0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R1212D101A

R1212D101A

  • 厂商:

    RICOH(理光)

  • 封装:

  • 描述:

    R1212D101A - STEP-UP DC/DC CONTOLLER - RICOH electronics devices division

  • 数据手册
  • 价格&库存
R1212D101A 数据手册
R1212D SERIES STEP-UP DC/DC CONTOLLER NO.EA-109-0607 OUTLINE The R1212D Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current. Each of the R1212D Series consists of an oscillator, a PWM comparator circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple, high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an inductor, a diode, a power MOSFET, divider resisters, and capacitors. Maximum duty cycle and the soft start time are easily adjustable with external resistors and capacitors. In terms of maximum duty cycle, with or without internal limit can be set by mask options. As for the protection circuit, after the soft-starting time, if the maximum duty cycle is continued for a certain period, the R1212D Series latch the external driver with its off state, or the latch-type protection circuit works. The delay time for latch the state can be set with an external capacitor. To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level). FEATURES • • • • • • • • Input Voltage Range ....................................................... 2.2V to 5.5V Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor) Two Options of Basic Oscillator Frequency .................... 700kHz, 1.4MHz, 300kHz Maximum Duty Cycle/Soft-start time ............................. Adjustable with external capacitors (If internal limit is set by version, Typ. 90% or Typ. 91.5%) High Reference Voltage Accuracy .................................. ±1.5% U.V.L.O. Threshold level ................................................. Typ.1.9V/2.1V/2.8V by mask option Small Temperature Coefficient of Reference Voltage ... Typ.±150ppm/°C Package .......................................................................... SON-8 ( t=Max. 0.9mm ) APPLICATIONS • Constant Voltage Power Source for portable equipment. • Constant Voltage Power Source for LCD and CCD. 1 R1212D BLOCK DIAGRAM Internal VR VIN VREFOUT UVLC VREFOUT Oscillator DTC PWM Comp Latch EXT VREF VFB Er.Amp AMPOUT GND DELAY SELECTION GUIDE In the R1212D Series, the oscillator frequency, UVLO detector threshold, and with/without internal limit of maximum duty cycle can be selected at the user's request. The selection can be made with designating the part number as shown below; R1212D10xx-TR-x ↑ a Code a 0A 0B 1A 1C 2A 2C b Oscillator Frequency Typ. 700kHz Typ. 1.4MHz Typ. 700kHz Typ. 300kHz Typ. 700kHz Typ. 300kHz ↑ b ←Part Number Contents UVLO Detector Threshold Typ. 1.9V Typ. 1.9V Typ. 2.1V Typ. 2.1V Typ. 2.8V Typ. 2.8V Internal Maximum Duty Limit No No Typ. 90% Typ. 91.5% Typ. 90% Typ. 91.5% Designation of composition of pin plating -F: Lead free plating 2 R1212D PIN CONFIGURATION SON-8 Top View 8 7 65 Bottom View 5 6 7 8 ∗ ∗ ∗ 1 2 34 4 3 2 1 PIN DESCRIPTION Pin No 1 2 3 4 5 6 7 8 Symbol EXT GND DTC DELAY VFB VREFOUT AMPOUT VIN Ground Pin Pin for Setting Maximum Duty Cycle and Soft start time Pin for External Capacitor (for Setting Output Delay of Protection) Feedback Pin for monitoring Output Voltage Reference Voltage Output Pin Amplifier Output Pin Power Supply Pin for the IC Description External FET Drive Pin (CMOS Output) ABSOLUTE MAXIMUM RATINGS (GND=0V) Symbol VIN VEXT VDLY VREFOUT VAMP VDTC VFB IAMP IROUT IEXT PD Topt Tstg VIN Pin Voltage Item EXT Pin Output Voltage DELAY Pin Voltage VREFOUT Pin Voltage AMPOUT Pin Voltage DTC Pin Voltage VFB Pin Voltage AMPOUT Pin Current VREFOUT Pin Current EXT Pin Inductor Drive Output Current Power Dissipation (SON-8)* 1 Rating 6.5 −0.3 ~ VIN+0.3 −0.3 ~ VIN+0.3 −0.3 ~ VIN+0.3 −0.3 ~ VIN+0.3 −0.3 ~ VIN+0.3 −0.3 ~ VIN+0.3 ±10 30 ±80 480 −40 ~ +85 −55 ~ +125 Unit V V V V V V V V mA mA mW °C °C Operating Temperature Range Storage Temperature Range ∗1) For Power Dissipation, please refer to PACKAGE INFORMATION to be described. 3 R1212D ELECTRICAL CHARACTERISTICS • R1212D100A Symbol VIN VFB ∆VFB/ ∆Topt IFB AV fT fosc ∆fosc/ ∆VIN ∆fosc/ ∆Topt IDD1 VREFOUT IOUT ∆VREFOUT/ ∆VIN ∆VREFOUT/ ∆IROUT Ilim ∆VREFOUT/ ∆Topt REXTH REXTL tr tf IDLY1 IDLY2 VDLY VUVLO1 VUVLO2 VDTC0 VDTC20 VDTC80 VDTC100 IAMPH IAMPL Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Open Loop Voltage Gain Unity Gain Frequency Band Oscillator Frequency Oscillator Frequency Line Regulation Oscillator Frequency Temperature Coefficient Supply Current 1 VREFOUT Voltage VREFOUT Maximum Output Current VREFOUT Line Regulation VREFOUT Load Regulation VREFOUT Short Current Limit VREFOUT Voltage Temperature Coefficient EXT "H" ON Resistance EXT "L" ON Resistance EXT Rising Time EXT Falling Time DELAY Pin Charge Current DELAY Pin Discharge Current UVLO Detector Threshold UVLO Released Voltage Duty=0% DTC Pin Voltage Duty=20% DTC Pin Voltage Duty=80% DTC Pin Voltage Duty=100% DTC Pin Voltage AMP "H" Output Current AMP "L" Output Current VIN=3.3V VIN: from 2.2V to 5.5V −40°C < = < = Topt=25°C Conditions Min. 2.2 Typ. Max. 5.5 Unit V V mV ppm/ °C 0.985 1.000 1.015 3 ±150 ∆VFB/∆VIN VFB Voltage Line Regulation Topt 85 ° C −0.1 VIN=5.5V, VFB=0V or 5.5V VIN=3.3V VIN=3.3V, AV=0 VIN=3.3V, VDLY=VFB=0V VIN: from 2.2V to 5.5V −40°C < = 0.1 100 1.0 µA dB MHz 805 KHz KHz KHz/ °C 1000 µA 595 700 50 ±1.0 Topt < = 85 ° C VIN=5.5V, VDLY=VFB=0V EXT at no load VIN=3.3V,IROUT=1mA VIN=3.3V VIN: from 2.2V to 5.5V VIN=3.3V, IROUT: from 0.1mA to 5.0mA VIN=3.3V, VREFOUT=0V −40°C < = 600 1.478 1.500 1.522 10 5 6 20 ±150 V mA 10 15 mV mV mA ppm/ °C Topt < = 85°C VIN=3.3V, IEXT=−50mA