0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NPM1100-CAAB-R

NPM1100-CAAB-R

  • 厂商:

    NORDIC(北欧)

  • 封装:

    25-UFBGA,WLCSP

  • 描述:

    电池 电源管理 IC 锂离子/聚合物 25-WLCSP(2.08x2.08)

  • 数据手册
  • 价格&库存
NPM1100-CAAB-R 数据手册
nPM1100 Product Specification v1.2 4445_367 v1.2 / 2022-10-07 nPM1100 nPM1100 is an integrated Power Management IC (PMIC) with a linear-mode lithium-ion/lithium-polymer battery charger in a compact 2.1x2.1 mm WLCSP package. It has a highly efficient DC/DC buck regulator with configurable dual mode output. nPM1100 is an extremely compact PMIC device, created for space constrained applications that have a small lithium-ion or lithium-polymer battery. It is compatible with all nRF52 and nRF53 Series SoCs, supports charging batteries at up to 400 mA through USB, and delivers up to 150 mA of current to power external components with regulated voltage. A minimum of five passive components are required for operation. It is the perfect companion for nRF52 and nRF53 multiprotocol SoCs in battery powered designs and the device functions without a control interface. Low quiescent current (IQ) extends battery life for shipping and storage with Ship mode, or in operation using auto-controlled hysteretic buck mode for high efficiency down to 1 µA loads. Charge and error indication LED drivers are built in. Charge profile limits are configurable and VBUS current limits can be fixed or auto-controlled with on-chip USB port detection. • • • • Ultra-high efficiency prolongs battery life or allows for use of smaller and less costly batteries Small solution size leaves space for additional features without increasing product size No software control Automatic USB port detection minimizes development time VBUS DD+ ISET SYSREG VINT VSYS System regulator DEC SW VBAT VOUTB BUCK NTC DC/DC converter + AVSS BATTERY PACK VTERMSET ICHG VOUTBSET1 MODE PVSS CHARGER 400 mA Li-Ion charger CHG ERR SHPACT SHPHLD Figure 1: nPM1100 block diagram 4445_367 v1.2 VOUTBSET0 ii Feature list Features: • 400 mA linear battery charger • 1.8 V to 3.0 V, 150 mA step-down buck regulator • Linear charger for lithium-ion/lithium-polymer batteries • Step-down buck regulator with up to 92% efficiency • Adjustable charge current from 20 mA to 400 mA • Automatic transition between hysteretic and pulse width • Selectable termination voltage of 4.1 V or 4.2 V • Automatic trickle, constant current, and constant voltage charging • Forced PWM mode for clean power operation • Battery thermal protection • Pin-selectable output voltage (1.8 V, 2.1 V, 2.7 V, 3.0 V) • Discharge current limitation • Soft start-up • JEITA compliant modulation (PWM) modes • LED drivers for charger state indication • Li-ion/Li-polymer USB battery charger with a high efficiency buck regulator • 5 mA low side LED driver for charging indication • 800 nA - Typical quiescent current • 5 mA low side LED driver for error indication • 460 nA - Shipping mode quiescent current • 2.3 V to 4.35 V battery operating input range • Thermal protection • 2.1x2.1 mm WLCSP package • Input regulator • USB compatible current limit of 100 mA and 500 mA • 4.1 V to 6.7 V input voltage range for normal operation • 20 V overvoltage protection • Reverse current protection • 3.0 V to 5.5 V system voltage output • USB port detection supporting the following types: • SDP • CDP/DCP • Suitable for two layer PCB design Applications: • Advanced wearables • • • Health/fitness sensor and monitor devices Advanced computer peripherals and I/O devices • Mouse • Keyboard • Multi-touch trackpad 4445_367 v1.2 iii Interactive entertainment devices • Remote controls • Gaming controllers Contents nPM1100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Feature list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 1 Revision history. 6 2 About this document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Document status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Core component chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 Product overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 In circuit configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 System description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Power-on reset (POR) and brownout reset (BOR). . . . . . . . . . . . . . . . . . . 3.4 DPPM — Dynamic power-path management. . . . . . . . . . . . . . . . . . . . . 3.5 Using Ship mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Thermal protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Battery considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Charging and Error LED drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 System electrical parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10 System efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8 9 10 10 10 11 11 11 11 12 4 Absolute maximum ratings. 13 5 Recommended operating conditions. 3 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1 Dissipation ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 WLCSP light sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 Core components. 