0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL28486FAZ-T7

ISL28486FAZ-T7

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    SSOP16

  • 描述:

    IC OPAMP GP 4 CIRCUIT 16QSOP

  • 数据手册
  • 价格&库存
ISL28486FAZ-T7 数据手册
DATASHEET ISL28286, ISL28486 FN6312 Rev 1.00 June 28, 2007 Dual and Quad Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op Amp The ISL28286 and ISL28486 are dual and quad channel micropower operational amplifiers optimized for single supply operation over the 2.4V to 5V range. They can be operated from one lithium cell or two Ni-Cd batteries. For equivalent performance in a single channel op amp reference EL8186. These devices feature an Input Range Enhancement Circuit (IREC) which enables them to maintain CMRR performance for input voltages 10% above the positive supply rail and down to the negative supply. The output operation is rail to rail. The ISL28286 and ISL28486 draw minimal supply current while meeting excellent DC-accuracy, AC-performance, noise and output drive specifications. The ISL28286 contains a power down enable pin that reduces the power supply current to less than 4µA max in the disabled state. Features • Low power 120µA typical supply current (ISL28286) • 600µV maximum offset voltage • 500pA typical input bias current • 400kHz typical gain-bandwidth product • 115dB typical PSRR and CMRR • Single supply operation down to 2.4V • Input is capable of swinging above V+ and to V- (ground sensing) • Rail-to-rail input and output (RRIO) • Pb-free plus anneal available (RoHS compliant) Applications • Battery- or solar-powered systems Pinouts • 4mA to 25mA current loops ISL28286 (10 LD MSOP) TOP VIEW IN+_A 1 • Handheld consumer products 10 IN-_A + EN_A 2 9 OUT_A V- 3 8 V+ + - EN_B 4 • Medical devices • Thermocouple amplifiers • Photodiode pre-amps • pH probe amplifiers 7 OUT_B IN+_B 5 6 IN-_B Ordering Information PART NUMBER (Note) ISL28486 (16 LD QSOP) TOP VIEW OUT_A 1 + + 15 IN-_D IN+_A 3 14 IN+_D V+ 4 13 V- OUT_B 7 NC 8 FN6312 Rev 1.00 June 28, 2007 + - IN-_B 6 PKG. DWG. # ISL28286FUZ* 8286Z 10 Ld MSOP MDP0043 ISL28486FAZ* 28486 FAZ 16 Ld QSOP MDP0040 NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 12 IN+_C + - IN+_B 5 PACKAGE (Pb-free) *Add “-T7” suffix for tape and reel. Please refer to TB347 for details on reel specifications. 16 OUT_D IN-_A 2 PART MARKING 11 IN-_C 10 OUT_C 9 NC Page 1 of 14 ISL28286, ISL28486 Absolute Maximum Ratings (TA = +25°C) Thermal Information Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/s Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V Output Short-Circuit Duration. . . . . . . . . . . . . . . . . . . . . . . Indefinite ESD Rating Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V Thermal Resistance JA (°C/W) 10 Ld MSOP Package . . . . . . . . . . . . . . . . . . . . . . . 115 16 Ld QSOP Package . . . . . . . . . . . . . . . . . . . . . . . 