0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTC1543C

LTC1543C

  • 厂商:

    LINER

  • 封装:

  • 描述:

    LTC1543C - Software-Selectable Multiprotocol Transceiver - Linear Technology

  • 数据手册
  • 价格&库存
LTC1543C 数据手册
LTC1543 Software-Selectable Multiprotocol Transceiver FEATURES s s DESCRIPTIO s s s s Software-Selectable Transceiver Supports: RS232, RS449, EIA530, EIA530-A, V.35, V.36, X.21 TUV/Detecon Inc. Certified NET1 and NET2 Compliant (Test Report No. NET2/102201/97) TBR2 Compliant (Test Report No. CTR2/022701/98) Software-Selectable Cable Termination Using the LTC1344A Complete DTE or DCE Port with LTC1544, LTC1344A Operates from Single 5V Supply The LTC®1543 is a 3-driver/3-receiver multiprotocol transceiver that operates from a single 5V supply. The LTC1543 and LTC1544 form the core of a complete software-selectable DTE or DCE interface port that supports the RS232, RS449, EIA530, EIA530-A, V.35, V.36 or X.21 protocols. Cable termination may be implemented using the LTC1344A software-selectable cable termination chip or by using existing discrete designs. The LTC1543 runs from a single 5V supply using an internal charge pump that requires only five space-saving surface mounted capacitors. The part is available in a 28-lead SSOP surface mount package. , LTC and LT are registered trademarks of Linear Technology Corporation. APPLICATIO S s s s Data Networking CSU and DSU Data Routers TYPICAL APPLICATIO LL CTS DSR DTE or DCE Multiprotocol Serial Interface with DB-25 Connector DCD DTR RTS RXD RXC TXC SCTE TXD LTC1544 D4 R4 R3 R2 R1 D3 D2 D1 R3 R2 R1 LTC1543 D3 D2 D1 18 LL A (141) 13 5 CTS B CTS A (106) 10 8 DSR B DSR A (109) 22 6 DCD B DCD A (107) 23 20 19 4 DTR B DTR A (108) RTS B RTS A (105) SHIELD (101) 1 SG (102) 7 16 3 RXD B RXD A (104) 9 RXC B 17 RXC A (115) 12 15 11 24 14 SCTE B SCTE A (113) TXD B TXD A (103) TXC B TXC A (114) DB-25 CONNECTOR U LTC1344A 2 1543 TA01 U U 1 LTC1543 ABSOLUTE MAXIMUM RATINGS (Note 1) PACKAGE/ORDER INFORMATION TOP VIEW C1– C1+ VDD VCC D1 D2 D3 R1 R2 1 2 3 4 5 D1 6 7 8 9 R1 R2 R3 D2 D3 23 D1 B 22 D2 A 21 D2 B 20 D3/R1 A 19 D3/R1 B 18 R2 A 17 R2 B 16 R3 A 15 R3 B G PACKAGE 28-LEAD PLASTIC SSOP CHARGE PUMP 28 C2 + Supply Voltage ....................................................... 6.5V Input Voltage Transmitters ........................... – 0.3V to (VCC + 0.3V) Receivers ............................................... – 18V to 18V Logic Pins .............................. – 0.3V to (VCC + 0.3V) Output Voltage Transmitters ................. (VEE – 0.3V) to (VDD + 0.3V) Receivers ................................ – 0.3V to (VCC + 0.3V) Logic Pins .............................. – 0.3V to (VCC + 0.3V) VEE ........................................................ – 10V to 0.3V VDD ....................................................... – 0.3V to 10V Short-Circuit Duration Transmitter Output ..................................... Indefinite Receiver Output .......................................... Indefinite VEE .................................................................. 30 sec Operating Temperature Range LTC1543C .............................................. 0°C to 70°C LTC1543I ........................................... – 40°C to 85°C Storage Temperature Range ................ – 65°C to 150°C Lead Temperature (Soldering, 10 sec)................. 300°C ORDER PART NUMBER LTC1543CG LTC1543IG 27 C2 – 26 VEE 25 GND 24 D1 A R3 10 M0 11 M1 12 M2 13 DCE/DTE 14 TJMAX = 150°C, θJA = 65°C/ W Consult factory for Military grade parts. ELECTRICAL CHARACTERISTICS SYMBOL Supplies ICC VCC Supply Current (DCE Mode, All Digital Pins = GND or VCC) PARAMETER VCC = 5V (Notes 2, 3) MIN TYP 13 100 20 126 20 40 120 230 600 140 q q CONDITIONS RS530, RS530-A, X.21 Modes, No Load RS530, RS530-A, X.21 Modes, Full Load V.35 Mode, No Load V.35 Mode, Full Load V.28 Mode, No Load V.28 Mode, Full Load No-Cable Mode RS530, RS530-A, X.21 Modes, Full Load V.35 Mode, Full Load V.28 Mode, Full Load Any Mode, No Load V.28 Mode, with Load V.28 Mode, with Load, IDD = 10mA V.28, V.35 Modes, No Load V.28 Mode, Full Load V.35 Mode, Full