VIN=3.3V, IEXT=50mA VIN=3.3V, CL=1000pF VIN=3.3V, CL=1000pF VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.2V, VDLY=0.1V VIN=3.3V to 0V, VDLY=VFB=0V VIN=0V to 3.3V, VDLY=VFB=0V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V, VAMP=1.0V, VFB=0.9V VIN=3.3V, VAMP=1.0V, VFB=1.1V 0.80 0.5 60 0.05 3.0 0.08 0.95 1.8 2.5 1.5 12 8 5.5 0.20 1.00 1.9 VUVLO1 + 0.2 0.18 0.3 0.75 0.87 1.0 100 6.0 4.0 Ω Ω ns ns 8.0 0.36 1.05 2.0 2.2 0.25 µA mA V V V V V V DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V 1.00 1.8 160 V mA µA 4 R1212D • R1212D100B Symbol VIN VFB ∆VFB/ ∆Topt IFB AV fT fosc ∆fosc/ ∆VIN ∆fosc/ ∆Topt IDD1 VREFOUT IOUT Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Open Loop Voltage Gain Unity Gain Frequency Band Oscillator Frequency Oscillator Frequency Line Regulation Oscillator Frequency Temperature Coefficient Supply Current 1 VREFOUT Voltage VREFOUT Maximum Output Current VIN=3.3V VIN: from 2.2V to 5.5V −40°C < = < = Topt=25°C Conditions Min. 2.2 0.985 Typ. 1.000 3 ±150 Max. 5.5 1.015 Unit V V mV ppm/ °C ∆VFB/∆VIN VFB Voltage Line Regulation Topt 85°C −0.1 VIN=5.5V, VFB=0V or 5.5V VIN=3.3V VIN=3.3V, AV=0 VIN=3.3V, VDLY=VFB=0V VIN: from 2.2V to 5.5V −40°C < = 0.1 100 1.0 µA dB MHz 1.61 MHz KHz KHz /°C 1800 1.522 µA 1.19 1.40 100 ±2.0 Topt < = 85°C VIN=5.5V, VDLY=VFB=0V EXT at no load VIN=3.3V, IROUT=1mA VIN=3.3V VIN: from 2.2V to 5.5V VIN=3.3V, IROUT: from 0.1mA to 5.0mA VIN=3.3V, VREFOUT=0V −40°C < = 900 1.478 10 5 6 20 ±150 1.500 V mA ∆VREFOUT/ VREFOUT Line Regulation ∆VIN ∆VREFOUT/ VREFOUT Load Regulation ∆IROUT Ilim VREFOUT Short Current Limit ∆VREFOUT/ VREFOUT Voltage Temperature Coefficient ∆Topt REXTH REXTL tr tf IDLY1 IDLY2 VDLY VUVLO1 VUVLO2 VDTC0 VDTC20 VDTC80 VDTC100 IAMPH IAMPL EXT "H" ON Resistance EXT "L" ON Resistance EXT Rising Time EXT Falling Time DELAY Pin Charge Current 10 15 mV mV mA ppm/ °C Topt < = 85°C VIN=3.3V, IEXT=−50mA VIN=3.3V, IEXT=50mA VIN=3.3V, CL=1000pF VIN=3.3V, CL=1000pF VIN=3.3V, VDLY=VFB=0V 3.0 0.08 0.95 1.8 2.5 1.5 12 8 5.5 0.20 1.00 1.9 VUVLO1 + 0.2 0.05 0.18 0.3 0.75 0.80 0.5 60 0.87 1.0 100 6.0 4.0 Ω Ω ns ns 8.0 0.36 1.05 2.0 2.2 0.25 µA DELAY Pin Discharge Current VIN=VFB=2.2V, VDLY=0.1V DELAY Pin Detector VFB=0V, VDLY=0V to 2V Threshold UVLO Detector Threshold UVLO Released Voltage Duty=0% DTC Pin Voltage Duty=20% DTC Pin Voltage Duty=80% DTC Pin Voltage Duty=100% DTC Pin Voltage AMP "H" Output Current AMP "L" Output Current VIN=3.3V to 0V, VDLY=VFB=0V VIN=0V to 3.3V, VDLY=VFB=0V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V, VAMP=1.0V, VFB=0.9V VIN=3.3V, VAMP=1.0V, VFB=1.1V mA V V V V V V 1.00 1.8 160 V mA µA 5 R1212D • R1212D101A Symbol VIN VFB Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Line Regulation VFB Voltage Temperature Coefficient VFB Input Current Open Loop Voltage Gain Unity Gain Frequency Band Oscillator Frequency Oscillator Frequency Line Regulation Oscillator Frequency Temperature Coefficient Supply Current 1 VREFOUT Voltage VREFOUT Maximum Output Current VREFOUT Line Regulation VREFOUT Load Regulation VREFOUT Short Current Limit VREFOUT Voltage Temperature Coefficient EXT "H" ON Resistance EXT "L" ON Resistance EXT Rising Time EXT Falling Time DELAY Pin Charge Current DELAY Pin Discharge Current UVLO Detector Threshold UVLO Released Voltage Duty=0% DTC Pin Voltage Duty=20% DTC Pin Voltage Duty=80% DTC Pin Voltage Maximum Duty Cycle AMP "H" Output Current AMP "L" Output Current VIN=3.3V VIN: from 2.2V to 5.5V −40°C < = < = Topt=25°C Conditions Min. 2.2 Typ. Max. 5.5 Unit V V mV ppm/ °C 0.985 1.000 1.015 3 ±150 ∆VFB/∆VIN ∆VFB/ ∆Topt IFB AV fT fosc ∆fosc/ ∆VIN ∆fosc/ ∆Topt IDD1 VREFOUT IOUT ∆VREFOUT/ ∆VIN ∆VREFOUT/ ∆IROUT Ilim ∆VREFOUT/ ∆Topt REXTH REXTL tr tf IDLY1 IDLY2 VDLY VUVLO1 VUVLO2 VDTC0 VDTC20 VDTC80 Maxduty IAMPH IAMPL Topt 85 ° C −0.1 VIN=5.5V, VFB=0V or 5.5V VIN=3.3V VIN=3.3V, AV=0 VIN=3.3V, VDLY=VFB=0V VIN: from 2.2V to 5.5V −40°C < = 0.1 100 1.0 µA dB MHz 805 KHz KHz KHz/ °C 1000 µA 595 700 50 ±1.0 Topt < = 85°C VIN=5.5V, VDLY=VFB=0V EXT at no load VIN=3.3V,IROUT=1mA VIN=3.3V VIN: from 2.2V to 5.5V VIN=3.3V, IROUT: from 0.1mA to 5.0mA VIN=3.3V, VREFOUT=0V −40°C < = 600 1.478 1.500 1.522 10 5 6 20 ±150 V mA 10 15 mV mV mA ppm/ °C Topt < = 85°C VIN=3.3V, IEXT=−50mA VIN=3.3V, IEXT=50mA VIN=3.3V, CL=1000pF VIN=3.3V, CL=1000pF VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.2V, VDLY=0.1V VIN=3.3V to 0V, VDLY=VFB=0V VIN=0V to 3.3V, VDLY=VFB=0V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V, VAMP=1.0V, VFB=0.9V VIN=3.3V, VAMP=1.0V, VFB=1.1V 84 0.5 60 0.05 3.0 0.08 0.95 2.0 2.5 1.5 12 8 5.5 0.20 1.00 2.1 VUVLO1 + 0.2 0.18 0.3 0.75 90 1.0 100 6.0 4.0 Ω Ω ns ns 8.0 0.36 1.05 2.2 2.45 0.25 µA mA V V V V V V DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V 96 1.8 160 % mA µA 6 R1212D • R1212D101C Symbol VIN VFB Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Line Regulation VFB Voltage Temperature Coefficient VFB Input Current Open Loop Voltage Gain Unity Gain Frequency Band Oscillator Frequency Oscillator Frequency Line Regulation Oscillator Frequency Temperature Coefficient Supply Current 1 VREFOUT Voltage VREFOUT Maximum Output Current VREFOUT Line Regulation VREFOUT Load Regulation VREFOUT Short Current Limit VREFOUT Voltage Temperature Coefficient EXT "H" ON Resistance EXT "L" ON Resistance EXT Rising Time EXT Falling Time DELAY Pin Charge Current DELAY Pin Discharge Current UVLO Detector Threshold UVLO Released Voltage Duty=0% DTC Pin Voltage Duty=20% DTC Pin Voltage Duty=80% DTC Pin Voltage Maximum Duty Cycle AMP "H" Output Current AMP "L" Output Current