0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R1232D291B

R1232D291B

  • 厂商:

    RICOH(理光)

  • 封装:

  • 描述:

    R1232D291B - PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER - RICOH electronics devices di...

  • 数据手册
  • 价格&库存
R1232D291B 数据手册
R1232D SERIES PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER NO.EA-129-0606 OUTLINE The R1232D Series are CMOS-based PWM step-down DC/DC converters with synchronous rectifier, low supply current. As an output capacitor, a 10µF or more ceramic capacitor can be used with the R1232D. Each of these ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a soft-start circuit, protection circuits, a protection against miss operation under low voltage (UVLO), a chip enable circuit, a synchronous rectifier, Nch. driver transistor, and so on. A low ripple, high efficiency step-down DC/DC converter can be easily composed of this IC with only a few kinds of external components, or an inductor and capacitors. (As for R1232D001x type, divider resistors are also necessary.) In terms of the output voltage, it is fixed internally in the R1232Dxx1x types. While in the R1232D001x types, the output voltage is adjustable with external divider resistors. As protection circuits, current limit circuit which limits peak current of LX at each clock cycle, and latch type protection circuit exist. The latch protection works if the term of the over-current condition keeps on a certain time. Latch-type protection circuit works to latch an internal driver with keeping it disable. To release the condition of protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make the supply voltage at UVLO detector threshold level or lower than UVLO. FEATURES • Two choices of Oscillator Frequency ............................ 1MHz, 2.25MHz (Small inductors can be used. 4.7µH for 1MHz/2.2µH for 2.25MHz) • Built-in Driver ON Resistance ....................................... P-channel 0.2Ω (at VIN=5.0V) • Built-in Soft-start Function............................................. Typ. 1.0ms (fosc=1MHz type) • Output Voltage .............................................................. 0.9V to 3.3V (xx1x Type) 0.8V to VIN (001x Type) • High Accuracy Output Voltage ...................................... ±2.0% • Built-in Current Limit Circuit .......................................... Typ. 1.4A • Package ........................................................................SON-8 (t=0.9mm) APPLICATIONS • Power source for portable equipment such as PDA, DSC, Notebook PC. • Power source for HDD 1 R1232D BLOCK DIAGRAMS R1232Dxx1A/B VDD AGND 3 VIN 2 Current Limit 7 Slope Compensation Phase Compensation 5 VOUT Q R S PWM Comparator Error Amplifer Soft Start Vref LX 8 Output Contorol Oscillator 4 CE “H” Active TEST Circuit UVLO Chip Enable 1 PGND 6 TEST “L” or GND Fixed R1232D001C/D VDD AGND 3 VIN 2 Current Limit 7 Slope Compensation Phase Compensation 5 VFB Q R S PWM Comparator Error Amplifer Soft Start Vref LX 8 Output Contorol Oscillator 4 CE “H” Active TEST Circuit UVLO Chip Enable 1 PGND 6 TEST “L” or GND Fixed 2 R1232D SELECTION GUIDE In the R1232D Series, the output voltage, the oscillator frequency, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below; R1232Dxx1x-xx-x ←Part Number ↑ ↑↑ ↑ ↑ a bc d e Code a b Contents Setting Output Voltage(VOUT): Stepwise setting with a step of 0.1V in the range of 0.9V to 3.3V is possible for fixed output version."00" is for Output Voltage Adjustable version (0.8V as the feedback voltage.) 