112 Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA Electrical Specifications PARAMETER V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open, TA = +25°C unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. DESCRIPTION CONDITIONS MIN (Note 1) TYP MAX (Note 1) UNIT DC SPECIFICATIONS VOS Input Offset Voltage V OS --------------T Input Offset Voltage vs Temperature IOS Input Offset Current -2.5 -2.5 ±0.25 2.5 2.5 nA IB Input Bias Current -2 -2.5 ±0.5 2 2.5 nA CMIR Common-Mode Voltage Range Guaranteed by CMRR 0 5 V CMRR Common-Mode Rejection Ratio VCM = 0V to 5V 90 80 115 dB PSRR Power Supply Rejection Ratio V+ = 2.4V to 5V 90 80 115 dB AVOL Large Signal Voltage Gain VO = 0.5V to 4.5V, RL = 100k 275 275 500 V/mV VO = 0.5V to 4.5V, RL = 1k 95 V/mV Output low, RL = 100k 3 6 30 mV 130 175 225 mV VOUT Maximum Output Voltage Swing -600 -650 IS,OFF Supply Current, Enabled Supply Current, Disabled FN6312 Rev 1.00 June 28, 2007 600 650 0.7 Output low, RL = 1k IS,ON ±20 µV µV/°C Output high, RL = 100k 4.990 4.970 4.996 V Output high, RL = 1k 4.800 4.750 4.880 V ISL28286, All channels enabled. 120 156 175 µA ISL28486, All channels enabled. 240 315 350 µA ISL28286, All channels disabled. 4 7 9 µA Page 2 of 14 ISL28286, ISL28486 Electrical Specifications PARAMETER V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open, TA = +25°C unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued) DESCRIPTION CONDITIONS MIN (Note 1) TYP MAX (Note 1) UNIT ISC+ Short Circuit Sourcing Capability RL = 10 29 23 31 mA ISC- Short Circuit Sinking Capability RL = 10 24 19 26 mA VSUPPLY Supply Operating Range V+ to V- 2.4 VENH EN Pin High Level (ISL28286) VENL EN Pin Low Level (ISL28286 IENH EN Pin Input High Current (ISL28286) VEN = V+ IENL EN Pin Input Low Current (ISL28286) VEN = V- 5 2 V V 0.8 V 0.7 1.3 1.5 µA 0 0.1 µA AC SPECIFICATONS GBW Gain Bandwidth Product AV = 100, RF = 100kRG = 1k RL = 10kto VCM 400 kHz en Input Noise Voltage Peak-to-Peak f = 0.1Hz to 10Hz 4.5 µVP-P Input Noise Voltage Density fO = 1kHz 50 nV/Hz in Input Noise Current Density fO = 1kHz 0.18 pA/Hz CMRR @ 60Hz Input Common Mode Rejection Ratio VCM = 1VP-P, RL = 10kto VCM 78 dB PSRR+ @ 120Hz Power Supply Rejection Ratio (V+) V+, V- = ±12V and ±2.5V, VSOURCE = 1VP-P, RL = 10kto VCM -105 dB PSRR- @ 120Hz Power Supply Rejection Ratio (V-) V+, V- = ±12V and ±2.5V VSOURCE = 1VP-P, RL = 10kto VCM -73 dB TRANSIENT RESPONSE ±0.10 ±0.09 ±0.17 ±0.20 ±0.25 V/µs SR Slew Rate tEN Enable to Output Turn-on Delay Time, 10% EN to 10% VOUT, (ISL28286) VEN = 5V to 0V, AV = -1, Rg = Rf = RL = 1kto VCM 2 µs Enable to Output Turn-off Delay Time, 10% EN to 10% VOUT, (ISL28286) VEN = 0V to 5V, AV = -1, Rg = Rf = RL = 1k to VCM 0.1 µs NOTE: 1. Parts are 100% tested at +25°C. Over temperature limits established by characterization and are not production tested. FN6312 Rev 1.00 June 28, 2007 Page 3 of 14 ISL28286, ISL28486 Typical Performance Curves V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open 45 +1 V+, V- = ±2.5V RL = 1k V+, V- = ±2.5V RL = 10k -3 -4 35 V+, V- = ±1.2V RL = 10k 30 GAIN (dB) GAIN (dB) -2 40 V+, V- = ±1.2V RL = 1k VOUT = 50mVp-p AV = 1 CL = 3pF RF = 0/RG = INF -5 -6 -7 -8 1k 10k 100k FREQUENCY (Hz) 1M 5M AV = 100 V+, V- = ±2.5V 15 RL = 10k CL = 2.7pF 10 R /R = 99.02 F G V+, V- = ±1.0V RF = 221k 5 RG = 2.23k 0 100 1k 10k 100k 100 80 40 80 0 -40 0 PHASE -80 -40 1 100 10 1k 10k 100k 1M 200 150 PHASE 60 GAIN (dB) GAIN PHASE (°) 80 -80 50 40 0 