Load RS530, RS530-A, X.21 Modes, Full Load No-Cable Mode or Power-Up to Turn On q q MAX UNITS mA mA mA mA mA mA µA mW mW mW V V V V V V V kHz ms V q q q q 130 170 75 500 PD Internal Power Dissipation (DCE Mode) V+ Positive Charge Pump Output Voltage 8.0 8.0 9.4 8.7 6.5 – 9.6 – 8.5 – 6.7 – 5.7 150 2 V– Negative Charge Pump Output Voltage q q q – 8.0 – 5.5 – 4.5 fOSC tr VIH VIL Charge Pump Oscillator Frequency Supply Rise Time Logic Input High Voltage Logic Input Low Voltage Logic Inputs and Outputs 2 0.8 V 2 U W U U WW W LTC1543 ELECTRICAL CHARACTERISTICS SYMBOL IIN PARAMETER Logic Input Current VCC = 5V (Notes 2, 3) MIN q q q q q q q CONDITIONS D1, D2, D3 M0, M1, M2, DCE = GND (LTC1543C) M0, M1, M2, DCE = GND (LTC1543I) M0, M1, M2, DCE = VCC IO = – 4mA IO = 4mA 0V ≤ VO ≤ VCC M0 = M1 = M2 = VCC, 0V ≤ VO ≤ VCC RL = 1.95k (Figure 1) RL = 50Ω (Figure 1) RL = 50Ω (Figure 1) RL = 50Ω (Figure 1) RL = 50Ω (Figure 1) RL = 50Ω (Figure 1) VOUT = GND – 0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled (Figures 2, 6) (LTC1543C) (Figures 2, 6) (LTC1543I) (Figures 2, 6) (LTC1543C) (Figures 2, 6) (LTC1543I) (Figures 2, 6) (LTC1543C) (Figures 2, 6) (LTC1543I) (Figures 2, 6) (LTC1543C) (Figures 2, 6) (LTC1543I) (Figures 2, 6) – 7V ≤ VCM ≤ 7V – 7V ≤ VCM ≤ 7V – 10V ≤ VA,B ≤ 10V – 10V ≤ VA,B ≤ 10V (Figures 2, 7) (Figures 2, 7) (LTC1543C) (Figures 2, 7) (LTC1543I) (Figures 2, 7) (LTC1543C) (Figures 2, 7) (LTC1543I) (Figures 2, 7) (LTC1543C) (Figures 2, 7) (LTC1543I) Open Circuit With Load, – 4V ≤ VCM ≤ 4V (Figure 3) VA, B = 0V VA, B = 0V – 0.25V ≤ VA, B ≤ 0.25V q q q q q q q q q q q q q q q q q q q q q q q q TYP – 50 – 50 4.5 0.3 MAX ± 10 – 30 – 30 ± 10 0.8 50 UNITS µA µA µA µA V V mA µA – 100 – 120 3 – 50 VOH VOL IOSR IOZR V.11 Driver VODO VODL ∆VOD VOC ∆VOC ISS IOZ t r, t f t PLH t PHL ∆t t SKEW VTH ∆VTH IIN RIN t r, t f t PLH t PHL ∆t V.35 Driver VOD IOH IOL IOZ Output High Voltage Output Low Voltage Output Short-Circuit Current Three-State Output Current Open Circuit Differential Output Voltage Loaded Differential Output Voltage Change in Magnitude of Differential Output Voltage Common Mode Output Voltage Change in Magnitude of Common Mode Output Voltage Short-Circuit Current Output Leakage Current Rise or Fall Time Input to Output Input to Output Input to Output Difference, tPLH – tPHL Output to Output Skew Input Threshold Voltage Input Hysteresis Input Current (A, B) Input Impedance Rise or Fall Time Input to Output Input to Output Input to Output Difference, tPLH – tPHL ±1 ±5 0.5VODO ±2 0.67VODO 0.2 3 0.2 150 ±1 2 2 20 20 20 20 0 0 15 15 40 40 40 40 3 3 3 – 0.2 15 15 30 15 50 50 50 50 0 0 4 4 80 90 80 90 16 21 ± 10.00 ± 0.66 – 9.0 13 ± 100 0.2 40 ± 0.66 ± 100 25 35 65 75 65 75 12 17 V V V V V V mA µA ns ns ns ns ns ns ns ns ns V mV mA kΩ ns ns ns ns ns ns ns V V mA mA µA V.11 Receiver Differential Output Voltage Transmitter Output High Current Transmitter Output Low Current Transmitter Output Leakage Current q q q q q ± 0.44 – 13 9.0 ± 0.55 – 11 11 ±1 3 LTC1543 ELECTRICAL CHARACTERISTICS SYMBOL t r , tf t PLH t PHL ∆t t SKEW VTH ∆VTH IIN RIN t r, t f tPLH tPHL ∆t V.28 Driver VO ISS IOZ SR t PLH t PHL VTHL VTLH ∆VTH RIN t r , tf tPLH tPHL Output Voltage Short-Circuit Current Output Leakage Current Slew Rate Input to Output Input to Output Input Low Threshold Voltage Input High Threshold Voltage Receiver Input Hysteresis Receiver Input Impedance Rise or Fall Time Input to Output Input to Output – 15V ≤ VA ≤ 15V (Figures 5, 9) (Figures 5, 9) (Figures 5, 9) q q VCC = 5V (Notes 2, 3) MIN q q q q q q PARAMETER Rise or Fall Time Input to Output Input to Output Input to Output Difference, tPLH – tPHL Output to Output Skew Differential Receiver Input Threshold Voltage Receiver Input Hysteresis Receiver Input Current (A, B) Receiver Input Impedance Rise or Fall Time Input to Output Input to Output Input to Output Difference, tPLH – tPHL CONDITIONS (Figures 3, 6) (Figures 3, 6) (LTC1543C) (Figures 3, 6) (LTC1543I) (Figures 3, 6) (LTC1543C) (Figures 3, 6) (LTC1543I) (Figures 3, 6) (LTC1543C) (Figures 3, 6) (LTC1543I) (Figures 3, 6) – 2V ≤ (VA + VB)/2 ≤ 2V (Figure 3) – 2V ≤ (VA + VB)/2 ≤ 2V (Figure 3) – 10V ≤ VA,B ≤ 10V – 10V ≤ VA,B ≤ 10V (Figures 3, 7) (Figures 3, 7) (LTC1543C) (Figures 3, 7) (LTC1543I) (Figures 3, 7) (LTC1543C) (Figures 3, 7) (LTC1543I) (Figures 3, 7) (LTC1543C) (Figures 3, 7) (LTC1543I) Open Circuit RL = 3k (Figure 4) VOUT = GND – 0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled RL = 3k, CL = 2500pF (Figures 4, 8) RL = 3k, CL = 2500pF (Figures 4, 8) RL = 3k, CL = 2500pF (Figures 4, 8) q q q q q q q q q q TYP 5 35 35 35 35 4 4 4 MAX 65 75 65 75 16 21 UNITS ns ns ns ns ns ns ns ns 20 20 20 20 0 0 V.35 Receiver – 0.2 15 15 30 15 50 50 50 50 0 0 4 4 80 90 80 90 16 21 ± 10 ± 150 ±1 4 1.5 1.5 1.2 2 0 3 1.2 0.05 5 15 60 160 100 250 0.3 7 ± 100 30 2.5 3 0.8 0.2 40 ± 0.66 V mV mA kΩ ns ns ns ns ns ns ns V V mA µA V/µs µs µs V V V kΩ ns ns ns q q q q q q q ±5 ± 8.5 V.28 Receiver q q q q The q denotes specifications which apply over the full operating temperature range. Note 1: Absolute Maximum Ratings are those beyond which the safety of a device may be impaired. Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are referenced to device ground unless otherwise specified. Note 3: All typicals are given for VCC = 5V, C1 = C2 = CVCC = 1µF, CVDD = CVEE = 3.3µF tantalum capacitors and TA = 25°C. 4 LTC1543 PIN FUNCTIONS C1 – (Pin 1): Capacitor C1 Negative Terminal. Connect a 1µF capacitor between C1+ and C1–. C1 + (Pin 2): Capacitor C1 Positive Terminal. Connect a 1µF capacitor between C1 + and C1 –. VDD (Pin 3): Generated Positive Supply Voltage for V.28. Connect a 1µF capacitor to ground. VCC (Pin 4): Positive Supply Voltage Input. 4.75V ≤ VCC ≤ 5.25V. Bypass with a 1µF capacitor to ground. D1 (Pin 5): TTL Level Driver 1 Input. D2 (Pin 6): TTL Level Driver 2 Input. D3 (Pin 7): TTL Level Driver 3 Input. R1 (Pin 8): CMOS Level Receiver 1 Output. R2 (Pin 9): CMOS Level Receiver 2 Output. R3 (Pin 10): CMOS Level Receiver 3 Output. M0 (Pin 11): TTL Level Mode Select Input 0 with Pull-Up to VCC. M1 (Pin 12): TTL Level Mode Select Input 1 with Pull-Up to VCC. M2 (Pin 13): TTL Level Mode Select Input 2 with Pull-Up to VCC. DCE/DTE (Pin 14): TTL Level Mode Select Input with PullUp to VCC. R3 B (Pin 15): Receiver 3 Noninverting Input with Pull-Up to VCC. R3 A (Pin 16): Receiver 3 Inverting Input. R2 B (Pin 17): Receiver 2 Noninverting Input. R2 A (Pin 18): Receiver 2 Inverting Input. D3/R1 B (Pin 19): Receiver 1 Noninverting Input and Driver 3 Noninverting Output. D3/R1 A (Pin 20): Receiver 1 Inverting Input and Driver 3 Inverting Output. D2 B (Pin 21): Driver 2 Noninverting Output. D2 A (Pin 22): Driver 2 Inverting Output. D1 B (Pin 23): Driver 1 Noninverting Output. D1 A (Pin 24): Driver 1 Inverting Output. GND (Pin 25): Ground. VEE (Pin 26): Negative Supply Voltage. Connect a 3.3µF capacitor to GND. C2 – (Pin 27): Capacitor C2 Negative Terminal. Connect a 1µF capacitor between C2 + and C2 –. C2 + (Pin 28): Capacitor C2 Positive Terminal. Connect a 1µF capacitor between C2 + and C2 – . TEST CIRCUITS A RL 50Ω VOD RL 50Ω B VOC CL 100pF CL 100pF Figure 1. V.11 Driver Test Circuit U U U B A RL 100Ω B A R 15pF 1543 F01 1543 F02 Figure 2. V.11 Driver/Receiver AC Test Circuit 5 LTC1543 TEST CIRCUITS 50Ω D B VOD A 50Ω 50Ω A 15pF 1543 F03 125Ω VCM 50Ω 125Ω B R Figure 3. V.35 Driver/Receiver Test Circuit D A D A A R 15pF 1543 F04 CL RL 1543 F04 Figure 4. V.10/V.28 Driver Test Circuit Figure 5. V.10/V.28 Receiver Test Circuit ODE SELECTIO LTC1543 MODE NAME Not Used (Default V.11) RS530A RS530 X.21 V.35 RS449/V.36 V.28/RS232 No Cable Not Used (Default V.11) RS530A RS530 X.21 V.35 RS449/V.36 V.28/RS232 No Cable M2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 6 U M1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 M0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 DCE/DTE 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 D1 V.11 V.11 V.11 V.11 V.35 V.11 V.28 Z V.11 V.11 V.11 V.11 V.35 V.11 V.28 Z D2 V.11 V.11 V.11 V.11 V.35 V.11 V.28 Z V.11 V.11 V.11 V.11 V.35 V.11 V.28 Z D3 Z Z Z Z Z Z Z Z V.11 V.11 V.11 V.11 V.35 V.11 V.28 Z R1 V.11 V.11 V.11 V.11 V.35 V.11 V.28 Z Z Z Z Z Z Z Z