1: fixed Designation of Optional Function A: 1MHz, Fixed Output Voltage B: 2.25MHz, Fixed Output Voltage C: 1MHz, Adjustable Output Voltage D: 2.25MHz, Adjustable Output Voltage Designation of Taping Type; (Refer to Taping Specification)"TR" is prescribed as a standard. Designation of Composition of pin plating -F : Lead free plating c d e 3 R1232D PIN CONFIGURATION SON-8 Top View 8 7 65 Bottom View 56 7 8 ∗ ∗ ∗ 1 2 34 43 2 1 PIN DESCRIPTIONS Pin No 1 2 3 4 5 6 7 8 Symbol PGND VIN VDD CE VOUT/VFB TEST AGND LX Ground Pin Voltage Supply Pin Voltage Supply Pin Chip Enable Pin (active with "H") Output/Feedback Pin Test Pin (Forced to the "L" or GND level.) Ground Pin LX Switching Pin (CMOS Output) Pin Description ∗ Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns. ABSOLUTE MAXIMUM RATINGS Symbol VIN VDD VLX VCE VTEST VFB ILX PD Topt Tstg VIN Supply Voltage VDD Pin Voltage LX Pin Voltage CE Pin Input Voltage TEST Pin Input Voltage VFB Pin Input Voltage LX Pin Output Current Power Dissipation (SON-8)* 1 Item Rating 6.5 6.5 −0.3 to VIN + 0.3 −0.3 to VIN + 0.3 −0.3 to VIN + 0.3 −0.3 to VIN + 0.3 ±1.5 480 −40 to 85 −55 to 125 Unit V V V V V V V mW °C °C Operating Temperature Range Storage Temperature Range ∗1) For the power dissipation, refer to the package information on the website. 4 R1232D ELECTRICAL CHARACTERISTICS • R1232DxxxA/C Topt=25°C Symbol VIN Item Operating Input Voltage Step-down Output Voltage Feedback Voltage Step-down Output Voltage Temperature Coefficient Oscillator Frequency Supply Current Standby Current LX Leakage Current Conditions VIN=VCE=5.0V, IOUT=10mA VIN=VCE=5.0V, IOUT=10mA −40°C < = Min. 2.6 Typ. Max. 5.5 Unit V VOUT VFB ∆VOUT/∆Topt fosc IDD Istandby ILXleak RONP RONN Maxduty tstart tprot ILXlimit VUVLO1 VUVLO2 ICE IVOUT VCEH VCEL VTESTL ×0.980 0.784 0.800 ±150 0.75 70 1.00 140 0.0 −5.0 0.0 0.20 0.20 100 0.5 0.1 1.0 2.10 2.20 −0.1 −0.1 1.5 1.0 2.0 1.4 2.25 VUVLO1 +0.10 0.0 0.0 ×1.020 0.816 V V ppm/ °C Topt < = 85°C VIN=VCE =VSET +1.5V VIN=VCE =5.5V, VOUT=5.5V VCE=VOUT=0V, VIN= 5.5V VIN=5.5V,VCE=0V VLX=0V/5.5V 1.25 190 5.0 5.0 0.35 0.35 1.4 10.0 2.40 2.50 0.1 0.1 MHz µA µA µA Ω Ω % ms ms A V V µA µA V ON Resistance of Pch Transistor VIN=5.0V, ILX=200mA ON Resistance of Nch Transistor VIN=5.0V, ILX=200mA Oscillator Maximum Duty Cycle Soft-start Time Protection Delay Time Lx Current Limit UVLO Detector Threshold UVLO Released Voltage CE Input Current VOUT Leakage Current CE "H" Input Voltage CE "L" Input Voltage TEST pin "L" Input Voltage VIN=VCE =5.0V, at no load VIN=VCE =5.0V VIN=VCE =5.0V VIN=VCE =2.6V-> 1.5V VIN=VCE =1.5V-> 2.6V VIN=5.5V, VCE =5.5V/0V VIN=5.5V, VCE =0V, VOUT=5.5V/0V VIN=5.5V VIN=3.0V VIN=3.0V 0.3 0.3 V V 5 R1232D • R1232DxxxB/D Topt=25°C Symbol VIN VOUT VFB ∆VOUT/∆Topt fosc IDD Istandby ILXleak RONP RONN Maxduty tstart tprot ILXlimit VUVLO1 VUVLO2 ICE IVOUT VCEH VCEL VTESTL Item Operating Input Voltage Step-down Output Voltage Feedback Voltage Step-down Output Voltage Temperature Coefficient Oscillator Frequency Supply Current Standby Current LX Leakage Current Conditions VIN=VCE=5.0V,IOUT=10mA VIN=VCE=5.0V,IOUT=10mA −40°C < = < = Min. 2.6 ×0.980 0.784 Typ. Max. 5.5 ×1.020 Unit V V V ppm/ °C 0.800 ±150 0.816 Topt 85°C 1.91 170 VIN=VCE=VSET+1.5V VIN=VCE=5.5V, VOUT=5.5V VCE=VOUT=0V, VIN=5.5V VIN=5.5V, VCE=0V, VLX=0V/5.5V 2.25 240 0.0 2.58 310 5.0 5.0 0.35 0.35 0.7 10.0 2.40 2.50 0.1 0.1 MHz µA µA µA Ω Ω % ms ms A V V µA µA V −5.0 0.0 0.20 0.20 ON Resistance of Pch Transistor VIN=5.0V, ILX=200mA ON Resistance of Nch Transistor VIN=5.0V, ILX=200mA Oscillator Maximum Duty Cycle Soft-start Time Protection Delay Time LX Current Limit UVLO Detector Threshold UVLO Released Voltage CE Input Current VOUT Leakage Current CE "H" Input Voltage CE "L" Input Voltage TEST "L" Input Voltage VIN=VCE=5.0V, at no load VIN=VCE=5.0V VIN=VCE=5.0V VIN=VCE=2.6V -> 1.5V VIN=VCE =1.5V -> 2.6V VIN=5.5V, VCE =5.5V/0V VIN=5.5V, VCE=0V, VOUT=5.5V/0V VIN=5.5V VIN=3.0V VIN=3.0V 100 0.15 0.1 1.0 2.10 2.20 −0.1 −0.1 1.5 0.4 2.0 1.4 2.25 VUVLO1 +0.10 0.0 0.0 0.3 0.3 V V 6 R1232D TEST CIRCUIT PGND VIN VDD CE LX AGND TEST VFB A Test Circuit for Input Current and Leakage Current PGND VIN VDD LX AGND TEST VFB PGND VIN VDD CE LX AGND TEST VFB V A CE Test Circuit for Supply Current and Standby Current Test Circuit for ON resistance of LX PGND VIN VDD CE LX AGND TEST VFB OSCILLOSCOPE Input Voltage, Output Voltage, Frequency, Lx Current Limit, Protection Delay Time, UVLO Voltage Test Circuit PGND VIN VDD CE LX AGND TEST VFB OSCILLOSCOPE Soft Start Time Test Circuit The bypass capacitor between power supply and GND is a ceramic capacitor 10µF. 7 R1232D TYPICAL APPLICATION AND TECHNICAL NOTES • Fixed Output Voltage Type L PGND LX VOUT CIN VIN VDD CE AGND TEST VFB LOAD COUT • Adjustable Output Type L PGND LX VOUT CIN VIN VDD CE AGND TEST VFB LOAD COUT Cb R1 R2 CIN COUT L 10µF C2012JB0J106MT (TDK), 10µF CM21B106M06AB (Kyocera) 10µF C2012JB0J106MT (TDK), 10µF CM21B106M06AB (Kyocera) 4.7µH/2.7µH VLP5610-4R7MR90, VLP5610-2R7M1R0 (TDK) *2.2µH is also suitable for B version. In terms of setting R1, R2, Cb, refer to the technical notes. 8 R1232D When you use these ICs, consider the following issues; • Input the same voltage into power supply pins, VIN and VDD. Set the same level as AGND and PGND. • When you control the CE pin by another power supply, do not make its "H" level more than the voltage level of VIN / VDD pin. • Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular, minimize the wiring to VIN pin and PGND pin. • At stand by mode, (CE="L"), the LX output is Hi-Z, or both P-channel transistor and N-channel transistor of LX pin turn off. • In terms of the protection circuits, current limit for the peak current of each cycle of Lx, and the latch protection circuit, which works if the over-limit current flows continuously for a certain time exist. To release the protection, once