20 GAIN -20 10 -120 10M 100 100 PSRR + 80 PSRR V+ = 5VDC VSOURCE = 1VP-P RL = 100k AV = +1 100 1k 70 60 50 40 30 20 10k 100k FREQUENCY (Hz) FIGURE 5. PSRR vs FREQUENCY FN6312 Rev 1.00 June 28, 2007 -150 1M V+ = 5VDC VSOURCE = 1VP-P RL = 100k AV = +1 90 CMRR(dB) PSRR (dB) 0 10 100k FREQUENCY (Hz) 80 70 20 10 10k 1k FIGURE 4. AVOL vs FREQUENCY @ 1k LOAD 120 110 40 30 -50 -100 FREQUENCY (Hz) 60 50 100 0 FIGURE 3. AVOL vs FREQUENCY @ 100k LOAD 100 90 1M FIGURE 2. FREQUENCY RESPONSE vs SUPPLY VOLTAGE 120 40 V+, V- = ±1.25V 20 FREQUENCY (Hz) FIGURE 1. FREQUENCY RESPONSE vs SUPPLY VOLTAGE GAIN (dB) 25 1M 10 10 100 1k 10k 100k FREQUENCY (Hz) FIGURE 6. CMRR vs FREQUENCY Page 4 of 14 PHASE (°) 0 -1 ISL28286, ISL28486 Typical Performance Curves V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open VOLTAGE NOISE (nV/Hz) CURRENT NOISE (pA/Hz) 10.00 1.00 0.10 0.01 (Continued) 1k 100 10 1 1 10 100 1k 10k 100k 1 10 1k 100 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 7. CURRENT NOISE vs FREQUENCY FIGURE 8. VOLTAGE NOISE vs FREQUENCY 2.56 VIN VOLTAGE NOISE (1µV/DIV) 2.54 VOLTS (V) 2.52 VOUT 2.50 2.48 V+ = 5VDC VOUT = 0.1VP-P RL = 500 AV = +1 2.46 4.5µVP-P 2.44 2.42 TIME (1s/DIV) FIGURE 9. 0.1Hz TO 10Hz INPUT VOLTAGE NOISE 0 2 4 6 8 10 12 TIME (µs) 14 16 18 20 FIGURE 10. SMALL SIGNAL TRANSIENT RESPONSE 5.0 VIN 2.0 1V/DIV VOLTS (V) V+ = 5VDC VOUT = 0.1VP-P RL = 500 AV = -2 3.0 AV = -1 VIN = 200mVP-P V+ = 5V EN INPUT VOUT 4.0 0 1.0 VOUT 0 100 200 300 TIME (µs) 400 500 FIGURE 11. LARGE SIGNAL TRANSIENT RESPONSE FN6312 Rev 1.00 June 28, 2007 VOUT 0.1V/DIV VIN 0 0 10µs/DIV FIGURE 12. ENABLE TO OUTPUT DELAY TIME Page 5 of 14 ISL28286, ISL28486 Typical Performance Curves V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open (Continued) 80 60 60 40 40 I-BIAS (nA) 100 80 VOS (V) 100 20 0 -20 -40 -80 -100 -1 0 -80 1 2 3 VCM (V) 4 5 -100 -1 6 340 320 115 300 CURRENT (A) 135 95 75 0 1 55 2.5 3.0 3.5 4.0 4.5 5.0 6 MAX 280 MEDIAN 260 240 200 -40 5.5 MIN -20 0 60 80 100 120 800 600 4.4 VOS (V) 4.2 MAX 4.0 MIN 3.8 -200 3.4 -600 40 60 80 100 120 TEMPERATURE (°C) FIGURE 17. ISL28286 SUPPLY CURRENT vs TEMPERATURE, V+, V- = ±2.5V DISABLED, RL = INF MEDIAN 0 -400 20 MAX 200 3.6 0 N = 1150 400 MEDIAN FN6312 Rev 1.00 June 28, 2007 40 FIGURE 16. ISL28486 SUPPLY CURRENT vs TEMPERATURE, V+, V- = ±2.5V ENABLED, RL = INF N = 12 -20 20 TEMPERATURE (°C) 4.6 CURRENT (A) 5 220 FIGURE 15. ISL28286 SUPPLY CURRENT vs SUPPLY VOLTAGE 3.2 -40 4 N = 1150 SUPPLY VOLTAGE (V) 4.8 2 3 VCM (V) FIGURE 14. INPUT OFFSET CURRENT vs COMMON-MODE INPUT VOLTAGE 155 35 2.0 V+ = 5V RL = OPEN RF= 100k, RG = 100 AV = +1000 -60 FIGURE 13. INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE SUPPLY CURRENT (µA) 0 -20 -40 V+ = 5V RL = OPEN RF = 100k, RG = 100 AV = +1000 -60 20 -800 -40 MIN -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 18. VOS vs TEMPERATURE, VIN = 0V, V+, V- = ±2.5V Page 6 of 14 ISL28286, ISL28486 Typical Performance Curves V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open 800 2.5 N = 1150 MAX IBIAS + (nA) 200 MEDIAN 0 -200 -400 MAX 1.5 400 VOS (V) N = 1150 2.0 600 1.0 MEDIAN 0.5 0.0 -0.5 MIN -1.0 MIN -600 -800 -40 (Continued) -1.5 -20 0 20 