0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF5S9080NBR1

MRF5S9080NBR1

  • 厂商:

    NXP(恩智浦)

  • 封装:

    TO272BB

  • 描述:

    FET RF 65V 960MHZ TO-272-4

  • 数据手册
  • 价格&库存
MRF5S9080NBR1 数据手册
Document Number: MRF5S9080N Rev. 1, 5/2006 Freescale Semiconductor Technical Data RF Power Field Effect Transistors N - Channel Enhancement - Mode Lateral MOSFETs MRF5S9080NR1 MRF5S9080NBR1 Designed for GSM and GSM EDGE base station applications with frequencies from 869 to 960 MHz. Suitable for TDMA, CDMA, and multicarrier amplifier applications. GSM Application • Typical GSM Performance: VDD = 26 Volts, IDQ = 600 mA, Pout = 80 Watts CW, Full Frequency Band (869 - 894 MHz or 921 - 960 MHz). Power Gain — 18.5 dB Drain Efficiency — 60% GSM EDGE Application • Typical GSM EDGE Performance: VDD = 26 Volts, IDQ = 550 mA, Pout = 36 Watts Avg., Full Frequency Band (869 - 894 MHz or 921 - 960 MHz). Power Gain — 19 dB Drain Efficiency — 42% Spectral Regrowth @ 400 kHz Offset = - 63 dBc Spectral Regrowth @ 600 kHz Offset = - 78 dBc EVM — 2.5% rms • Capable of Handling 10:1 VSWR, @ 26 Vdc, 960 MHz, 80 Watts CW Output Power Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Qualified Up to a Maximum of 32 VDD Operation • Integrated ESD Protection • 200_C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. 869 - 960 MHz, 80 W, 26 V GSM/GSM EDGE LATERAL N - CHANNEL RF POWER MOSFETs CASE 1486 - 03, STYLE 1 TO - 270 WB - 4 PLASTIC MRF5S9080NR1 CASE 1484 - 04, STYLE 1 TO - 272 WB - 4 PLASTIC MRF5S9080NBR1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain- Source Voltage VDSS - 0.5, +65 Vdc Gate- Source Voltage VGS - 0.5, +15 Vdc Storage Temperature Range Tstg - 65 to +150 °C Operating Junction Temperature TJ 200 °C Symbol Value (1,2) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 79°C, 80 W CW Case Temperature 80°C, 36 W CW RθJC 0.50 0.54 °C/W 1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2006. All rights reserved. RF Device Data Freescale Semiconductor MRF5S9080NR1 MRF5S9080NBR1 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1B (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 26 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate- Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 500 nAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 400 μAdc) VGS(th) 2 2.8 3.5 Vdc Gate Quiescent Voltage (VDS = 26 Vdc, ID = 600 mAdc, Measured in Functional Test) VGS(Q) 3.5 3.9 4.5 Vdc Drain- Source On - Voltage (VGS = 10 Vdc, ID = 2 Adc) VDS(on) — 0.27 0.3 Vdc Reverse Transfer Capacitance (VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 1.8 — pF Output Capacitance (VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 600 — pF Off Characteristics On Characteristics Dynamic Characteristics (1) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ = 600 mA, Pout = 80 W CW, f = 960 MHz Gps 17 Drain Efficiency ηD Input Return Loss IRL P1dB Power Gain Pout @ 1 dB Compression Point 18.5 20 dB 55 60 — % — - 15 -9 dB 80 90 — W Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ = 550 mA, Pout = 36 W Avg., 869- 894 MHz, 920 - 960 MHz GSM EDGE Modulation Power Gain Gps — 19 — dB Drain Efficiency ηD — 42 — % Error Vector Magnitude EVM — 2.5 — % rms Spectral Regrowth at 400 kHz Offset SR1 — - 63 — dBc Spectral Regrowth at 600 kHz Offset SR2 — - 77 — dBc 1. Part is internally matched on input. MRF5S9080NR1 MRF5S9080NBR1 2 RF Device Data Freescale Semiconductor R1 VSUPPLY VBIAS + R2 C1 C4 C7 C16 R3 Z1 Z2 Z3 Z4 Z8 Z9 C5 C2 Z10 C21 C10 Z11 RF OUTPUT C11 Z5 C15 C12 C8 C18 Z7 RF INPUT Z12 Z6 C17 C19 C20 DUT C13 C14 Z13 C9 Z1 Z2 Z3 Z4 Z5 Z6 Z7 1.220″ x 0.087″ Microstrip 1.110″ x 0.087″ Microstrip 0.536″ x 0.087″ Microstrip 0.310″ x 0.087″ Microstrip 0.430″ x 0.591″ Microstrip 1.567″ x 0.059″ Microstrip 0.734″ x 0.788″ Microstrip Z8 Z9 Z10 Z11 Z12, Z13 PCB C6 C3 0.138″ x 0.087″ Microstrip 0.411″ x 0.087″ Microstrip 0.403″ x 0.087″ Microstrip 0.560″ x 0.087″ Microstrip 1.693″ x 0.087″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 Figure 1. MRF5S9080NR1(NBR1) Test Circuit Schematic — 900 MHz Table 6. MRF5S9080NR1(NBR1) Test Circuit Component Designations and Values — 900 MHz Part Description Part Number Manufacturer C1, C2, C3 4.7 μF Chip Capacitors (1812) C4532X5R1H475MT TDK C4, C5, C6 10 nF 200B Chip Capacitors 200B103MW ATC C7, C8, C9 33 pF 600B Chip Capacitors 600B330JW ATC C10, C11 22 pF 600B Chip Capacitors 600B220FW ATC C12 1.8 pF 600B Chip Capacitor 600B1R8BW ATC C13 9.1 pF 600B Chip Capacitor 600B9R1BW ATC C14, C17, C18 8.2 pF 600B Chip Capacitors 600B8R2BW ATC C15, C16 10 pF 600B Chip Capacitors 600B100FW ATC C19 4.7 pF 600B Chip Capacitor 600B4R7BW ATC C20 3.6 pF 600B Chip Capacitor 600B3R6BW ATC C21 220 μF, 63 V Electrolytic Capacitor, Axial 13668221 Philips R1, R2 10 kΩ, 1/4 W Chip Resistors (1206) R3 10 Ω, 1/4 W Chip Resistor (1206) MRF5S9080NR1 MRF5S9080NBR1 RF Device Data Freescale Semiconductor 3 C21 VGG C1 C8 C4 C7 R1 VDD C5 R2 C2 C16 C10 C13 C14 CUT OUT AREA R3 C18 C19 C15 C11 C20 C17 C3 C12 C9 C6 MRF5S9080N/NB Rev. 1 Figure 2. MRF5S9080NR1(NBR1) Test Circuit Component Layout — 900 MHz MRF5S9080NR1 MRF5S9080NBR1 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS - 900 MHz Gps, POWER GAIN (dB) 19 80 60 ηD 40 18.5 Gps 18 17.5 17 20 VDD = 26 Vdc IDQ = 600 mA 0 IRL 16.5 860 ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) 19.5 −20 880 900 920 940 960 980 1000 −40 1020 f, FREQUENCY (MHz) Figure 3. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 80 Watts CW 19 60 40 ηD 20 18.8 18.6 VDD = 26 Vdc IDQ = 600 mA Gps 0 IRL −20 18.4 18.2 860 880 900 920 940 960 980 1000 ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) 19.2 −40 1020 f, FREQUENCY (MHz) Figure 4. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 36 Watts CW 20 20 IDQ = 900 mA 19 750 mA Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 19 18 600 mA 450 mA 17 300 mA 16 15 VDD = 26 Vdc f = 940 MHz 18 17 16 32 V 16 V 15 24 V 20 V 28 V 14 IDQ = 600 mA f = 940 MHz VDD = 12 V 13 14 1 10 100 1000 0 50 100 150 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) CW Figure 5. Power Gain versus Output Power Figure 6. Power Gain versus Output Power 200 MRF5S9080NR1 MRF5S9080NBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS - 900 MHz 21 Gps 40 85_C 17 30 ηD 16 20 VDD = 26 Vdc IDQ = 600 mA f = 940 MHz 14 1 10 100 6 VDD = 28 Vdc IDQ = 550 mA 5 Pout = 53 W Avg. 4 3 2 13 W Avg. 1 3 W Avg. 900 910 920 930 940 950 960 970 Pout, OUTPUT POWER (WATTS) CW f, FREQUENCY (MHz) Figure 7. Power Gain and Drain Efficiency versus CW Output Power Figure 8. EVM versus Frequency TC = 85_C 80 60 4 40 ηD EVM 2 20 25_C −30_C 0 1 0 100 10 980 −50 SR @ 400 kHz −55 VDD = 28 Vdc IDQ = 550 mA f = 940 MHz EDGE Modulation Pout = 53 W Avg. −60 −65 −70 13 W Avg. 3 W Avg. −75 SR @ 600 kHz −80 53 W Avg. 13 W Avg. −85 3 W Avg. −90 900 910 920 930 940 950 960 970 Pout, OUTPUT POWER (WATTS) AVG. f, FREQUENCY (MHz) Figure 9. EVM and Drain Efficiency versus Output Power Figure 10. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency 980 −55 TC = 85_C VDD = 26 Vdc IDQ = 600 mA f = 940 MHz EDGE Modulation −50 −55 SPECTRAL REGROWTH @ 600 kHz (dBc) −45 SPECTRAL REGROWTH @ 400 kHz (dBc) 6 0 0 1000 VDD = 26 Vdc IDQ = 600 mA f = 940 MHz EDGE Modulation 8 10 SPECTRAL REGROWTH @ 400 kHz and 600 kHz (dBc) 18 50 25_C ηD, DRAIN EFFICIENCY (%) 85_C 19 15 EVM, ERROR VECTOR MAGNITUDE (% rms) 60 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 25_C TC = −30_C 20 EVM, ERROR VECTOR MAGNITUDE (% rms) 70 −30_C −30_C 25_C −60 −65 −70 −75 VDD = 26 Vdc IDQ = 600 mA f = 940 MHz EDGE Modulation −60 TC = 85_C 25_C −65 −30_C −70 −75 −80 −85 −80 0 20 40 60 80 100 0 20 40 60 80 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 11. Spectral Regrowth @ 400 kHz versus Output Power Figure 12. Spectral Regrowth @ 600 kHz versus Output Power 100 MRF5S9080NR1 MRF5S9080NBR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS MTTF FACTOR (HOURS X AMPS2) 1.E+09 1.E+08 1.E+07 90 100 110 120 130 140 150 160 170 180 190 200 210 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application. Figure 13. MTTF Factor versus Junction Temperature GSM TEST SIGNAL −10 −20 Reference Power VBW = 30 kHz Sweep Time = 70 ms RBW = 30 kHz −30 −40 (dB) −50 −60 −70 −80 −90 400 kHz 400 kHz 600 kHz 600 kHz −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz Figure 14. EDGE Spectrum MRF5S9080NR1 MRF5S9080NBR1 RF Device Data Freescale Semiconductor 7 f = 990 MHz f = 845 MHz Zload f = 990 MHz Zsource f = 845 MHz Zo = 10 Ω VDD = 26 Vdc, IDQ = 600 mA, Pout = 80 W CW f MHz Zsource Ω Zload Ω 845 5.31 - j5.59 1.18 - j0.34 865 6.07 - j4.16 1.09 - j0.29 890 5.05 - j1.99 1.22 - j0.29 920 3.47 - j0.81 1.10 - j0.21 960 2.64 - j0.88 1.05 - j0.15 990 1.89 - j1.14 0.91 - j0.18 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance — 900 MHz MRF5S9080NR1 MRF5S9080NBR1 8 RF Device Data Freescale Semiconductor R1 VSUPPLY VBIAS + R2 C1 C4 C7 