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 SYSREG — System regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 USB port detection and VBUS current limiting. . . . . . . . . . . . . . . . . . . 6.1.2 SYSREG resistance and output voltage. . . . . . . . . . . . . . . . . . . . . . 6.1.3 VBUS overvoltage and undervoltage protection. . . . . . . . . . . . . . . . . . 6.1.4 VBUS disconnect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.5 Electrical specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.6 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 CHARGER — Battery charger. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Charging cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 Termination voltage (VTERMSET). . . . . . . . . . . . . . . . . . . . . . . . 6.2.3 Termination and trickle charge current. . . . . . . . . . . . . . . . . . . . . . 6.2.4 Charge current limit (ICHG). . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.5 Battery thermal protection using NTC thermistor (NTC). . . . . . . . . . . . . . . 6.2.6 Charger thermal regulation. . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.7 Charger error conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.8 Charging indication (CHG) and charging error indication (ERR). . . . . . . . . . . . 6.2.9 DPPM — Dynamic power-path management. . . . . . . . . . . . . . . . . . . 6.2.10 Electrical specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4445_367 v1.2 iv 15 15 16 16 16 16 17 19 19 20 21 21 21 22 22 22 23 24 7 8 9 6.2.11 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 BUCK — Buck regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 Output voltage selection (VOUTBSET0, VOUTBSET1). . . . . . . . . . . . . . . . 6.3.2 BUCK mode selection (MODE). . . . . . . . . . . . . . . . . . . . . . . . . 6.3.3 Component selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.4 Electrical specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.5 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 28 29 29 29 30 31 Application. 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Supplying from BUCK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 USB port negotiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Charging and error states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Termination voltage and current. . . . . . . . . . . . . . . . . . . . . . . . . . 7.6 NTC configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7 Ship mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8 Battery monitoring and low battery indication. . . . . . . . . . . . . . . . . . . . 39 39 40 40 40 40 40 41 Hardware and layout. 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 Ball assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Mechanical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.1 WLCSP 2.075x2.075 mm package. . . . . . . . . . . . . . . . . . . . . . . . 8.3 Reference circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.1 Configuration 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.2 Configuration 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.3 Configuration 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.4 PCB guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.5 PCB layout example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 43 43 44 45 46 46 47 47 Ordering information. 49 9.1 9.2 9.3 9.4 9.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . IC marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Box labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Order code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Code ranges and values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Legal notices. 4445_367 v1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 49 49 50 51 52 54 1 Revision history Date October 2022 Version Description 1.2 The following has been added or updated: • Capacitor on VBAT in the following chapters: • Block diagram on page 8 • Schematic on page 39 • Reference circuitry on page 44 • Absolute Maximum Ratings – MSL value • Editorial June 2022 1.1 The following has been added or updated: • Ordering code for latest revision in Product options on page 52, build code C00 no longer supported • Editorial May 2021 4445_367 v1.2 1.0 First release 6 2 About this document This document is organized into chapters that are based on the modules available in the IC. 2.1 Document status The document status reflects the level of maturity of the document. Document name Description Objective Product Specification (OPS) Applies to document versions up to 1.0. This document contains target specifications for product development. Product Specification (PS) Applies to document versions 1.0 and higher. This document contains final product specifications. Nordic Semiconductor ASA reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Table 1: Defined document names 2.2 Core component chapters Every core component has a unique capitalized name or an abbreviation of its name, e.g. LED, used for identification