0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATSAMA5D27-WLSOM1

ATSAMA5D27-WLSOM1

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    -

  • 描述:

    ATSAMA5D27-WLSOM1

  • 数据手册
  • 价格&库存
ATSAMA5D27-WLSOM1 数据手册
SAMA5D27 Wireless SOM1 ATSAMA5D27-WLSOM1 Introduction The Microchip SAMA5D27 Wireless System-On-Module 1 (ATSAMA5D27-WLSOM1) is a small single-sided SOM based on the high-performance System-in-Package (SiP) 32-bit Arm® Cortex®-A5 processor-based MPU SAMA5D27, 2 Gb LPDDR2 SDRAM running up to 500 MHz, and Wi-Fi® plus Bluetooth® (Wi-Fi/BT) Wireless module. The ATSAMA5D27-WLSOM1 is built on a common set of proven Microchip components to reduce time to market by simplifying hardware design and software development. The ATSAMA5D27-WLSOM1 also limits design rules of the main application board, reducing overall PCB complexity and cost. The ATSAMA5D27-WLSOM1 is delivered with a free Linux® distribution and bare metal C examples. Figure 1. ATSAMA5D27-WLSOM1 Overview © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 1 SAMA5D27 Wireless SOM1 Features • • • • • • • • • • • • • • System-In-Package (ATSAMA5D27C-LD2G-CU) Including: – Arm® Cortex®-A5 processor-based SAMA5D27 MPU – 2 Gbit LPDDR2 SDRAM On-Board Power Management Unit (MCP16502AC-E/S8B) 64 Mb Serial Quad I/O Flash Memory (SST26VF064BEUIT-104I/MF) with Embedded EUI-48™ and EUI-64™ MAC Addresses IEEE® 802.11 b/g/n Wi-Fi plus Bluetooth (Wi-Fi/BT) Module (ATWILC3000-MR110UA) 10Base-T/100Base-TX Ethernet PHY (KSZ8081RNAIA) ATECC608A Secure Element MEMS Oscillators for Clock Generation 40.8 x 40.8 mm Module, Pitch 0.8mm, Solderable Manually for Prototyping 94 I/Os Up to 7 Tamper Pins One USB Device, one USB Host and one HSIC Interface Shutdown and Reset Control Pins Independent Power Supplies Available for Camera Sensor, for SD Card and for Backup Depending on Voltage Domains Operational Specifications: – Main operating voltage: 3.0V to 5.5V ± 5% – Temperature range: -40°C to 85°C – Integrated oscillators, internal voltage regulators – Multiple interfaces and I/Os for easy application development Applications • • • • • • Industrial Control and Automation Smart Appliances Human Machine Interfaces (HMI) IoT Gateway Access Control Panels Security and Alarm Systems © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 2 SAMA5D27 Wireless SOM1 Table of Contents Introduction.....................................................................................................................................................1 Features......................................................................................................................................................... 2 Applications.................................................................................................................................................... 2 1. Reference Documents............................................................................................................................ 5 2. Block Diagram.........................................................................................................................................6 3. Pinout ..................................................................................................................................................... 7 3.1. 3.2. 4. Functional Description...........................................................................................................................13 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 5. Absolute Maximum Ratings........................................................................................................38 Recommended Operating Conditions........................................................................................ 38 DC Characteristics..................................................................................................................... 38 Radio Performances...................................................................................................................39 Mechanical Characteristics................................................................................................................... 40 6.1. 6.2. 6.3. 7. MPU and Memory Subsystem....................................................................................................13 Power Management................................................................................................................... 17 LAN Subsystem..........................................................................................................................22 Voltage Threshold Detector........................................................................................................22 Radio Subsystem....................................................................................................................... 23 External Interfaces and PIO Muxing...........................................................................................24 Antenna...................................................................................................................................... 36 Electrical Characteristics.......................................................................................................................38 5.1. 5.2. 5.3. 5.4. 6. Pinout Overview........................................................................................................................... 7 Pin List..........................................................................................................................................7 Module Outline Drawings........................................................................................................... 40 Module Land Pattern (Host Board PCB Footprint)..................................................................... 42 Other Characteristics..................................................................................................................43 Assembly and Storage Information....................................................................................................... 44 7.1. 7.2. 7.3. 7.4. 7.5. Storage Condition.......................................................................................................................44 Motherboard Solder Paste......................................................................................................... 44 Motherboard Stencil Design....................................................................................................... 