VIN=3.3V VIN: from 2.2V to 5.5V −40°C < = < = Topt=25°C Conditions Min. 2.2 Typ. Max. 5.5 Unit V V mV ppm/ °C 0.985 1.000 1.015 3 ±150 ∆VFB/∆VIN ∆VFB/ ∆Topt IFB AV fT fosc ∆fosc/ ∆VIN ∆fosc/ ∆Topt IDD1 VREFOUT IOUT ∆VREFOUT/ ∆VIN ∆VREFOUT/ ∆IROUT Ilim ∆VREFOUT/ ∆Topt REXTH REXTL tr tf IDLY1 IDLY2 VDLY VUVLO1 VUVLO2 VDTC0 VDTC20 VDTC80 Maxduty IAMPH IAMPL Topt 85 ° C −0.1 VIN=5.5V, VFB=0V or 5.5V VIN=3.3V VIN=3.3V, AV=0 VIN=3.3V, VDLY=VFB=0V VIN: from 2.2V to 5.5V −40°C < = 0.1 100 1.0 µA dB MHz 360 KHz KHz KHz/ °C 800 µA 240 300 25 ±0.5 Topt < = 85 ° C VIN=5.5V, VDLY=VFB=0V EXT at no load VIN=3.3V, IROUT=1mA VIN=3.3V VIN: from 2.2V to 5.5V VIN=3.3V, IROUT: from 0.1mA to 5.0mA VIN=3.3V, VREFOUT=0V −40°C < = 400 1.478 1.500 1.522 10 5 6 20 ±150 V mA 10 15 mV mV mA ppm/ °C Topt < = 85°C VIN=3.3V, IEXT=−50mA VIN=3.3V, IEXT=50mA VIN=3.3V, CL=1000pF VIN=3.3V, CL=1000pF VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.2V, VDLY=0.1V VIN=3.3V to 0V, VDLY=VFB=0V VIN=0V to 3.3V, VDLY=VFB=0V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V, VAMP=1.0V, VFB=0.9V VIN=3.3V, VAMP=1.0V, VFB=1.1V 85.5 0.5 50 0.05 2.0 0.08 0.95 2.0 2.5 1.5 12 8 4.5 0.20 1.00 2.1 VUVLO1 + 0.2 0.18 0.3 0.75 91.5 1.0 90 6.0 4.0 Ω Ω ns ns 7.0 0.36 1.05 2.2 2.45 0.25 µA mA V V V V V V DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V 97.5 1.8 150 % mA µA 7 R1212D • R1212D102A Symbol VIN VFB Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Line Regulation VFB Voltage Temperature Coefficient VFB Input Current Open Loop Voltage Gain Unity Gain Frequency Band Oscillator Frequency Oscillator Frequency Line Regulation Oscillator Frequency Temperature Coefficient Supply Current 1 VREFOUT Voltage VREFOUT Maximum Output Current VREFOUT Line Regulation VREFOUT Load Regulation VREFOUT Short Current Limit VREFOUT Voltage Temperature Coefficient EXT "H" ON Resistance EXT "L" ON Resistance EXT Rising Time EXT Falling Time DELAY Pin Charge Current DELAY Pin Discharge Current UVLO Detector Threshold UVLO Released Voltage Duty=0% DTC Pin Voltage Duty=20% DTC Pin Voltage Duty=80% DTC Pin Voltage Maximum Duty Cycle AMP "H" Output Current AMP "L" Output Current VIN=3.3V VIN: from 2.2V to 5.5V −40°C < = < = Topt=25°C Conditions Min. 3.3 Typ. Max. 5.5 Unit V V mV ppm/ °C 0.985 1.000 1.015 3 ±150 ∆VFB/∆VIN ∆VFB/ ∆Topt IFB AV fT fosc ∆fosc/ ∆VIN ∆fosc/ ∆Topt IDD1 VREFOUT IOUT ∆VREFOUT/ ∆VIN ∆VREFOUT/ ∆IROUT Ilim ∆VREFOUT/ ∆Topt REXTH REXTL tr tf IDLY1 IDLY2 VDLY VUVLO1 VUVLO2 VDTC0 VDTC20 VDTC80 Maxduty IAMPH IAMPL Topt 85 ° C −0.1 VIN=5.5V, VFB=0V or 5.5V VIN=3.3V VIN=3.3V, AV=0 VIN=3.3V, VDLY=VFB=0V VIN: from 2.2V to 5.5V −40°C < = 0.1 100 1.0 µA dB MHz 805 KHz KHz KHz/ °C 1000 µA 595 700 50 ±1.0 Topt < = 85 ° C VIN=5.5V, VDLY=VFB=0V EXT at no load VIN=3.3V, IROUT=1mA VIN=3.3V VIN: from 2.2V to 5.5V VIN=3.3V, IROUT: from 0.1mA to 5.0mA VIN=3.3V, VREFOUT=0V −40°C < = 600 1.478 1.500 1.522 10 5 6 20 ±150 V mA 10 15 mV mV mA ppm/ °C Topt < = 85°C VIN=3.3V, IEXT=−50mA VIN=3.3V, IEXT=50mA VIN=3.3V, CL=1000pF VIN=3.3V, CL=1000pF VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.2V, VDLY=0.1V VIN=3.3V to 0V, VDLY=VFB=0V VIN=0V to 3.3V, VDLY=VFB=0V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V, VAMP=1.0V, VFB=0.9V VIN=3.3V, VAMP=1.0V, VFB=1.1V 84 0.5 60 0.05 3.0 0.08 0.95 2.6 2.5 1.5 12 8 5.5 0.20 1.00 2.8 VUVLO1 + 0.25 0.18 0.3 0.75 90 1.0 100 6.0 4.0 Ω Ω ns ns 8.0 0.36 1.05 3.0 3.3 0.25 µA mA V V V V V V DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V 96 1.8 160 % mA µA 8 R1212D • R1212D102C Symbol VIN VFB Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Line Regulation VFB Voltage Temperature Coefficient VFB Input Current Open Loop Voltage Gain Unity Gain Frequency Band Oscillator Frequency Oscillator Frequency Line Regulation Oscillator Frequency Temperature Coefficient Supply Current 1 VREFOUT Voltage VREFOUT Maximum Output Current VREFOUT Line Regulation VREFOUT Load Regulation VREFOUT Short Current Limit VREFOUT Voltage Temperature Coefficient EXT "H" ON Resistance EXT "L" ON Resistance EXT Rising Time EXT Falling Time DELAY Pin Charge Current DELAY Pin Discharge Current UVLO Detector Threshold UVLO Released Voltage Duty=0% DTC Pin Voltage Duty=20% DTC Pin Voltage Duty=80% DTC Pin Voltage Maximum Duty Cycle AMP "H" Output Current AMP "L" Output Current VIN=3.3V VIN: from 2.2V to 5.5V −40°C < = < = Topt=25°C Conditions Min. 3.3 Typ. Max. 5.5 Unit V V mV ppm/ °C 0.985 1.000 1.015 3 ±150 ∆VFB/∆VIN ∆VFB/ ∆Topt IFB AV fT fosc ∆fosc/∆VIN ∆fosc/ ∆Topt IDD1 VREFOUT IOUT ∆VREFOUT/ ∆VIN ∆VREFOUT/ ∆IROUT Ilim ∆VREFOUT/ ∆Topt REXTH REXTL tr tf IDLY1 IDLY2 VDLY VUVLO1 VUVLO2 VDTC0 VDTC20 VDTC80 Maxduty IAMPH IAMPL Topt 85 ° C −0.1 VIN=5.5V, VFB=0V or 5.5V VIN=3.3V VIN=3.3V, AV=0 VIN=3.3V, VDLY=VFB=0V VIN: from 2.2V to 5.5V −40°C < = 0.1 100 1.0 µA dB MHz 360 KHz KHz KHz/ °C 800 µA 240 300 25 ±0.5 Topt < = 85°C VIN=5.5V, VDLY=VFB=0V EXT at no load VIN=3.3V, IROUT=1mA VIN=3.3V VIN: from 2.2V to 5.5V VIN=3.3V, IROUT: from 0.1mA to 5.0mA VIN=3.3V, VREFOUT=0V −40°C < = 400 1.478 1.500 1.522 10 5 6 20 ±150 V mA 10 15 mV mV mA ppm/ °C Topt < = 85°C VIN=3.3V, IEXT=−50mA VIN=3.3V, IEXT=50mA VIN=3.3V, CL=1000pF VIN=3.3V, CL=1000pF VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.2V, VDLY=0.1V VIN=3.3V to 0V, VDLY=VFB=0V VIN=0V to 3.3V, VDLY=VFB=0V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V VIN=3.3V, VAMP=1.0V, VFB=0.9V VIN=3.3V, VAMP=1.0V, VFB=1.1V 85.5 0.5 50 0.05 2.0 0.08 0.95 2.6 2.5 1.5 12 8 4.5 0.20 1.00 2.8 VUVLO1 + 0.25 0.18 0.3 0.75 91.5 1.0 90 6.0 4.0 Ω Ω ns ns 7.0 0.36 1.05 3.0 3.30 0.25 µA mA V V V V V V