0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATMEGA128L-8ANR

ATMEGA128L-8ANR

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TQFP64

  • 描述:

    IC MCU 8BIT 128KB FLASH 64TQFP

  • 数据手册
  • 价格&库存
ATMEGA128L-8ANR 数据手册
Features • High-performance, Low-power Atmel®AVR®8-bit Microcontroller • Advanced RISC Architecture • • • • • • • • – 133 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers + Peripheral Control Registers – Fully Static Operation – Up to 16MIPS Throughput at 16MHz – On-chip 2-cycle Multiplier High Endurance Non-volatile Memory segments – 128Kbytes of In-System Self-programmable Flash program memory – 4Kbytes EEPROM – 4Kbytes Internal SRAM – Write/Erase cycles: 10,000 Flash/100,000 EEPROM – Data retention: 20 years at 85°C/100 years at 25°C(1) – Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation – Up to 64Kbytes Optional External Memory Space – Programming Lock for Software Security – SPI Interface for In-System Programming QTouch® library support – Capacitive touch buttons, sliders and wheels – QTouch and QMatrix acquisition – Up to 64 sense channels JTAG (IEEE std. 1149.1 Compliant) Interface – Boundary-scan Capabilities According to the JTAG Standard – Extensive On-chip Debug Support – Programming of Flash, EEPROM, Fuses and Lock Bits through the JTAG Interface Peripheral Features – Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes – Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode and Capture Mode – Real Time Counter with Separate Oscillator – Two 8-bit PWM Channels – 6 PWM Channels with Programmable Resolution from 2 to 16 Bits – Output Compare Modulator – 8-channel, 10-bit ADC 8 Single-ended Channels 7 Differential Channels 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x – Byte-oriented Two-wire Serial Interface – Dual Programmable Serial USARTs – Master/Slave SPI Serial Interface – Programmable Watchdog Timer with On-chip Oscillator – On-chip Analog Comparator Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated RC Oscillator – External and Internal Interrupt Sources – Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby – Software Selectable Clock Frequency – ATmega103 Compatibility Mode Selected by a Fuse – Global Pull-up Disable I/O and Packages – 53 Programmable I/O Lines – 64-lead TQFP and 64-pad QFN/MLF Operating Voltages – 2.7 - 5.5V ATmega128L – 4.5 - 5.5V ATmega128 Speed Grades – 0 - 8MHz ATmega128L – 0 - 16MHz ATmega128 8-bit Atmel Microcontroller with 128KBytes In-System Programmable Flash ATmega128 ATmega128L Summary Rev. 2467XS–AVR–06/11 ATmega128 Pin Configurations 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PA3 (AD3) PA4 (AD4) PA5 (AD5) PA6 (AD6) PA7 (AD7) PG2(ALE) PC7 (A15) PC6 (A14) PC5 (A13) PC4 (A12) PC3 (A11) PC2 (A10) PC1 (A9) PC0 (A8) PG1(RD) PG0(WR) (OC2/OC1C) PB7 TOSC2/PG3 TOSC1/PG4 RESET VCC GND XTAL2 XTAL1 (SCL/INT0) PD0 (SDA/INT1) PD1 (RXD1/INT2) PD2 (TXD1/INT3) PD3 (ICP1) PD4 (XCK1) PD5 (T1) PD6 (T2) PD7 PEN RXD0/(PDI) PE0 (TXD0/PDO) PE1 (XCK0/AIN0) PE2 (OC3A/AIN1) PE3 (OC3B/INT4) PE4 (OC3C/INT5) PE5 (T3/INT6) PE6 (ICP3/INT7) PE7 (SS) PB0 (SCK) PB1 (MOSI) PB2 (MISO) PB3 (OC0) PB4 (OC1A) PB5 (OC1B) PB6 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 AVCC GND AREF PF0 (ADC0) PF1 (ADC1) PF2 (ADC2) PF3 (ADC3) PF4 (ADC4/TCK) PF5 (ADC5/TMS) PF6 (ADC6/TDO) PF7 (ADC7/TDI) GND VCC PA0 (AD0) PA1 (AD1) PA2 (AD2) Figure 1. Pinout ATmega128 Note: Overview The Pinout figure applies to both TQFP and MLF packages. The bottom pad under the QFN/MLF package should be soldered to ground. The Atmel® AVR® ATmega128 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega128 achieves throughputs approaching 1MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. 