40 60 80 100 -2.0 -40 120 -20 0 TEMPERATURE (°C) 3.0 N = 1150 2.5 2.0 IBIAS - (nA) MEDIAN 0.5 0.0 -0.5 MIN -1.5 MEDIAN 1.0 0.5 0.0 MIN -1.0 -1.5 -2.0 -20 0 20 40 60 80 100 -2.0 -40 120 -20 0 TEMPERATURE (°C) 2.5 2.0 MEDIAN 0.5 0.0 MIN 100 120 MEDIAN 0.0 -0.5 MIN -1.5 -1.5 -2.0 -40 0.5 -1.0 -0.5 -1.0 80 MAX 1.0 IOS (nA) IBIAS - (nA) 1.0 60 N = 1150 1.5 MAX 1.5 40 FIGURE 22. IBIAS + vs TEMPERATURE, V+, V- = ±1.2V N = 1150 2.0 20 TEMPERATURE (°C) FIGURE 21. IBIAS - vs TEMPERATURE, V+, V- = ±2.5V 2.5 120 MAX -0.5 -1.0 3.0 100 1.5 1.0 -2.5 -40 80 N = 1150 2.0 MAX 1.5 60 FIGURE 20. IBIAS + vs TEMPERATURE, V+, V- = ±2.5V IBIAS + (nA) 2.5 40 TEMPERATURE (°C) FIGURE 19. VOS vs TEMPERATURE, VIN = 0V, V+, V- = ±1.2V 3.0 20 -2.0 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 23. IBIAS - vs TEMPERATURE, V+, V- = ±1.2V FN6312 Rev 1.00 June 28, 2007 -2.5 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 24. IOS vs TEMPERATURE, V+, V- = ±2.5V Page 7 of 14 ISL28286, ISL28486 Typical Performance Curves V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open 1070 150 N = 1150 N = 1150 970 130 MAX 870 MAX 770 AVOL (V/mV) AVOL (V/mV) (Continued) 670 MEDIAN 570 110 90 MEDIAN 70 470 MIN 50 370 MIN 270 -40 -20 0 20 40 60 80 100 30 120 -40 -20 0 20 N = 1150 MAX 120 MAX 130 120 120 MEDIAN PSRR (dB) CMRR (dB) 100 140 110 100 MEDIAN 110 100 MIN MIN 90 90 80 -40 -20 0 20 40 60 80 100 80 -40 120 -20 0 20 TEMPERATURE (°C) 40 60 80 100 120 TEMPERATURE (°C) FIGURE 27. CMRR vs TEMPERATURE, VCM = +2.5V TO -2.5V, V+, V- = ±2.5V FIGURE 28. PSRR vs TEMPERATURE, V+, V- = ±1.2V TO ±2.75V 4.9972 4.91 N = 1150 N = 1150 4.9970 4.90 4.9968 4.88 VOUT (V) MAX 4.89 VOUT (V) 80 FIGURE 26. AVOL vs TEMPERATURE, V+, V- = ±2.5V, RL = 1k N = 1150 130 MEDIAN 4.87 MIN MAX 4.9966 MEDIAN 4.9964 4.9962 MIN 4.9960 4.86 4.85 60 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 25. AVOL vs TEMPERATURE, V+, V- = ±2.5V, RL = 100k 140 40 4.9958 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 29. VOUT HIGH vs TEMPERATURE, V+, V- = ±2.5V, RL = 1k FN6312 Rev 1.00 June 28, 2007 4.9956 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 30. VOUT HIGH vs TEMPERATURE, V+, V- = ±2.5V, RL = 100k Page 8 of 14 ISL28286, ISL28486 Typical Performance Curves V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open 3.0 170 N = 1150 160 2.6 MAX 140 VOUT (mV) VOUT (mV) N = 1150 2.8 150 MEDIAN 130 MIN 120 MAX 2.4 MEDIAN 2.2 2.0 MIN 1.8 110 1.6 100 90 (Continued) 1.4 -40 -20 0 20 40 60 80 100 1.2 120 -40 -20 0 37 MAX 33 MEDIAN 31 29 MIN 27 25 -40 -20 0 20 40 60 80 100 120 100 120 N = 1150 -23 MAX -25 -27 MEDIAN MIN -29 -31 -33 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 33. + OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE, VIN = -2.55V, RL = 10, V+, V- = ±2.5V FIGURE 34. - OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE, VIN = -2.55V, RL = 10, V+, V- = ±2.5V 0.24 0.24 N = 1150 N = 1150 0.22 - SLEW RATE (V/µs) 0.22 + SLEW RATE (V/µs) 80 -21 TEMPERATURE (°C) 0.20 MAX 0.18 0.16 MEDIAN MIN 0.14 0.20 MAX 0.18 0.16 MEDIAN MIN 0.14 0.12 0.12 0.10 60 FIGURE 32. VOUT LOW vs TEMPERATURE, V+, V- = ±2.5V, RL = 100k + OUTPUT SHORT CIRCUIT CURRENT (mA) + OUTPUT