C16 R3 Z1 Z2 Z3 Z4 Z8 Z9 C5 C21 C2 Z10 C10 Z11 RF OUTPUT C11 Z5 C15 C12 C8 C18 Z7 RF INPUT Z12 Z6 C17 C19 C20 DUT C13 C14 Z13 + C9 Z1 Z2 Z3 Z4 Z5 Z6 Z7 1.220″ x 0.087″ Microstrip 1.110″ x 0.087″ Microstrip 0.536″ x 0.087″ Microstrip 0.310″ x 0.087″ Microstrip 0.430″ x 0.591″ Microstrip 1.567″ x 0.059″ Microstrip 0.734″ x 0.788″ Microstrip Z8 Z9 Z10 Z11 Z12, Z13 PCB C6 C3 C22 0.138″ x 0.087″ Microstrip 0.411″ x 0.087″ Microstrip 0.403″ x 0.087″ Microstrip 0.560″ x 0.087″ Microstrip 1.693″ x 0.087″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 Figure 16. MRF5S9080NR1(NBR1) Test Circuit Schematic — 800 MHz Table 7. MRF5S9080NR1(NBR1) Test Circuit Component Designations and Values — 800 MHz Part Description Part Number Manufacturer C1, C2, C3 4.7 μF Chip Capacitors (1812) C4532X5R1H475MT TDK C4, C5, C6 10 nF 200B Chip Capacitors 200B103MW ATC C7, C8, C9 33 pF 600B Chip Capacitors 600B330JW ATC C10, C11 22 pF 600B Chip Capacitors 600B220FW ATC C12 1.8 pF 600B Chip Capacitor 600B1R8BW ATC C13 9.1 pF 600B Chip Capacitor 600B9R1BW ATC C14, C17, C18 8.2 pF 600B Chip Capacitors 600B8R2BW ATC C15, C16 10 pF 600B Chip Capacitors 600B100FW ATC C19 4.7 pF 600B Chip Capacitor 600B4R7BW ATC C20 3.6 pF 600B Chip Capacitor 600B3R6BW ATC C21, C22 220 μF, 50 V Electrolytic Capacitors, Radial 678D227M050DM3D Vishay R1, R2 10 kΩ, 1/4 W Chip Resistors (1206) R3 10 Ω, 1/4 W Chip Resistor (1206) MRF5S9080NR1 MRF5S9080NBR1 RF Device Data Freescale Semiconductor 9 C1 C8 C4 C7 VGG R1 VDD C5 R2 C21 C16 C10 C13 C12 C14 CUT OUT AREA R3 C18 C19 C15 C2 C11 C20 C17 C22 C3 C9 C6 MRF5S9080N/NB Rev. 1 Figure 17. MRF5S9080NR1(NBR1) Test Circuit Component Layout — 800 MHz MRF5S9080NR1 MRF5S9080NBR1 10 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS - 800 MHz 80 ηD Gps, POWER GAIN (dB) 19 60 40 18 Gps 17 20 16 0 IRL 15 −20 VDD = 26 Vdc IDQ = 600 mA 14 820 840 ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) 20 −40 860 880 900 940 920 f, FREQUENCY (MHz) Figure 18. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 80 Watts ηD 60 40 20 Gps 20 18 16 IRL 0 −20 14 ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) 22 VDD = 26 Vdc IDQ = 600 mA 12 820 −40 840 860 880 900 920 940 f, FREQUENCY (MHz) Pout = 50 W Avg. 4 3 20 W Avg. 2 5 W Avg. 1 VDD = 28 Vdc IDQ = 550 mA 0 850 860 7 70 VDD = 28 Vdc IDQ = 550 mA f = 880 MHz EDGE Modulation 6 5 60 50 40 4 ηD 30 3 EVM 20 2 TC = 25_C 1 0 870 880 890 900 910 1 10 f, FREQUENCY (MHz) Pout, OUTPUT POWER (WATTS) AVG. Figure 20. EVM versus Frequency Figure 21. EVM and Drain Efficiency versus Output Power ηD, DRAIN EFFICIENCY (%) 5 EVM, ERROR VECTOR MAGNITUDE (% rms) EVM, ERROR VECTOR MAGNITUDE (% rms) Figure 19. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 36 Watts 10 0 100 MRF5S9080NR1 MRF5S9080NBR1 RF Device Data Freescale Semiconductor 11 −45 −50 SPECTRAL REGROWTH @ 400 kHz (dBc) SPECTRAL REGROWTH @ 400 kHz and 600 kHz (dB TYPICAL CHARACTERISTICS - 800 MHz Pout = 50 W Avg. −55 SR @ 400 kHz −60 −65 20 W Avg. 5 W Avg. VDD = 28 Vdc IDQ = 550 mA f = 880 MHz EDGE Modulation −70 −75 −80 SR @ 600 kHz 50 W Avg. 20 W Avg. 5 W Avg. VDD = 28 Vdc IDQ = 550 mA f = 880 MHz EDGE Modulation −50 TC = 25_C −55 −60 −65 −70 −75 −85 840 850 860 870 880 890 900 910 1 920 100 10 f, FREQUENCY (MHz) Pout, OUTPUT POWER (WATTS) AVG. Figure 22. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency Figure 23. Spectral Regrowth @ 400 kHz versus Output Power SPECTRAL REGROWTH @ 600 kHz (dBc) −65 VDD = 28 Vdc IDQ = 550 mA f = 880 MHz EDGE Modulation −70 −75 TC = 25_C −80 −85 1 10 100 Pout, OUTPUT POWER (WATTS) AVG. Figure 24. Spectral Regrowth @ 600 kHz versus Output Power MRF5S9080NR1 MRF5S9080NBR1 12 RF Device Data Freescale Semiconductor NOTES MRF5S9080NR1 MRF5S9080NBR1 RF Device Data Freescale Semiconductor 13 NOTES MRF5S9080NR1 MRF5S9080NBR1 14 RF Device Data Freescale Semiconductor NOTES MRF5S9080NR1 MRF5S9080NBR1 RF Device Data Freescale Semiconductor 15 PACKAGE DIMENSIONS E1 B A 2X E3 GATE LEAD DRAIN LEAD D D1 4X e 4X aaa b1 C A M 2X 2X D2 c1 E H F ZONE J DATUM PLANE A A1 2X A2 E2 NOTE 7 E5 E4 4 D3 3 ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ E5 BOTTOM VIEW C SEATING PLANE PIN 5 NOTE 8 1 2 CASE 1486 - 03 ISSUE C TO - 270 WB - 4 PLASTIC MRF5S9080NR1 NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M−1994. 3. DATUM PLANE −H− IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS “D" AND “E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS “D" AND “E1" DO INCLUDE MOLD MISMATCH AND ARE DETER− MINED AT DATUM PLANE −H−. 5. DIMENSION “b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE “b1" DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. DATUMS −A− AND −B− TO BE DETERMINED AT DATUM PLANE −H−. 7. DIMENSION A2 APPLIES WITHIN ZONE “J" ONLY. 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. DIM A A1 A2 D D1 D2 D3 E E1 E2 E3 E4 E5 F b1 c1 e aaa INCHES MIN MAX .100 .104 .039 .043 .040 .042 .712 .720 .688 .692 .011 .019 .600 −−− .551 .559 .353 .357 .132 .140 .124 .132 .270 −−− .346 .350 .025 BSC .164 .170 .007 .011 .106 BSC .004 STYLE 1: PIN 1. 2. 3. 4. 5. MILLIMETERS MIN MAX 2.54 2.64 0.99 1.09 1.02 1.07 18.08 18.29 17.48 17.58 0.28 0.48 15.24 −−− 14 14.2 8.97 9.07 3.35 3.56 3.15 3.35 6.86 −−− 8.79 8.89 0.64 BSC 4.17 4.32 0.18 0.28 2.69 BSC 0.10 DRAIN DRAIN GATE GATE SOURCE MRF5S9080NR1 MRF5S9080NBR1 16 RF Device Data Freescale Semiconductor MRF5S9080NR1 MRF5S9080NBR1 RF Device Data Freescale Semiconductor 17 MRF5S9080NR1 MRF5S9080NBR1 18 RF Device Data Freescale Semiconductor MRF5S9080NR1 MRF5S9080NBR1 RF Device Data Freescale Semiconductor 19 How to Reach Us: Home Page: www.freescale.com E - mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 Fax: 303 - 675- 2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved. MRF5S9080NR1 MRF5S9080NBR1 Document Number: MRF5S9080N Rev. 1, 5/2006 20 RF Device Data Freescale Semiconductor
MRF5S9080NBR1 价格&库存

很抱歉,暂时无法提供与“MRF5S9080NBR1”相匹配的价格&库存,您可以联系我们找货

免费人工找货