make this IC into be standby mode with chip enable pin, or make the supply voltage be down to UVLO threshold level or less. • Reinforce the VIN, PGND, and VOUT lines sufficiently. Large switching current may flow in these lines. If the impedance of VIN and PGND lines is too large, the internal voltage level in this IC may shift caused by the switching current, and the operation might be unstable. • Connect the TEST Pin to the "L" or GND level. The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values. 9 R1232D OPERATION of step-down DC/DC converter and Output Current The step-down DC/DC converter charges energy in the inductor when LX transistor is ON, and discharges the energy from the inductor when LX transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams: i1 Lx Tr VIN SD L i2 CL IOUT VOUT Step 1: P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from Ilmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr. Step 2: When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL at ILmax, and current IL (=i2) flows. Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr. Turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value increases from this Ilmin (>0). In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant. • Continuous Conduction Mode The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the same as those when P-channel Tr. turns on and off. The difference between ILmax and ILmin, which is represented by ∆I; ∆I=ILmax−ILmin=VOUT×topen/L=(VIN−VOUT)×ton/L ........................................................Equation 1 Where, t=1/fosc=ton+toff duty (%)=ton/t×100=ton×fosc×100 topen < toff = In Equation 1, VOUT×topen/L and (VIN−VOUT) ×ton/L are respectively shown the change of the current at ON, and the change of the current at OFF. Even if the output current (IOUT) is, topen < toff as illustrated in the above diagram is not realized with this IC. At least, topen is equal toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The mode is referred to as the continuous mode. 10 R1232D In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc tonc=t×VOUT/VIN............................................................................................................. Equation 2 When the ton=tonc, the mode is the continuous mode. OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS When P-channel Tr. of LX is ON: (Wherein, Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. and N-channel Tr. of LX are respectively described as RONP and RONN, and the DC resistor of the inductor is described as RL.) VIN=VOUT+(RONP+RL)×IOUT+L×IRP/ton .............................................................................. Equation 3 When P-channel Tr. of LX is "OFF"(N-channel Tr. is "ON"): L×IRP/toff=VF+VOUT+RONN×IOUT ....................................................................................... Equation 4 Put Equation 4 to Equation 3 and solve for ON duty of P-channel transistor, Don=ton/(toff+ton), DON=(VOUT−RONN×IOUT+RL×IOUT)/(VIN+RONN×IOUT−RONP×IOUT) ........................................... Equation 5 Ripple Current is as