0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
M36W0R6030B0ZAQE

M36W0R6030B0ZAQE

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    M36W0R6030B0ZAQE - 64 Mbit (4Mb x16, Multiple Bank, Burst) Flash Memory and 8 Mbit (512Kb x16) SRAM,...

  • 数据手册
  • 价格&库存
M36W0R6030B0ZAQE 数据手册
M36W0R6030T0 M36W0R6030B0 64 Mbit (4Mb x16, Multiple Bank, Burst) Flash Memory and 8 Mbit (512Kb x16) SRAM, Multi-Chip Package FEATURES SUMMARY MULTI-CHIP PACKAGE – 1 die of 64 Mbit (4Mb x 16) Flash Memory – 1 die of 8 Mbit SRAM ■ SUPPLY VOLTAGE – VDDF = VDDQ = VDDS = 1.7 to 1.95V ■ LOW POWER CONSUMPTION ■ ELECTRONIC SIGNATURE – Manufacturer Code: 20h – Device Code (Top Flash Configuration): 8810h – Device Code (Bottom Flash Configuration): 8811h ■ PACKAGE – Compliant with Lead-Free Soldering Processes – Lead-Free Versions FLASH MEMORY ■ PROGRAMMING TIME – 8µs by Word typical for Fast Factory Program – Double/Quadruple Word Program option – Enhanced Factory Program options ■ MEMORY BLOCKS – Multiple Bank Memory Array: 4 Mbit Banks – Parameter Blocks (Top or Bottom location) ■ SYNCHRONOUS / ASYNCHRONOUS READ – Synchronous Burst Read mode: 66MHz – Asynchronous/ Synchronous Page Read mode – Random Access: 70ns ■ DUAL OPERATIONS – Program Erase in one Bank while Read in others – No delay between Read and Write operations ■ Figure 1. Package FBGA Stacked TFBGA88 (ZAQ) BLOCK LOCKING – All blocks locked at Power-up – Any combination of blocks can be locked – WPF for Block Lock-Down ■ SECURITY – 128-bit user programmable OTP cells – 64-bit unique device number ■ COMMON FLASH INTERFACE (CFI) ■ 100,000 PROGRAM/ERASE CYCLES per BLOCK SRAM ■ 8 Mbit (512Kb x 16 bit) ■ ACCESS TIME: 70ns ■ LOW VDDS DATA RETENTION: 1.0V ■ POWER DOWN FEATURES USING TWO CHIP ENABLE INPUTS ■ December 2004 1/26 M36W0R6030T0, M36W0R6030B0 TABLE OF CONTENTS FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 FLASH MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Flash Chip Enable (EF).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Flash Output Enable (GF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Flash Write Enable (WF).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Flash Write Protect (WPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Flash Reset (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Flash Latch Enable (LF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Flash Clock (KF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Flash Wait (WAITF).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 SRAM Chip Enable inputs (E1S, E2S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 SRAM Write Enable (WS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 SRAM Output Enable (GS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 SRAM Upper Byte Enable (UBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 SRAM Lower Byte Enable (LBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VDDF Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VDDS Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VDDQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VPPF Program Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VSS Ground.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 2. Main Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 FLASH MEMORY DEVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SRAM DEVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 5. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SRAM OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2/26 M36W0R6030T0, M36W0R6030B0 Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Standby/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 6. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 7. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 5. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 6. Flash Memory DC Characteristics - Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 7. Flash Memory DC Characteristics - Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 8. SRAM DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 8. Read Mode AC Waveforms, Address Controlled with UBS = LBS = VIL . . . . . . . . . . . . . 