfer admittance |yfs|1 |yfs|2 Power gain PG1 PG2 Noise figure NF1 NF2 3 BB304M Main Characteristics Test Circuit for Operating Items (I , |yfs|, Ciss, Coss, Crss, NF, PG) D(op) VG2 Gate 2 Gate 1 RG VG1 A ID Drain Source Power Gain, Noise Figure Test Circuit VT 1000p VG2 1000p VT 1000p 47k Input(50 ¶) L1 1000p 36p 1000p 47k BBFET L2 1000p 47k Output(50 ¶) 10p max 1000p 1SV70 RG 470k RFC 1SV70 1000p V D = VG1 Unit @Resistance @( ¶) @ @ Capacitance @(F) L1 : 1mm Enameled Copper Wire,Inside dia 10mm, 2Turns L2 : 1mm Enameled Copper Wire,Inside dia 10mm, 2Turns RFC : 1mm Enameled Copper Wire,Inside dia 5mm, 2Turns . 4 BB304M Maximum Channel Power Dissipation Curve Pch (mW) Typical Output Characteristics 25 I D (mA) 200 150 20 Channel Power Dissipation 15 100 Drain Current 10 50 5 RG 0 50 100 150 Ta (°C) 200 0 mbient Temperature 2 4 6 Drain to Source Voltage Drain Current vs. Gate2 to Source Voltage 25 V DS = V G1 = 9 V I D (mA) Drain Current vs. Gate1 Voltage 25 W I D (mA) 20 270 k 330 V DS = 9 V R G = 390 k W 20 6V 15 5V 4V 3V 2V 5 V G2S = 1 V 0 2 4 6 8 Gate1 Voltage V G1 (V) 10 kW 15 Drain Current 390 k W 10 5 RG 470 k W 560 k W 680 k W 820 k W 1M W = 1.5 M W Drain Current 10 0 1.2 2.4 3.8 Gate2 to Source Voltage 4.8 6.0 VG2S (V) 0k W 39 33 0 0 kW k W 82 27 V G2S = 6 V V G1 = VDS kW 0 47 W 0k 56 k W 0 68 0 kW W 1M W = 1.5 M 8 10 V DS (V) 5 BB304M Drain Current vs. Gate1 Voltege 25 25 V DS = 9 V R G = 470 k W Drain Current vs. Gate1 Voltege V DS = 9 V R G = 560 k W I D (mA) 20 I D (mA) 20 15 Drain Current 10 Drain Current 6V 5V 4V 3V 2V 15 10 6V 5V 4V 3V 2V V G2S = 1 V 5 V G2S = 1 V 0 2 4 6 8 Gate1 Voltage VG1 (V) 10 5 0 2 4 6 8 Q [ g1 d ‡ G1 V 10 (V) Forward Transfer Admittance |y fs | (mS) 30 Forward Transfer Admittance |y fs | (mS) Forward Transfer Admittance vs. Gate1 Voltage Forward Transfer Admittance vs. Gate1 Voltage 30 6V V DS = 9 V 5V R G = 470 k W 4V 24 f = 1 kHz 18 6V V DS = 9 V R G = 390 k W 5V 4V 24 f = 1 kHz 2V 18 3V 3V 2V 12 12 6 V G2S = 1 V 0 2 4 6 8 Gate1 Voltage VG1 (V) 10 6 V G2S = 1 V 0 2 4 6 8 Gate1 Voltage VG1 (V) 10 6 BB304M Forward Transfer Admittance vs. Gate1 Voltage Forward Transfer Admittance |y fs | (mS) Power Gain vs. Gate Resistance 40 30 V DS = 9 V R G = 560 k W f = 1 kHz 6V 5V 4V 35 Power Gain PG (dB) 24 18 3V 2V 30 25 20 15 V DS = 9 V V G1 = 9 V V G2S = 6 V f = 200 MHz 0.2 0.5 1 2 5 10 Gate Resistance R G (M W ) 12 6 V G2S = 1 V 0 2 4 6 8 Gate1 Voltage VG1 (V) 10 10 0.1 Noise Figure vs. Gate Resistance 4 Noise Figure NF (dB) Power Gain vs. Drain Current 40 3 Power Gain PG (dB) V DS = 9 V V G1 = 9 V V G2S = 6 V f = 200 MHz 35 30 25 20 15 V DS = 9 V V G1 = 9 V V G2S = 6 V R G = variable f = 200 MHz 5 10 15 20 25 30 2 1 0 0.1 0.2 0.5 1 2 5 10 10 0 Gate Resistance R G (M W) Drain Current ID (mA) 7 BB304M Noise Figure vs. Drain Current 4 V DS = 9 V V G1 = 9 V V G2S = 6 V R G = variable f = 200 MHz 30 25 20 15 10 5 0 0.1 V DS = 9 V V G1 = 9 V V G2S = 6 V 0.2 0.5 1 2 5 10 Drain Current vs. Gate Resistance 3 2 1 0 5 10 15 20 25 30 Drain Current I D (mA) Noise Figure NF (dB) Drain Current I D (mA) Gate Resistance R G (M W) Gain Reduction vs. Gate2 to Source Voltage 60 Gain Reduction GR (dB) Input Capacitance vs. Gate2 to Source