follows; IRP=(VIN−VOUT−RONP×IOUT−RL×IOUT)×DON/fosc/L .............................................................. Equation 6 wherein, peak current that flows through L, and LX Tr. is as follows; ILmax=IOUT+IRP/2 .......................................................................................................... Equation 7 Consider ILmax, condition of input and output and select external components. The above explanation is directed to the calculation in an ideal case in continuous mode. 11 R1232D How to Adjust Output Voltage and about Phase Compensation As for Adjustable Output type, feedback pin (VFB) voltage is controlled to maintain 0.8V. Output Voltage, VOUT is as following equation; VOUT R1+R2=VFB:R2 VOUT=VFB×(R1+R2)/R2 Thus, with changing the value of R1 and R2, output voltage can be set in the specified range. In the DC/DC converter, with the load current and external components such as L and C, phase might be behind 180 degree. In this case, the phase margin of the system will be less and stability will be worse. To prevent this, phase margin should be secured with proceeding the phase. A pole is formed with external components L and COUT. fpole ~ 1/2π LCOUT A zero (signal back to zero) is formed with R1 and Cb. ≅fzero ~ 1/(2p×R1×Cb) First, choose the appropriate value of R1, R2 and Cb. Set R1+R2 value 100kΩ or less. For example, if L=4.7µH, COUT =10µF, the cut off frequency of the pole is approximately 23kHz. To make the cut off frequency of the zero by R1, R2, and Cb be higher than 23kHz, set R1=33kΩ and Cb=100pF.If VOUT is set at 2.0V, R2=22kΩ is appropriate. 12 R1232D External Components 1.Inductor Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows, magnetic saturation occurs and makes transform efficiency be worse. Supposed that the load current is at the same, the smaller value of L is used, the larger the ripple current is. Provided that the allowable current is large in that case and DC current is small, therefore, for large output current, efficiency is better than using an inductor with a large value of L and vice versa. 2.Capacitor As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) Ceramic type of a capacity at least 10µF for stable operation. COUT can reduce ripple of the output voltage, therefore as much as 10µF ceramic type is recommended. TIMING CHART CE pin Voltage Output Short Intemal Opertional Intemal Soft-start Set Voltage Amplifier Output Output Short Intemal Oscillator Waveform Lx Pin Output Latched Soft-start Time Stable Delay Time of Protection The timing chart as shown above describes the waveforms starting from the IC is enabled with CE and latched with protection. During the soft-start time, until the level is rising up to the internal soft-start set voltage, the duty cycle of LX is gradually wider and wider to prevent the over-shoot of the voltage. During the term, the output of amplifier is "H". After the output voltage reaches the set output voltage, they are balanced well. Herein, if the output pin would be short circuit, the output of amplifier would become "H" again, and the condition would continue for 2.0ms (Typ.), latch circuit