and reference. This name is used in chapter headings and references, and it will appear in the C-code header file to identify the component. The core component instance name, which is different from the core component name, is constructed using the core component name followed by a numbered postfix, starting with 0, for example, LED0. A postfix is normally only used if a core component can be instantiated more than once. The core component instance name is also used in the C-code header file to identify the core component instance. The chapters describing core components may include the following information: • A detailed functional description of the core component • Register configuration for the core component • Electrical specification tables, containing performance data which apply for the operating conditions described in Recommended operating conditions on page 14. 4445_367 v1.2 7 3 Product overview This chapter contains an overview of the main features found in nPM1100. 3.1 Block diagram The block diagram illustrates the overall system. VBUS DD+ ISET SYSREG VINT VSYS System regulator DEC SW VBAT VOUTB BUCK NTC DC/DC converter + AVSS BATTERY PACK VTERMSET ICHG VOUTBSET0 VOUTBSET1 MODE PVSS CHARGER 400 mA Li-Ion charger CHG ERR SHPACT SHPHLD Figure 2: Block diagram 3.1.1 In circuit configurations The device is configurable for different applications and battery characteristics through input pins. Static input pins must be configured before power-on reset. Dynamic input pins may be modified during operation under conditions described in references. For the full list of pins, see Pin assignments on page 42. 4445_367 v1.2 8 Product overview Pin Function Input type VTERMSET Sets termination voltage Static (H/L) Battery dependent Usage reference Termination voltage (VTERMSET) on page 20 ICHG Charge current limit Static (resistor) Charge current limit (ICHG) on page 21 ISET VBUS current limit Dynamic (H/L) VBUS current limit ISET MODE BUCK PWM mode override Dynamic (H/L) BUCK mode selection (MODE) on page 29 VOUTBSET[n] Two pin VOUTB voltage configuration Static (H/L) Output voltage selection (VOUTBSET0, VOUTBSET1) on page 29 SHPACT Enables Ship mode Dynamic (H/L)1 Using Ship mode on page 10 SHPHLD Disables Ship mode Dynamic (H/L)1 Using Ship mode on page 10 Table 2: In circuit configurations 1 These pins are level and hold-time controlled. 3.2 System description The device has the following core components that are described in detail in the respective chapters. • SYSREG — System regulator on page 15 • CHARGER — Battery charger on page 19 • BUCK — Buck regulator on page 28 The system regulator (SYSREG) is a 5 V LDO supplied by VBUS. It generates VINT when enabled. VINT is the internal supply for the device and available on an external pin, VSYS. SYSREG supports a wide operating voltage range on VBUS, tolerates transient voltages up to 20 V, and implements overvoltage protection. SYSREG also implements configurable current limiting from VBUS, and USB port detection. When VBUS is disconnected, SYSREG ensures the device enters Ultra-Low Power mode to minimize quiescent current. Reverse current protection is enabled when VBUS VBAT(V) + VDROPOUT_VBUS. If this condition is not met the charge cycle stops. 4445_367 v1.2 19 Core components VBUS connect event Battery detection Battery detected Trickle charging VBAT ≥ V TRICKLEFAST Fast charging VBAT ≥ V TERM Constant voltage charging IBAT ≤ I TERM Charging complete VBAT < V RECHARGE Figure 9: Charging cycle flow chart V I VTERM VTRICKLE_FAST ICHGLIM ITRICKLE ITERM t Trickle charge Fast charge Constant voltage charge Charging complete Figure 10: Charging cycle 6.2.2 Termination voltage (VTERMSET) The termination voltage, VTERM, is set using VTERMSET to support two values of battery charging termination voltage. 4445_367 v1.2 20 Core components VTERMSET VTERM threshold LOW 4.1 V HIGH 4.2 V Table 10: VTERMSET 6.2.3 Termination and trickle charge current Termination current and trickle charge current are set to a percentage of the charge current limit (ICHGLIM). See Electrical specification on page 24 for the limits. 6.2.4 Charge current limit (ICHG) The charge current limit is set between 20 mA and 400 mA by connecting the RICHG resistor to the ICHG and AVSS pins. The following equation gives the resistance to be connected based on the ICHGLIM. The following apply when the RICHG resistor is between 0 Ω and 30 kΩ. • ICHGLIM is the fast charge current limit in Amps • RICHG is the resistance to be connected between the ICHG and AVSS pins in Ω Common values are provided in the following table. RICHG resistor value Nominal charge current limit, ICHGLIM Error 0 (short to AVSS) 400 mA ± ICHGACC% 1.5 kΩ 200 mA ± (ICHGACC + RICHGACC)% 4.7 kΩ 100 mA ± (ICHGACC + RICHGACC)% 11 kΩ 50 mA ± (ICHGACC + RICHGACC)% 30 kΩ 20 mA ± (ICHGACC + RICHGACC)% Table 11: Common charge current values Note: ICHGLIM must be set at or below the safe charge current limit of the battery according to the battery specification. 