SHORT CIRCUIT CURRENT (mA) N = 1150 39 35 40 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 31. VOUT LOW vs TEMPERATURE, V+, V- = ±2.5V, RL = 1k 41 20 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 35. + SLEW RATE vs TEMPERATURE, VOUT = 1.5V, AV = +2 FN6312 Rev 1.00 June 28, 2007 0.10 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 36. - SLEW RATE vs TEMPERATURE, VOUT = 1.5V, AV = +2 Page 9 of 14 ISL28286, ISL28486 Pin Descriptions ISL28286 ISL28486 (10 LD MSOP) (16 LD QSOP) PIN NAME EQUIVALENT CIRCUIT 1 3 IN+_A Circuit 1 Amplifier A non-inverting input EN_A Circuit 2 Amplifier A enable pin internal pull-down; Logic “1” selects the disabled state; Logic “0” selects the enabled state. V- Circuit 4 Negative power supply EN_B Circuit 2 Amplifier B enable pin with internal pull-down; Logic “1” selects the disabled state; Logic “0” selects the enabled state. 2 3 DESCRIPTION 13 4 5 5 IN+_B Circuit 1 Amplifier B non-inverting input 6 6 IN-_B Circuit 1 Amplifier B inverting input 7 7 OUT_B Circuit 3 Amplifier B output 8 4 V+ Circuit 4 Positive power supply 9 1 OUT_A Circuit 3 Amplifier A output 10 2 IN-_A Circuit 1 Amplifier A inverting input 10 OUT_C Circuit 3 Amplifier C output 11 IN-_C Circuit 1 Amplifier C inverting input 12 IN+_C Circuit 1 Amplifier C non-inverting input 14 IN+_D Circuit 1 Amplifier D non-inverting input 15 IN-_D Circuit 1 Amplifier D inverting input 16 OUT_D Circuit 3 Amplifier D output 8, 9 NC - V+ V+ IN- IN+ FN6312 Rev 1.00 June 28, 2007 V+ LOGIC PIN V+ CAPACITIVELY COUPLED ESD CLAMP OUT V- CIRCUIT 1 No internal connection V- VCIRCUIT 2 VCIRCUIT 3 CIRCUIT 4 Page 10 of 14 ISL28286, ISL28486 Applications Information Introduction The ISL28286 and ISL28486 are dual and quad BiCMOS railto-rail input, output (RRIO) micropower precision operational amplifiers. These devices are designed to operate from a single supply (2.4V to 5.0V) or dual supplies (±1.2V to ±2.5V) while drawing only 120A (ISL28286) of supply current. This combination of low power and precision performance makes these devices suitable for solar and battery power applications. Rail-to-Rail Input Many rail-to-rail input stages use two differential input pairs, a long-tail PNP (or PFET) and an NPN (or NFET). Severe penalties have to be paid for this circuit topology. As the input signal moves from one supply rail to another, the operational amplifier switches from one input pair to the other causing drastic changes in input offset voltage and an undesired change in magnitude and polarity of input offset current. The ISL28286 and ISL28486 achieve input rail-to-rail without sacrificing important precision specifications and degrading distortion performance. The devices’ input offset voltage exhibits a smooth behavior throughout the entire commonmode input range. The input bias current versus the commonmode voltage range gives us an undistorted behavior from typically down to the negative rail to 10% higher than the V+ rail (0.5V higher than V+ when V+ equals 5V). Input Protection All input terminals have internal ESD protection diodes to positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. Both parts have additional