DELAY Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V to 2V 97.5 1.8 150 % mA µA 9 R1212D TYPICAL APPLICATIONS AND TECHNICAL NOTES Inductor Diode VOUT R3 VIN C1 C2 GND C6 VREFOUT R5 DTC R6 C7 AMPOUT C5 R4 DELAY EXT VFB R2 NMOS C4 R1 C3 Inductor NMOS Diode C1 C2 C3 C4 LDR655312T-100(TDK) [R1212DxxxA] LDR655312T-4R7(TDK) [R1212DxxxB] LDR655312T-220(TDK) [R1212DxxxC] CPH6415 (Sanyo) CRS02 (Toshiba) 2.2µF 1µF 1.5µF 1000pF[R1212DxxxA] 680pF[R1212DxxxB] 1500pF[R1212DxxxC] 1000pF[R1212DxxxA] 680pF[R1212DxxxB] 1500pF[R1212DxxxC] C6 C7 Set V R1 R2 R3 R4 R5 R6 0.1µF 0.1µF 5V 120kΩ 30kΩ 10V 180kΩ 20kΩ 1kΩ 4.7kΩ 240kΩ 300kΩ 15V 140kΩ 10kΩ C5 Use a 1µF or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the typical application above. Connect the capacitor as short as possible to the IC. • In terms of the capacitor for setting delay time of the latch protection, C2 is shown in typical application above. Latch delay time depends on this C2 value. Refer to the Latch Protection Operation Timing Chart. • Connect a 1µF or more value of capacitor between VOUT and GND, C3 as shown in typical application above. (Recommended value is from 10µF to 22µF.) If the operation of the composed DC/DC converter may be unstable, use a tantalum type capacitor instead of ceramic type • Connect a capacitor between VREFOUT and GND, C6 as shown in typical application of the previous page. The capacitance value of C6 is between 0.1µF and 1.0µF. 10 R1212D • Output Voltage Setting Method and Phase Compensation Making Method • The feedback voltage is controlled into 1.0V. The output voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical application of the previous page. Refer to the next formula. Output Voltage = VFB× (R1+R2)/R2 Output Voltage is adjustable with setting various resistor values combination. R1+R2 should be equal or less than 500kΩ As for the DC/DC converter, depending on the load current and external components such as L and C, phase may loss around 180°. In such case, phase margin becomes less and may be unstable. To avoid this situation, make the phase margin more. The pole is made with external components L and C. Fpole∼1/{2×π× (L × C3 ) } C4, C5, R3, and R4 shown in the diagram are for making phase compensation. The gain of the system can be set with using these resistors and capacitors. Each value in the diagram is just an example. R4 and C5 make zero (the backward phase). Fzero∼1/(2×π×R4×C5) Choose the R4 and C5 value so as to make the cutoff frequency of this zero point close to the cutoff frequency of the pole by external components, L and C. For example, supposed that L=10µH and COUT (C3) =10µF, the cutoff frequency of the pole is approximately 16kHz. Therefore make the cutoff frequency of the zero point close to 16kHz. Then R4=4.7kΩ and C5=1000pF are appropriate values. As for setting the gain, the ratio of the composite resistor (RT: RT=R1×R2/(R1+R2)) to R4 is the key. If the R4 against the composite resistor, RT, is large, the gain becomes also large. If the gain is large, the response characteristic is improved, however, too large gain makes the system be unstable. If the spike noise of VOUT may be large, the spike noise may be picked into VFB pin, and the unstable operation may result. In this case, a resistor R3, shown in typical application of the previous page. The recommended resistance value of R3 is in the range from 1kΩ to 5kΩ. Then, noise level will be decreased. Further, R1 and C4 makes another zero point (the backward phase). Fzero∼1/(2×π×R1×C4) Make the cutoff frequency of this zero point be lower than the cutoff frequency of the pole by external components, or, L and C. Herein, R1=180kΩ and C4=1000pF are appropriate values. • Select the Power MOSFET, the diode, capacitors and the inductor within ratings (Voltage, Current, Power) of this IC. Choose the power MOSFET with low threshold voltage depending on the input voltage to be able to turn on the FET completely. Choose the diode with low VF such as Shottky type with low reverse current IR, and with fast switching speed. When an external transistor is switching, spike voltage may be generated caused by an inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is twice as much as the setting voltage or more. • The soft-start time and the maximum duty cycle setting method The soft-start time and the maximum duty cycle can be set with R5, R6, and C7 values connected to the VREFOUT pin and the DTC pin. (Refer to the timing chart: Soft-start operation.) 11 R1212D Output Current and Selection of External Components i2 Inductor VIN i1 Lx Tr CL Diode VOUT IOUT Discontinuous Mode IL ILxmax IL Continuous Mode ILxmax ILxmin ILxmin Tf t Ton T=1/fosc 1/ton Toff Iconst Ton T=1/fosc 1/ton Toff There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current. During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VIN × t/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula. PON = V ∫ Ton 2 IN 0 × t / L dt .....................................................................................................Formula 1 With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as (VOUT − VIN) ×t/L, therefore electric power, POFF is described as in next formula. POFF = VIN × ( VOUT − VIN) × t / L dt ................................................................................Formula 2 0 ∫ Tf In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average electric power, or PAV is described as in the next formula. PAV = 1/( TON + TOFF ) × { V ∫ Ton 2 IN 0 × t / L dt + VIN × ( VOUT − VIN) × t / L dt } ...............................Formula 3 0 ∫ Tf In PWM control, when Tf = Toff is true, the inductor current becomes continuos, then the operation of switching regulator becomes continuous mode. 12 R1212D In the continuous mode, the deviation of the current is equal between on time and off time. VIN = TON / L = ( VOUT − VIN) × Toff / L ............................................................................. Formula 4 Further, the electric power, PAV is equal to output electric power, VOUT × IOUT, thus, IOUT = fOSC × VIN 2 × TON 2 /{2 × L × ( VOUT − VIN)} = VIN 2 × TON /( 2 × L × VOUT ) ..................... Formula 5 When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes continuous. The continuous current through the inductor is described as Iconst, then, IOUT = fOSC × VIN 2 × TON 2 /{2 × L × ( VOUT − VIN)} + VIN × Iconst / VOUT ................................ Formula 6 In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows: ILx max = Iconst + VIN × TON / L ..................................................................................... Formula 7 With the formula 4,6, and ILxmax is, ILx max = VOUT / VIN × IOUT + VIN × TON /( 2 × L ) ................................................................ Formula 8 Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and external components should be selected. In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula. The explanation above is based on the ideal calculation, and the loss caused by LX switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILX is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as 0.3V) of the diode should be considered. 13 R1212D TIMING CHART The timing chart below describes the state of each pin from the power-on until the IC entering the stable operation. By raising the voltage of the DTC pin slowly, the switching duty cycle is limited, and prevent the drastic voltage rising (over-shoot) and inrush current. When the VIN voltage becomes equal or more than the UVLO released voltage (VUVLO+VHYS), VREFOUT operation starts. Following with the increase of the voltage level of VREFOUT, the internal oscillator begins to operate, then the DTC voltage is also rising, then, soft-start operation starts. When the DTC voltage crosses the chopping wave level inside the IC, EXT pin starts switching, then, step-up operation begins. During this term, the output voltage does not reach the set output voltage. Therefore the output of the amplifier is "H". Besides, the protection circuit may work and the IC charges the DELAY pin. Because of this, the soft-start time should be set shorter than the latch protection delay time. After the initial stage, when the output voltage reaches the set output voltage, the level of AMPOUT becomes the normal state. In other words, the level is determined with the input voltage, the output voltage, and the output current. When the level of AMPOUT becomes falling, charging the DELAY pin stops and discharges to the GND. The soft-start time (the time for the DTC pin voltage becoming to VDTC level) can be estimated with the next formula. T≅1/α×ln(VDTC×α/β+1), herein, α=−1/C7×(1/R5+1/R6), and β=VREFOUT/(C7×R5). VIN (VUVLO+VHYS) VREFOUT OSC DTC AMPOUT DELAY Soft-start Time EXT VREFOUT R5 DTC R6 C7 14 R1212D The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. The maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the supply voltage down to UVLO detector threshold or lower, and make it rise up to the normal input voltage. Once after becoming the maximum duty cycle, if the duty cycle decreases before latch operation works, the charging the capacitor stops immediately, and the DELAY pin voltage is fixed at GND level with IDLY2. The delay time of latch protection can be calculated with C2, VDLY, and the delay pin charge current, IDLY1, as in the next formula. t=C2 × VDLY/IDLY1 Output Short DELAY AMPOUT VDLY DTC Normal Maxduty Operation Latched EXT IDLY1 DELAY VDLY C2 15 R1212D TEST CIRCUITS VIN EXT VREFOUT AMPOUT DTC VFB GND DELAY GND VIN EXT VREFOUT AMPOUT DTC VFB DELAY A Fig.1 Consumption Current Test Circuit Fig.2 Oscillator Frequency, VFB Voltage, Duty Cycle, EXT rising time/falling time Test Circuit VIN EXT VREFOUT AMPOUT DTC VFB VIN EXT VREFOUT A AMPOUT DTC VFB GND DELAY GND DELAY A Fig.3 AMP "L" Output Current/ "H" Output Current Test Circuit V VIN EXT VREFOUT AMPOUT DTC VFB GND DELAY Fig.4 DELAY Pin Charge Current/ Discharge Current Test Circuit VIN EXT VREFOUT AMPOUT DTC VFB V GND DELAY Fig.5 EXT "H" ON Resistance Test Circuit Fig.6 EXT "L" ON Resistance Test Circuit 16 R1212D VIN EXT VREFOUT AMPOUT DTC VFB VIN EXT VREFOUT AMPOUT DTC VFB GND DELAY GND DELAY Fig.7 DELAY Pin Detector Threshold Test Circuit Fig.8 UVLO Detector Threshold/Released Voltage Test Circuit VIN EXT VREFOUT AMPOUT DTC VFB 100kΩ 10kΩ VIN EXT VREFOUT AMPOUT DTC VFB A V GND DELAY GND DELAY Fig.9 Error AMP Gain/Phase Test Circuit Fig.10 VREFOUT Voltage Test Current VIN EXT VREFOUT AMPOUT DTC VFB GND DELAY A Fig.11 VFB Leakage Current Test Circuit 17 R1212D Inductor Diode R3 VIN C1 C2 GND C6 VREFOUT R5 DTC R6 C7 AMPOUT C5 R4 DELAY EXT VFB R2 NMOS C4 VOUT R1 C3 Fig.12 Output Current vs. Output Voltage/Efficiency, Response Characteristics Test Circuit Inductor NMOS Diode C1 C2 C3 C4 LDR655312T-100(TDK) [R1212DxxxA] LDR655312T-4R7(TDK) [R1212DxxxB] LDR655312T-220(TDK) [R1212DxxxC] CPH6415 (Sanyo) CRS02 (Toshiba) 2.2µF 1µF 15µF 1000pF[R1212DxxxA] 680pF[R1212DxxxB] 1500pF[R1212DxxxC] 1000pF[R1212DxxxA] 680pF[R1212DxxxB] 1500pF[R1212DxxxC] C6 C7 SetV R1 R2 R3 R4 R5 R6 5V 120kΩ 30kΩ 0.1µF 0.1µF 10V 180kΩ 20kΩ 1kΩ 4.7kΩ 240kΩ 300kΩ 15V 140kΩ 10kΩ C5 18 R1212D TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current (Topt=25°C) R1212D100A 5.10 VOUT=5V 10.2 R1212D100A VOUT=10V 2.2V 3.3V 5.5V Output Voltage VOUT(V) 5.05 5.00 4.95 4.90 0 Output Voltage VOUT(V) 500 2.2V 3.3V 10.1 10.0 9.9 9.8 100 200 300 400 Output Current IOUT(mA) 0 50 100 150 200 250 300 350 400 Output Current IOUT(mA) R1212D100A 15.3 VOUT=15V 5.10 R1212D100B VOUT=5V 2.2V 3.3V Output Voltage VOUT(V) Output Voltage VOUT(V) 15.2 15.1 15.0 14.9 14.8 14.7 0 50 100 150 200 Output Current IOUT(mA) 250 2.2V 3.3V 5.5V 5.05 5.00 4.95 4.90 0 100 200 300 400 Output Current IOUT(mA) 500 R1212D100B 10.2 VOUT=10V 15.3 R1212D100B VOUT=15V Output Voltage VOUT(V) 10.1 10.0 9.9 9.8 0 Output Voltage VOUT(V) 2.2V 3.3V 5.5V 15.2 15.1 15.0 14.9 14.8 14.7 0 2.2V 3.3V 5.5V 50 100 150 200 Output Current IOUT(mA) 250 50 100 150 200 250 300 350 400 Output Current IOUT(mA) 19 R1212D R1212D101C 5.10 VOUT=5V 10.2 R1212D101C VOUT=10V Output Voltage VOUT(V) 5.05 5.00 4.95 4.90 0 2.2V 3.3V Output Voltage VOUT(V) 10.1 10.0 9.9 9.8 2.2V 3.3V 5.5V 100 200 300 400 Output Current IOUT(mA) 500 0 50 100 150 200 250 300 350 400 Output Current IOUT(mA) R1212D101C 15.3 VOUT=15V 2.2V 3.3V 5.5V Output Voltage VOUT(V) 15.2 15.1 15.0 14.9 14.8 14.7 0 50 100 150 200 Output Current IOUT(mA) 250 2) Efficiency vs. Output Current (Topt=25°C) R1212D100A 100 90 80 70 60 50 40 30 20 10 0 0 VOUT=5V 100 90 80 70 60 50 40 30 20 10 0 0 R1212D100A VOUT=10V Efficiency η (%) Efficiency η (%) 2.2V 3.3V 100 200 300 400 Output Current IOUT(mA) 500 2.2V 3.3V 5.5V 50 100 150 200 250 300 350 400 Output Current IOUT(mA) 20 R1212D R1212D100A 100 90 80 70 60 50 40 30 20 10 0 0 VOUT=15V 100 90 80 70 60 50 40 30 20 10 0 0 R1212D100B VOUT=5V Efficiency η (%) 2.2V 3.3V 5.5V 50 100 150 200 Output Current IOUT(mA) 250 Efficiency η (%) 2.2V 3.3V 100 200 300 400 Output Current IOUT(mA) 500 R1212D100B 100 90 80 70 60 50 40 30 20 10 0 0 VOUT=10V 100 90 80 70 60 50 40 30 20 10 0 0 R1212D100B VOUT=15V Efficiency η (%) 2.2V 3.3V 5.5V 50 100 150 200 250 300 350 400 Output Current IOUT(mA) Efficiency η (%) 2.2V 3.3V 5.5V 50 100 150 200 Output Current IOUT(mA) 250 R1212D101C 100 90 80 70 60 50 40 30 20 10 0 0 VOUT=5V 100 90 80 70 60 50 40 30 20 10 0 0 R1212D101C VOUT=10V Efficiency η (%) 2.2V 3.3V 100 200 300 400 Output Current IOUT(mA) 500 Efficiency η (%) 2.2V 3.3V 5.5V 50 100 150 200 250 300 350 400 Output Current IOUT(mA) 21 R1212D R1212D101C 100 90 80 70 60 50 40 30 20 10 0 0 VOUT=15V Efficiency η (%) 2.2V 3.3V 5.5V 50 100 150 200 Output Current IOUT(mA) 250 3) VFB Voltage vs. Input Voltage (Topt =25°C) R1212D100x 1010 4) VFB Voltage vs. Temperature R1212D100x 1010 VIN=3.3V Feedback Voltage VFB(mV) 1005 1000 995 990 985 980 2 3 4 5 Input Voltage VIN(V) 6 Feedback Voltage VFB(mV) 1005 1000 995 990 985 980 -50 -25 0 25 50 75 Temperature Topt(°C) 100 5) Oscillator Frequency vs. Input Voltage (Topt=25°C) R1212D100A Oscillator Frequency fosc(kHz) 775 750 725 700 675 650 625 600 2 3 4 5 Input Voltage VIN(V) 6 R1212D100B Oscillator Frequency fosc(kHz) 1600 1500 1400 1300 1200 2 3 4 5 Input Voltage VIN(V) 6 800 22 R1212D R1212D101C Oscillator Frequency fosc(kHz) 350 330 310 290 270 250 2 3 4 5 Input Voltage VIN(V) 6 6) Oscillator Frequency vs. Temperature R1212D10xA Oscillator Frequency fosc(kHz) Oscillator Frequency fosc(kHz) 800 775 750 725 700 675 650 625 600 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=3.3V 1600 1550 1500 1450 1400 1350 1300 1250 1200 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R1212D10xB VIN=3.3V R1212D10xC Oscillator Frequency fosc(kHz) 350 330 310 290 270 250 -50 VIN=3.3V -25 0 25 50 75 Temperature Topt(°C) 100 23 R1212D 7) Supply Current vs. Input Voltage (Topt=25°C at no load) R1212D100A 500 EXT at no load 800 R1212D100B EXT at no load Supply Current IDD(uA) Supply Current IDD(uA) 450 400 350 300 250 200 2 3 4 5 Input Voltage VIN(V) 6 700 600 500 400 300 2 3 4 5 Input Voltage VIN(V) 6 R1212D101C 400 EXT at no load Supply Current IDD(uA) 350 300 250 200 150 100 2 3 4 5 Input Voltage VIN(V) 6 8) Supply Current vs. Temperature R1212D10xA 500 VIN=5.5V, EXT at no load 900 R1212D10xB VIN=5.5V, EXT at no load Supply Current IDD(uA) Supply Current IDD(uA) -25 0 25 50 75 Temperature Topt(°C) 100 450 400 350 300 250 200 -50 800 700 600 500 -50 -25 0 25 50 75 Temperature Topt(°C) 100 24 R1212D R1212D10xC 400 VIN=5.5V, EXT at no load Supply Current IDD(uA) 350 300 250 200 150 100 -50 -25 0 25 50 75 Temperature Topt(°C) 100 9) EXT "L" On Resistance vs. Temperature R1212D10xx 4 VIN=3.3V, IEXT=50mA 10) EXT "H" On Resistance vs. Temperature R1212D10xx 4 VIN=3.3V, IEXT=50mA 3 2 1 0 -50 EXT "H" ON Resistance(Ω) -25 0 25 50 75 Temperature Topt(°C) 100 EXT "L" ON Resistance(Ω) 3 2 1 0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 11) EXT Rising Time vs. Temperature R1212D10xx 10 VIN=3.3V, CEXT=1000pF 12) EXT Falling Time vs. Temperature R1212D10xx 10 VIN=3.3V, CEXT=1000pF 8 6 4 2 0 -50 EXT Falling Time tf(ns) -25 0 25 50 75 Temperature Topt(°C) 100 EXT Rising Time tr(ns) 8 6 4 2 0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 25 R1212D 13) Duty Cycle vs. DTC Voltage (0% to 100%) (Topt=25°C) R1212D100A 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) CEXT=1000pF R1212D100B CEXT=1000pF 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) Duty Cycle Duty(%) R1212D101A 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) CEXT=1000pF Duty Cycle Duty(%) R1212D101C CEXT=1000pF 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) Duty Cycle Duty(%) 14) Duty Cycle vs. Temperature R1212D100A 86 VDTC=0.75V, CEXT=1000pF 86 Duty Cycle