44 Bake Information........................................................................................................................ 44 Reflow Profile............................................................................................................................. 45 8. Regulatory Approval..............................................................................................................................47 9. Ordering Information............................................................................................................................. 48 10. Revision History.................................................................................................................................... 49 10.1. Rev. A - 10/2019.........................................................................................................................49 The Microchip Web Site............................................................................................................................... 50 © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 3 SAMA5D27 Wireless SOM1 Customer Change Notification Service........................................................................................................ 50 Customer Support........................................................................................................................................ 50 Product Identification System.......................................................................................................................51 Microchip Devices Code Protection Feature................................................................................................ 51 Legal Notice................................................................................................................................................. 51 Trademarks.................................................................................................................................................. 52 Quality Management System Certified by DNV........................................................................................... 52 Worldwide Sales and Service.......................................................................................................................53 © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 4 SAMA5D27 Wireless SOM1 Reference Documents 1. Reference Documents The following reference data sheets are available on www.microchip.com: Table 1-1. Reference Data Sheets Document Title Available KSZ8081RNA/RND https://www.microchip.com/wwwproducts/en/KSZ8081 SAMA5D2 SIP https://www.microchip.com/wwwproducts/en/ATSAMA5D27C-LD2G SST26VF064BEUI https://www.microchip.com/wwwproducts/en/SST26VF064BEUI MCP16502 https://www.microchip.com/wwwproducts/en/MCP16502 MIC841/2 https://www.microchip.com/wwwproducts/en/MIC842 DSC60XXB https://www.microchip.com/wwwproducts/en/DSC6000B DSC61XXB https://www.microchip.com/wwwproducts/en/DSC6100B ATWILC3000-MR110UA https://www.microchip.com/wwwproducts/en/ATWILC3000 ATECC608A https://www.microchip.com/wwwproducts/en/ATECC608A © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 5 SAMA5D27 Wireless SOM1 Block Diagram Block Diagram The following figure shows the block diagram of the ATSAMA5D27-WLSOM1 module. Figure 2-1. ATSAMA5D27-WLSOM1 Module Block Diagram VDDISC MAIN 3.0-5.5V With MAC Address EUI-48 & EUI-64 Node Identity CryptoAuthentication™ ECC608A-TNGTLS 24 MHz/DSC6003 RXD 64 Mbit Serial Quad I/O Flash Memory SST26VF064BEUIT-104I/MF DEBUG BACKUP WAKEUP RESET SHUTDOWN nSTART_SOM SYSTEM CLK_AUDIO COMPP / COMPN MISC MPU + 2 Gb LPDDR2 SAMA5D27C-LD2G-CU 2 * USB QSPI_CS 10/100 Ethernet RMII PHY KSZ8081RNAIA WiFi / BT Module 32 kHz Crystal 7 * PIOBU 1.8V 900mA Power Management Unit MCP16502AC-E/S8B VLDO2 300mA Disable Boot 3.3V 600mA VDDBU Voltage Monitor MIC842NYMT VDD SDHC JTAG & DBGU Interfaces VDDANA 25 MHz/DSC6102 VDDFUSE ATWILC3000 -MR110UA © 2019 Microchip Technology Inc. Datasheet 64 Channels Touch Up to 6 ADC Inputs CAN Interface I²S Interface Mono PDMIC Interface SSC Interface CLASS-D Mono Camera Interface 18-bit LCD Interface 4 FLEXCOM Interfaces 2 SPI Interfaces 5 UART Interfaces TWI Interface SD-CARD Interface SMC 8-bit Interface 2 WILC OUTPUT LEDS eMMC Interface Up to 94 Mixable I/O 2 QSPI Interfaces 2. DS60001590A-page 6 SAMA5D27 Wireless SOM1 Pinout 3. Pinout 3.1 Pinout Overview 188 - GND 187 - WKUP 186 - VDD_DDR 185 - VDD_DDR 184 - GND 183 - GND 182 - nSTART_SOM 181 - GND 180 - VLDO2 179 - GND 178 - VTH 177 - PC7 176 - PC6 175 - PA13 174 - PA11 173 - PA7 172 - PA9 171 - PA6 170 - PA12 169 - PA4 168 - PA10 167 - PA8 166 - PA2 165 - PA0 164 - PA3 163 - PA5 162 - PA1 161 - VDDFUSE 160 - GND 159 - VDDANA 158 - GND 157 - HSIC_STROBE 156 - HSIC_DATA 155 - GND 154 - USBB_P 153 - USBB_N 152 - USBA_P 151 - USBA_N 150 - VDDSDHC 149 - GND 148 - PIOBU6 147 - PIOBU4 146 - PIOBU1 145 - CLK_AUDIO 144 - GND 143 - VDDBU 142 - GND Figure 3-1. ATSAMA5D27-WLSOM1 Pin Assignment 141 - GND 140 - COMPN 139 - COMPP 138 - PIOBU5 137 - PIOBU3 136 - PIOBU7 135 - PIOBU2 134 - RXD 133 - GND 132 - PD25 131 - PD29 130 - PD30 129 - GND 128 - GND 127 - PD26 126 - GND 125 - GND 124 - PD28 123 - PD27 122 - TWCK_SOM_PD20 121 - GND 120 - TWD_SOM_PD19 119 - PD12 118 - PD11 117 - PD14 116 - PD13 115 - PD16 114 - PD15 113 - PD18 112 - PD17 111 - PD10 110 - PD9 109 - PD5 108 - PD8 107 - PD7 106 - PD6 105 - PD4 104 - PD3 103 - PD2 102 - QSPI1_CS_PB6 101 - NCS_QSPI 100 - SIO2_QSPI_PB9 99 - SIO1_QSPI_PB8 98 - SIO0_QSPI_PB7 97 - SIO3_QSPI_PB10 96 - SCK_QSPI_PB5 95 - GND GND - 48 GND - 49 GND - 50 GND - 51 GND - 52 GND - 53 GND - 54 GND - 55 PC18 - 56 PC16 - 57 PC20 - 58 PC23 - 59 PC10 - 60 PC25 - 61 PC14 - 62 PC21 - 63 PC13 - 64 PC22 - 65 PC24 - 66 PC12 - 67 PC11 - 68 PC9 - 69 PC19 - 70 PC15 - 71 PC17 - 72 VDDISC - 73 GND - 74 PA31 - 75 PA30 - 76 PB4 - 77 PB3 - 78 PB2 - 79 PB1 - 80 PB0 - 81 GND - 82 NC_3-WILC - 83 ETH_LED0 - 84 GND - 85 ETH_RX_N - 86 ETH_RX_P - 87 ETH_TX_N - 88 ETH_TX_P - 89 GND - 90 PB12 - 91 PB11 - 92 GND - 93 GND - 94 GND - 1 VDD_MAIN - 2 VDD_MAIN - 3 VDD_MAIN - 4 GND - 5 GND - 6 NRST - 7 GND - 8 GND - 9 SHDN - 10 GND - 11 VDD_3V3 - 12 VDD_3V3 - 13 GND - 14 PC0 - 15 PC3 - 16 PC2 - 17 PC1 - 18 PC4 - 19 PC5 - 20 PA14 - 21 PA15 - 22 PA16 - 23 PA17 - 24 PB27 - 25 PB31 - 26 PB29 - 27 PB28 - 28 PB26 - 29 PB30 - 30 GND - 31 PD1 - 32 PD0 - 33 PC30 - 34 PC27 - 35 PC31 - 36 PC26 - 37 PC29 - 38 PC28 - 39 GND - 40 NC_20-WILC - 41 RXD_WILC_DBG - 42 TXD_WILC_DBG - 43 GND - 44 GND - 45 GND - 46 GND - 47 3.2 Pin List The following tables provide the SAMA5D27-WLSOM1 module pin description. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 7 SAMA5D27 Wireless SOM1 Pinout Table 3-1. Pin Description: PIOA Pin # Pin Name Power Rail Description 165 PA0 VDDSDHC Configurable GPIO PA0 162 PA1 VDDSDHC Configurable GPIO PA1 166 PA2 VDDSDHC Configurable GPIO PA2 164 PA3 VDDSDHC Configurable GPIO PA3 169 PA4 VDDSDHC Configurable GPIO PA4 163 PA5 VDDSDHC Configurable GPIO PA5 171 PA6 VDDSDHC Configurable GPIO PA6 173 PA7 VDDSDHC Configurable GPIO PA7 167 PA8 VDDSDHC Configurable GPIO PA8 172 PA9 VDDSDHC Configurable GPIO PA9 168 PA10 VDDSDHC Configurable GPIO PA10 174 PA11 VDD_3V3 Configurable GPIO PA11 170 PA12 VDD_3V3 Configurable GPIO PA12 175 PA13 VDD_3V3 Configurable GPIO PA13 21 PA14 VDD_3V3 Configurable GPIO PA14 22 PA15 VDD_3V3 Configurable GPIO PA15 23 PA16 VDD_3V3 Configurable GPIO PA16 24 PA17 VDD_3V3 Configurable GPIO PA17 76 PA30 VDD_3V3 Configurable GPIO PA30 75 PA31 VDD_3V3 Configurable GPIO PA31 Table 3-2. Pin Description: PIOB Pin # Pin Name Power Rail Description 81 PB0 VDD_3V3 Configurable GPIO PB0 80 PB1 VDD_3V3 Configurable GPIO PB1 79 PB2 VDD_3V3 Configurable GPIO PB2 78 PB3 VDD_3V3 Configurable GPIO PB3 77 PB4 VDD_3V3 Configurable GPIO PB4 96 SCK_QSPI_PB5 VDD_3V3 QSPI Serial Clock 102 QSPI1_CS_PB6 VDD_3V3 QSPI Chip Select Output Control 98 SIO0_QSPI_PB7 VDD_3V3 QSPI Serial Data Input/Output 0 99 SIO1_QSPI_PB8 VDD_3V3 QSPI Serial Data Input/Output 1 100 SIO2_QSPI_PB9 VDD_3V3 QSPI Serial Data Input/Output 2 97 SIO3_QSPI_PB10 VDD_3V3 QSPI Serial Data Input/Output 3 92 PB11 VDD_3V3 Configurable GPIO PB11 © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 8 SAMA5D27 Wireless SOM1 Pinout ...........continued Pin # Pin Name Power Rail Description 91 PB12 VDD_3V3 Configurable GPIO PB12 29 PB26 VDD_3V3 Configurable GPIO PB26 25 PB27 VDD_3V3 Configurable GPIO PB27 28 PB28 VDD_3V3 Configurable GPIO PB28 27 PB29 VDD_3V3 Configurable GPIO PB29 30 PB30 VDD_3V3 Configurable GPIO PB30 26 PB31 VDD_3V3 Configurable GPIO PB31 Table 3-3. Pin Description: PIOC Pin # Pin Name Power Rail Description 15 PC0 VDD_3V3 Configurable GPIO PC0 18 PC1 VDD_3V3 Configurable GPIO PC1 17 PC2 VDD_3V3 Configurable GPIO PC2 16 PC3 VDD_3V3 Configurable GPIO PC3 19 PC4 VDD_3V3 Configurable GPIO PC4 20 PC5 VDD_3V3 Configurable GPIO PC5 176 PC6 VDD_3V3 Configurable GPIO PC6 177 PC7 VDD_3V3 Configurable GPIO PC7 69 PC9 VDDISC Configurable GPIO PC9 60 PC10 VDDISC Configurable GPIO PC10 68 PC11 VDDISC Configurable GPIO PC11 67 PC12 VDDISC Configurable GPIO PC12 64 PC13 VDDISC Configurable GPIO PC13 62 PC14 VDDISC Configurable GPIO PC14 71 PC15 VDDISC Configurable GPIO PC15 57 PC16 VDDISC Configurable GPIO PC16 72 PC17 VDDISC Configurable GPIO PC17 56 PC18 VDDISC Configurable GPIO PC18 70 PC19 VDDISC Configurable GPIO PC19 58 PC20 VDDISC Configurable GPIO PC20 63 PC21 VDDISC Configurable GPIO PC21 65 PC22 VDDISC Configurable GPIO PC22 59 PC23 VDDISC Configurable GPIO PC23 66 PC24 VDDISC Configurable GPIO PC24 61 PC25 VDDISC Configurable GPIO PC25 © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 9 SAMA5D27 Wireless SOM1 Pinout ...........continued Pin # Pin Name Power Rail Description 37 PC26 VDD_3V3 Configurable GPIO PC26 35 PC27 VDD_3V3 Configurable GPIO PC27 39 PC28 VDD_3V3 Configurable GPIO PC28 38 PC29 VDD_3V3 Configurable GPIO PC29 34 PC30 VDD_3V3 Configurable GPIO PC30 36 PC31 VDD_3V3 Configurable GPIO PC31 Table 3-4. Pin Description: PIOD Pin # Pin Name Power Rail Description 33 PD0 VDD_3V3 Configurable GPIO PD0 32 PD1 VDD_3V3 Configurable GPIO PD1 103 PD2 VDD_3V3 Configurable GPIO PD2 104 PD3 VDDANA Configurable GPIO PD3 105 PD4 VDDANA Configurable GPIO PD4 109 PD5 VDDANA Configurable GPIO PD5 106 PD6 VDDANA Configurable GPIO PD6 107 PD7 VDDANA Configurable GPIO PD7 108 PD8 VDDANA Configurable GPIO PD8 110 PD9 VDDANA Configurable GPIO PD9 111 PD10 VDDANA Configurable GPIO PD10 118 PD11 VDDANA Configurable GPIO PD11 119 PD12 VDDANA Configurable GPIO PD12 116 PD13 VDDANA Configurable GPIO PD13 117 PD14 VDDANA Configurable GPIO PD14 114 PD15 VDDANA Configurable GPIO PD15 115 PD16 VDDANA Configurable GPIO PD16 112 PD17 VDDANA Configurable GPIO PD17 113 PD18 VDDANA Configurable GPIO PD18 120 TWD_SOM_PD19 VDDANA I²C Data Line 122 TWCK_SOM_PD20 VDDANA I²C Clock Line 132 PD25 VDDANA Configurable GPIO PD25 127 PD26 VDDANA Configurable GPIO PD26 123 PD27 VDDANA Configurable GPIO PD27 124 PD28 VDDANA Configurable GPIO PD28 131 PD29 VDDANA Configurable GPIO PD29 © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 10 SAMA5D27 Wireless SOM1 Pinout ...........continued Pin # Pin Name Power Rail Description 130 PD30 VDDANA Configurable GPIO PD30 Table 3-5. Pin Description: System Pin # Pin Name Power Rail Description 145 CLK_AUDIO VDD_3V3 Audio Master Clock Frequency Output 151 USBA_N VDD_3V3 USB Host Port A High-Speed Data - 152 USBA_P VDD_3V3 USB Host Port A High-Speed Data + 157 HSIC_STROBE VDDHSIC (1.2V) USB High-Speed Inter-Chip Strobe 156 HSIC_DATA VDDHSIC (1.2V) USB High-Speed Inter-Chip Data 153 USBB_N VDD_3V3 USB Host Port B High-Speed Data - 154 USBB_P VDD_3V3 USB Host Port B High-Speed Data + 7 NRST VDDBU Module Reset 140 COMPN VDDBU External Analog Data Input 139 COMPP VDDBU External Analog Data Input 146 PIOBU1 VDDBU Tamper I/O #1 135 PIOBU2 VDDBU Tamper I/O #2 137 PIOBU3 VDDBU Tamper I/O #3 147 PIOBU4 VDDBU Tamper I/O #4 138 PIOBU5 VDDBU Tamper I/O #5 148 PIOBU6 VDDBU Tamper I/O #6 136 PIOBU7 VDDBU Tamper I/O #7 134 RXD VDDBU RXLP Receive Data Input 10 SHDN VDDBU Shutdown Control 187 WKUP VDDBU Module Wake-Up 178 VTH VDD_MAIN Low Voltage Threshold Detection Input 101 NCS_QSPI VDD_3V3 Embedded QSPI Chip Select Input 83 NC – Not connected 41 NC – Not connected 89 ETH_TX_P – Physical Transmit Signal (+ differential) 88 ETH_TX_N – Physical Transmit Signal (– differential) 87 ETH_RX_P – Physical Receive Signal (+ differential) 86 ETH_RX_N – Physical Receive Signal (– differential) 84 ETH_LED0 VDD_3V3 Programmable LED0 Output 182 nSTART_SOM VDD_MAIN Module Start-up Control Input 42 RXD_WILC_DBG VDD_3V3 Used for Radio Debug. UART RXD © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 11 SAMA5D27 Wireless SOM1 Pinout ...........continued Pin # Pin Name Power Rail Description 43 TXD_WILC_DBG VDD_3V3 Used for Radio Debug. UART TXD Table 3-6. Pin Description: Power Pin # Pin Name 1, 5, 6, 8, 9, 11, 14, 31, 40, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 74, 82, 85, 90, 93, 94, 95, 121, 125, 126, 129, 133, 141, 142, 144, 128, 149, 155, 158, 160, 179, 