would work and the output of LX would be latched with "OFF". (Output ="High-Z") If the output short is released before the latch circuit works (within 2ms after output shorted), the output of amplifier is balanced in the stable state again. Once the IC is latched, to release the protection, input "L" with CE pin, or make the supply voltage at UVLO level or less. 13 R1232D TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current (CIN = 10µF, COUT = 10µF) R1232D121A 1.300 VIN=5.0V 3.400 R1232D331A VIN=5.0V Output Voltage VOUT(V) 1.250 1.200 1.150 1.100 1 10 100 Output Current IOUT(mA) 1000 Output Voltage VOUT(V) 3.350 3.300 3.250 3.200 1 10 100 Output Current IOUT(mA) 1000 R1232D121B 1.300 VIN=5.0V 3.400 R1232D331B VIN=5.0V Output Voltage VOUT(V) 1.250 1.200 1.150 1.100 1 10 100 Output Current IOUT(mA) 1000 Output Voltage VOUT(V) 3.350 3.300 3.250 3.200 1 10 100 Output Current IOUT(mA) 1000 2) Efficiency vs. Output Current (CIN = 10µF, COUT = 10µF) R1232D121A 100 90 80 70 60 50 40 30 20 10 0 1 VIN=3.3V, 5.0V 100 90 80 70 60 50 40 30 20 10 0 1 R1232D331A VIN=5.0V Efficiency(%) (VIN=5.0V) (VIN=3.3V) 10 100 Output Current IOUT(mA) 1000 Efficiency(%) 10 100 Output Current IOUT(mA) 1000 R1232D121B 14 R1232D331B R1232D 100 90 80 70 60 50 40 30 20 10 0 1 VIN=3.3V, 5.0V 100 90 80 70 60 50 40 30 20 10 0 1 VIN=5.0V Efficiency(%) (VIN=5.0V) (VIN=3.3V) 10 100 Output Current IOUT(mA) 1000 Efficiency(%) 10 100 Output Current IOUT(mA) 1000 3) Output Waveform R1232D121A 0.04 VIN=5.0V, IOUT=600mA 0.04 R1232D331A VIN=5.0V, IOUT=600mA Output Ripple Voltage(V) 0.02 0.01 0 -0.01 -0.02 -0.03 -0.04 -3 -2 -1 0 1 Time t(ns) 2 3 Output Ripple Voltage(V) 0.03 0.03 0.02 0.01 0 -0.01 -0.02 -0.03 -0.04 -3 -2 -1 0 1 Time t(ns) 2 3 R1232D121B 0.06 VIN=5.0V, IOUT=600mA 0.04 R1232D331B VIN=5.0V, IOUT=600mA Output Ripple Voltage(V) 0.04 0.02 0 -0.02 -0.04 -0.06 -1.5 -1.0 -0.5 0 0.5 Time t(ns) 1.0 1.5 Output Ripple Voltage(V) 0.03 0.02 0.01 0 -0.01 -0.02 -0.03 -0.04 -1.5 -1.0 -0.5 0 0.5 Time t(ns) 1.0 1.5 15 R1232D 4) Load Transient Response R1232D121A 0.8 VIN=5.0V 0.5 0.8 R1232D121A VIN=5.0V 0.8 0.6 Output Current 600mA→10mA 0.5 0.4 0.3 Output Voltage 0.2 0.1 0 -50 0 50 100 Time t (µs) 150 -0.1 200 Output Voltage VOUT(V) 0.4 0.2 0 Output Current 10mA→600mA 0.3 0.2 0.1 0 -0.1 0.4 0.2 0 Output Voltage -50 0 50 100 Time t (µs) 150 -0.2 -0.3 200 R1232D121B 0.8 VIN=5.0V 0.5 0.8 R1232D121B VIN=5.0V 0.8 0.6 Output Current 600mA→10mA 0.5 0.4 0.3 Output Voltage 0.2 0.1 0 -50 0 50 100 Time t (µs) 150 -0.1 200 Output Voltage VOUT(V) 0.4 0.2 0 Output Current 10mA→600mA 0.3 0.2 0.1 0 -0.1 -0.2 0.4 0.2 0 Output Voltage -50 0 50 100 Time t (µs) 150 -0.3 200 5) Output Voltage vs. Input Voltage R1232D121A 1.22 IOUT=600mA 3.32 R1232D331A IOUT=600mA Output Voltage VOUT(V) 1.21 1.20 1.19 1.18 2.5 Output Voltage VOUT(V) 3.31 3.30 3.29 3.28 3.0 3.0 3.5 4.0 4.5 5.0 Input Voltage VIN(V) 5.5 6.0 3.5 4.0 4.5 5.0 5.5 Input Voltage VIN(V) 6.0 6) Oscillator Frequency vs. Input Voltage R1232D121A R1232D121B 16 Output Voltage VOUT(V) Output Current IOUT(A) Output Current IOUT(A) 0.6 0.4 0.6 0.7 Output Voltage VOUT(V) Output Current