16 Figure 9. Read AC Waveforms, GS Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 10.Standby AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 9. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 11.Write AC Waveforms, E1S or E2S Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 12.Write AC Waveforms, WS Controlled, GS High during Write. . . . . . . . . . . . . . . . . . . . . . 19 Figure 13.Write AC Waveforms, WS Controlled with GS Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 14.Write AC Waveform, UBS and LBS Controlled GS Low. . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 10. Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 15.SRAM Low VDD Data Retention AC Waveforms, E1S or UBS / LBS Controlled . . . . . . . 22 Figure 16.SRAM Low VDD Data Retention AC Waveforms, E2S Controlled . . . . . . . . . . . . . . . . . . 22 Table 11. SRAM Low VDD Data Retention Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 17. Stacked TFBGA88 8x10mm - 8x10 active ball array, 0.8mm pitch, Package Outline . . 23 Table 12. Stacked TFBGA88 8x10mm - 8x10 ball array, 0.8mm pitch, Package Mechanical Data 23 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 13. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 14. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3/26 M36W0R6030T0, M36W0R6030B0 SUMMARY DESCRIPTION The M36W0R6030T0 and M36W0R6030B0 combine two memory devices in a Multi-Chip Package: a 64-Mbit, Multiple Bank Flash memory, the M58WR064FT/B, and an 8-Mbit SRAM. Recommended operating conditions do not allow more than one memory to be active at the same time. The memory is offered in a Stacked TFBGA88 (8 x 10mm, 8x10 ball array, 0.8mm pitch) package. In addition to the standard version, the packages are also available in Lead-free version, in compliance with JEDEC Std J-STD-020B, the ST ECOPACK 7191395 Specification, and the RoHS (Restriction of Hazardous Substances) directive. All packages are compliant with Lead-free soldering processes. is supplied with all the bits erased (set to ‘1’). Figure 2. Logic Diagram VDDQ VDDF 22 A0-A21 DQ0-DQ15 EF GF WF RPF WPF LF KF E1S GS WS E2S UBS LBS M36W0R6030T M36W0R6030B WAITF KF WAITF SRAM Signals E1S, E2S GS WS UBS LBS Chip Enable input Output Enable input Write Enable input Upper Byte Enable input Lower Byte Enable input Burst Clock Wait Data in Burst Mode Table 1. Signal Names A0-A21 (1) DQ0-DQ15 VDDF VDDQ VPPF VSS VDDS NC DU Address Inputs Common Data Input/Output Flash Memory Power Supply Common Flash and SRAM Power Supply for I/O Buffers Common Flash Optional Supply Voltage for Fast Program and Erase Ground SRAM Power Supply Not Connected Internally Do Not Use as Internally Connected Flash Memory Signals VPPF VDDS 16 LF EF GF WF RPF WPF Latch Enable input Chip Enable input Output Enable input Write Enable input Reset input Write Protect input Note: 1. A21-A19 are not connected to the SRAM component. VSS AI08534C 4/26 M36W0R6030T0, M36W0R6030B0 Figure 3. TFBGA Connections (Top view through package) 1 2 3 4 5 6 7 8 A DU DU DU DU B A4 A18 A19 VSS VDDF NC A21 A11 C A5 LBS NC VSS E2S KF NC A12 D A3 A17 NC VPPF WS NC A9 A13 E A2 A7 NC WPF LF A20 A10 A15 F A1 A6 UBS RPF WF A8 A14 A16 G A0 DQ8 DQ2 DQ10 DQ5 DQ13 WAITF NC H GS DQ0 DQ1 DQ3 DQ12 DQ14 DQ7 NC J E1S GF DQ9 DQ11 DQ4 DQ6 DQ15 VDDQ K EF NC NC VDDS NC NC VDDQ NC L VSS VSS VDDQ VDDF VSS VSS VSS VSS M DU DU DU DU AI08535 5/26 M36W0R6030T0, M36W0R6030B0 SIGNAL DESCRIPTIONS See Figure 2., Logic Diagram and Table 1., Signal Names, for a brief overview of the signals connected to this device. Address Inputs (A0-A21). Addresses A0-A18 are common inputs for the Flash memory and the SRAM components. The other lines (A19-A21) are inputs for the Flash memory component only. The Address Inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the Flash memory Program/Erase Controller or they select the cells to access in the SRAM. The Flash memory is accessed through the Chip Enable signal (EF) and through the Write Enable (WF) signal, while the SRAM is accessed through two Chip Enable signals (E1S and E2S) and the Write Enable signal (WS). Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be programmed during a Write Bus operation. Flash Chip Enable (EF). The Chip Enable inputs activate the memory control logics, input buffers, decoders and sense amplifiers. When Chip Enable is Low, VIL, and Reset is High, VIH, the device is in active mode. When Chip Enable is at VIH the Flash memory is deselected, the outputs are high impedance and the power consumption is reduced to the standby level. Flash Output Enable (GF). The Output Enable pin controls data outputs during Flash memory Bus Read operations. Flash Write Enable (WF). The Write Enable controls the Bus Write operation of the Flash memories’ Command Interface. The data and address inputs are latched on the rising edge of Chip Enable or Write Enable whichever occurs first. Flash Write Protect (WPF). Write Protect is an input that gives an additional hardware protection for each block. When Write Protect is Low, VIL, Lock-Down is enabled and the protection status of the Locked-Down blocks cannot be changed. When Write Protect is at High, VIH, Lock-Down is disabled and the Locked-Down blocks can be locked or unlocked. (Refer to Lock Status Table in M58WR064FT/B datasheet). Flash Reset (RPF). The Reset input provides a hardware reset of the memory. When Reset is at VIL, the memory is in Reset mode: the outputs are high impedance and the current consumption is reduced to the Reset Supply Current IDD2. Refer to Table 6., Flash Memory DC Characteristics - Currents for the value of IDD2. After Reset all blocks are in the Locked state and the Configuration Register is reset. When Reset is at VIH, the device is in normal operation. Exiting Reset mode the device enters Asynchronous Read mode, but a negative transition of Chip Enable or Latch Enable is required to ensure valid data outputs. The Reset pin can be interfaced with 3V logic without any additional circuitry. It can be tied to VRPH (refer to Table 7., Flash Memory DC Characteristics - Voltages). Flash Latch Enable (LF). Latch Enable latches the address bits on its rising edge. The address latch is transparent when Latch Enable is Low, VIL, and it is inhibited when Latch Enable is High, VIH. Latch Enable can be kept Low (also at board level) when the Latch Enable function is not required or supported. Flash Clock (KF). The Clock input synchronizes the Flash memory to the microcontroller during synchronous read operations; the address is latched on a Clock edge (rising or falling, according to the configuration settings) when Latch Enable is at VIL. Clock is don't care during Asynchronous Read and in write operations. Flash Wait (WAITF). WAIT is a Flash output signal used during Synchronous Read to indicate whether the data on the output bus are valid. This output is high impedance when Flash Chip Enable is at VIH or Flash Reset is at VIL. It can be configured to be active during the wait cycle or one clock cycle in advance. The WAITF signal is not gated by Output Enable. SRAM Chip Enable inputs (E1S, E2S). The Chip Enable inputs activate the SRAM memory control logic, input buffers and decoders. E1S at VIH with E2S at VIH deselects the memory, reducing the power consumption to the standby level, whereas E2S at VIL deselects the memory and reduces the power consumption to the Power-down level, regardless of the level of E1S. E1S and E2S can also be used to control writing to the SRAM memory array, while WS remains at VIL. It is not allowed to set EF at VIL, E1S at VIL and E2S at VIH at the same time. SRAM Write Enable (WS). The Write Enable input controls writing to the SRAM memory array. WS is active low. SRAM Output Enable (GS). The Output Enable gates the outputs through the data buffers during a Read operation of the SRAM