181, 183, 184, 188 GND GND GND Ground 159 VDDANA VDDANA I Analog Voltage Input 143 VDDBU VDDBU I Backup Voltage Input 161 VDDFUSE VDDFUSE I VDDFUSE Voltage Input 73 VDDISC VDDISC I VDDISC Voltage Input I Main input Voltage 2, 3, 4 Power Rail Type VDD_MAIN VDD_MAIN Description 12, 13 VDD_3V3 VDD_3V3 O 3.3V Voltage Output 180 VLDO2 VLDO2 O VLDO2 Output Voltage VDDSDHC VDDSDHC I VDDSDHC Input Voltage VDD_DDR O 1.8V Output Voltage 150 185, 186 © 2019 Microchip Technology Inc. Datasheet VDD_DDR DS60001590A-page 12 SAMA5D27 Wireless SOM1 Functional Description 4. Functional Description 4.1 MPU and Memory Subsystem 4.1.1 SAMA5D27 System-In-Package The SAMA5D27 System-In-Package (SiP) (ATSAMA5D27C-LD2G-CU) integrates the ARM Cortex-A5 processorbased SAMA5D2 MPU with 2 Gbit LPDDR2-SDRAM in a single package. By combining the high-performance, ultra-low power SAMA5D2 with LPDDR2-SDRAM in a single package, PCB routing complexity, area and number of layers is reduced. This makes board design easier and lowers the overall cost of the bill of materials. Board design is more robust by facilitating design for EMI, ESD and signal integrity. For more information about the SiP, refer to 1. Reference Documents. This section lists the sole reference documents for product information on the SAMA5D2 and the LPDDR2-SDRAM memory. The ATSAMA5D27C-LD2G-CU is available in a 361-ball TFBGA package. Connections of the supplies and the system pins of the ATSAMA5D27C-LD2G-CU are described in the following schematics. Figure 4-1. SAMA5D27 SiP Schematic 1 PD23 2 24MHz Y2 OE OUT GND VDD 3 XIN_24MHz VDD_3V3 4 C38 DSC6003HI2B-024.0000 GND 0.1uF 6.3V 0201 GND XIN_24MHz U2F SAMA5D27C-LD2G-CU W5 W7 XIN HHSDPA W4 V7 XOUT HHSDMA DIFF90 DIFF90 XIN_32KHz XOUT_32KHz U1 XIN32 T1 XOUT32 DIFF90 DIFF90 P4 SHDN U2 WKUP W3 NRST Y1 XIN_32KHz C18 8pF 50V 0201 GND R1 RXD XOUT_32KHz 32.768 Hz 6pF VDDANA M9 C19 8pF 50V 0201 GND T3 T2 R11 SHDN WKUP NRST RXD ADVREFP JTAGSEL TST W8 HHSDPB V8 HHSDMB W9 HHSDPDATC W10 HHSDMSTRC COMPP COMPN R4 R5 R3 T4 U3 T5 U5 P5 PIOBU0_PMIC PIOBU1 PIOBU2 PIOBU3 PIOBU4 PIOBU5 PIOBU6 PIOBU7 W2 CLK_AUDIO V6 VBG CLK_AUDIO C17 10K 1% 0201 USBB_P USBB_N HSIC_DATA HSIC_STROBE V1 COMPP V2 COMPN PIOBU0 PIOBU1 PIOBU2 PIOBU3 PIOBU4 PIOBU5 PIOBU6 PIOBU7 USBA_P USBA_N DNP 10pF 25V 0201 R12 5.62K 0201 1% GND GND © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 13 SAMA5D27 Wireless SOM1 Functional Description Figure 4-2. SAMA5D27 SiP Decoupling Schematic VDDIODDR 0402 0402 0402 0201 0201 0201 0201 0201 0201 0201 0201 0201 0201 0201 0201 0201 0201 0201 0201 0201 0201 0201 0201 4.7uF 4.7uF 4.7uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF C21 C23 C25 C27 C29 C31 C33 C35 C37 C39 C41 C42 C44 C45 C47 C49 C50 C52 C54 C55 C56 C58 C59 0201 0201 0402 0402 0201 0201 0201 0201 0201 0201 0.1uF 0.1uF 4.7uF 4.7uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF C61 C62 C64 C65 C67 C68 C70 C71 C73 C74 0201 0.1uF C76 0201 0.1uF C78 0201 0.1uF C80 0402 4.7uF C82 DDR_VREF VDDIODDR VDD_DDR B15 B17 B19 D15 D17 D19 F15 F17 F19 H15 H17 H19 K15 K17 K19 M15 M17 M19 P15 P17 P19 T17 T19 U2E SAMA5D27C-LD2G-CU DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 DDRM_VDD12 M12 DDR_VREF-01 J10 DDR_VREF-02 E8 E11 H10 J8 J13 L10 P12 B11 B13 D11 D13 K13 K16 DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS DDRM_VSS VDDDDR VDDDDR VDDDDR VDDDDR VDDDDR VDDDDR VDDDDR GNDDDR GNDDDR GNDDDR GNDDDR GNDDDR GNDDDR GNDDDR DDRM_VDD18 DDRM_VDD18 DDRM_VDD18 DDRM_VDD18 DDRM_VDD18 DDRM_VDD18 GND GND E10 F8 G10 J9 L11 M13 N12 VDDISC C99 4.7uF 10V 0402 GND ZQ C19 R19 0201 GND 240R 1% GND GND 4.1.2 4.7uF 4.7uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF C20 C22 C24 C26 C28 C30 C32 C34 C36 0201 0.1uF C40 0201 0.1uF C43 0201 0.1uF 0201 0.1uF C46 C48 0201 0.1uF 0201 0.1uF C51 C53 0402 0402 0201 0201 0201 0201 0201 0201 0201 A14 A19 B14 B18 C14 C18 D14 D18 E14 E18 F14 F18 G14 G18 H14 H18 N14 N17 N18 P14 P18 R14 R18 T18 VDDCORE VDDFUSE VDDCORE U2G C3 C9 K3 U9 W6 V5 K8 U15 U7 VDD_3V3 SAMA5D27C-LD2G-CU VDDCORE VDDCORE VDDCORE VDDCORE VDDCORE VDDCORE VDDCORE-04 GNDCORE GNDCORE GNDCORE GNDCORE GNDCORE GNDCORE GNDCORE VDDFUSE GNDDPLL C57 VDDIODDR B4 VDDIOP0 D5 VDDIOP0 0201 0.1uF 0402 4.7uF 0201 0.1uF C60 C101 C63 0201 0.1uF C66 0201 0.1uF C69 0201 0.1uF C72 0201 0.1uF C75 0201 0.1uF C77 0201 0.1uF C79 0201 0.1uF C81 0201 0.1uF C83 0201 10nF C100 A8 VDDANA G1 H6 VDDBU V3 VDDISC G3 VDDOSC_PLL R6 VDDUTMII R8 VDDCORE VDDOSC_PLL VDDPLLA T6 R10 VDDSDHC P9 T7 N9 VDDHSIC VDDIOP2 GNDIOP1 GNDIOP1 GNDIOP1 GNDIOP1 GNDIOP2 VDDANA GNDANA VDDANA GNDANA VDDBU GNDBU VDDISC GNDISC VDDAUDIOPLL GNDAUDIOPLL VDDUTMI VDDUTMI_CORE DDR_VREF (0V6) D4 GNDIOP0 A5 GNDIOP0 V13 VDDIOP1 V18 VDDIOP1 0201 0.1uF A1 D9 K4 K7 J11 W1 V9 GNDUTMI GNDUTMI_CORE VDDOSC GNDOSC VDDPLLA GNDPLLA VDDSDMMC GNDSDMMC C11 W13 W19 R13 P13 B9 C12 4.7uF 10V 0402 F1 0.1uF 6.3V 0201 C16 0.1uF 6.3V 0201 G5 R9 1.5k 0402 1% R10 1.5k 0402 1% U4 GND H3 GND P6 R7 U6 T11 P10 T8 C100 4.7uF 10V 0402 GND GND Power Management Unit The MCP16502 is a full-featured PMIC optimized for Microchip MPU devices. The MCP16502 integrates four DC-DC buck regulators and two auxiliary LDOs, and provides a comprehensive interface to the MPU, which includes an Interrupt flag and an I2C interface. All buck channels can support loads up to 1A. All bucks are 100% duty cycle capable. Two 300mA LDOs are provided such that sensitive analog loads can be supported. The default power channel sequencing is built-in, according to the requirements of the Microchip MPU device. The MCP16502 features a low no-load operational quiescent current, and it draws less than 10 uA in full shutdown. Active discharge resistors are provided on each output. All buck channels support safe start-up into pre-biased outputs. The MCP16502 is available in a 32-pin 5 mm x 5 mm VQFN package with an operating junction temperature range from –40°C to +125°C. It is AEC-Q100 Grade 2 (TAMB=105°C) qualified. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 14 SAMA5D27 Wireless SOM1 Functional Description Figure 4-3. Power Management Unit Schematic VDD_MAIN R1 100k 0201 3 1 PIOBU0_PMIC 2 Q1 BSS138 LPM GND GND R2 10K 1% 1k 1% 0201 R3 SHDN 0201 22 23 8 24 nSTART_SOM U1 LPM MCP16502AC-E/S8B 10 PVIN1 PWRHLD nSTRT PGND1 17 10K 1% 0201 INT_MCP16502_PC8 SELV2 R5 0R 0201 R6 GND 1 7 WKUP 5 TWD_MCP16502_PD19 6 TWCK_MCP16502_PD20 PGND2 nINTO nRSTO nSTRTO PVIN3 PGND3 VDD_MAIN 18 SELVL1 PGND4 C10 4.7uF 10V 0402 4 SVIN LVIN LOUT1 3 33 SGND LOUT2 EP GND VDDUTMII (3V3) 180R C97 BLM18PG181SN1D 4.7uF 10V 0402 VDD_3V3 max 1A R4 2.2R 5% 0201 L2 10uH GND 4.7uF 10V 0402 C4 4.7uF 10V 0402 VDDOSC_PLL (3V3) C3 MLZ1608N100LT000 VDD_MAIN GND C5 GND 22uF 10V 0603 L3 1.5uH DFE252012P-1R5M=P2 VDDIODDR (1V2) max 1A VDD_MAIN C6 4.7uF 10V 0402 28 C7 GND 22uF 10V 0603 L4 1.5uH DFE252012P-1R5M=P2 VDD_MAIN 31 C8 4.7uF 10V 0402 29 30 SW4 32 OUT4 VDD_MAIN 22uF 10V 0603 L1 26 27 SW3 25 OUT3 PVIN4 GND 1.5uH DFE252012P-1R5M=P2 13 SDA SCL C2 15 14 SW2 16 OUT2 2 NRST 4.7uF 10V 0402 12 11 SW1 9 OUT1 FB1 C1 HPM PVIN2 VDD_3V3 VDD_MAIN max 1A R8 0201 2.2R 5% GND 22uF 10V 0603 L6 (1V25) VDDPLLA (1V25) VDD_DDR (1V8) VLDO1 (3V3) VLDO2 (1.8V - 3V3) L5 10uH MLZ1608N100LT000 C98 4.7uF 10V 0402 C9 1.5uH DFE252012P-1R5M=P2 VDDCORE max 1A GND VDD_MAIN 20 max 0.3A 19 max 0.3A 21 C13 C14 4.7uF 10V 0402 4.7uF 10V 0402 C15 4.7uF 10V 0402 GND 4.1.3 SQI Memory 4.1.3.1 Description and Schematic The ATSAMA5D27-WLSOM1 embeds the SST26VF064BEUIT-104I/MF, a 64 Mb Serial Quad I/O Flash memory. The SST26VF064BEUIT-104I/MF SQI features a six-wire, 4-bit I/O interface that allows for low-power, highperformance operation in a low pin-count package. The SST26VF064BEUIT-104I/MF also embeds EUI-48 and EUI-64 MAC addresses. The SST26VF064BEUIT-104I/MF is available in 8-lead WDFN package with 6 mm × 5 mm dimensions. For more information, refer to the product web page. It is possible to deselect the Chip Enable of the embedded QSPI to use external one. In this case, the NCS_QSPI pin must be left floating and the signal QSPI1_CS_PB6 must be connected to an external QSPI Chip Select. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 15 SAMA5D27 Wireless SOM1 Functional Description Figure 4-4. QSPI Memory Schematic VDD_3V3 R36 R37 R38 R39 R40 R41 10K 10K 10K 10K 10K 10K DNP DNP DNP DNP DNP 1% 0201 0201 0201 0201 0201 0201 R44 R45 R46 R47 R48 QSPI1_IO0_PB7 QSPI1_IO1_PB8 QSPI1_IO2_PB9 QSPI1_IO3_PB10 QSPI1_SCK_PB5 22R 22R 22R 22R 22R 5 2 3 7 6 1 VDD_3V3 U7 SI/SIO0 SO/SIO1 WP/SIO2 HOLD/SIO3 SCK CE VDD 8 C96 0.1uF 6.3V 0201 4 VSS 9 TPAD SST26VF064BEUIT-104I/MF R49 R50 R51 R52 R53 4.1.3.2 22R 22R 22R 22R 22R GND SCK_QSPI_PB5 SIO3_QSPI_PB10 SIO2_QSPI_PB9 SIO1_QSPI_PB8 SIO0_QSPI_PB7 NCS_QSPI MAC Address The SST26VF064BEUI is pre-programmed at the factory with globally unique EUI-48 and EUI-64 node identifiers. The addresses are located in the Serial Flash Discoverable Parameters (SFDP) table and accessible via the SFDP read instruction. The 6-byte EUI-48 address value of the SST26VF064BEUI is stored in the SFDP table at address locations 0x261 through 0x266. The 8-byte EUI-64 address value of the SST26VF064BEUI is stored in the SFDP table at address locations 0x268 through 0x26F. For more information, refer to the product web page. Secure Element The ATECC608A is a member of the Microchip CryptoAuthentication™ family of high-security cryptographic devices which combine world-class hardware-based key storage with hardware cryptographic accelerators to implement various authentication and encryption protocols. The ATECC608A has a flexible command set that allows use in many applications, including Network/IoT Node Endpoint Security, Secure Boot, Small Message Encryption, Key Generation for Software Download and Ecosystem control and Anti-Counterfeiting. Figure 4-5. ECC608A Secure Element Schematic VDD_3V3 R42 VDD_3V3 0.1uF 6.3V 0201 U6 ATECC608A-TNGTLS 8 3 VCC NC 1 6 NC SCL 2 5 NC SDA 4 7 GND NC R43 2.2K 0201 1% TWCK_ECC608_PD22 TWD_ECC608_PD21 PAD C95 2.2K 0201 1% 9 4.1.4 GND GND © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 16 SAMA5D27 Wireless SOM1 Functional Description 4.2 Power Management 4.2.1 Power Architecture Basic operation of the ATSAMA5D27-WLSOM1 requires a +5.0V input voltage supply, and a VDDBU (+1.65V to +3.6V) input voltage supply generally ensured by a backup battery. +5.0V power is supplied to the VDD_MAIN domain. CAUTION As a general design rule, it is recommended to connect all input supply pins, except VDDFUSE which must be connected to GND by a 100 Ohms resistor if not used, to your power supply and at least a matching number of ground (GND) pins. For the best EMI performance, it is recommended to connect ALL ground pins of the ATSAMA5D27-WLSOM1 module to a solid ground plane. Power-on is controlled through the nSTART_SOM signal. This signal must be provided by the host board, e.g. via an automated reset controller or a push-button. The ATSAMA5D27-WLSOM1 module can operate from a single voltage supply (VDD_MAIN) with a value comprised between +3.0V and +5.5V and, with the MCP16502 PMIC device, internally generates the voltage supplies required by the SAMA5D2 processor and on-board components. The PMIC on-board switching regulators generates the 3.3V, 1.20V, 1.25V and 1.8V voltage supplies required by the SAMA5D27 processor and onboard components. The ATSAMA5D27-WLSOM1 delivers external power supplies to main board application such as VDD_DDR (1.8V with 900 mA current capability), VDD_3V3 (3.3V with 600mA output current capability) and VLDO2 output (1.8V to 3.3V with 300 mA output current capability). Figure 4-6. ATSAMA5D27-WLSOM1 Power Architecture WILC 3000 Digital KSZ 8081 SST 26 ECC 608A DSC 6003 DSC 6102 VDD_3V3 VDDBU [1.65V .. 3.6V] Up to 600mA SAMA5D27C-LD2G-CU MCP16502AC VDD_MAIN [3.0V .. 5.5V] 1 MIC 842 DC/DCs 2 3 4 3.3V VDDISC 1.2V VDDANA VDDFUSE 1.25V VDDSDMMC VDDISC VDDANA VDDFUSE VDDSDHC 1.8V VDD_DDR 2 LDOs 1 1.8 to 3.3V (Off by default) 3.3V VLDO2 Up to 900mA Up to 300mA WILC 3000 PA ATSAMA5D27-WLSOM1 © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 17 SAMA5D27 Wireless SOM1 Functional Description 4.2.2 Various Power Configurations Two different configurations are described below, depending on customer use. • • 4.2.2.1 Single Supply—ATSAMA5D27-WLSOM1 can be supplied by only one input supply (e.g. 5V AC/DC wall adapter) and other input supplies can be connected to the internal 3.3V regulator VDD_3V3. All the PIO lines are supplied at 3.3V. Multiple Supplies—ATSAMA5D27-WLSOM1 can be supplied by 5V and by a backup battery. Some PIO lines are supplied by different LDOs for specific applications, such as an ISC camera or a high-speed SD card. Power Configurations: Single Supply Figure 4-7. ATSAMA5D27-WLSOM1 Single Supply Connection Example VDDBU VDD_3V3 VDDISC VDDANA Input Supply (3.0V - 5.5V) VDD_MAIN VDDSDHC VDDFUSE Application Fuse (2.5V) VDD_DDR Application Board (1.8V) VLDO2 Application Board (1.8V to 3.3V) ATSAMA5D27-WLSOM1 © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 18 SAMA5D27 Wireless SOM1 Functional Description 4.2.2.2 Power Configurations: Multiple Supplies Figure 4-8. ATSAMA5D27-WLSOM1 Multiple