IOUT(A) Output Current IOUT(A) 0.6 0.4 0.6 0.7 R1232D 1.10 IOUT=600mA 2.4 IOUT=600mA Frequency fosc(MHz) 1.05 1.00 0.95 0.90 2.5 Frequency fosc(MHz) 3.0 3.5 4.0 4.5 5.0 Input Voltage VIN(V) 5.5 6.0 2.3 2.2 2.1 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Input Voltage VIN(V) 5.5 6.0 7) Lx Transistor On Resistance vs. Input Voltage Switching Tr. Pch on Resistance 0.14 0.13 0.12 0.11 0.10 0.09 2.5 IOUT=200mA Synchronous Rectifier Tr. Nch on Resistance 0.14 0.13 0.12 0.11 0.10 0.09 2.5 IOUT=200mA on Resistance(Ω) 3.0 3.5 4.0 4.5 5.0 Input Voltage VIN(V) 5.5 6.0 on Resistance(Ω) 3.0 3.5 4.0 4.5 5.0 Input Voltage VIN(V) 5.5 6.0 8) Turn-on speed by CE pin R1232D121A VIN=5.0V, L=4.7µH Rload=0Ω R1232D121A VIN=5.0V, L=4.7µH Rload=12Ω CE 5V/div VOUT 1V/div IL 200mA/div 200µs/div CE 5V/div VOUT 1V/div IL 200mA/div 200µs/div R1232D331B R1232D331B 17 R1232D VIN=5.0V, L=2.7µH Rload=0Ω VIN=5.0V, L=2.7µH Rload=33Ω CE 5V/div VOUT 1V/div IL 200mA/div 100µs/div CE 5V/div VOUT 1V/div IL 200mA/div 100µs/div 9) Output Voltage vs. Temperature R1232D121A 1.24 VIN=5.0V 3.40 R1232D331A VIN=5.0V Output Voltage VOUT(V) 1.22 1.20 1.18 1.16 1.14 -40 Output Voltage VOUT(V) -15 10 35 60 Temperature Topt(°C) 85 3.35 3.30 3.25 3.20 -40 -15 10 35 60 Temperature Topt(°C) 85 10) Oscillator Frequency vs. Temperature R1232D121A 1.30 VIN=5.0V 2.50 R1232D331B VIN=5.0V Frequency fOCS(MHz) 1.10 1.00 0.90 0.80 0.70 -40 -15 10 35 60 Temperature Topt(°C) 85 Frequency fOCS(MHz) 1.20 2.40 2.30 2.20 2.10 2.00 -40 -15 10 35 60 Temperature Topt(°C) 85 18 R1232D 11) Supply Current vs. Temperature R1232D121A 130 VIN=5.0V 230 R1232D331B VIN=5.0V Supply Current IDD1(µA) 125 120 115 110 -40 Supply Current IDD1(µA) -15 10 35 60 Temperature Topt(°C) 85 225 220 215 210 -40 -15 10 35 60 Temperature Topt(°C) 85 12) Soft-start time vs. Temperature R1232D121A 1300 VIN=5.0V, Rload=0Ω 600 R1232D331B VIN=5.0V, Rload=0Ω Soft-start Time tstart(ms) Soft-start Time tstart(ms) -15 10 35 60 Temperature Topt(°C) 85 550 500 450 400 350 300 -40 -15 10 35 60 Temperature Topt(°C) 85 1100 900 700 500 -40 13) UVLO Voltage vs. Temperature R1232D121A UVLO Released Voltage UVLO02(V) UVLO Detector Voltage UVLO01(V) 2.40 2.50 R1232D121A 2.30 2.40 2.20 2.30 2.10 -40 -15 10 35 60 Temperature Topt(°C) 85 2.20 -40 -15 10 35 60 Temperature Topt(°C) 85 19 R1232D 14) CE Input Voltage vs. Temperature R1232D121A 1.5 VIN=5.0V, CE=H Threshold 1.5 R1232D121A VIN=5.0V, CE=L Threshold CE Input Voltage "H" VCEH(V) 1.3 1.0 0.8 0.5 -40 CE Input Voltage "L" VCEL(V) -15 10 35 60 Temperature Topt(°C) 85 1.3 1.0 0.8 0.5 -40 -15 10 35 60 Temperature Topt(°C) 85 15) TEST Input Voltage vs. Temperature R1232D121A 1.5 VIN=5.0V TEST Input Voltage VTESTL(V) 1.3 1.0 0.8 0.5 -40 -15 10 35 60 Temperature Topt(°C) 85 16) Lx Transistor On Resistance vs. Temperature Driver Tr. Pch ON Resistance Nch. Lx Transistor On Resistance RONN(Ω) Pch. Lx Transistor On Resistance RONP(Ω) 0.30 VIN=5.0V Rectifier Tr.Nch ON Resistance 0.30 VIN=5.0V 0.20 0.20 0.10 0.10 0.00 -40 -15 10 35 60 Temperature Topt(°C) 85 0.00 -40 -15 10 35 60 Temperature Topt(°C) 85 20 R1232D 17) Current Limit vs. Temperature