6.2.5 Battery thermal protection using NTC thermistor (NTC) Battery thermal protection is implemented in the following two ways. • Using a battery pack with an integrated NTC thermistor • Connecting a thermistor between the NTC pin and the AVSS pin The thermistor needs to have thermal contact with the battery and preferably within the battery pack. Recommended values for the NTC thermistor are found in the following table. 4445_367 v1.2 21 Core components Parameter Value Unit Nominal resistance at 25°C 10 kΩ Resistance accuracy 1 % B25/50 constant 3380 Kelvin B25/85 constant 3434 to 3435 Kelvin 1 % B constant accuracy Table 12: Recommended NTC thermistor values If the thermal protection feature is not used, then a 10 kΩ, ≤20% accuracy resistor should be connected between NTC and AVSS pins. To provide JEITA compliant thermal protection, the charge current limit and termination voltage are adjusted according to the NTC thermistor measurement. Temperature region Battery temperature Charging current Termination voltage Cold T < 0°C 0 (OFF) NA Cool 0°C < T < 10°C IREDUCED VTERM Nominal 10°C < T < 45°C ICHGLIM VTERM Warm 45°C < T < 60°C ICHGLIM VTERM-VTHIGH_DELTA Hot T > 60°C 0 (OFF) NA Table 13: Battery temperature ranges 6.2.6 Charger thermal regulation If the device junction temperature exceeds THIGH and CHARGER is in Fast Charge mode, the charge current is reduced to IREDUCED. 6.2.7 Charger error conditions A CHARGER error condition occurs when one of the following are present: • • • • • A battery short (VBAT to AVSS) Battery voltage lower than VBATCHARGEMIN after battery detection due to a fault with the battery Trickle charge timeout; see TOUTTRICKLE Constant voltage charge/fast charge timeout; see TOUTCHARGE Device internal error occurs when CHARGER is self-checking After an error is detected, CHARGER is disabled, the charging error indication is activated, and the charging indication is deactivated. Error conditions are cleared when VBUS is disconnected and reconnected again. Note: The constant voltage/fast charge timeout is the combined time spent in both constant voltage charge and fast charge, TOUTCHARGE. 6.2.8 Charging indication (CHG) and charging error indication (ERR) The charging indication pin CHG and charging error indication pin ERR sink 5 mA of current when active. They are high impedance when disabled. This is suitable for driving LEDs or connecting to host GPIOs in a weak pull-up configuration. 4445_367 v1.2 22 Core components VSYS CHG ERR Figure 11: Configuration for connecting to LEDs VOUTB HOST CHG ERR Figure 12: Configuration for connecting to a host Note: To configure both LED indication and connection to a host, the GPIO input voltage range tolerance must be met, or an external circuit may be required. See Reference circuitry on page 44. The charging indication pin, CHG, is active while the battery is charging. The charging error indication pin, ERR, is activated when an error occurs, see Charger error conditions on page 22. 6.2.9 DPPM — Dynamic power-path management CHARGER manages battery current flow to maintain VINT voltage. The system load requirements are prioritized over battery charge current when VBUS is connected and the battery is charging. The battery is isolated when VBUS is connected and the battery is fully charged. SYSREG supplies the load unless the load exceeds SYSREG limits. When VBUS is disconnected, CHARGER switches to battery supply. During charging, if the combined current load ILOAD on VINT (including BUCK input current) and VBAT (ICHG) exceeds the current provided by SYSREG (ILIM), the battery charge current decreases to maintain the VINT voltage. The battery charger reduces the current to maintain the internal voltage: VINT = V(VBAT )+ VDROPOUT_CHARGER. If more current is required, CHARGER enters Supplement mode, switching to provide current from the battery, up to IBATLIM. If a charge cycle ends and ILOAD exceeds ILIM, CHARGER connects the battery and enters Supplement mode to maintain VINT. When VBUS and the battery are connected, the maximum supported load is ILIM + IBATLIM. 4445_367 v1.2 23 Core components When VBUS is disconnected, CHARGER sources current for VINT from the battery. In Supplement mode, or when VBUS is disconnected, VINT voltage is the same as the battery voltage. VBUS Battery connected connected Load CHARGER VINT supply VINT voltage Yes Yes (ILOAD + ICHGLIM) < ILIM Charging VBUS V(VBUS) Yes Yes (ILOAD + ICHGLIM) > ILIM Charging ILOAD < ILIM (ICHG reduced) Yes Yes ILOAD > ILIM Supplement mode Yes No ILOAD < ILIM N/A No Yes ILOAD ≤ IBATLIM N/A VBUS V(VBAT) + VDROPOUTCHARGER VBUS and VBAT V(VBAT)1 VBUS V(VBUS) VBAT V(VBAT)1 Table 14: Battery supply 1 CHARGER has a resistance of RONCHARGER between VBAT and VINT. The voltage drop from VBAT to VINT is IBAT x RONCHARGER, where IBAT is the current being drawn from the battery. 