memory. GS is active low. SRAM Upper Byte Enable (UBS). The Upper Byte Enable input enables the upper byte for SRAM (DQ8-DQ15). UBS is active low. 6/26 M36W0R6030T0, M36W0R6030B0 SRAM Lower Byte Enable (LBS). The Lower Byte Enable input enables the lower byte for SRAM (DQ0-DQ7). LBS is active low. VDDF Supply Voltage. VDDF provides the power supply to the internal core of the Flash memory component. It is the main power supplies for all Flash memory operations (Read, Program and Erase). VDDS Supply Voltage. VDDS provides the power supply to the internal core of the SRAM device. It is the main power supply for all SRAM operations. VDDQ Supply Voltage. VDDQ provides the power supply for the Flash Memory and SRAM I/O pins. This allows all Outputs to be powered independently of the Flash Memory and SRAM core power supplies: VDDF and VDDS, respectively. VPPF Program Supply Voltage. VPPF is both a Flash memory control input and a Flash memory power supply pin. The two functions are selected by the voltage range applied to the pin. If VPPF is kept in a low voltage range (0V to VDDQ) VPPF is seen as a control input. In this case a voltage lower than VPPLKF gives an absolute protection against Program or Erase, while VPPF > VPP1F enables these functions (see Tables 6 and 7, DC Characteristics for the relevant values). VPPF is only sampled at the beginning of a Program or Erase; a change in its value after the operation has started does not have any effect and Program or Erase operations continue. If VPPF is in the range of VPPHF it acts as a power supply pin. In this condition VPPF must be stable until the Program/Erase algorithm is completed. VSS Ground. VSS is the common ground reference for all voltage measurements in the Flash (core and I/O Buffers) and SRAM chips. Note: Each Flash memory device in a system should have its supply voltage (VDDF) and the program supply voltage VPPF decoupled with a 0.1µF ceramic capacitor close to the pin (high frequency, inherently low inductance capacitors should be as close as possible to the package). See Figure 7., AC Measurement Load Circuit. The PCB track widths should be sufficient to carry the required VPPF program and erase currents. 7/26 M36W0R6030T0, M36W0R6030B0 FUNCTIONAL DESCRIPTION The Flash memory and SRAM components have separate power supplies but share the same grounds. They are distinguished by three Chip Enable inputs: EF for the Flash memory and E1S and E2S for the SRAM. Recommended operating conditions do not allow more than one device to be active at a time. The Figure 4. Functional Block Diagram most common example is simultaneous read operations on one of the Flash and the SRAM which would result in a data bus contention. Therefore it is recommended to put the other devices in the high impedance state when reading the selected device. VDDF VPPF VDDQ A19-A21 EF GF WF LF KF RPF A0-A18 WPF 64 Mbit Flash Memory WAITF DQ0-DQ15 VDDS E1S GS WS E2S UBS LBS 8 Mbit SRAM VSS AI08536C 8/26 M36W0R6030T0, M36W0R6030B0 Table 2. Main Operating Modes Operation Flash Read Flash Write Flash Address Latch Flash Output Disable Flash Standby Flash Reset SRAM Read Flash memory must be disabled SRAM Write Output Disable Any Flash mode is allowed. SRAM Standby X Note: 1. 2. 3. 4. EF VIL VIL VIL VIL VIH X GF VIL VIH X VIH X X WF VIH VIL VIH VIH X X LF VIL(2) VIL(2) VIL X X X RPF VIH VIH VIH VIH VIH VIL WAITF(4) E1S E2S GS WS UBS LBS DQ15-DQ0 Flash Data Out SRAM must be disabled Flash Data In Flash Data Out or Hi-Z (3) Flash Hi-Z Hi-Z Hi-Z VIL VIL VIL VIH Any SRAM mode is allowed Flash Hi-Z Flash Hi-Z VIH VIH VIH X VIL VIL X VIH X X VIH VIL VIH X X VIL VIL VIL X X VIL VIL VIL X X SRAM data out SRAM data in SRAM Hi-Z SRAM Hi-Z SRAM Hi-Z X = Don't care. LF can be tied to VIH if the valid address has been previously latched. Depends on GF. WAIT signal polarity is configured using the Set Configuration Register command. Refer to M58WR064FT/B datasheet for details. 