2 2467XS–AVR–06/11 ATmega128 Block Diagram PC0 - PC7 RESET PA0 - PA7 XTAL1 PF0 - PF7 XTAL2 Figure 2. Block Diagram VCC GND PORTA DRIVERS PORTF DRIVERS DATA DIR. REG. PORTF DATA REGISTER PORTF PORTC DRIVERS DATA DIR. REG. PORTA DATA REGISTER PORTA DATA REGISTER PORTC DATA DIR. REG. PORTC 8-BIT DATA BUS AVCC CALIB. OSC INTERNAL OSCILLATOR ADC AGND AREF OSCILLATOR PROGRAM COUNTER STACK POINTER WATCHDOG TIMER ON-CHIP DEBUG PROGRAM FLASH SRAM MCU CONTROL REGISTER BOUNDARYSCAN INSTRUCTION REGISTER JTAG TAP OSCILLATOR TIMING AND CONTROL TIMER/ COUNTERS GENERAL PURPOSE REGISTERS X PEN PROGRAMMING LOGIC INSTRUCTION DECODER CONTROL LINES Z INTERRUPT UNIT ALU EEPROM Y STATUS REGISTER SPI + - ANALOG COMPARATOR USART0 DATA REGISTER PORTE DATA DIR. REG. PORTE PORTE DRIVERS PE0 - PE7 DATA REGISTER PORTB DATA DIR. REG. PORTB PORTB DRIVERS PB0 - PB7 USART1 DATA REGISTER PORTD TWO-WIRE SERIAL INTERFACE DATA DIR. REG. PORTD DATA REG. PORTG DATA DIR. REG. PORTG PORTD DRIVERS PORTG DRIVERS PD0 - PD7 PG0 - PG4 3 2467XS–AVR–06/11 ATmega128 The Atmel® AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega128 provides the following features: 128Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 4Kbytes EEPROM, 4Kbytes SRAM, 53 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), four flexible Timer/Counters with compare modes and PWM, 2 USARTs, a byte oriented Two-wire Serial Interface, an 8channel, 10-bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run. Atmel offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS™) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications. The device is manufactured using Atmel’s high-density nonvolatile memory technology. The Onchip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega128 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega128 device is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits. ATmega103 and ATmega128 Compatibility The ATmega128 is a highly complex microcontroller where the number of I/O locations supersedes the 64 I/O locations reserved in the AVR instruction set. To ensure backward compatibility with the ATmega103, all I/O locations present in ATmega103 have the same location in ATmega128. Most additional I/O locations are added in an Extended I/O space starting from $60 to $FF, (i.e., in the ATmega103 internal RAM space). These locations can be reached by using LD/LDS/LDD and ST/STS/STD instructions only, not by using IN and OUT instructions. The relocation of the internal RAM space may still be a problem for ATmega103 users. Also, the increased number of interrupt vectors might be a problem if the code uses absolute addresses. To solve these problems, an ATmega103 compatibility mode can be selected by programming the fuse M103C. In this mode, none of the functions in the Extended I/O space are in use, so the internal RAM is located as in ATmega103. Also, the Extended Interrupt vectors are removed. 4 2467XS–AVR–06/11 ATmega128 The ATmega128 is 100% pin compatible with ATmega103, and can replace the ATmega103 on current Printed Circuit Boards. The application note “Replacing ATmega103 by ATmega128” describes what the user should be aware of replacing the ATmega103 by an ATmega128. ATmega103 Compatibility Mode By programming the M103C fuse, the Atmel ® ATmega128 will be compatible with the ATmega103 regards to RAM, I/O pins and interrupt vectors as described above. However, some new features in ATmega128 are not available in this compatibility mode, these features are listed below: • One USART instead of two, Asynchronous mode only. Only the eight least significant bits of the Baud Rate Register is available. • One 16 bits Timer/Counter with two compare registers instead of two 16-bit Timer/Counters with three compare registers. • Two-wire serial interface is not supported. • Port C is output only. • Port G serves alternate functions only (not a general I/O port). • Port F serves as digital input only in addition to analog input to the ADC. • Boot Loader capabilities is not supported. • It is not possible to adjust the frequency of the internal calibrated RC Oscillator. • The External Memory Interface can not release any Address pins for general I/O, neither configure different wait-states to different External Memory Address sections. In addition, there are some other minor differences to make it more compatible to ATmega103: • Only EXTRF and PORF exists in MCUCSR. • Timed sequence not required for Watchdog Time-out change. • External Interrupt pins 3 - 0 serve as level interrupt only. • USART has no FIFO buffer, so data overrun comes earlier. Unused I/O bits in ATmega103 should be written to 0 to ensure same operation in ATmega128. Pin Descriptions VCC Digital supply voltage. GND Ground. Port A (PA7..PA0) Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A also serves the functions of various special features of the ATmega128 as listed on page 72. Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B also serves the functions of various special features of the ATmega128 as listed on page 73. 5 2467XS–AVR–06/11 ATmega128 Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port C also serves the functions of special features of the Atmel® AVR®ATmega128 as listed on page 76. In ATmega103 compatibility mode, Port C is output only, and the port C pins are not tristated when a reset condition becomes active. Note: Port D (PD7..PD0) The ATmega128 is by default shipped in ATmega103 compatibility mode. Thus, if the parts are not programmed before they are put on the PCB, PORTC will be output during first power up, and until the ATmega103 compatibility mode is disabled. Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the ATmega128 as listed on page 77. Port E (PE7..PE0) Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port E also serves the functions of various special features of the ATmega128 as listed on page 80. Port F (PF7..PF0) Port F serves as the analog inputs to the A/D Converter. Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a Reset occurs. The TDO pin is tri-stated unless TAP states that shift out data are entered. Port F also serves the functions of the JTAG interface. In ATmega103 compatibility mode, Port F is an input Port only. Port G (PG4..PG0) Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port G also serves the functions of various special features. The port G pins are tri-stated when a reset condition becomes active, even if the clock is not running. 6 2467XS–AVR–06/11 ATmega128 In ATmega103 compatibility mode, these pins only serves as strobes signals to the external memory as well as input to the 32kHz Oscillator, and the pins are initialized to PG0 = 1, PG1 = 1, and PG2 = 0 asynchronously when a reset condition becomes active, even if the clock is not running. PG3 and PG4 are oscillator pins. RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 19 on page 50. Shorter pulses are not guaranteed to generate a reset. XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. XTAL2 Output from the inverting Oscillator amplifier. AVCC AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. AREF AREF is the analog reference pin for the A/D Converter. PEN PEN is a programming enable pin for the SPI Serial Programming mode, and is internally pulled high . By holding this pin low during a Power-on Reset, the device will enter the SPI Serial Programming mode. PEN has no function during normal operation. 7 2467XS–AVR–06/11 ATmega128 Resources A comprehensive set of development tools, application notes, and datasheets are available for download on http://www.atmel.com/avr. Note: 1. Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C About Code Examples This datasheet contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. Capacitive touch sensing The Atmel QTouch Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR microcontrollers. The QTouch Library includes support for the QTouch and QMatrix acquisition methods. Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API’s to retrieve the channel information and determine the touch sensor states. The QTouch Library is FREE and downloadable from the Atmel website at the following location: www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library User Guide - also available for download from the Atmel website. 8 2467XS–AVR–06/11 ATmega128 Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1 COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FF - K) Z,N,V 1 INC Rd Increment Rd ← Rd + 1 Z,N,V 1 DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd Set Register Rd ← $FF None 1 2 MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2 MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2 FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr)
ATMEGA128L-8ANR 价格&库存

很抱歉,暂时无法提供与“ATMEGA128L-8ANR”相匹配的价格&库存,您可以联系我们找货

免费人工找货