Duty(%) R1212D100B VDTC=0.75V, CEXT=1000pF Duty Cycle Duty(%) 83 80 77 74 -50 Duty Cycle Duty(%) -25 0 25 50 75 Temperature Topt(°C) 100 83 80 77 74 -50 -25 0 25 50 75 Temperature Topt(°C) 100 26 R1212D 15) Maxduty vs. Temperature R1212D101A 96 93 CEXT=1000pF 98 95 R1212D101C CEXT=1000pF Maxduty(%) 90 87 84 -50 Maxduty(%) -25 0 25 50 75 Temperature Topt(°C) 100 92 89 86 -50 -25 0 25 50 75 Temperature Topt(°C) 100 16) AMP "L" Output Current vs. Temperature R1212D10xA/B AMP "L" Output Current IAMPL(uA) AMP "L" Output Current IAMPL(uA) 140 130 120 110 100 90 80 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=3.3V, AMPOUT=1V 130 120 110 100 90 80 70 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R1212D10xC VIN=3.3V, AMPOUT=1V 17) AMP "H" Output Current vs. Temperature R1212D10xx AMP "H" Output Current IAMPL(mA) 2.0 1.5 1.0 0.5 0.0 -50 VIN=3.3V, AMPOUT=1V -25 0 25 50 75 Temperature Topt(°C) 100 27 R1212D 18) UVLO Detector Threshold UVLO Released Voltage vs. Temperature R1212D100x 2.10 2.35 R1212D101x UVLO Detector Threshold/ Released Voltage (V) 2.30 2.25 2.20 2.15 2.10 2.05 -50 -25 0 25 50 75 Temperature Topt(°C) 100 Detector Threshold UVLO Detector Threshold/ Released Voltage (V) 2.05 2.00 1.95 Released Voltage Released Voltage Detector Threshold 1.90 1.85 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R1212D102x 3.2 19) DELAY Pin Detector Threshold vs. Temperature R1212D10xx DELAY Pin Detector Voltage VDLY(V) 1050 1025 1000 975 950 -50 VIN=3.3V UVLO Detector Threshold/ Released Voltage (V) 3.1 3.0 2.9 2.8 2.7 -50 Detector Threshold Released Voltage -25 0 25 50 75 Temperature Topt(°C) 100 -25 0 25 50 75 Temperature Topt(°C) 100 20) DELAY Pin Charge Current vs. Temperature R1212D10xA/B DELAY Pin Charge Current IDLY1(uA) 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R1212D10xC DELAY Pin Charge Current IDLY1(uA) VIN=3.3V 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=3.3V 28 R1212D 21) DELAY Pin Discharge Current vs. Temperature R1212D10xx DELAY Pin Discharge Current IDLY2(uA) 300 250 200 150 100 50 0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=2.2V, VDLY=0.1V 22) VREFOUT Voltage vs. Temperature R1212D10xx 1.53 VIN=3.3V VREFOUT Voltage(V) 1.52 1.51 1.50 1.49 1.48 -50 -25 0 25 50 75 Temperature Topt(°C) 100 23) VREFOUT Voltage vs. Input Voltage (Topt=25°C) 24) VREFOUT Voltage vs. Output Current (1) (Topt=25°C) R1212D10xx 1.53 1515 1510 1505 1500 1495 1490 1485 2 3 4 5 Input Voltage VIN(V) 6 0 2 4 6 8 Output Current IROUT(mA) 10 VIN=2.2V VIN=3.3V VIN=5.5V R1212D10xx 1.51 1.50 1.49 1.48 25) VREFOUT Voltage vs. Output Current (2) (Topt=25°C) 26) Error Amplifier Gain/Phase vs. Frequency (Topt=25°C) R1212D10xx 1600 1200 1000 800 600 400 200 0 0 20 40 60 Output Current IROUT(mA) 80 VIN=2.2V VIN=3.3V VIN=5.5V 180 160 140 120 100 80 60 40 20 0 -20 0 VREFOUT Voltage(mV) VREFOUT Voltage (V) 1.52 R1212D10xx VIN=3.3V Gain(dB) / Phase(deg) 1400 VREFOUT Voltage(mV) Phase Gain 10 100 1000 Frequency freq.(kHz) 10000 29 R1212D 27) Power-on Response (VIN=3.3V, Topt=25°C) R1212D100A 6.0 5.0 Set VOUT=5V, IOUT=10mA VOUT 6.0 6.0 R1212D100A Set VOUT=5V, IOUT=100mA VOUT 6.0 Output Voltage VOUT(V) Voltage (V) VIN 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 40 50 DTC 3.0 2.0 1.0 0.0 Voltage (V) 4.0 4.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) VIN 4.0 3.0 2.0 DTC 1.0 0.0 50 40 R1212D100A 6.0 5.0 Set VOUT=10V, IOUT=10mA VOUT 12.0 6.0 R1212D100A Set VOUT=10V, IOUT=100mA VOUT 12.0 Output Voltage VOUT(V) Voltage (V) VIN 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 40 50 DTC 6.0 4.0 2.0 0.0 Voltage (V) 4.0 8.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) VIN 8.0 6.0 4.0 DTC 2.0 0.0 50 40 R1212D100A 6.0 5.0 Set VOUT=15V, IOUT=10mA VOUT 18.0 6.0 R1212D100A Set VOUT=15V, IOUT=100mA VOUT 18.0 Output Voltage VOUT(V) Voltage (V) 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 40 50 DTC 9.0 6.0 3.0 0.0 Voltage (V) 4.0 VIN 12.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 40 VIN 12.0 9.0 6.0 DTC 3.0 0.0 50 30 Output Voltage VOUT(V) 15.0 5.0 15.0 Output Voltage VOUT(V) 10.0 5.0 10.0 Output Voltage VOUT(V) 5.0 5.0 5.0 R1212D R1212D100B 6.0 5.0 Set VOUT=5V, IOUT=10mA VOUT 6.0 6.0 R1212D100B Set VOUT=5V, IOUT=100mA VOUT 6.0 Output Voltage VOUT(V) Voltage (V) VIN Voltage (V) 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 4.0 3.0 2.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 40 VIN 4.0 3.0 2.0 DTC 1.0 0.0 50 DTC 1.0 0.0 50 40 R1212D100B 6.0 5.0 Set VOUT=10V, IOUT=10mA VOUT 12.0 6.0 R1212D100B Set VOUT=10V, IOUT=100mA VOUT 12.0 Output Voltage VOUT(V) Voltage (V) Voltage (V) 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 40 VIN 8.0 6.0 4.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 40 VIN 8.0 6.0 4.0 DTC 2.0 0.0 50 DTC 2.0 0.0 50 R1212D100B 6.0 5.0 Set VOUT=15V, IOUT=10mA VOUT 18.0 6.0 R1212D100B Set VOUT=15V, IOUT=100mA VOUT 18.0 Output Voltage VOUT(V) Voltage (V) Voltage (V) 4.0 VIN 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 40 50 DTC 12.0 9.0 6.0 3.0 0.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 40 VIN 12.0 9.0 6.0 DTC 3.0 0.0 50 Output Voltage VOUT(V) 15.0 5.0 15.0 Output Voltage VOUT(V) 10.0 5.0 10.0 Output Voltage VOUT(V) 5.0 5.0 5.0 31 R1212D R1212D101C 6.0 5.0 Set VOUT=15V, IOUT=10mA VOUT 18.0 6.0 R1212D101C Set VOUT=5V, IOUT=100mA VOUT 6.0 Voltage (V) Voltage (V) 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) VIN 12.0 9.0 6.