9/26 M36W0R6030T0, M36W0R6030B0 FLASH MEMORY DEVICE The M36W0R6030T0 and M36W0R6030B0 contain a 64 Mbit Flash memory. For detailed information on how to use it, see the M58WR064FT/B datasheet which is available from your local STMicroelectronics distributor. SRAM DEVICE The M36W0R6030T0 and M36W0R6030B0 contain an 8 Mbit SRAM. It is described in this section. Figure 5. Block Diagram DATA IN DRIVERS ROW DECODER A0-A10 512Kb x 16 RAM Array 2048 x 4096 SENSE AMPS DQ0-DQ7 DQ8-DQ15 COLUMN DECODER A11-A18 UBS WS GS LBS E2S E1S E2S POWER-DOWN CIRCUIT UBS LBS AI08706B E1S 10/26 M36W0R6030T0, M36W0R6030B0 SRAM OPERATIONS There are five standard operations that control the device. These are Read, Write, Standby/Powerdown, Data Retention and Output Disable. Read. Read operations are used to output the contents of the SRAM Array. The device is in Byte Read mode whenever Write Enable, WS, is at VIH, Output Enable, GS, is at VIL, Chip Enable, E1S, is at VIL, Chip Enable, E2S, is at VIH, and UBS or LBS is at VIL. The device is in Word Read mode whenever Write Enable, WS, is at VIH, Output Enable, GS, is at VIL, Byte Enable inputs UBS and LBS are both at VIL and the two Chip Enable inputs, E1S, and E2S are Don’t Care. The Read and Standby AC Waveforms are shown in Figures 9 and 10, respectively and the parameters are given in Table 9., Read AC Characteristics. Write. Write operations are used to write data to the SRAM. The device is in Write mode whenever WS, E1S and UBS and/or LBS are at VIL, and E2S is at VIH. All these signals must be asserted to initiate a Write cycle. The data is latched on the falling edge of E1S, the rising edge of E2S, the falling edge of WS, or the falling edge of UBS and/or LBS, whichever occurs last. The Write cycle will terminate on the rising edge of E1S, the rising edge of WS, the rising edge of UBS and/or LBS, or the falling edge of E2S, whichever occurs first. The timings are referenced to the signal that terminates the Write cycle. The outputs are disabled during Write cycles (whenever E1S, at VIL, E2S at VIH, and WS at VIL). The Write AC Waveforms are shown in Figures 11, 12, 13 and 14, while Table 10. gives the Write AC Characteristics. Standby/Power-Down. The device automatically enters the Standby/Power-Down mode when DQ0-DQ15 are not toggling, reducing the power consumption to the Standby level, ISB. The device is also in Standby/Power-Down mode whenever E1S is at VIH, E2S is at VIL or both UBS and LBS are at VIH. The outputs then become high impedance. The Standby AC Waveforms are shown in Figure 10. See Table 9., Read AC Characteristics, for timings. Data Retention. The data retention mode is entered tCDR after de-asserting E1S, E2S or UBS and LBS. The data retention performance as VDD goes down to VDR is described in Table 11., Figures 15 and 16, SRAM Low VDD Data Retention AC Waveforms, E1S or UBS / LBS Controlled and SRAM Low VDD Data Retention AC Waveforms, E2S Controlled, respectively. Output Disable. The device is in the Output Disable mode whenever GS, is at VIH. In this mode, DQ0-DQ15 are high impedance. 11/26 M36W0R6030T0, M36W0R6030B0 MAXIMUM RATING Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not imTable 3. Absolute Maximum Ratings Value Symbol TA TBIAS TSTG TLEAD VIO VDDF VDDQ VDDS VPPF IO tVPPFH Parameter Min Ambient Operating Temperature Temperature Under Bias Storage Temperature Lead Temperature during Soldering Input or Output Voltage Flash Memory Core Supply Voltage Input/Output Supply Voltage SRAM Supply Voltage Flash Memory Program Voltage Output Short Circuit Current Time for VPPF at VPPFH –0.5 –0.2 –0.2 –0.2 –0.2 –40 –40 –65 Max 85 125 155 (1) plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Unit °C °C °C °C V V V V V mA hours 7191395 specification, VDDQ+0.6 2.45 2.45 2.4 14 100 100 ECOPACK® Note: 1. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU. 12/26 M36W0R6030T0, M36W0R6030B0 DC AND AC PARAMETERS This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 4., Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters. Table 4. Operating and AC Measurement Conditions Flash Memory Parameter Min VDDF Supply Voltage VDDS Supply Voltage VDDQ Supply Voltage 1.7 – 1.7 11.4 –0.4 –40 30 16.7 5 0 to VDDQ VDDQ/2 0 to VDDS VDDS/2 Max 1.95 – 1.95 12.6 VDDQ +0.4 85 Min – 1.7 – – – –40 30 16.7 2 Max – 1.95 – – – 85 V V V V V °C pF kΩ ns V V SRAM Unit VPPF Supply Voltage (Factory environment) VPPF Supply Voltage (Application environment) Ambient Operating Temperature Load Capacitance (CL) Output Circuit Resistors (R1, R2) Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Ref. Voltages Figure 6. AC Measurement I/O Waveform Figure 7. AC Measurement Load Circuit VDDQ VDDQ VDDQ/2 0V VDDF VDDQ R1 DEVICE UNDER TEST AI06161 0.1µF 0.1µF CL R2 CL includes JIG capacitance AI08364B Table 5. Device Capacitance Symbol CIN COUT Parameter Input Capacitance Output Capacitance Test Condition VIN = 0V VOUT = 0V Min Max 12 15 Unit pF pF Note: Sampled only, not 100% tested. 13/26 M36W0R6030T0, M36W0R6030B0 Table 6. Flash Memory DC Characteristics - Currents Symbol ILI ILO Parameter Input Leakage Current Output Leakage Current Supply Current Asynchronous Read (f=6MHz) Test Condition 0V ≤ VIN ≤ VDDQ 0V ≤ VOUT ≤ VDDQ E = VIL, G = VIH 4 Word Supply Current Synchronous Read (f=54MHz) IDD1 8 Word 16 Word Continuous 4 Word Supply Current Synchronous Read (f=66MHz) 8 Word 16 Word Continuous IDD2 IDD3 IDD4 Supply Current (Reset) Supply Current (Standby) Supply Current (Automatic Standby) Supply Current (Program) IDD5 (1) Supply Current (Erase) RP = VSS ± 0.2V E = VDD ± 0.2V E = VIL, G = VIH VPP = VPPH VPP = VDD VPP = VPPH VPP = VDD Program/Erase in one Bank, Asynchronous Read in another Bank Program/Erase in one Bank, Synchronous Read in another Bank E = VDD ± 0.2V VPP = VPPH VPP = VDD VPP = VPPH VPP = VDD VPP ≤ VDD VPP ≤ VDD 3 7 10 12 13 8 11 14 16 10 10 10 8 10 8 10 13 Min Typ Max ±1 ±1 6 16 18 22 25 17 20 25 30 50 50 50 15 20 15 20 26 Unit µA µA mA mA mA mA mA mA mA mA mA µA µA µA mA mA mA mA mA Supply Current IDD6 (1,2) (Dual Operations) 23 45 mA IDD7(1) Supply Current Program/ Erase Suspended (Standby) VPP Supply Current (Program) 10 2 0.2 2 0.2 0.2 0.2 50 5 5 5 5 5 5 µA mA µA mA µA µA µA IPP1(1) VPP Supply Current (Erase) IPP2 IPP3(1) VPP Supply Current (Read) VPP Supply Current (Standby) Note: 1. Sampled only, not 100% tested. 2. VDDF Dual Operation current is the sum of read and program or erase currents. 14/26 M36W0R6030T0, M36W0R6030B0 Table 7. Flash Memory DC Characteristics - Voltages Symbol VIL VIH VOL VOH VPP1 VPPH VPPLK VLKO VRPH Parameter Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage VPP Program Voltage-Logic VPP Program Voltage Factory Program or Erase Lockout VDD Lock Voltage RP pin Extended High Voltage 1 3.3 IOL = 100µA IOH = –100µA Program, Erase Program, Erase VDDQ –0.1 1.1 11.4 1.8 12 3.3 12.6 0.4 Test Condition Min –0.5 VDDQ –0.4 Typ Max 0.4 VDDQ + 0.4 0.1 Unit V V V V V V V V V Table 8. SRAM DC Characteristics Symbol ILI ILO Parameter Input Leakage Current Output Leakage Current Test Condition 0V ≤ VIN ≤ VDD 0V ≤ VOUT ≤ VDD, Output disabled E1S ≥ VDD – 0.2V or E2S ≤ 0.2V VIN ≥ VDD – 0.2V or VIN ≤ 0.2V f = fmax (Address and Data inputs only) f = 0 (GS, WS, UBS and LBS) E1S ≥ VDD – 0.2V or E2S ≤ 0.2V VIN ≥ VDD – 0.2V or VIN ≤ 0.2V f = 0, VDD(max) f = fmax = 1/tAVAV, CMOS levels VDD = VDD(max) Supply Current IOUT = 0 mA, f = 1MHz, CMOS levels Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage IOL = 0.1mA, VDD = 1.65V IOH = −0.1mA, VDD = 1.65V 1.4 –0.2 1.4 1 5 0.4 VDD+0.2 0.2 mA V V V V Min Typ Max ±1 ±1 Unit µA µA 2 25 µA IDDS VDD Standby Current 2 8 25 15 µA mA IDD VIL VIH VOL VOH 15/26 M36W0R6030T0, M36W0R6030B0 Figure 8. Read Mode AC Waveforms, Address Controlled with UBS = LBS = VIL tAVAV A0-A18 tAVQV tAVQX DQ0-DQ15 DATA VALID DATA VALID AI08199 VALID Note: E1S = Low, E2S = High, GS = Low, WS = High. Figure 9. Read AC Waveforms, GS Controlled tE1LE1H tE2HE2L A0-A18 tE1LQV tE2HQV E1S tE1LQX tE2HQX E2S tGLQV GS tGLQX LBS, UBS tBLQX DQ0-DQ15 DATA VALID tBHQZ tGHQZ tE2LQZ VALID tE1HQZ AI08191C Note: 1. UBS, LBS