6.2.10 Electrical specification Symbol Description Min. ICHGACC Fast Charge current accuracy, 0.1% accuracy external resistor VTERM0 Termination voltage, VTERMSET = LOW Typ. Max. ±10 Unit % - 4.1 - V VTERM1 Termination voltage, VTERMSET = HIGH - 4.2 - V VTERMACC0 Termination voltage accuracy -1 - +1 % VTHIGH_DELTA VTERM voltage reduction at high temperature ITERM Termination current ITRICKLE Trickle charge current IREDUCED Fast charge current when device junction temperature is above THIGH or battery temperature is below TNTCCOOL - 50 - % of ICHG THIGH High temperature threshold - 100 - °C THIGHHYST High temperature hysteresis - 10 - °C VTRICKLE_FAST Trickle to Fast Charge threshold - 2.9 - V VRECHARGE Recharge threshold - 97 - % of VTERM VBATCHARGEMIN Minimum voltage during charge - 2.1 - V 4445_367 v1.2 100 8 10 mV 12 10 24 % of ICHG % of ICHG Core components Symbol Description Min. Typ. Max. Unit TOUTTRICKLE Trickle charging timeout - 10 - min TOUTCHARGE Timeout for Fast charging and constant current charging - 7 - hour VDROPOUT_CHARGER VINT - VBAT voltage for charging - 50 - mV VDROPOUT_VBUS Minimum VBUS - VBAT voltage for charging - 140 - mV TREDETECT Period between detection events - 500 - ms IBATLIM Output current limit from battery in discharge - 660 - mA RONCHARGER CHARGER resistance between VBAT and VINT in Discharge, VBAT = 3.7 V - 130 230 mΩ VBATPOR Power-on reset release voltage for VBAT - 2.7 - V VBATBOR Brownout reset trigger voltage for VBAT 1 - 2.5 - V ISINK DC current (CHG and ERR) - 5 - mA TNTCCOLD JEITA cold temperature threshold (Thermistor: 10 kΩ, B25/50=3380 K) - 0 - °C RNTCCOLD_FALLING Resistance threshold from cool to cold 25.53 27.28 29.13 kΩ RNTCCOLD_RISING Resistance threshold from cold to cool 23.10 26.00 28.20 kΩ TNTCCOOL JEITA cool temperature threshold (Thermistor: 10 kΩ, B25/50=3380 K) - 10 - °C RNTCCOOL_FALLING Resistance threshold from nom. to cool 16.80 18.00 19.20 kΩ RNTCCOOL_RISING Resistance threshold from cool to nom. 15.50 17.10 18.60 kΩ TNTCWARM JEITA warm temperature threshold (Thermistor: 10 kΩ, B25/50=3380 K) - 45 - °C RNTCWARM_FALLING Resistance threshold from warm to nom. 4.86 5.13 5.43 kΩ RNTCWARM_RISING Resistance threshold from nom. to warm 4.68 4.92 5.17 kΩ TNTCHOT JEITA hot temperature threshold (Thermistor: 10 kΩ, B25/50=3380 K) - 60 - °C RNTCHOT_FALLING Resistance threshold from hot to warm 3.04 3.19 3.35 kΩ RNTCHOT_RISING Resistance threshold from warm to hot 2.90 3.02 3.15 kΩ Table 15: CHARGER electrical specification 1 Device enters BOR only if (V(VBUS) < VBUSBOR) AND (V(VBAT) < VBATBOR). 6.2.11 Electrical characteristics The following graphs show CHARGER electrical characteristics. 4445_367 v1.2 25 Core components Figure 13: CHARGER RDS(ON) vs. VBAT voltage Figure 14: Quiescent VBAT current vs. VBAT voltage 4445_367 v1.2 26 Core components Figure 15: CHARGER RDS(ON) vs. temperature Figure 16: Quiescent VBAT current vs. temperature 4445_367 v1.2 27 Core components Figure 17: VTERM vs. temperature Figure 18: Charge profile with ISET=1 6.3 BUCK — Buck regulator BUCK is a step-down DC/DC voltage regulator with the following features: • • • • High efficiency (low IQ) and low noise operation PWM and Hysteretic modes with automatic switching based on load MODE control pin for forcing PWM mode to minimize output voltage ripple Configurable output voltage between 1.8 V and 3.0 V 4445_367 v1.2 28 Core components When VINT is above VINTBUCKMIN, BUCK is enabled and its output voltage is available at VOUTB. Hysteretic mode offers efficiency for the full range of supported load currents. PWM mode provides a clean supply operation due to a constant switching frequency, FBUCK. This provides optimal coexistence with RF circuits. BUCK can automatically change between Hysteretic and PWM modes. Modes are controlled by the MODE pin. The state of the MODE pin can be changed at any time. 6.3.1 Output voltage selection (VOUTBSET0, VOUTBSET1) BUCK output voltage selection pins VOUTBSET0 and VOUTBSET1 should be hardwired to DEC, VSYS, or AVSS. Do not toggle these pins during operation. VOUTBSET1 VOUTBSET0 VOUTB voltage LOW LOW 1.8 V LOW HIGH 2.1 V HIGH LOW 2.7 V HIGH HIGH 3.0 V Table 16: Output voltage selection For BUCK to supply the desired output voltage, VINT must be VDROPOUT_BUCK greater than the voltage on VOUTB. When supplied from battery, the following equation gives the VINT, where IBAT is the current being drawn from the battery: VINT = VBAT – IBAT x RONCHARGER 6.3.2 BUCK mode selection (MODE) In Automatic mode, BUCK selects Hysteretic mode for low load currents, and PWM mode for high load currents. This maximizes efficiency over the full range of supported load currents. In PWM mode, BUCK provides a clean supply operation due to constant switching frequency and lower voltage ripple. This allows for optimal coexistence with RF circuits. The MODE pin can be changed at any time. MODE BUCK operation mode LOW Automatic selection between Hysteretic and PWM modes HIGH PWM mode Table 17: BUCK mode selection 6.3.3 Component selection Recommended values for the inductor are shown in the following table. 