back-to-back diodes across the input terminals. If overdriving the inputs is necessary, the external input current must never exceed 5mA. External series resistors may be used as an external protection to limit excessive external voltage and current from damaging the inputs. Input Bias Current Compensation The ISL28286 and ISL28486 contain an input bias cancellation circuit which reduces the bias currents down to a typical of 500pA while maintaining an excellent bandwidth for a micropower operational amplifier. The input stage transistors are still biased with adequate current for speed but the canceling circuit sinks most of the base current, leaving a small fraction as input bias current. Rail-to-Rail Output A pair of complementary MOSFET devices are used to achieve the rail-to-rail output swing. The NMOS sinks current to swing the output in the negative direction. The PMOS sources current to swing the output in the positive direction. Both parts with a 100k load will swing to within 4mV of the supply rails. Enable/Disable Feature The ISL28286 offers two EN pins (EN_A and EN_B) which disable the op amp when pulled up to at least 2.0V. In the FN6312 Rev 1.00 June 28, 2007 disabled state (output in a high impedance state), the part consumes typically 4µA. By disabling the part, multiple parts can be connected together as a MUX. The outputs are tied together in parallel and a channel can be selected by the EN pins. The EN pins also have an internal pull-down. If left open, the EN pins will pull to the negative rail and the op amp will be enabled by default. Using Only One Channel The ISL28286 and ISL28486 are dual and quad channel op amps. If the application only requires one channel when using the ISL28286 or less than 4 channels when using the ISL28486, the user must configure the unused channel(s) to prevent them from oscillating. The unused channel(s) will oscillate if the input and output pins are floating. This will result in higher than expected supply currents and possible noise injection into the channel being used. The proper way to prevent this oscillation is to short the output to the negative input and ground the positive input (as shown in Figure 37). + 1/2 ISL28286 1/4 ISL28486 FIGURE 37. PREVENTING OSCILLATIONS IN UNUSED CHANNELS Proper Layout Maximizes Performance To achieve the maximum performance of the high input impedance and low offset voltage of the ISL28286 and ISL28486, care should be taken in the circuit board layout. The PC board surface must remain clean and free of moisture to avoid leakage currents between adjacent traces. Surface coating of the circuit board will reduce surface moisture and provide a humidity barrier, reducing parasitic resistance on the board. When input leakage current is a concern, the use of guard rings around the amplifier inputs will further reduce leakage currents. Figure 38 shows a guard ring example for a unity gain amplifier that uses the low impedance amplifier output at the same voltage as the high impedance input to eliminate surface leakage. The guard ring does not need to be a specific width, but it should form a continuous loop around both inputs. For further