means both UBS and LBS. 2. Write Enable (WS) = High. Address Valid prior to or at the same time as E1S and UBS, LBS go Low and E2S goes High. Figure 10. Standby AC Waveforms E1S E2S IDD IDDS tPU 50% tPD AI08192 16/26 M36W0R6030T0, M36W0R6030B0 Table 9. Read AC Characteristics M36W0R6030T0, M36W0R6030B0 Symbol tAVAV tE1LE1H tE2HE2L tAVQV tAVQX tBHQZ(2) tBLQV tBLQX(2) tE1HQZ tE2LQZ tE1LQV tE2HQV tE1LQX tE2HQX tGHQZ tGLQV tGLQX tPD(1) tPU(1) Alt Parameter Min tRC tAA tOHA tHZBE tDBE tLZBE tHZCE tACE tLZCE tHZOE tDOE tLZOE Read Cycle Time Address Valid to Output Valid Address Transition to Output Transition Byte Enable High to Data Hi-Z Byte Enable Low to Data Valid Byte Enable Low to Data Transition Chip Enable 1 High or Chip Enable 2 Low to Data Hi-Z Chip Enable 1 Low or Chip Enable 2 High to Data Valid Chip Enable 1 Low or Chip Enable 2 High to Data Transition Output Enable High to Data Hi-Z Output Enable Low to Data Valid Output Enable Low to Data Transition Chip Enable 1 High or Chip Enable 2 Low to Power Down Chip Enable 1 Low or Chip Enable 2 High to Power Up 0 5 70 10 25 35 5 25 70 10 25 70 70 70 Max ns ns ns ns ns ns ns ns ns ns ns ns ns ns Unit Note: 1. Sampled only. Not 100% tested. 2. Whatever the temperature and voltage, tE1HDZ and tE2LDZ are less than tE1LDX and tE2HDX; tBHDZ is less than tBLDX and, tGHDZ is less than tGHDX. 17/26 M36W0R6030T0, M36W0R6030B0 Figure 11. Write AC Waveforms, E1S or E2S Controlled tAVAV A0-A18 VALID tAVE1H tAVE2L tAVE1L E1S tE1LE1H tE1HAX E2S tAVE2H tE2HE2L tWLE1H tWLE2L WS tBLE1H tBLE2L UBS, LBS tE2LAX GS tGHDZ DQ0-DQ15 tDVE1H tDVE2L tE1HDX tE2LDX Note 2 INPUT VALID AI08193B Note: 1. 2. 3. 4. WS, E1S, E2S and UBS,LBS must be asserted to initiate a write cycle. The I/O pins are in output mode and input signals should not be applied. If E1S, E2S and WS are deasserted at the same time, DQ0-DQ15 remain high impedance. UBS, LBS means both UBS and LBS. 18/26 M36W0R6030T0, M36W0R6030B0 Figure 12. Write AC Waveforms, WS Controlled, GS High during Write tAVAV A0-A18 VALID tAVWH tE1LWH E1S tWHAX E2S tE2HWH tAVWL WS tBLWH UBS, LBS tWLWH GS tGHDX DQ0-DQ15 tDVWH tWHDX Note 2 INPUT VALID AI08194B Note: 1. 2. 3. 4. WS, E1S, E2S and UBS,LBS must be asserted to initiate a write cycle. The I/O pins are in output mode and input signals should not be applied. If E1S, E2S and WS are deasserted at the same time, DQ0-DQ15 remain high impedance. UBS, LBS means both UBS and LBS. 19/26 M36W0R6030T0, M36W0R6030B0 Figure 13. Write AC Waveforms, WS Controlled with GS Low tAVAV A0-A18 VALID tAVWH tE1LWH tE2HWH E1S tWHAX E2S tBLWH UBS, LBS tAVWL WS tWHDX tWLDZ DQ0-DQ15 Note 1 tDVWH INPUT VALID AI08195B tWLWH tWHDZ Note: 1. During this period, the I/O pins are in output mode and input signals should not be applied. 2. If E1S, E2S and WS are deasserted at the same time, DQ0-DQ15 remain high impedance. 3. UBS, LBS means both UBS and LBS. Figure 14. Write AC Waveform, UBS and LBS Controlled GS Low tAVAV A0-A18 VALID tAVBH tE1LBH tE2HBH E1S E2S tAVBL UBS, LBS tWLBH WS tDVBH DQ0-DQ15 Note 2 INPUT VALID tBHDX tBLBH tBHAX AI08196B Note: 1. If E1S, E2S and WS are deasserted at the same time, DQ0-DQ15 remain high impedance. 2. The I/O pins are in output mode and input signals should not be applied. 3. UBS, LBS means both UBS and LBS. 20/26 M36W0R6030T0, M36W0R6030B0 Table 10. Write AC Characteristics M36W0R6030T0, M36W0R6030B0 Symbol tAVAV tAVE1L, tAVE2H, tAVWL tAVBL tAVWH tAVE1H tAVE2L tAVBH tBLWH tBLE1H tBLE2L tBLBH tDVE1H, tDVE2L, tDVWH tDVBH tE1HAX, tE2LAX, tWHAX tBHAX tE1HDX, tE2LDX, tWHDX tBHDX tE1LE1H, tE2HE2L, tE1LWH tE2HWH tE1LBH, tE2HBH tGHDZ tWHDZ(1) tWLDZ(1) tWLWH tWLE1H tWLE2L tWLBH Alt tWC Write Cycle Time Parameter Min 70 Max ns Unit tSA Address Valid to Beginning of Write 0 ns tAW Address Valid to Write Enable High 60 ns tBW UBS, LBS Valid to End of Write 60 ns tSD Input Valid to End of Write 30 ns tHA End of Write to Address Change 0 ns tHD Data Transition to End of Write 0 ns tSCE Chip Enable 1 Low or Chip Enable 2 High to End of Write 60 ns tHZOE tLZWE tHZWE Output Enable High to Output Hi-Z Write Enable High to Input Transition Write Enable Low to Output Hi-Z 10 25 ns ns 25 ns tPWE Write Enable Pulse Width 50 ns Note: 1. Whatever the temperature and voltage, tWLDZ is less than tWHDX. 