Voltage 6 Input Capacitance Ciss (pF) 50 40 30 20 10 V DS = 9 V V G1 = 9 V V G2S = 6 V R G = 470 k W f = 200 MHz 5 4 3 2 1 0 V DS = 9 V V G1 = 9 V R G = 470 k W f = 1 MHz 1 2 3 4 5 6 0 1 2 3 4 5 6 7 Gate2 to Source Voltage V G2S (V) Gate2 to Source Voltage V G2S (V) 8 BB304M S11 Parameter vs. Frequency .8 .6 .4 3 .2 4 5 10 0 .2 .4 .6 .8 1 1.5 2 3 45 10 –10 –.2 –5 –4 –3 –.4 –.6 –.8 –1.5 –2 –120° –90° –60° –1 180° 0° 150° 30° 1 1.5 2 S21 Parameter vs. Frequency 90° 120° Scale: 1 / div. 60° –150° –30° Test Condition : V DS = 9 V , V G1 = 9 V V G2S = 6 V , R G = 470 k W 50 ‘ 1000 MHz (50 MHz step) Test Condition : V DS = 9 V , V G1 = 9 V V G2S = 6 V , R G = 470 k W 50 ‘ 1000 MHz (50 MHz step) S12 Parameter vs. Frequency 90° 120° S22 Parameter vs. Frequency .8 .6 .4 3 1 1.5 2 Scale: 0.002 / div. 60° 150° 30° .2 4 5 10 180° 0° 0 .2 .4 .6 .8 1 1.5 2 3 45 10 –10 –.2 –150° –30° –.4 –120° –90° –60° –.6 –.8 –1.5 –2 –1 –5 –4 –3 Test Condition : V DS = 9 V , V G1 = 9 V V G2S = 6 V , R G = 470 k W 50 ‘ 1000 MHz (50 MHz step) Test Condition : V DS = 9 V , V G1 = 9 V V G2S = 6 V , R G = 470 k W 50 ‘ 1000 MHz (50 MHz step) 9 BB304M Sparameter (VDS = VG1 = 9V, VG2S = 6V, RG = 470kΩ, Zo = 50Ω) S11 f (MHz) MAG 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 0.996 0.993 0.987 0.978 0.972 0.954 0.943 0.925 0.910 0.893 0.880 0.861 0.847 0.829 0.816 0.804 0.791 0.779 0.764 0.753 ANG –5.3 –10.9 –16.6 –21.9 –27.4 –33.2 –38.2 –43.2 –48.0 –52.5 –57.4 –62.1 –66.1 –69.9 –74.1 –78.2 –82.4 –86.1 –89.5 –92.4 S21 MAG 2.74 2.73 2.68 2.66 2.63 2.57 2.50 2.43 2.37 2.30 2.24 2.17 2.10 2.02 1.96 1.91 1.85 1.79 1.73 1.68 ANG 174.0 168.0 162.3 156.3 150.4 144.3 138.7 133.3 128.0 122.6 117.5 112.7 108.1 103.6 99.1 94.8 80.4 86.3 82.2 78.3 S12 MAG 0.00096 0.00130 0.00203 0.00285 0.00335 0.00385 0.00455 0.00488 0.00526 0.00522 0.00498 0.00512 0.00497 0.00455 0.00418 0.00372 0.00329 0.00275 0.00233 0.00258 ANG 98.6 84.4 83.6 72.3 69.7 68.3 63.2 55.4 59.8 56.1 53.2 49.1 53.4 53.6 51.6 55.7 62.4 73.0 82.4 105.1 S22 MAG 0.985 0.991 0.990 0.988 0.985 0.982 0.979 0.975 0.971 0.967 0.962 0.957 0.952 0.947 0.943 0.937 0.933 0.928 0.921 0.918 ANG –1.9 –4.5 –6.5 –9.4 –11.6 –14.0 –16.2 –18.4 –21.0 –23.0 –25.2 –27.3 –29.4 –31.6 –33.7 –35.8 –38.0 –40.0 –42.1 –44.2 10 BB304M Package Dimensions Unit: mm 2.8 – 0.1 + 0.3 0.65 – 0.3 + 0.1 1.9 0.95 0.95 0.4 – 0.05 + 0.1 0.4 – 0.05 + 0.1 0.16 + 0.1 – 0.06 3 2 + 0.2 2.8 – 0.6 4 0.4 – 0.05 0.95 1.8 + 0.1 1 0.6 – 0.05 0.85 0.65 – 0.3 + 0.1 + 0.1 0.3 + 0.2 1.1 – 0.1 1.5 0 ~ 0.1 Hitachi Code EIAJ JEDEC MPAK–4 SC–61AA — 11 BB304M Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & IC Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 2000 Sierra Point Parkway Brisbane, CA 94005-1897 Tel: (800) 285-1601 Fax: (303) 297-0447 Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: (89) 9 9180-0 Fax: (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: (1628) 585000 Fax: (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: (2) 2718-3666 Fax: (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: (2) 735 9218 Fax: (2) 730 0281 Telex: 40815 HITEC HX Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan. 12
BB304M 价格&库存

很抱歉,暂时无法提供与“BB304M”相匹配的价格&库存,您可以联系我们找货

免费人工找货