Z R2 V.11 V.11 V.11 V.11 V.35 V.11 V.28 Z V.11 V.11 V.11 V.11 V.35 V.11 V.28 Z R3 V.11 V.11 V.11 V.11 V.35 V.11 V.28 Z V.11 V.11 V.11 V.11 V.35 V.11 V.28 Z W LTC1543 SWITCHI G TI E WAVEFOR S 5V D 0V VO B–A –VO A VO B t SKEW t SKEW 1543 F06 1.5V t PLH 50% tr 90% 10% f = 1MHz : t r ≤ 10ns : t f ≤ 10ns 1/2 VO Figure 6. V.11, V.35 Driver Propagation Delays VOD2 B–A –VOD2 VOH R VOL 0V t PLH 1.5V f = 1MHz : t r ≤ 10ns : t f ≤ 10ns Figure 7. V.11, V.35 Receiver Propagation Delays 3V D 0V VO A –VO tf 1.5V t PHL 3V 0V –3V –3V tr 0V 1.5V t PLH 3V 1543 F08 Figure 8. V.10, V.28 Driver Propagation Delays VIH A VIL VOH R VOL 1.3V t PHL 1.7V t PLH 2.4V 0.8V 1543 F09 Figure 9. V.10, V.28 Receiver Propagation Delays W W U 1.5V t PHL VDIFF = V(A) – V(B) 90% tf 50% 10% INPUT 0V t PHL OUTPUT 1.5V 1543 F07 7 LTC1543 APPLICATIONS INFORMATION Overview The LTC1543/LTC1544 form the core of a complete software-selectable DTE or DCE interface port that supports the RS232, RS449, EIA530, EIA530-A, V.35, V.36 or X.21 protocols. Cable termination may be implemented using the LTC1344A software-selectable cable termination chip or by using existing discrete designs. A complete DCE-to-DTE interface operating in EIA530 mode is shown in Figure 10. The LTC1543 of each port is used to generate the clock and data signals. The LTC1544 is used to generate the control signals along with LL (Local Loopback).The LTC1344A cable termination chip is used only for the clock and data signals because they must support V.35 cable termination. The control signals do not need any external resistors. Mode Selection The interface protocol is selected using the mode select pins M0, M1 and M2 (see the Mode Selection table). For example, if the port is configured as a V.35 interface, the mode selection pins should be M2 = 1, M1 = 0, M0 = 0. For the control signals, the drivers and receivers will operate in V.28 (RS232) electrical mode. For the clock and data signals, the drivers and receivers will operate in V.35 electrical mode. The DCE/DTE pin will configure the port for DCE mode when high, and DTE when low. The interface protocol may be selected simply by plugging the appropriate interface cable into the connector. The mode pins are routed to the connector and are left unconnected (1) or wired to ground (0) in the cable as shown in Figure 11. The internal pull-up current sources will ensure a binary 1 when a pin is left unconnected and that the LTC1543/ LTC1544 and the LTC1344A enter the no-cable mode when the cable is removed. In the no-cable mode the LTC1543/LTC1544 supply current drops to less than 200µA and all LTC1543/LTC1544 driver outputs and LTC1344A resistive terminations are forced into a high impedance state. The mode selection may also be accomplished by using jumpers to connect the mode pins to ground or VCC. Cable Termination Traditional implementations have included switching resistors with expensive relays, or requiring the user to change termination modules every time the interface standard has changed. Custom cables have been used with the termination in the cable head or separate terminations are built on the board and a custom cable routes the signals to the appropriate termination. Switching the terminations with FETs is difficult because the FETs must remain off even though the signal voltage is beyond the supply voltage for the FET drivers or the power is off. Using the LTC1344A along with the LTC1543/LTC1544 solves the cable termination switching problem. Via software control, the LTC1344A provides termination for the V.10 (RS423), V.11 (RS422), V.28 (RS232) and V.35 electrical protocols. V.10 (RS423) Interface A typical V.10 unbalanced interface is shown in Figure 12. A V.10 single-ended generator output A with ground C is connected to a differential receiver with inputs A' connected to A, and input C' connected to the signal return ground C. Usually, no cable termination is required for V.10 interfaces, but the receiver inputs must be compliant with the impedance curve shown in Figure 13. The V.10 receiver configuration in the LTC1544 is shown in Figure 14. In V.10 mode switch S3 inside the LTC1544 is turned off.The noninverting input is disconnected inside the LTC1544 receiver and connected to ground. The cable termination is then the 30k input impedance to ground of the LTC1544 V.10 receiver. 