Supplies Connection Example VDDBU Backup Battery VDD_3V3 VDDISC LDO (2.5V/2.8V/3.0V) VDDANA Input Supply (3.0V - 5.5V) VDD_MAIN VDDSDHC LDO + Switch (3.3V/1.8V) VDDFUSE Application Fuse (2.5V) VDD_DDR Application Board (1.8V) VLDO2 Application Board (1.8V to 3.3V) ATSAMA5D27-WLSOM1 4.2.3 Power On/Off Sequences 4.2.3.1 LPDDR2 Power-Off Sequence The LPDDR2 power-off sequence must be controlled by software to preserve the LPDDR2 device. In this sequence, the CKE signal should be low during the full period the power rails are powering down. The power failure can be controlled by the embedded Voltage Supervisor (MIC842) and handled at system level (IRQ on PD31). The LPDDR2 power-off sequence is applied using the bit LPDDR2_LPDDR3_PWOFF in the MPDDRC Low-Power register (MPDDRC_LPR). For more information, refer to the following documents: • • SAMA5D2 Series Data sheet available on https://www.microchip.com/, sections LPDDR2 Power Fail Management and MPDDRC Low-Power Register Jedec Standard Low Power Double Data Rate 2 (LPDDR2), JESD209-2B Note:  An uncontrolled power-off sequence can be applied only up to 400 times in the life of an LPDDR2 device. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 19 SAMA5D27 Wireless SOM1 Functional Description 4.2.3.2 Power ON/OFF Sequences for Single Supply Figure 4-9. ATSAMA5D27-WLSOM1 Single Supply Connection: Power-On Sequence SYSTEM STATUS OFF STARTUP POWER-UP NRST RELEASED VDD_MAIN SYSTEM BOOT I²C COMMAND VLDO2 POWER UP 5.0V nSTART_SOM a t1 VDD_3V3 b VDDBU VDDANA t2 VDDISC VDDSDHC VDD_DDR c t3 NRST d PMIC_I2C e t4 VLDO2 f Figure 4-10. ATSAMA5D27-WLSOM1 Single Supply Connection: Power-Off Sequence SYSTEM STATUS SYSTEM ON POWER-OFF REQUEST VDD_MAIN NRST ASSERTS SYSTEM OFF 5.0V SHDN a t2 VDD_3V3 b VDDBU VDDANA VDDISC VDDSDHC VDD_DDR c t3 NRST d PMIC_I2C e t1 VLDO2 f Table 4-1. ATSAMA5D27-WLSOM1 Simple Supply Timing Table Symbol Description Min. Typ. Max. Unit 0.5 – 2000 ms t1 Power-Up Request Timing t2 VDD_DDR Power-Up Timing – 8 – ms t3 NRST Timing for Release – 16 – ms t4 VLDO2 Power-Up Timing after I²C Request – 0.5 1 ms t5 VLDO2 Power-Down Timing after I²C Request – – 1 ms t6 VDD_3V3 Power-Down Timing – 10 – µs t7 NRST Forced to Low Timing – – 10 µs © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 20 SAMA5D27 Wireless SOM1 Functional Description 4.2.3.3 Power ON/OFF Sequences for Multiple Supplies Figure 4-11. ATSAMA5D27-WLSOM1 Multiple Supplies Connections: Power-On Sequence SYSTEM STATUS BACKUP STARTUP POWER-UP NRST RELEASED VDDBU SYSTEM BOOT I²C COMMAND VLDO2 POWER UP 1.65V TO 3.6V VDD_MAIN 5.0V nSTART_SOM a t1 VDD_3V3 b t2 VDDANA VDDSDHC t4 c 3.3V t3 VDDISC 1.8V d VDD_DDR e t5 NRST f PMIC_I2C g t6 VLDO2 h Figure 4-12. ATSAMA5D27-WLSOM1 Multiple Supplies Connections: Power-Off Sequence SYSTEM STATUS SYSTEM ON POWER-OFF REQUEST NRST ASSERTS VDD_MAIN SYSTEM OFF 5.0V VDDBU 1.65V to 3.6V SHDN a t8 VDD_3V3 b VDDANA VDDISC VDDSDHC VDD_DDR c t9 NRST d PMIC_I2C e t7 VLDO2 f Table 4-2. ATSAMA5D27-WLSOM1 Multiple Supplies Timing Table Symbol 4.2.4 Description Min. Typ. Max. Unit 0.5 – 2000 ms t1 Power-Up Request Timing t2 VDDSDHC Power-Up Timing – 35 100 µs t3 VDDISC Power-Up Timing – 40 100 µs t4 VDD_DDR Power-Up Timing – 8 – ms t5 NRST Timing for Release – 16 – ms t6 VLDO2 Power-Up Timing after I²C Request – 0.5 1 ms t7 VLDO2 Power-Down Timing after I²C Request – – 1 ms t8 VDD_3V3 Power-Down Timing – 10 – µs t9 NRST Forced to Low Timing – – 10 µs Baseboard Power Delivery Application Diagram Example The following figure is an example of power architecture at the baseboard level, input to the SOM and output from the SOM. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 21 SAMA5D27 Wireless SOM1 Functional Description Figure 4-13. Baseboard Power Delivery Application Diagram Example DCIN LDO REGULATOR MIC5353YMT DC/DC CONVERTER (12V) (3.3V / 1.8V) (3.3V) VDDSDHC SD-CARD VDD_3V3 VDDANA (5.0V) VDDIN MIC24051 1V8 Output SHDN LDO REGULATOR VLDO2 VDDISC (2.5V) (1.8V-3.3V) CAMERA MIC5259-2.5YD5 WLSOM1 SuperCap Charger (Discret Comp.) SuperCap 5.5V LDO REGULATOR MCP1810T-18 VDDBU GND 4.3 LAN Subsystem 4.3.1 Ethernet Phy The Microchip ATSAMA5D27-WLSOM1 embeds a single-supply 10Base-T/100Base-TX Ethernet physical layer transceiver for transmission and reception of data over a standard CAT-5 unshielded twisted pair (UTP) cable. The KSZ8081RNAIA is a highly-integrated PHY solution. The KSZ8081RNAIA offers the Reduced Media Independent Interface (RMII) for direct connection to RMII-compliant MACs in Ethernet processors. The KSZ8081RNAIA is available in 24-pin, lead-free QFN packages. For more information, refer to the product web page. Figure 4-14. Ethernet Phy Schematic VDD_3V3 R20 R21 1k 0201 U3 ETH_TX_P ETH_TX_N ETH_RX_P ETH_RX_N DIFF100 DIFF100 6 TXP 5 TXM DIFF100 DIFF100 4 RXP 3 RXM 0402 10V 2.2uF 0201 0.1uF 6.3V R22 C84 C85 6.49K 1% 0201 1 VDD_1V2 22 GND 25 PADDLE 9 REXT KSZ8081RNAIA-TR REF_CLK TXD1 TXD0 TXEN RXD1 RXD0 RXER CRS_DV/PHYAD[1_0] MDC MDIO INTRP VDDA_3V3 16 21 20 19 12 13 17 15 11 10 18 2 PD24 2 Y3 OE 25MHz OUT GND VDD 3 4 XIN_25MHz VDD_3V3 8 XI VDDIO 14 C86 0.1uF 6.3V 0201 GND C88 10uF 6.3V 0402 C90 DSC6102HI2B-025.0000 7 XO GND 4.4 TP10 10uF 6.3V 0402 GND 1 1k 0201 LED0/ANEN_SPEED RST FB2 VDD_3V3 R23 C87 BLM18PG181SN1D 0.1uF 6.3V 0201 0.1uF 6.3V 0201 10K 1% 0201 GND GND C89 23 24 180R ETH_GTXCK_PB14 ETH_GTX1_PB21 ETH_GTX0_PB20 ETH_GTXEN_PB15 ETH_GRX1_PB19 ETH_GRX0_PB18 ETH_GRXER_PB17 ETH_GRXDV_PB16 ETH_GMDC_PB22 ETH_GMDIO_PB23 ETH_INT_PB24 R24 GND 10K 1% 0201 ETH_LED0 R25 0R 0201 NRST Voltage Threshold Detector The Microchip ATSAMA5D27-WLSOM1 embeds a MIC842 micro-power, precision-voltage comparator with an onchip voltage reference. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 22 SAMA5D27 Wireless SOM1 Functional Description The device is intended for voltage monitoring applications. External resistors are used to set the voltage monitor threshold. When the threshold is crossed, the outputs switch polarity. Refer to the figures below. The MIC842 incorporates a voltage reference and comparator with fixed internal hysteresis; two external resistors are used to set the switching threshold voltage. Supply current is extremely low (1.5 μA, typical), making it ideal for portable applications. The MIC842 is supplied in 4-pin 1.2 mm × 1.6 mm Thin DFN package. For more information, refer to the product web page. Figure 4-15. Voltage Threshold Detector Schematic VDD_MAIN VDDANA C94 0.1uF 6.3V 0201 R27 100k 0201 GND 0201 INT_MIC842_PD31 EP VTH U5 MIC842NYMT-T5 4 1 VDD OUT 3 2 INP GND 100R 1% C104 EP R57 100pF 25V 0201 GND GND GND Figure 4-16. Voltage Threshold Detector Implementation Example Application Board WLSOM1 Module V_SUPPLY VDD_MAIN VDDANA C94 0201 Rext1 0.1uF 6.3V INT_MIC842_PD31 EP 100R 1% C104 EP R57 0201 100k 0201 MIC842NYMT-T5 4 1 VDD OUT 3 2 INP GND U5 VTH R27 GND 100pF 25V 0201 Rext2 GND GND GND GND Table 4-3. Output Resistor Ladder Values and Input System Supply Example 4.5 System Supply Voltage VTH Threshold Value Rext1 Value Rext2 Value 5V 4.64V 787 kΩ 287 kΩ 12V 11V 787 kΩ 100 kΩ 24V 21.78V 787 kΩ 47.5 kΩ 48V 39.51V 787 kΩ 25.5 kΩ Radio Subsystem The ATSAMA5D27-WLSOM1 embeds an ATWILC3000, a single chip IEEE 802.11 b/g/n RF/Baseband/MAC link controller and Bluetooth 5. The ATWILC1000 connects to Microchip AVR®/SMART MCUs, SMART MPUs, and other processors with minimal resource requirements with simple SPI/SDIO-to-Wi-Fi and UART-to-Bluetooth interfaces. The ATWILC3000 supports single stream 1x1 802.11n mode providing tested throughput of up to 46 Mbps UDP & 28 Mbps TCP/IP. The ATWILC3000 features fully integrated Power Amplifier, LNA, Switch and Power Management. Implemented in low-power CMOS technology, the ATWILC3000 offers very low power consumption while simultaneously providing high performance and minimal bill of materials. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 23 SAMA5D27 Wireless SOM1 Functional Description The ATWILC3000 utilizes highly optimized 802.11-Bluetooth coexistence protocols. The only external clock sources needed for the ATWILC3000 is a high-speed crystal or oscillator and a 32.768 kHz clock for sleep operation. For more information, refer to the product web page. Figure 4-17. Wi-Fi/BT Radio Subsystem Schematic FB4 FB3 VLDO1 742792731 742792731 VBAT VDDIO 0402 100R 0402 100R C91 C92 47uF 10V 0805 VDD_3V3 C105 0.1uF 6.3V 0201 4.7uF 10V 0402 U4 18 VBAT 12 VDDIO TXD_WILC_DBG RXD_WILC_DBG 0.1uF 6.3V 0201 GND 16 17 33 7 19 20 2 INT_WILC_PB25 NRST_WILC_PA27 CE_WILC_PA29 RTC_OUT_PB13 R34 R35 3 4 5 6 C106 10K 1% 0201 10000pF 10V 0201 SD_DAT3/GPIO7 SD_DAT2/SPI_MOSI SD_DAT1/SPI_SSN UART_TXD SD_DAT0/SPI_MISO UART_RXD SD_CMD/SPI_SCK SD_CLK/GPIO8 IRQN RESETN CHIP_EN BT_TXD RTC_CLK BT_RXD SDIO/SPI_CFG BT_RTS BT_CTS NC NC NC NC VDD_3V3 35 34 31 30 29 14 32 15 R28 68K 1% 0201 R29 68K 1% 0201 R30 68K 1% 0201 R31 68K 1% 0201 R32 10K 1% 0201 NC_3-WILC NC_20-WILC 27 26 25 24 23 22 SDIO_DAT3_WILC_PA21 SDIO_DAT2_WILC_PA20 SDIO_DAT1_WILC_PA19 SDIO_DAT0_WILC_PA18 SDIO_CMD_WILC_PA28 SDIO_CK_WILC_PA22 8 9 10 11 TXD_WILC_PA23 RXD_WILC_PA24 RTS_WILC_PA25 CTS_WILC_PA26 1 13 21 28 36 37 10K 1% 0201 GPIO21 GPIO0 GPIO19 GPIO18 GPIO17 GPIO3 GPIO20 GPIO4 C93 R26 10K 1% 0201 ATWILC3000-MR110UA GND GND GND GND GND PADDLE VDD_3V3 GND GND GND GND GND 4.6 External Interfaces and PIO Muxing 4.6.1 PIO Muxing Table 4-4. PIO Muxing: PIOA PIO A IO set B IO set C IO set D IO set E IO set F IO set PA0 SDMMC0_CK 1 QSPI0_SCK 1 – – – – – – D0 2 PA1 SDMMC0_CMD 1 QSPI0_CS 1 – – – – – – D1 2 PA2 SDMMC0_DAT0 1 QSPI0_IO0 1 – – – – – – D2 2 PA3 SDMMC0_DAT1 1 QSPI0_IO1 1 – – – – – – D3 2 PA4 SDMMC0_DAT2 1 QSPI0_IO2 1 – – – – – – D4 2 PA5 SDMMC0_DAT3 1 QSPI0_IO3 1 – – – – – – D5 2 PA6 SDMMC0_DAT4 1 – – – – TIOA5 1 FLEXCOM2_IO0 1 D6 2 PA7 SDMMC0_DAT5 1 – – – – TIOB5 1 FLEXCOM2_IO1 1 D7 2 PA8 SDMMC0_DAT6 1 – – – – TCLK5 1 FLEXCOM2_IO2 1 NWE/NANDWE 2 PA9 SDMMC0_DAT7 1 – – – – TIOA4 1 FLEXCOM2_IO3 1 NCS3 2 PA10 SDMMC0_RSTN 1 – – – – TIOB4 1 FLEXCOM2_IO4 1 A21/NANDALE 2 PA11 SDMMC0_VDDSEL 1 – – – – TCLK4 1 – – A22/NANDCLE 2 PA12 SDMMC0_WP 1 IRQ 1 – – – – – – NRD/NANDOE 2 PA13 SDMMC0_CD 1 – – – – – – FLEXCOM3_IO1 1 – – PA14 SPI0_SPCK 1 TK1 1 – – I2SMCK1 2 FLEXCOM3_IO2 1 – – PA15 SPI0_MOSI 1 TF1 1 – – I2SCK1 2 FLEXCOM3_IO0 1 – – © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 24 SAMA5D27 Wireless SOM1 Functional Description ...........continued PIO A IO set B IO set C IO set D IO set E IO set F IO set PA16 SPI0_MISO 1 TD1 1 – – I2SWS1 2 FLEXCOM3_IO3 1 – – PA17 SPI0_NPCS0 1 – – – – I2SDI1 2 FLEXCOM3_IO4 1 – – PA30 – – – – SPI0_NPCS0 2 PWMH0 1 – – – – PA31 – – – – SPI0_MISO 2 PWML0 1 – – – – Table 4-5. PIO Muxing: PIOB PIO A IO set C IO set D IO set F IO set PB00 – – SPI0_MOSI 2 PWMH1 1 – – PB01 – – SPI0_SPCK 2 PWML1 1 CLASSD_R0 1 PB02 – – – – PWMFI0 1 CLASSD_R1 1 PB03 URXD4 1 IRQ 3 PWMEXTRG0 1 CLASSD_R2 1 PB04 UTXD4 1 FIQ 4 – – CLASSD_R3 1 PB05 – – – – QSPI1_SCK 2 – – PB06 – – – – QSPI1_CS 2 – – PB07 – – – – QSPI1_IO0 2 – – PB08 – – – – QSPI1_IO1 2 – – PB09 – – – – QSPI1_IO2 2 – – PB10 – – – – QSPI1_IO3 2 – – PB11 – – URXD3 3 PDMIC_DAT0 2 – – PB12 – – UTXD3 3 PDMIC_CLK0 2 – – PB26 – – URXD0 1 PDMIC_DAT0 1 ISI_D0 3 PB27 – – UTXD0 1 PDMIC_CLK0 1 ISI_D1 3 PB28 – – FLEXCOM0_IO0 1 TIOA5 2 ISI_D2 3 PB29 – – FLEXCOM0_IO1 1 TIOB5 2 ISI_D3 3 PB30 – – FLEXCOM0_IO2 1 TCLK5 2 ISI_D4 3 PB31 – – FLEXCOM0_IO3 1 TWD0 1 ISI_D5 3 Table 4-6. PIO Muxing: PIOC PIO A IO set B IO set C IO set D IO set E IO set F IO set PC00 – – – – FLEXCOM0_IO4 1 TWCK0 1 – – ISI_D6 3 PC01 – – – – CANTX0 1 SPI1_SPCK 1 I2SCK0 1 ISI_D7 3 PC02 – – – – CANRX0 1 SPI1_MOSI 1 I2SMCK0 1 ISI_D8 3 PC03 – – – – TIOA1 1 SPI1_MISO 1 I2SWS0 1 ISI_D9 3 PC04 – – – – TIOB1 1 SPI1_NPCS0 1 I2SDI0 1 ISI_PCK 3 PC05 – – – – TCLK1 1 SPI1_NPCS1 1 I2SDO0 1 ISI_VSYNC 3 PC06 – – – – – – SPI1_NPCS2 1 – – ISI_HSYNC 3 PC07 – – – – – – SPI1_NPCS3 1 – – ISI_MCK 3 © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 25 SAMA5D27 Wireless SOM1 Functional Description ...........continued PIO A IO set B IO set C IO set D IO set E IO set F IO set PC09 FIQ 3 – – ISI_D0 1 TIOA4 2 – – – – PC10 LCDDAT2 2 – – ISI_D1 1 TIOB4 2 CANTX0 2 – – PC11 LCDDAT3 2 – – ISI_D2 1 TCLK4 2 CANRX0 2 A0/NBS0 2 PC12 LCDDAT4 2 – – ISI_D3 1 URXD3 1 TK0 2 A1 2 PC13 LCDDAT5 2 – – ISI_D4 1 UTXD3 1 TF0 2 A2 2 PC14 LCDDAT6 2 – – ISI_D5 1 – – TD0 2 A3 2 PC15 LCDDAT7 2 – – ISI_D6 1 – – RD0 2 A4 2 PC16 LCDDAT10 2 – – ISI_D7 1 – – RK0 2 A5 2 PC17 LCDDAT11 2 – – ISI_D8 1 – – RF0 2 A6 2 PC18 LCDDAT12 2 – – ISI_D9 1 – – FLEXCOM3_IO2 2 A7 2 PC19 LCDDAT13 2 – – ISI_D10 1 – – FLEXCOM3_IO1 2 A8 2 PC20 LCDDAT14 2 – – ISI_D11 1 – – FLEXCOM3_IO0 2 A9 2 PC21 LCDDAT15 2 – – ISI_PCK 1 – – FLEXCOM3_IO3 2 A10 2 PC22 LCDDAT18 2 – – ISI_VSYNC 1 – – FLEXCOM3_IO4 2 A11 2 PC23 LCDDAT19 2 – – ISI_HSYNC 1 – – – – A12 2 PC24 LCDDAT20 2 – – ISI_MCK 1 – – – – A13 2 PC25 LCDDAT21 2 – – ISI_FIELD 1 – – – – A14 2 PC26 LCDDAT22 2 – – – – CANTX1 1 – – A15 2 PC27 LCDDAT23 2 – – PCK1 2 CANRX1 1 – – A16 2 PC28 LCDPWM 2 FLEXCOM4_IO0 1 PCK2 1 – – – – A17 2 PC29 LCDDISP 2 FLEXCOM4_IO1 1 – – – – – – A18 2 PC30 LCDVSYNC 2 FLEXCOM4_IO2 1 – – – – – – A19 2 PC31 LCDHSYNC 2 FLEXCOM4_IO3 1 URXD3 2 – – – – A20 