21/26 M36W0R6030T0, M36W0R6030B0 Figure 15. SRAM Low VDD Data Retention AC Waveforms, E1S or UBS / LBS Controlled DATA RETENTION MODE VDDS VDDS (min) tCDR E1S or UBS, LBS AI08197B VDR tR VDDS (min) Figure 16. SRAM Low VDD Data Retention AC Waveforms, E2S Controlled DATA RETENTION MODE VDDS VDDS (min) tCDR E2S AI08198B VDR tR VDDS (min) Table 11. SRAM Low VDD Data Retention Characteristic Symbol IDDDR Parameter Supply Current (Data Retention) Supply Voltage (Data Retention) Chip Disable to Power Down Operation Recovery Time Test Condition VDDS = 1.0V, E1S ≥ VDDS – 0.2V or E2S ≤ 0.2V, VIN ≥ VDDS – 0.2V or VIN ≤ 0.2V 1.0 0 70 Min Max 10 Unit µA VDR tCDR tR V ns ns Note: 1. Sampled only. Not 100% tested. 22/26 M36W0R6030T0, M36W0R6030B0 PACKAGE MECHANICAL Figure 17. Stacked TFBGA88 8x10mm - 8x10 active ball array, 0.8mm pitch, Package Outline D D1 e SE E E2 E1 b BALL "A1" ddd FE FE1 A A1 FD SD A2 BGA-Z42 Note: Drawing is not to scale. Table 12. Stacked TFBGA88 8x10mm - 8x10 ball array, 0.8mm pitch, Package Mechanical Data millimeters Symbol Typ A A1 A2 b D D1 ddd E E1 E2 e FD FE FE1 SD SE 10.000 7.200 8.800 0.800 1.200 1.400 0.600 0.400 0.400 – – 9.900 0.850 0.350 8.000 5.600 0.100 10.100 0.3937 0.2835 0.3465 0.0315 0.0472 0.0551 0.0236 0.0157 0.0157 – – 0.3898 0.300 7.900 0.400 8.100 0.200 0.0335 0.0138 0.3150 0.2205 0.0039 0.3976 0.0118 0.3110 0.0157 0.3189 Min Max 1.200 0.0079 Typ Min Max 0.0472 inches 23/26 M36W0R6030T0, M36W0R6030B0 PART NUMBERING Table 13. Ordering Information Scheme Example: Device Type M36 = Multi-Chip Package (Flash + RAM) Flash 1 Architecture W = Multiple Bank, Burst mode Flash 2 Architecture 0 = none present Operating Voltage R = VDDF = VDDQ =VDDP = 1.7 to 1.95V Flash 1 Density 6 = 64 Mbit Flash 2 Density 0 = none present RAM 1 Density 3 = 8 Mbit RAM 0 Density 0 = none present Parameter Blocks Location T = Top Boot Block Flash B = Bottom Boot Block Flash Product Version 0 = 0.13µm Flash technology, 70ns; 0.13µm RAM, 70ns speed Package ZAQ = Stacked TFBGA88 8x10mm - 8x10 active ball array, 0.8mm pitch Option Blank = Standard Packing T = Tape & Reel Packing E = Lead-free and RoHS Package, Standard Packing F = Lead-free and RoHS Package, Tape & Reel Packing M36 W0 R 6 0 3 0 T 0 ZAQ T Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you. 24/26 M36W0R6030T0, M36W0R6030B0 REVISION HISTORY Table 14. Document Revision History Date 03-Jul-2003 Version 1.0 First Issue Part numbers M36W0R6020T0 and M36W0R6020T0 removed (4Mb SRAM part removed), Figures 2, 4 and 5 modified accordingly. 0.15µm SRAM technology upgraded with new 0.13µm technology (see Table 13., Ordering Information Scheme). Flash memory device M30W0T6000(T/B)0 replaced by the M58WR064E(T/B). Product promoted from Product Preview to Preliminary Data. 0.15µm Flash memory technology replaced by 0.13µm technology (M58WR064ET/B replaced by M58WR064FT/B, Table 6., Flash Memory DC Characteristics - Currents and Table 7., Flash Memory DC Characteristics - Voltages updated accordingly). Package specifications (Table 12.) updated and E and F lead-free options added to Table 13., Ordering Information Scheme. Document status promoted from Preliminary Data to full Datasheet. IDD6 parameter for Program/Erase in one Bank, Synchronous Read in another Bank modified in Table 6., Flash Memory DC Characteristics - Currents. VDDQ max modified in Table 3., Absolute Maximum Ratings. TFBGA88 package fully compliant with the ST ECOPACK specification. Revision Details 12-Nov-2003 2.0 28-Jul-2004 3.0 10-Dec-2004 4.0 25/26 M36W0R6030T0, M36W0R6030B0 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. ECOPACK is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 26/26
M36W0R6030B0ZAQE 价格&库存

很抱歉,暂时无法提供与“M36W0R6030B0ZAQE”相匹配的价格&库存,您可以联系我们找货

免费人工找货