8 U W U U LTC1543 APPLICATIONS INFORMATION DTE SERIAL CONTROLLER TXD LTC1543 D1 LTC1344A TXD LTC1344A 103Ω SCTE D2 D3 TXC R1 RXC R2 RXD R3 LTC1544 RTS D1 RTS DTR D2 D3 DCD R1 DSR R2 CTS R3 LL D4 R4 Figure 10. Complete Multiprotocol Interface in EIA530 Mode U W U U DCE LTC1543 R3 SERIAL CONTROLLER TXD SCTE 103Ω R2 SCTE R1 103Ω TXC D3 TXC 103Ω RXC D2 RXC 103Ω RXD D1 RXD LTC1544 R3 RTS DTR R2 DTR R1 DCD D3 DCD DSR D2 DSR CTS LL D1 CTS R4 D4 LL 1543 F10 9 LTC1543 APPLICATIONS INFORMATION LATCH LTC1344A DCE/ DTE M2 22 (DATA) M0 LTC1543 M1 M2 DCE/DTE 11 12 13 14 23 M1 M0 (DATA) 24 1 CONNECTOR 21 LTC1544 DCE/DTE M2 M1 M0 (DATA) 14 13 12 11 1543 F11 Figure 11: Single Port DCE V.35 Mode Selection in the Cable GENERATOR Figure 12. Typical V.10 Interface 10 U A C W U U NC NC CABLE BALANCED INTERCONNECTING CABLE LOAD CABLE TERMINATION A' RECEIVER C' 1543 F12 LTC1543 APPLICATIONS INFORMATION IZ 3.25mA A' A R8 6k S3 –10V –3V VZ 3V 10V B' C' B GND R4 20k R7 10k R5 20k R6 10k RECEIVER LTC1544 –3.25mA Figure 13. V.10 Receiver Input Impedance V.11 (RS422) Interface A typical V.11 balanced interface is shown in Figure 15. A V.11 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C', inputs A' connected to A, B' connected to B. The V.11 interface has a differential termination at the receiver end that has a minimum value of 100Ω. The termination resistor is optional in the V.11 specification, but for the high speed clock and data lines, the termination is required to prevent reflections from corrupting the data. The receiver inputs must also be compliant with the impedance curve shown in Figure 13. In V.11 mode, all switches are off except S1 inside the LTC1344A which connects a 103Ω differential termination impedance to the cable as shown in Figure 16. GENERATOR U W U U 1543 F14 1543 F13 Figure 14. V.10 Receiver Configuration BALANCED INTERCONNECTING CABLE LOAD CABLE TERMINATION RECEIVER A A' 100Ω MIN B C B' C' 1543 F15 Figure 15. Typical V.11 Interface A' A R1 51.5Ω S1 S2 R2 51.5Ω B' C' GND 1543 F16 LTC1344A R8 6k S3 R5 20k R6 10k LTC1543 LTC1544 RECEIVER R3 124Ω B R4 20k R7 10k Figure 16. V.11 Receiver Configuration 11 LTC1543 APPLICATIONS INFORMATION V.28 (RS232) Interface A typical V.28 unbalanced interface is shown in Figure 17. A V.28 single-ended generator output A with ground C is connected to a single-ended receiver with input A' connected to A, ground C' connected via the signal return ground C. In V.28 mode all switches are off except S3 inside the LTC1543/LTC1544 which connects a 6k (R8) impedance to ground in parallel with 20k (R5) plus 10k (R6) for a combined impedance of 5k as shown in Figure 18. The noninverting input is disconnected inside the LTC1543/ LTC1544 receiver and connected to a TTL level reference voltage for a 1.4V receiver trip point. BALANCED INTERCONNECTING CABLE GENERATOR LOAD CABLE TERMINATION RECEIVER A A' 50Ω 125Ω C C' Figure 17. Typical V.28 Interface A' A R1 51.5Ω S1 S2 R2 51.5Ω B' C' GND 1543 F18 LTC1344A R8 6k S3 R5 20k R6 10k LTC1543 LTC1544 A' A LTC1543 R8 6k S3 R5 20k R6 10k RECEIVER RECEIVER R1 51.5Ω S1 S2 R2 51.5Ω B' R3 124Ω B R4 20k R7 10k Figure 18. V.28 Receiver Configuration 12 U W U U V.35 Interface A typical V.35 balanced interface is shown in Figure 19. A V.35 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C', inputs A' connected to A, B' connected to B. The V.35 interface requires a T or delta network termination at the receiver end and the generator end. The receiver differential impedance measured at the connector must be 100Ω ±10Ω, and the impedance between shorted terminals (A' and B') and ground C' must be 150Ω ±15Ω. In V.35 mode, both switches S1 and S2 inside the LTC1344A are on, connecting the T network impedance as shown in Figure 20. The switch in the LTC1543 is off. The 30k input BALANCED INTERCONNECTING CABLE GENERATOR LOAD CABLE TERMINATION RECEIVER A A' 125Ω 50Ω 