R1232D121A -0.80 VIN=5.0V -0.80 R1232D331B VIN=5.0V Lx Current Limit ILXlimit(A) -1.05 -1.30 -1.55 -1.80 -40 Lx Current Limit ILXlimit(A) -15 10 35 60 Temperature Topt(°C) 85 -1.05 -1.30 -1.55 -1.80 -40 -15 10 35 60 Temperature Topt(°C) 85 18) Protection Delay Time vs. Temperatures R1232D121A Protection Delay Time tprot(ms) Protection Delay Time tprot(ms) 10.0 7.5 5.0 2.5 0.0 -40 VIN=5.0V 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -40 -15 10 35 60 Temperature Topt(°C) 85 R1232D331B VIN=5.0V -15 10 35 60 Temperature Topt(°C) 85 21 PACKAGE INFORMATION PE-SON-8-0510 • SON-8 Unit: mm PACKAGE DIMENSIONS 2.9±0.2 0.475TYP 8 5 0.23±0.1 0.2±0.1 Bottom View 0.13±0.05 0.15 +0.1 −0.15 0.15 +0.1 −0.15 2.8±0.2 3.0±0.2 1 4 Attention : Tab suspension leads in the parts have VDD or GND level. (They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. 0.13±0.05 0.65 0.3±0.1 0.1 0.1 M TAPING SPECIFICATION 0.2±0.1 +0.1 φ1.5 0 4.0±0.1 2.0±0.05 0.9MAX. 3.5±0.05 ∅1.1±0.1 0 ∅ 180 −1.5 ∅ 60 +1 0 1.75±0.1 3.3 2.0MAX. 4.0±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) 11.4±1.0 9.0±0.3 ∅13±0.2 21±0.8 2±0.5 8.0±0.3 3.2 0.2±0.1 PACKAGE INFORMATION PE-SON-8-0510 POWER DISSIPATION (SON-8) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Board Material Board Dimensions Copper Ratio Through-hole Measurement Result (Topt=25°C,Tjmax=125°C) Mounting on Board (Wind velocity=0m/s) Glass cloth epoxy plactic (Double sided) 40mm × 40mm × 1.6mm Top side : Approx. 50% , Back side : Approx. 50% φ0.5mm × 44pcs Standard Land Pattern Power Dissipation Thermal Resistance 600 Free Air 300mW 333°C/W 480mW θja=(125−25°C)/0.48W=208°C/W Power Dissipation PD(mW) 500 400 300 480 On Board 40 Free Air 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation 40 200 Measurement Board Pattern IC Mount Area (Unit : mm) RECOMMENDED LAND PATTERN 0.35 0.65 1.15 0.65 (Unit: mm) MARK INFORMATION ME-R1232D-0510 R1232D SERIES MARK SPECIFICATION • SON-8 1 5 to , 6 4 : Product Code (refer to Part Number vs. Product Code) : Lot Number 1 2 3 4 R 5 6 • Part Number vs. Product Code Product Code 1 2 3 4 Part Number R1232D091A R1232D101A R1232D111A R1232D121A R1232D131A R1232D141A R1232D151A R1232D161A R1232D171A R1232D181A R1232D191A R1232D201A R1232D211A R1232D221A R1232D231A R1232D241A R1232D251A R1232D261A R1232D271A R1232D281A R1232D291A R1232D301A R1232D311A R1232D321A R1232D331A Part Number R1232D091B R1232D101B R1232D111B R1232D121B R1232D131B R1232D141B R1232D151B R1232D161B R1232D171B R1232D181B R1232D191B R1232D201B R1232D211B R1232D221B R1232D231B R1232D241B R1232D251B R1232D261B R1232D271B R1232D281B R1232D291B R1232D301B R1232D311B R1232D321B R1232D331B Product Code 1 2 3 4 Part Number R1232D001C R1232D001D Product Code 1 2 3 4 K K K K K K K K K K K K K K K K K K K K K K K K K 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 A A A A A A A A A A A A A A A A A A A A A A A A A K K K K K K K K K K K K K K K K K K K K K K K K K 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 B B B B B B B B B B B B B B B B B B B B B B B B B K K 0 0 1 1 C D
R1232D291B 价格&库存

很抱歉,暂时无法提供与“R1232D291B”相匹配的价格&库存,您可以联系我们找货

免费人工找货