4445_367 v1.2 29 Core components Parameter Value Units Nominal inductance 2.2 μH Inductor tolerance ≤ 20 % DC resistance (DCR) ≤ 400 mΩ Saturation current (lsat) ≥ 350 mA Maximum current (lmax) ≥ 350 mA Table 18: Inductor selection The following table shows the minimum and maximum effective capacitance at VOUTB. Recommended nominal capacitor Min. Max. 10 µF 6 µF 20 µF Table 19: Output capacitor selection 6.3.4 Electrical specification Symbol Description Min. Typ. VOUTBACC Max. Unit VOUTB accuracy under static conditions; no change in supply voltage, load current, or Buck operating mode -2 - 8 % IOUTBSHORT Short circuit current limit - - 400 mA IPWMTHRES Load current threshold from Hysteretic to PWM mode (MODE = LOW) 90 mA IHYSTTHRES Load current threshold from PWM to Hysteretic mode (MODE = LOW) 40 mA VOUTBRIPPLE_HYST VOUTB ripple, MODE = HIGH or load current above IPWMTHRES - - 10 mVpp VOUTBRIPPLE_HYST VOUT ripple, MODE = LOW and load current below IPWMTHRES - - 80 mVpp - % EFFBUCK Efficiency, VOUTBSET = 11 (VOUTB = 3.0 V), VINT = 3.7 V, IOUTB = 100 mA - 93.5 VDROPOUT_BUCK Dropout voltage, V(VOUTB) - VINT - 0.41 FBUCK Switching frequency for PWM mode - 3.6 - MHz TPWMMODE Hysteretic to PWM mode transition time on MODE pin toggle - - 55 μs THYSTMODE PWM to Hysteretic mode transition time on MODE pin toggle - - 25 μs TPWM Hysteretic to PWM mode transition time - - 90 μs 4445_367 v1.2 30 V Core components Symbol Description Min. Typ. Max. Unit THYST PWM to Hysteretic mode transition time - - 35 μs TSETTLE Settling time to within 1% after load transient of 0 A to 100 mA - - 20 μs VINTBUCKMIN Minimum VINT voltage for enabling BUCK - 2.8 - V Table 20: BUCK electrical specification 6.3.5 Electrical characteristics The following graphs show BUCK electrical characteristics. Figure 19: VOUTB=3.0 system efficiency, MODE=AUTO 4445_367 v1.2 31 Core components Figure 20: VOUTB=3.0 system efficiency, MODE=PWM Figure 21: VOUTB=3.0: VOUTB vs. temperature (VBAT=4.2) 4445_367 v1.2 32 Core components Figure 22: VOUTB=2.7 system efficiency, MODE=AUTO Figure 23: VOUTB=2.7 system efficiency, MODE=PWM 4445_367 v1.2 33 Core components Figure 24: VOUTB=2.1 system efficiency, MODE=AUTO Figure 25: VOUTB=2.1 system efficiency, MODE=PWM 4445_367 v1.2 34 Core components Figure 26: VOUTB=1.8 system efficiency, MODE=AUTO Figure 27: VOUTB=1.8 system efficiency, MODE=PWM 4445_367 v1.2 35 Core components Figure 28: VOUTB=1.8 VOUTB vs. temperature (VBAT=4.2) Figure 29: Startup with no load, soft start, Vout=1.8 V, VBAT=3.8 V 4445_367 v1.2 36 Core components Figure 30: BUCK load transition in auto mode (MODE=0), Iout=10 mA → 150 mA → 10 mA (1 µs step), Vout=1.8 V, VBAT=3.8 V Figure 31: BUCK Mode transition, MODE pin 0 → 1, Vout=1.8 V Iout=10 mA 4445_367 v1.2 37 Core components Figure 32: BUCK Mode transition, MODE pin 1 → 0, Vout=1.8 V Iout=10 mA Figure 33: BUCK load transition in PWM mode (MODE=1), Iout=10 mA → 150 mA → 10 mA (1 µs step), Vout=1.8 V, VBAT=3.8 V 4445_367 v1.2 38 7 Application The following application example uses nPM1100 and an nRF5x wireless System on Chip (SoC). Any nRF52 or nRF53 series device with USB can be configured in the same way as this application. When using a device without USB, or for other configurations, see Reference circuitry on page 44. The example application is for a design with the following configuration and features: • • • • • • • nPM1100 BUCK regulator supplies the nRF5x device USB current limit negotiation Charging status monitoring using SoC GPIOs ICHG and VTERM configuration NTC thermistor in the battery pack Ship mode Battery monitoring circuit and low battery indication LED (this requires the device to sample the battery voltage; software is not described here) 7.1 Schematic J2 U S B VBUS USB B1 B2 A1 A2 C1 2.2µF VBAT D1 D2 E1 J1 + Battery pack U1 VBUS VBUS DD+ VSYS VSYS DEC VOUTBSET0 VOUTBSET1 VOUTB nPM1100 VSYS R_ICHG 1k5 C3 E2 C4 C5 A5 VSYS B4 B3 C4 10µF PVSS VBAT VBAT NTC C5 1.0µF C1 C2 A3 SW VTERM ICHG MODE ISET ERR CHG SHPACT SHPHLD AVSS AVSS PVSS B5 E5 D5 E3 E4 D4 D3 C3 10µF TP1 nPM1100-CAAx PVSS VDD VDDH C2 10µF PVSS SHPHLD R1 100k VBUS DD+ VDD_nRF L1 2.2µH A4 U2 D_N D_P SW1 PB SW MODE ISET ERR CHG SHPACT LOW_BATT BAT_MON_EN BAT_MON R6 150R LD3 L0603R Q2 FDV303N Battery monitoring circuit (optional) P0.xx P0.xx P0.xx P0.xx P0.xx P0.xx P0.xx P0.xx VSS nRF5x R7 1M0 R3 1M0 Q1B DMC2400UV Low battery indication (optional) Q1A DMC2400UV R2 1M0 R4 1M5 R5 220k Figure 34: Application example 7.2 Supplying from BUCK nRF5x is supplied by nPM1100 VOUTB at 1.8 V. BUCK mode (MODE) is controlled with a GPIO. 4445_367 v1.2 39 nRF5x Application An application should not be supplied directly from VBAT because it can disturb the battery charging process and may cause incorrect behavior from the charger. Instead, VOUTB and/or VSYS should be used to supply an application. 7.3 USB port negotiation nRF5x can connect to a USB host. Port negotiation can be performed after nPM1100 port detection. The nRF5x device and nPM1100 are both connected to USB in the application example. nPM1100 detects SDP or CDP/DCP. If SDP is detected, the USB device can negotiate with the USB host for higher current from VBUS. • D+ and D- pins are connected to both nPM1100 and nRF5x. The nRF5x SoC must wait until nPM1100 completes port detection before enabling its USB port. See USB port detection and VBUS current limiting on page 15 for port detection time after VBUS connection. • An nRF5x GPIO is connected to the ISET pin and sets the VBUS current limit after negotiation. If CDP or DCP is detected, then a 500 mA limit is automatically set regardless of ISET state. • VBUS is supplied to both nPM1100 and nRF5x to supply nPM1100 SYSREG and the nRF5x VBUS regulator. See USB port detection and VBUS current limiting on page 15 for a detailed description. 