1543 F17 50Ω B C B' C' 50Ω 1543 F19 Figure 19. Typical V.35 Interface LTC1344A R3 124Ω B GND R4 20k R7 10k C' 1543 F20 Figure 20. V.35 Receiver Configuration LTC1543 APPLICATIONS INFORMATION impedance of the receiver is placed in parallel with the T network termination, but does not affect the overall input impedance significantly. The generator differential impedance must be 50Ω to 150Ω and the impedance between shorted terminals (A and B) and ground C must be 150Ω ±15Ω. For the generator termination, switches S1 and S2 are both on and the top side of the center resistor is brought out to a pin so it can be bypassed with an external capacitor to reduce common mode noise as shown in Figure 21. Any mismatch in the driver rise and fall times or skew in the driver propagation delays will force current through the center termination resistor to ground, causing a high frequency common mode spike on the A and B terminals. The common mode spike can cause EMI problems that are reduced by capacitor C1 which shunts much of the common mode energy to ground rather than down the cable. A LTC1344A 51.5Ω S1 ON V.35 DRIVER 124Ω S2 ON 51.5Ω B C1 100pF C 1543 F21 5V C4 1µF 4 VCC GND 25 Figure 22. Charge Pump + Figure 21. V.35 Driver Using the LTC1344A U W U U No-Cable Mode The no-cable mode (M0 = M1 = M2 = 1) is intended for the case when the cable is disconnected from the connector. The charge pump, bias circuitry, drivers and receivers are turned off, the driver outputs are forced into a high impedance state, and the supply current drops to less than 200µA. Charge Pump The LTC1543 uses an internal capacitive charge pump to generate VDD and VEE as shown in Figure 22. A voltage doubler generates about 8V on VDD and a voltage inverter generates about – 7.5V for VEE. Four 1µF surface mounted tantalum or ceramic capacitors are required for C1, C2, C3 and C4. The VEE capacitor C5 should be a minimum of 3.3µF. All capacitors are 16V and should be placed as close as possible to the LTC1543 to reduce EMI. Receiver Fail-Safe All LTC1543/LTC1544 receivers feature fail-safe operation in all modes. If the receiver inputs are left floating or shorted together by a termination resistor, the receiver output will always be forced to a logic high. 3 C3 1µF 2 C1 1µF 1 VDD C1+ LTC1543 C1– C2 + C2 – VEE 28 27 26 C5 3.3µF C2 1µF 1543 F22 13 LTC1543 APPLICATIONS INFORMATION DTE vs DCE Operation The DCE/DTE pin acts as an enable for Driver 3/Receiver 1 in the LTC1543, and Driver 3/Receiver 1 and Driver 4/ Receiver 4 in the LTC1544. The INVERT pin in the LTC1544 allows the Driver 4/Receiver 4 enable to be high or low true polarity. The LTC1543/LTC1544 can be configured for either DTE or DCE operation in one of two ways: a dedicated DTE or DCE port with a connector of appropriate gender or a port with one connector that can be configured for DTE or DCE operation by rerouting the signals to the LTC1543/LTC1544 using a dedicated DTE cable or dedicated DCE cable. A dedicated DTE port using a DB-25 male connector is shown in Figure 23. The interface mode is selected by logic outputs from the controller or from jumpers to either VCC or GND on the mode select pins. A dedicated DCE port using a DB-25 female connector is shown in Figure 24. A port with one DB-25 connector, but can be configured for either DTE or DCE operation is shown in Figure 25. The configuration requires separate cables for proper signal routing in DTE or DCE operation. For example, in DTE mode, the TXD signal is routed to Pins 2 and 14 via Driver 1 in the LTC1543. In DCE mode, Driver 1 now routes the RXD signal to Pins 2 and 14. Multiprotocol Interface with RL, LL, TM and a DB-25 Connector If the RL, LL and TM signals are implemented, there are not enough drivers and receivers available in the LTC1543/ LTC1544. In Figure 26, the required control signals are handled by the LTC1544 but the clock/data signals use the LTC1343. The LTC1343 has an additional single-ended driver/receiver pair that can handle two more optional control signals such as TM and LL. Cable-Selectable Multiprotocol Interface A cable-selectable