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) VIN 4.0 3.0 2.0 DTC 3.0 0.0 50 DTC 1.0 0.0 50 40 40 R1212D101C 6.0 5.0 Set VOUT=10V, IOUT=10mA VOUT 12.0 6.0 R1212D101C Set VOUT=10V, IOUT=100mA 12.0 Output Voltage VOUT(V) Voltage (V) VIN 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 40 50 DTC 6.0 4.0 2.0 0.0 Voltage (V) 4.0 8.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) VOUT 8.0 6.0 4.0 VIN DTC 2.0 0.0 50 40 R1212D101C 6.0 5.0 Set VOUT=15V, IOUT=10mA VOUT 18.0 6.0 R1212D101C Set VOUT=15V, IOUT=10mA VOUT 18.0 Output Voltage VOUT(V) Voltage (V) VIN Voltage (V) 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 12.0 9.0 6.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 Time (ms) 40 VIN 12.0 9.0 6.0 DTC 3.0 0.0 50 DTC 3.0 0.0 50 40 32 Output Voltage VOUT(V) 15.0 5.0 15.0 Output Voltage VOUT(V) 10.0 5.0 10.0 Output Voltage VOUT(V) Output Voltage VOUT(V) 15.0 5.0 5.0 R1212D 28) Load Transient Response (VIN=3.3V, Topt=25°C) R1212D100A 300 IOUT=1mA-30mA 5.1 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 4.9 4.8 4.7 4.6 IOUT 5 10 Time (ms) 15 20 4.5 R1212D100A 300 IOUT=10mA-100mA 5.1 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 4.9 4.8 4.7 IOUT 5 10 Time (ms) 15 20 4.6 4.5 R1212D100A 300 IOUT=1mA-30mA 10.2 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 9.8 9.6 9.4 9.2 IOUT 5 10 Time (ms) 15 20 9.0 Output Voltage VOUT(V) 250 10.0 Output Voltage VOUT(V) 250 5.0 Output Voltage VOUT(V) 250 5.0 33 R1212D R1212D100A 300 IOUT=10mA-100mA 10.2 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 9.8 9.6 9.4 IOUT 5 10 Time (ms) 15 20 9.2 9.0 R1212D100A 300 IOUT=1mA-30mA 15.6 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 15.0 14.7 14.4 14.1 IOUT 5 10 Time (ms) 15 20 13.8 R1212D100A 300 IOUT=10mA-100mA 15.6 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 15.0 14.7 14.4 IOUT 5 10 Time (ms) 15 20 14.1 13.8 34 Output Voltage VOUT(V) 250 15.3 Output Voltage VOUT(V) 250 15.3 Output Voltage VOUT(V) 250 10.0 R1212D R1212D100B 300 IOUT=1mA-30mA 5.1 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 4.9 4.8 4.7 4.6 IOUT 5 10 Time (ms) 15 20 4.5 R1212D100B 300 IOUT=10mA-100mA 5.1 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 4.9 4.8 4.7 IOUT 5 10 Time (ms) 15 20 4.6 4.5 R1212D100B 300 IOUT=1mA-30mA 10.2 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 9.8 9.6 9.4 9.2 IOUT 5 10 Time (ms) 15 20 9.0 Output Voltage VOUT(V) 250 10.0 Output Voltage VOUT(V) 250 5.0 Output Voltage VOUT(V) 250 5.0 35 R1212D R1212D100B 300 IOUT=10mA-100mA 10.2 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 9.8 9.6 9.4 IOUT 5 10 Time (ms) 15 20 9.2 9.0 R1212D100B 300 IOUT=1mA-30mA 15.6 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 15.0 14.7 14.4 IOUT 5 10 Time (ms) 15 20 14.1 13.8 R1212D100B 300 IOUT=10mA-100mA 15.6 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 15.0 14.7 14.4 IOUT 5 10 Time (ms) 15 20 14.1 13.8 36 Output Voltage VOUT(V) 250 15.3 Output Voltage VOUT(V) 250 15.3 Output Voltage VOUT(V) 250 10.0 R1212D R1212D101C 300 IOUT=1mA-30mA 5.1 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 4.9 4.8 4.7 IOUT 5 10 Time (ms) 15 20 4.6 4.5 R1212D101C 300 IOUT=10mA-100mA 5.1 Output Current IOUT(mA) 200 150 100 50 0 0 VOUT 4.9 4.8 4.7 IOUT 5 10 Time (ms) 15 20 4.6 4.5 R1212D101C 300 IOUT=1mA-30mA VOUT 10.4 Output Current IOUT(mA) 200 150 100 50 0 0 5 10 Time (ms) 15 20 IOUT 10.0 9.8 9.6 9.4 9.2 Output Voltage VOUT(V) 250 10.2 Output Voltage VOUT(V) 250 5.0 Output Voltage VOUT(V) 250 5.0 37 R1212D R1212D101C 300 IOUT=10mA-100mA VOUT 10.4 Output Current IOUT(mA) 200 150 100 50 0 0 5 10 Time (ms) 15 20 IOUT 10.0 9.8 9.6 9.4 9.2 R1212D101C 300 IOUT=1mA-30mA VOUT 15.6 Output Current IOUT(mA) 200 150 100 50 0 0 5 10 Time (ms) 15 20 IOUT 15.0 14.7 14.4 14.1 13.8 R1212D101C 300 IOUT=10mA-100mA VOUT 15.6 Output Current IOUT(mA) 200 150 100 50 0 0 5 10 Time (ms) 15 20 IOUT 15.0 14.7 14.4 14.1 13.8 38 Output Voltage VOUT(V) 250 15.3 Output Voltage VOUT(V) 250 15.3 Output Voltage VOUT(V) 250 10.2 PACKAGE INFORMATION PE-SON-8-0510 • SON-8 Unit: mm PACKAGE DIMENSIONS 2.9±0.2 0.475TYP 8 5 0.23±0.1 0.2±0.1 Bottom View 0.13±0.05 0.15 +0.1 −0.15 0.15 +0.1 −0.15 2.8±0.2 3.0±0.2 1 4 Attention : Tab suspension leads in the parts have VDD or GND level. (They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. 0.13±0.05 0.65 0.3±0.1 0.1 0.1 M TAPING SPECIFICATION 0.2±0.1 +0.1 φ1.5 0 4.0±0.1 2.0±0.05 0.9MAX. 3.5±0.05 ∅1.1±0.1 0 ∅ 180 −1.5 ∅ 60 +1 0 1.75±0.1 3.3 2.0MAX. 4.0±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) 11.4±1.0 9.0±0.3 ∅13±0.2 21±0.8 2±0.5 8.0±0.3 3.2 0.2±0.1 PACKAGE INFORMATION PE-SON-8-0510 POWER DISSIPATION (SON-8) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Board Material Board Dimensions Copper Ratio Through-hole Measurement Result (Topt=25°C,Tjmax=125°C) Mounting on Board (Wind velocity=0m/s) Glass cloth epoxy plactic (Double sided) 40mm × 40mm × 1.6mm Top side : Approx. 50% , Back side : Approx. 50% φ0.5mm × 44pcs Standard Land Pattern Power Dissipation Thermal Resistance 600 Free Air 300mW 333°C/W 480mW θja=(125−25°C)/0.48W=208°C/W Power Dissipation PD(mW) 500 400 300 480 On Board 40 Free Air 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation 40 200 Measurement Board Pattern IC Mount Area (Unit : mm) RECOMMENDED LAND PATTERN 0.35 0.65 1.15 0.65 (Unit: mm) MARK INFORMATION ME-R1212D-0409 R1212D SERIES MARK SPECIFICATION • SON-8 1 5 to , 6 4 : Product Code (refer to Part Number vs. Product Code) : Lot Number 1 2 3 5 4 6 • Part Number vs. Product Code Product Code 1 2 3 4 Part Number R1212D002A R1212D100A R1212D100B R1212D101A R1212D102A R1212D101C R1212D102C F F F F F F F 0 1 1 1 1 1 1 2 0 0 1 2 1 2 A A B A A C C
R1212D101A 价格&库存

很抱歉,暂时无法提供与“R1212D101A”相匹配的价格&库存,您可以联系我们找货

免费人工找货