reduction of leakage currents, components can be mounted to the PC board using Teflon standoff insulators. HIGH IMPEDANCE INPUT V+ IN FIGURE 38. GUARD RING EXAMPLE FOR UNITY GAIN AMPLIFIER Page 11 of 14 ISL28286, ISL28486 Current Limiting where: The ISL28286 and ISL28486 have no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device. • PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package (PDMAX) V OUTMAX PD MAX = 2*V S  I SMAX +  V S - V OUTMAX   ---------------------------R (EQ. 2) L Power Dissipation It is possible to exceed the +150°C maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related as follows: T JMAX = T MAX +   JA xPD MAXTOTAL  • PDMAX for each amplifier can be calculated as follows: (EQ. 1) where: • TMAX = Maximum ambient temperature • JA = Thermal resistance of the package • PDMAX = Maximum power dissipation of 1 amplifier • VS = Supply voltage (Magnitude of V+ and V-) • IMAX = Maximum supply current of 1 amplifier • VOUTMAX = Maximum output voltage swing of the application • RL = Load resistance FN6312 Rev 1.00 June 28, 2007 Page 12 of 14 ISL28286, ISL28486 Mini SO Package Family (MSOP) 0.25 M C A B D MINI SO PACKAGE FAMILY (N/2)+1 N E MDP0043 A E1 MILLIMETERS PIN #1 I.D. 1 B (N/2) e H C SEATING PLANE 0.10 C N LEADS 0.08 M C A B b SYMBOL MSOP8 MSOP10 TOLERANCE NOTES A 1.10 1.10 Max. - A1 0.10 0.10 ±0.05 - A2 0.86 0.86 ±0.09 - b 0.33 0.23 +0.07/-0.08 - c 0.18 0.18 ±0.05 - D 3.00 3.00 ±0.10 1, 3 E 4.90 4.90 ±0.15 - E1 3.00 3.00 ±0.10 2, 3 e 0.65 0.50 Basic - L 0.55 0.55 ±0.15 - L1 0.95 0.95 Basic - N 8 10 Reference Rev. D 2/07 NOTES: 1. Plastic or metal protrusions of 0.15mm maximum per side are not included. L1 2. Plastic interlead protrusions of 0.25mm maximum per side are not included. A 3. Dimensions “D” and “E1” are measured at Datum Plane “H”. 4. Dimensioning and tolerancing per ASME Y14.5M-1994. c SEE DETAIL "X" A2 GAUGE PLANE A1 L 0.25 3° ±3° DETAIL X FN6312 Rev 1.00 June 28, 2007 Page 13 of 14 ISL28286, ISL28486 Quarter Size Outline Plastic Packages Family (QSOP) MDP0040 A QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY D (N/2)+1 N INCHES SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES E PIN #1 I.D. MARK E1 1 (N/2) B 0.010 C A B e H C SEATING PLANE 0.007 0.004 C b C A B A 0.068 0.068 0.068 Max. - A1 0.006 0.006 0.006 ±0.002 - A2 0.056 0.056 0.056 ±0.004 - b 0.010 0.010 0.010 ±0.002 - c 0.008 0.008 0.008 ±0.001 - D 0.193 0.341 0.390 ±0.004 1, 3 E 0.236 0.236 0.236 ±0.008 - E1 0.154 0.154 0.154 ±0.004 2, 3 e 0.025 0.025 0.025 Basic - L 0.025 0.025 0.025 ±0.009 - L1 0.041 0.041 0.041 Basic - N 16 24 28 Reference Rev. F 2/07 NOTES: L1 A 1. Plastic or metal protrusions of 0.006” maximum per side are not included. 2. Plastic interlead protrusions of 0.010” maximum per side are not included. c SEE DETAIL "X" 3. Dimensions “D” and “E1” are measured at Datum Plane “H”. 4. Dimensioning and tolerancing per ASME Y14.5M-1994. 0.010 A2 GAUGE PLANE L A1 4°±4° DETAIL X © Copyright Intersil Americas LLC 2006-2007. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN6312 Rev 1.00 June 28, 2007 Page 14 of 14
ISL28486FAZ-T7 价格&库存

很抱歉,暂时无法提供与“ISL28486FAZ-T7”相匹配的价格&库存,您可以联系我们找货

免费人工找货