multiprotocol DTE/DCE interface is shown in Figure 27. The select lines M0, M1 and DCE/DTE are brought out to the connector. The mode is selected by the cable by wiring M0 (connector Pin 18) and M1 (connector Pin 21) and DCE/DTE (connector Pin 25) to ground (connector Pin 7) or letting them float. If M0, M1 or DCE/ DTE is floating, internal pull-up current sources will pull the signals to VCC. The select bit M2 is hard wired to VCC. When the cable is pulled out, the interface will go into the no-cable mode. Compliance Testing A European standard EN 45001 test report is available for the LTC1543/LTC1544/LTC1344A chipset. A copy of the test report is available from LTC or TUV Telecom Services Inc. (formerly Detecon Inc.) The title of the report is: Test Report No. NET2/102201/97. The address of TUV Telecom Services Inc. is: TUV Telecom Services Inc. Type Approval Division 1775 Old Highway 8, Ste 107 St. Paul, MN 55112 USA Tel. +1 (612) 639-0775 Fax. +1 (612) 639-0873 14 U W U U LTC1543 TYPICAL APPLICATIONS VCC 5V 14 3 C3 1µF 1 C1 1µF C5 1µF TXD SCTE 5 2 4 LTC1543 D1 D2 CHARGE PUMP 28 27 26 25 C4 3.3µF C2 1µF 2 C12 1µF 5467 9 10 VEE DCE/DTE M2 M1 M0 24 23 22 21 6 7 D3 20 15 12 17 9 3 16 7 1 TXC 8 R1 19 18 RXC RXD 9 R2 17 16 10 11 12 13 14 M0 M1 M2 R3 15 DCE/DTE C10 1µF C9 1µF VCC 1 VCC 2 VDD 3 D1 VEE GND 28 27 26 C11 1µF 4 19 20 23 RTS 25 24 DTR 4 D2 23 5 D3 LTC1544 22 21 20 R2 19 18 R3 17 16 8 10 6 22 5 13 18 DCD 6 7 R1 DSR CTS 8 10 9 11 12 13 14 M0 M1 M2 LL R4 D4 INVERT 15 NC DCE/DTE M2 M1 M0 Figure 23. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector + U C6 C7 C8 100pF 100pF 100pF 3 8 11 12 13 LTC1344A C13 1µF VCC LATCH 21 16 15 18 17 19 20 22 23 24 1 2 14 24 11 TXD A (103) TXD B SCTE A (113) SCTE B TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG SHIELD DB-25 MALE CONNECTOR RTS A (105) RTS B DTR A (108) DTR B DCD A (109) DCD B DSR A (107) DSR B CTS A (106) CTS B LL A (141) 1543 F23 15 LTC1543 TYPICAL APPLICATIONS VCC 5V 14 3 C3 1µF 1 C1 1µF C5 1µF RXD RXC 5 2 4 LTC1543 D1 D2 CHARGE PUMP 28 27 26 25 C2 1µF C4 3.3µF C13 1µF VCC LATCH 21 2 C12 1µF VEE 5467 9 10 DCE/DTE M2 M1 16 15 18 17 19 20 22 23 24 1 VCC 3 16 17 9 RXD A (104) RXD B RXC A (115) RXC B 24 23 22 21 6 7 D3 20 15 12 24 11 2 14 7 1 M0 TXC 8 R1 19 18 SCTE TXD 9 R2 17 16 10 11 12 13 NC 14 M0 M1 M2 R3 15 DCE/DTE C10 1µF C9 1µF VCC 1 VCC 2 VDD 3 D1 VEE GND 28 27 26 C11 1µF 5 13 6 22 CTS 25 24 DSR 4 D2 23 5 D3 LTC1544 22 21 20 R2 19 18 R3 17 16 8 10 20 23 4 19 18 DCD 6 7 R1 DTR RTS 8 10 9 11 12 13 NC 14 M0 M1 M2 LL R4 D4 INVERT 15 NC DCE/DTE M2 M1 M0 Figure 24. Controller-Selectable DCE Port with DB-25 Connector 16 + U C6 C7 C8 100pF 100pF 100pF 3 8 11 12 13 LTC1344A TXC A (114) TXC B SCTE A (113) SCTE B TXD A (103) TXD B SGND (102) SHIELD (101) DB-25 FEMALE CONNECTOR CTS A (106) CTS B DSR A (107) DSR B DCD A (109) DCD B DTR A (108) DTR B RTS A (105) RTS B LL A (141) 1543 F24 LTC1543 TYPICAL APPLICATIONS VCC 5V 14 3 C3 1µF 1 C1 1µF C5 1µF DTE_TXD/DCE_RXD DTE_SCTE/DCE_RXC 5 2 4 LTC1543 D1 D2 CHARGE PUMP 28 27 26 25 C4 3.3µF C2 1µF 2 C12 1µF 5467 9 10 VEE DCE/DTE M2 M1 M0 C13 1µF VCC LATCH 21 24 23 22 21 6 7 D3 20 19 18 R2 17 16 R3 M0 M1 1 15 15 12 17 9 3 16 7 DTE_TXC/DCE_TXC 8 S R1 S DTE_RXC/DCE_SCTE 9 DTE_RXD/DCE_TXD 10 11 12 13 M2 14 DCE/DTE C10 1µF C9 1µF VCC 1 VCC 2 VDD 3 D1 VEE GND 28 27 26 C11 1µF 4 19 20 23 DTE_RTS/DCE_CTS 25 24 DTE_DTR/DCE_DSR 4 D2 23 5 D3 LTC1544 22 21 20 R2 19 18 R3 17 16 8 10 6 22 5 13 18 DTE_DCD/DCE_DCD DTE_DSR/DCE_DTR 6 7 R1 DTE_CTS/DCE_RTS 8 10 9 11 12 13 14 M0 M1 M2 DTE_LL/DCE_LL R4 D4 INVERT 15 NC DCE/DTE DCE/DTE M2 M1 M0 Figure 25. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector + U C6 C7 C8 100pF 100pF 100pF 3 8 11 12 13 LTC1344A 16 15 18 17 19 20 22 23 24 1 2 14 24 11 DTE TXD A TXD B SCTE A SCTE B DCE RXD A RXD B RXC A RXC B TXC A TXC B RXC A RXC B RXD A RXD B SG SHIELD TXC A TXC B SCTE A SCTE B TXD A TXD B DB-25 CONNECTOR RTS A RTS B DTR A DTR B CTS A CTS B DSR A DSR B DCD A DCD B DSR A DSR B CTS A CTS B LL A DCD A DCD B DTR A DTR B RTS A RTS B LL A 1543 F25 17 LTC1543 TYPICAL APPLICATIONS VCC 5V 14 1 C3 1µF 2 C1 1µF C5 1µF DTE_LL/DCE_TM DTE_TXD/DCE_RXD 4 3 8 LTC1343 5 D1 D2 39 38 6 7 37 36 DTE_SCTE/DCE_RXC D3 35 34 9 10 12 13 D4 33 32 R1 31 30 R2 29 28 R3 27 26 DCE M2 M1 M0 EC 21 19 18 17 VCC 40 GND 24 LB 23 C9 1µF VCC 1 VCC 2 VDD 3 D1 28 27 26 DTE_RTS/DCE_CTS 25 24 D2 23 C11 1µF CHARGE PUMP 44 43 42 41 C4 3.3µF C2 1µF 2 C12 1µF VEE C13 1µF VCC DCE/DTE M2 M1 5467 9 10 16 15 18 17 19 20 22 23 24 1 DTE LL A TXD A TXD B SCTE A SCTE B DCE TM A RXD A RXD B RXC A RXC B M0 18 2 14 24 11 15 12 17 9 3 16 25 7 1 DTE_TXC/DCE_TXC DTE_RXC/DCE_SCTE 14 DTE_RXD/DCE_TXD 15 DTE_TM/DCE_LL 16 20 22 11 25 R1 100k CTRL LATCH R4 INVERT 423SET LB C10 1µF VEE GND DTE_DTR/DCE_DSR 4 5 D3 LTC1544 22 21 20 R2 19 18 R3 17 16 8 10 6 22 5 13 21 DTE_DCD/DCE_DCD DTE_DSR/DCE_DTR 6 7 R1 DTE_CTS/DCE_RTS 8 10 9 11 12 13 14 M0 M1 M2 DTE_RL/DCE_RL R4 D4 INVERT 15 NC DCE/DTE DCE/DTE M2 M1 M0 Figure 26. Controller-Selectable Multiprotocol DTE/DCE Port with RL, LL, TM and DB-25 Connector 18 + U C6 C7 C8 100pF 100pF 100pF 3 8 11 12 13 LTC1344A LATCH 21 TXC A TXC B RXC A RXC B RXD A RXD B TM A SG SHIELD TXC A TXC B SCTE A SCTE B TXD A TXD B LL A DB-25 CONNECTOR 4 19 20 23 RTS A RTS B DTR A DTR B CTS A CTS B DSR A DSR B DCD A DCD B DSR A DSR B CTS A CTS B RL A DCD A DCD B DTR A DTR B RTS A RTS B RL A 1543 F26 LTC1543 TYPICAL APPLICATIONS C6 C7 C8 100pF 100pF 100pF 3 VCC 5V 14 3 C3 1µF 1 C1 1µF C5 1µF DTE_TXD/DCE_RXD DTE_SCTE/DCE_RXC 5 2 4 LTC1543 D1 D2 CHARGE PUMP 28 27 26 25 C4 3.3µF C2 1µF 2 C12 1µF 5467 9 10 VEE C13 1µF VCC LATCH 21 8 11 12 13 LTC1344A DCE/DTE M2 M1 16 15 18 17 19 20 22 23 24 1 VCC 2 14 24 11 DTE TXD A TXD B SCTE A SCTE B DCE RXD A RXD B RXC A RXC B 24 23 22 21 6 7 8 9 D3 20 15 12 17 9 3 16 7 1 R1 TXC A TXC B RXC A RXC B RXD A RXD B SG SHIELD DB-25 CONNECTOR TXC A TXC B SCTE A SCTE B TXD A TXD B 19 18 R2 17 16 R3 M0 M1 M2 DCE/DTE 15 DTE_TXC/DCE_TXC DTE_RXC/DCE_SCTE DTE_RXD/DCE_TXD 10 11 12 NC 13 14 C10 1µF C9 1µF VCC 1 VCC 2 VDD 3 D1 VEE GND 28 27 26 C11 1µF M0 25 DCE/DTE 21 M1 18 M0 4 RTS A 19 RTS B 20 DTR A 23 DTR B DTE_RTS/DCE_CTS 25 24 DTE_DTR/DCE_DSR 4 D2 23 5 D3 LTC1544 22 21 20 R2 19 18 R3 17 16 CABLE WIRING FOR MODE SELECTION MODE V.35 RS449, V.36 RS232 15 NC PIN 18 PIN 7 NC PIN 7 PIN 21 PIN 7 PIN 7 NC CABLE WIRING FOR DTE/DCE SELECTION MODE PIN 25 DTE PIN 7 DCE NC 8 10 6 22 5 13 DTE_DCD/DCE_DCD DTE_DSR/DCE_DTR 6 7 R1 DTE_CTS/DCE_RTS 8 10 9 11 12 NC 13 14 M0 M1 M2 R4 D4 DCE/DTE INVERT Figure 27. Cable-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. + U CTS A CTS B DSR A DSR B DCD A DCD B DSR A DSR B CTS A CTS B DCD A DCD B DTR A DTR B RTS A RTS B 1543/44 F27 19 LTC1543 PACKAGE DESCRIPTION 0.205 – 0.212** (5.20 – 5.38) 0.005 – 0.009 (0.13 – 0.22) 0.022 – 0.037 (0.55 – 0.95) *DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE RELATED PARTS PART NUMBER LTC1321 LTC1334 LTC1343 LTC1344A LTC1345 LTC1346A LTC1544 DESCRIPTION Dual RS232/RS485 Transceiver Single 5V RS232/RS485 Multiprotocol Transceiver Software-Selectable Multiprotocol Transceiver Software-Selectable Cable Terminator Single Supply V.35 Transceiver Dual Supply V.35 Transceiver Software-Selectable Multiprotocol Transceiver 20 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900 q FAX: (408) 434-0507 q www.linear-tech.com U Dimensions in inches (millimeters) unless otherwise noted. G Package 28-Lead Plastic SSOP (0.209) (LTC DWG # 05-08-1640) 0.397 – 0.407* (10.07 – 10.33) 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0.301 – 0.311 (7.65 – 7.90) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0.068 – 0.078 (1.73 – 1.99) 0 ° – 8° 0.0256 (0.65) BSC 0.010 – 0.015 (0.25 – 0.38) 0.002 – 0.008 (0.05 – 0.21) G28 SSOP 0694 COMMENTS Two RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs Two RS232 Driver/Receiver or Four RS232 Driver/Receiver Pairs 4-Driver/4-Receiver for Data and Clock Signals Perfect for Terminating the LTC1543 3-Driver/3-Receiver for Data and Clock Signals 3-Driver/3-Receiver for Data and Clock Signals Companion to LTC1543 for Control Signals 1543fs, sn1543x LT/TP 0898 4K • PRINTED IN USA © LINEAR TECHNOLOGY CORPORATION 1998
LTC1543C 价格&库存

很抱歉,暂时无法提供与“LTC1543C”相匹配的价格&库存,您可以联系我们找货

免费人工找货