7.4 Charging and error states Pins CHG and ERR indicate charging and error states. See Charging indication (CHG) and charging error indication (ERR) on page 22 and Charger error conditions on page 22. 7.5 Termination voltage and current The termination voltage is configured to 4.2 V through the VTERMSET pin. See Termination voltage (VTERMSET) on page 20. Charge current is configured to 200 mA (±10%) using a 1.5 kΩ (1%) resistor to ground on the ICHG pin. See Charge current limit (ICHG) on page 21. 7.6 NTC configuration The NTC pin is connected to an external NTC thermistor which should be placed with thermal coupling to the battery pack. See Battery thermal protection using NTC thermistor (NTC) on page 21 for more information. 7.7 Ship mode Ship mode is enabled at production time through an off-board circuit with a probe point on the SHIPACT pin. An external button is in the circuit to exit Ship mode. If another circuit is present instead of a button, any signal that is able to pull the SHIPHLD pin low for the required period can be connected to that net. See Using Ship mode on page 10 for more information. 4445_367 v1.2 40 Application 7.8 Battery monitoring and low battery indication The battery monitoring circuit allows the battery voltage to be sampled by the nRF5x ADC. The transistors enable battery voltage sensing through a resistive divider. When not sampling, the transistors prevent current leakage to ground. The circuit is designed to ensure the voltage range on an analog input pin over the battery voltage is within the limits required by the nRF5x GPIO and ADC. A battery voltage of 2.8 V to 4.2 V is scaled down to 360 mV to 540 mV at P0.xx for sampling. If software on nRF5x determines that the battery on nPM1100 is low, the Low Bat LED can be switched on through GPIO. This circuit sources the LED current from VSYS. VSYS will not be supplied after VBAT drops below VBATBOR because CHARGER will isolate the battery when a brownout reset occurs. See Power-on reset (POR) and brownout reset (BOR) on page 10. 4445_367 v1.2 41 8 Hardware and layout 8.1 Ball assignments The ball assignment figure and table describe the assignments for this variant of the chip. Figure 35: WLCSP ball assignments Pin Name Function Description A1 D- Analog input USB D- data line Analog input USB D+ data line Power System decoupling capacitor A2 A3 D+ DEC A4 SW Power BUCK converter output (to inductor) A5 PVSS Power Ground (DC/DC) Power Input supply Power Input supply B1 B2 VBUS VBUS Recommended usage B3 VOUTBSET1 Digital I/O BUCK regulator output voltage selection Toggle only when the device is in Power OFF B4 VOUTBSET0 Digital I/O BUCK regulator output voltage selection Toggle only when the device is in Power OFF B5 VOUTB Power BUCK regulator output C1 VSYS Power System voltage output; automatically enabled after poweron reset C2 VSYS Power System voltage output; automatically enabled after poweron reset 4445_367 v1.2 42 Hardware and layout Pin Name Function Description Recommended usage C3 VTERMSET Digital I/O Battery charging termination voltage selection: Toggle only when the device is in Power OFF 0 to 4.10 V 1 to 4.20 V AVSS C4 AVSS C5 D1 D2 D3 D4 D5 VBAT VBAT SHPHLD SHPACT ISET Power Ground Power Ground Power Battery Power Battery Digital I/O Shipping mode hold Digital I/O Shipping mode activate Digital I/O VBUS current limit selection: 0 mA to 100 mA (SDP mode only) 1 mA to 500 mA NTC E1 ICHG E2 Analog input NTC resistor Analog input Charge current limiting resistor E3 ERR Digital OUT Open-drain LED driver; enabled when error condition in charging E4 CHG Digital OUT Open-drain LED driver; enabled when battery is charging E5 MODE Digital I/O 0 - automatic 1 - Forced PWM Table 21: Pin assignments Note: VOUTBSET1 and VOUTBSET0 balls are located close to AVSS, DEC, and VSYS to allow connection to tracks on the PCB without any via holes. 8.2 Mechanical specifications The mechanical specifications for the package shows the dimensions in millimeters. 8.2.1 WLCSP 2.075x2.075 mm package Dimensions in millimeters for the WLCSP 2.075x2.075 mm package. 4445_367 v1.2 43 Hardware and layout Figure 36: WLCSP 2.075x2.075 mm package A A1 A2 b Min. 0.406 0.14 0.266 0.195 Nom. 0.464 Max. 0.522 0.294 0.2 D E D2 E2 d e 2.075 2.075 1.6 1.6 0.4 0.4 K L 0.322 0.255 Table 22: WLCSP dimensions in millimeters 8.3 Reference circuitry Documentation for the different package reference circuits, including Altium Designer files, PCB layout files, and PCB production files can be downloaded from www.nordicsemi.com. The following reference circuits for nPM1100 show the schematics and components to support different configurations in a design. 4445_367 v1.2 44 Hardware and layout Description Configuration 1 Configuration 2 Configuration 3 Minimal configuration Minimal configuration Normal configuration Fixed 100 mA VBUS limit Fixed 500 mA VBUS limit USB port detection BUCK Not used Not used Configured Ship mode Not used Not used Configured Battery NTC Not used Not used Configured VTERM 4.1 V 4.1 V 4.2 V ISET AVSS VSYS AVSS D- AVSS D+ ICHG AVSS USB NC NC USB 4.7 kΩ 0Ω 1.5 kΩ 1% GND GND VOUTB - - 2V1 Table 23: PCB application configuration 8.3.1 Configuration 1 VBUS B1 B2 A1 A2 C1 2.2µF VBAT J1 + Battery pack C3 1.0µF D1 D2 E1 R1 10k VBUS VBUS DD+ VSYS VSYS DEC VOUTBSET0 VOUTBSET1 VBAT VBAT NTC VOUTB nPM1100 C3 E2 R_ICHG 4k7 U1 C4 C5 A5 SW VTERM ICHG MODE ISET ERR CHG SHPACT SHPHLD AVSS AVSS PVSS nPM1100-CAAx 4445_367 v1.2 45 C1 C2 A3 VOUT B4 B3 C2 22µF B5 Optional LD1 L0603R A4 E5 D5 E3 E4 D4 D3 ERR CHG LD2 L0603G Hardware and layout Designator Value Description Footprint C1 2.2 µF Capacitor, X5R, 25 V, ±20% 0603 C2 22 µF Capacitor, X5R, 6.3 V, ± 20% 0603 C3 1.0 µF Capacitor, X5R, 10 V, ± 20% 0201 J1 Battery pack Battery pack TP_2x1mm_TH LD1 L0603R LED, SMD, RED 0603 LD2 L0603G LED, SMD, GREEN 0603 R1 10 kΩ Resistor, 0.05 W, ±1% 0201 R_ICHG 4.7 kΩ Resistor, 0.05 W, ±1% 0201 U1 nPM1100-CAAx Li-ion/Li-poly USB battery charger with high efficiency buck regulator WLCSP-25 Table 24: Configuration 1 reference circuitry 8.3.2 Configuration 2 VBUS B1 B2 A1 A2 C1 2.2µF VBAT J1 + C3 1.0µF Battery pack D1 D2 E1 R1 10k U1 VBUS VBUS DD+ VSYS VSYS DEC VOUTBSET0 VOUTBSET1 VBAT VBAT NTC VOUTB nPM1100 C3 E2 C4 C5 A5 SW VTERM ICHG MODE ISET ERR CHG SHPACT SHPHLD AVSS AVSS PVSS C1 C2 A3 VOUT B4 B3 C2 22µF B5 Optional LD1 L0603R A4 E5 D5 E3 E4 D4 D3 LD2 L0603G ERR CHG nPM1100-CAAx Designator Value Description Footprint C1 2.2 µF Capacitor, X5R, 25 V, ±20% 0603 C2 22 µF Capacitor, X5R, 6.3 V, ±20% 0603 C3 1.0 µF Capacitor, X5R, 10 V, ±20% 0201 J1 Battery pack Battery pack TP_2x1mm_TH LD1 L0603R LED, SMD, RED 0603 LD2 L0603G LED, SMD, GREEN 0603 R1 10 kΩ Resistor, 0.05 W, ±1% 0201 U1 nPM1100-CAAx Li-ion/Li-poly USB battery charger with a high efficiency buck regulator Table 25: Configuration 2 reference circuitry 8.3.3 Configuration 3 4445_367 v1.2 46 WLCSP-25 Hardware and layout VBUS Optional R3 1k C1 2.2µF D_N D_P B1 B2 A1 A2 U1 VBUS VBUS DD+ VSYS VSYS DEC VOUTBSET0 VOUTBSET1 LD3 L0603R VBAT D1 D2 E1 J1 + Battery pack VOUTB nPM1100 VSYS R_ICHG 1k5 C3 E2 C4 C5 A5 B4 B3 VSYS C4 10µF PVSS VBAT VBAT NTC C5 1.0µF C1 C2 A3 SW VTERM ICHG MODE ISET ERR CHG SHPACT SHPHLD AVSS AVSS PVSS B5 A4 E5 D5 E3 E4 D4 D3 C3 10µF VOUT L1 2.2µH MODE ISET ERR CHG SHPACT SHPHLD Optional C2 10µF LD1 L0603R LD2 L0603G PVSS nPM1100-CAAx PVSS Designator Value Description Footprint C1 2.2 µF Capacitor, X5R, 25 V, ±20% 0603 C2, C3, C4 10 µF Capacitor, X5R, 6.3 V, ±20% 0603 C5 1.0 µF Capacitor, X5R, 10 V, ±20% 0201 J1 Battery pack Battery pack with NTC TP_3x1mm_TH L1 2.2 µH Inductor ±20% 0806 LD1, LD3 L0603R LED, SMD, RED 0603 LD2 L0603G LED, SMD, GREEN 0603 R3 1 kΩ Resistor, 0.05 W, ±1% 0201 R_ICHG 1.5 kΩ Resistor, 0.05 W, ±1% 0201 U1 nPM1100-CAAx Li-ion/Li-poly USB battery charger with a high efficiency buck regulator WLCSP-25 Table 26: Configuration 3 reference circuitry 8.3.4 PCB guidelines A well designed PCB is necessary to achieve good performance. A poor layout can lead to loss in performance or functionality. To ensure functionality, it is essential to follow the schematics and layout references closely. A PCB with a minimum of two layers, including a ground plane, is recommended for optimal performance. The DC supply voltage should be decoupled with high performance capacitors as close as possible to the supply pins. See the reference schematic in Configuration 1 on page 45 for recommended decoupling capacitor values. Long power supply lines on the PCB should be avoided. All device grounds, VDD connections, and VDD bypass capacitors must be connected as close as possible to the device. 8.3.5 PCB layout example The PCB layout shown here is a reference layout for the WLCSP25 package. For all available reference layouts, see the Reference Layout section on the Downloads tab for nPM1100 on www.nordicsemi.com. 4445_367 v1.2 47 Hardware and layout Figure 37: Top silk layer Figure 38: Top layer Figure 39: Bottom layer Note: No components in the bottom layer. 4445_367 v1.2 48 9 Ordering information This chapter contains information on IC marking, ordering codes, and container sizes. 9.1 IC marking The nPM1100 PMIC package is marked as shown in the following figure. N P M 1 1 0 0 Figure 40: IC marking 9.2 Box labels The following figures define the box labels used for the nPM1100. PART NO.: (1P) TRACE CODE: (1T) TRACE CODE QUANTITY: TOTAL QUANTITY: (Q) Figure 41: Inner box label 4445_367 v1.2 49 Pb eX Ordering information FROM: TO: PART NO: (1P) CUSTOMER PO NO: (K) Pb SALES ORDER NO: (14K) SHIPMENT ID.: 2K QUANTITY: (Q) COUNTRY OF ORIGIN.: 4L CARTON NO: x/n DELIVERY NO.: (9K)
NPM1100-CAAB-R 价格&库存

很抱歉,暂时无法提供与“NPM1100-CAAB-R”相匹配的价格&库存,您可以联系我们找货

免费人工找货