2 Table 4-7. PIO Muxing: PIOD PIO A IO set B IO set C IO set D IO set E IO set F IO set Extra PD0 LCDPCK 2 FLEXCOM4_IO4 1 UTXD3 2 GTSUCOMP 2 – – A23 2 – PD1 LCDDEN 2 – – – – GRXCK 2 – – A24 2 – PD2 URXD1 1 – – – – GTXER 2 ISI_MCK 2 A25 2 – PD3 UTXD1 1 FIQ 2 – – GCRS 2 ISI_D11 2 NWAIT 2 PTC_ROW0 PD4 – – URXD2 1 – – GCOL 2 ISI_D10 2 NCS0 2 PTC_ROW1 PD5 – – UTXD2 1 – – GRX2 2 ISI_D9 2 NCS1 2 PTC_ROW2 PD6 TCK 2 PCK1 1 – – GRX3 2 ISI_D8 2 NCS2 2 PTC_ROW3 PD7 TDI 2 – – – – GTX2 2 ISI_D0 2 NWR1/NBS1 2 PTC_ROW4 PD8 TDO 2 – – – – GTX3 2 ISI_D1 2 NANDRDY 2 PTC_ROW5 PD9 TMS 2 – – – – GTXCK 2 ISI_D2 2 – – PTC_ROW6 © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 26 SAMA5D27 Wireless SOM1 Functional Description ...........continued PIO A IO set B IO set C IO set D IO set E IO set F IO set Extra PD10 NTRST 2 – – – – GTXEN 2 ISI_D3 2 – – PTC_ROW7 PD11 TIOA1 3 PCK2 2 – – GRXDV 2 ISI_D4 2 – – PTC_COL0 PD12 TIOB1 3 FLEXCOM4_IO0 2 – – GRXER 2 ISI_D5 2 – – PTC_COL1 PD13 TCLK1 3 FLEXCOM4_IO1 2 – – GRX0 2 ISI_D6 2 – – PTC_COL2 PD14 TCK 1 FLEXCOM4_IO2 2 – – GRX1 2 ISI_D7 2 – – PTC_COL3 PD15 TDI 1 FLEXCOM4_IO3 2 – – GTX0 2 ISI_PCK 2 – – PTC_COL4 PD16 TDO 1 FLEXCOM4_IO4 2 – – GTX1 2 ISI_VSYNC 2 – – PTC_COL5 PD17 TMS 1 – – – – GMDC 2 ISI_HSYNC 2 – – PTC_COL6 PD18 NTRST 1 – – – – GMDIO 2 ISI_FIELD 2 – – PTC_COL7 PD19 – – TWD1 3 – – – – – – – – AD0 PD20 – – TWCK1 3 – – – – – – – – AD1 PD23 – – – – – – – – – – – – AD4 PD24 – – – – – – – – – – – – AD5 PD25 SPI1_SPCK 3 – – – – – – – – – – AD6 PD26 SPI1_MOSI 3 – – FLEXCOM2_IO0 2 – – – – – – AD7 PD27 SPI1_MISO 3 TCK 3 FLEXCOM2_IO1 2 – – – – – – AD8 PD28 SPI1_NPCS0 3 TDI 3 FLEXCOM2_IO2 2 – – – – – – AD9 PD29 SPI1_NPCS1 3 TDO 3 FLEXCOM2_IO3 2 TIOA3 3 – – – – AD10 PD30 SPI1_NPCS2 3 TMS 3 FLEXCOM2_IO4 2 TIOB3 3 – – – – AD11 4.6.2 Interfacing with an SD Card The SD (Secure Digital) Card is a non-volatile memory card format used as mass storage memory in mobile devices. Secure Digital Multimedia Card (SDMMC) Controller The ATSAMA5D27-WLSOM1 has one Secure Digital Multimedia Card (SDMMC) interface that supports the MultiMedia Card (e.MMC) Specification V4.41, the SD Memory Card Specification V3.0, and the SDIO V3.0 specification. It is compliant with the SD Host Controller Standard V3.0 specification. The SDMMC0 interface can be connected to a standard SD card interface. SDMMC0 Card Connector The board features a standard MMC/SD card connector, connected to SDMMC0. The SDMMC0 communication is based on a 4- or 8-pin interface (clock, command, four or eight data and power lines). It may include a card detection switch. The figures below illustrate the implementation for the SDMMC0 interface for a 4-bit interface and for an 8-bit interface with a power switch for the supply of the digital interface for high-speed interface management. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 27 SAMA5D27 Wireless SOM1 Functional Description Figure 4-18. 4-/8-bit SD-Card Power Switch Example Schematic VDD_3V3 VDD_1V8 C 2 4 6 1 PA11 R VDDSDHC 0.1uF U VDD S1 D S2 IN GND 5 3 ADG849 10k Figure 4-19. 4-bit SD-Card Interface Example Schematic VDDSDHC VDD_3V3 R 10k R 68k R 68k R 68k R 68k R 10k C R 0.1uF 10k 1 2 3 4 5 6 7 8 9 10 11 12 PA5 PA1 PA0 PA2 PA3 PA4 PA13 PA12 C 4.7uF GND J DAT3 CMD VSS1 VDD CLK VSS2 DAT0 DAT1 DAT2 CD WP SHIELD SD GND © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 28 SAMA5D27 Wireless SOM1 Functional Description Figure 4-20. 8-bit SD-Card Interface Example Schematic VDDSDHC VDD_3V3 R 10k R 68k R 68k R 68k R 68k R 68k R 68k R R 68k 68k C R R 0.1uF 10k 10k 1 2 3 4 5 PA5 PA1 PA0 7 8 9 6 14 15 PA2 PA3 PA4 PA13 PA12 C 4.7uF GND J DAT3 CMD VSS1 VDD CLK DAT0 DAT1 DAT2 CD WP SHIELD 13 DAT7 12 DAT6 11 DAT5 10 DAT4 SD GND PA6 PA7 PA8 PA9 4.6.3 Interfacing with e-MMC The Secure Digital Multimedia Card (SDMMC) Controller supports the Embedded MultiMedia Card (e.MMC) Specification V4.41, the SD Memory Card Specification V3.0, and the SDIO V3.0 specification. It is compliant with the SD Host Controller Standard V3.0 specification. In the example below, one MTFC4GLDEA 4 GB eMMC is connected to the processor through the SDMMC0 port. Table 4-8. SDMMC Reference Documents Name Link SD Host Controller Simplified Specification V3.00 www.sdcard.org SDIO Simplified Specification V3.00 www.sdcard.org Physical Layer Simplified Specification V3.01 www.sdcard.org Embedded MultiMedia Card (e.MMC) Electrical Standard 4.51 www.jedec.org Figure 4-21. e-MMC Power Switch Example Schematic VDD_1V8 VDD_3V3 C 2 4 6 1 PA11 R 10k © 2019 Microchip Technology Inc. VDDSDHC 0.1uF U VDD S1 D S2 IN GND 5 3 ADG849 Datasheet DS60001590A-page 29 SAMA5D27 Wireless SOM1 Functional Description Figure 4-22. e-MMC Interface Example Schematic VDD_3V3 VDDSDHC R 10k R 10k R 10k R 10k R 10k R 10k R 10k C C 2.2uF 39R A3 A4 A5 B2 B3 B4 B5 B6 M5 M6 K5 DAT0 DAT1 DAT2 DAT3 DAT4 DAT5 DAT6 DAT7 CMD CLK nRST GND C 0.1uF C 1uF GND N2 P6 P4 C4 G5 E7 H10 K8 N5 R 2.2uF 0.1uF GND PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA1 PA0 PA10 C 0.1uF C C2 10k VDDI R VCCQ1 VCCQ2 VCCQ3 VCCQ4 VCCQ5 10k VSSQ1 VSSQ2 VSSQ3 VSSQ4 VSS1 VSS2 VSS3 VSS4 VSS5 R J10 K9 F5 E6 P3 P5 N4 C6 M4 10k VCC0 VCC1 VCC2 VCC3 R VDDSDHC GND 4.6.4 Interfacing with NAND Flash This Static Memory Controller (SMC) is capable of handling several types of external memory and peripheral devices, such as SRAM, PSRAM, PROM, EPROM, EEPROM, LCD module, NOR Flash and NAND Flash. The SMC generates the signals that control the access to external memory devices or peripheral devices. The SMC embeds a NAND Flash Controller (NFC). The NFC can handle automatic transfers, sending the commands and address cycles to the NAND Flash and transferring the contents of the page (for read and write) to the NFC SRAM. It minimizes the CPU overhead. The SMC includes programmable hardware error correcting code with one-bit error correction capability and supports two-bit error detection. In order to improve the overall system performance, the DATA phase of the transfer can be DMA-assisted. An example below is given with 8-bit NAND Flash memory from Micron. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 30 SAMA5D27 Wireless SOM1 Functional Description Figure 4-23. NAND Flash Interface Example Schematic VDD_3V3 R 10k VDDSDHC R 10k R 10k 16 17 8 18 9 PA11 PA10 PA12 PA8 PA9 7 PA4 19 U CLE ALE RE WE CE R/B WP R DNP10k GND 1 2 3 4 5 6 10 11 14 15 20 21 22 23 24 I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC TSOP-48 NC NC NC NC NC NC NC NC 29 30 31 32 41 42 43 44 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 26 27 28 33 35 40 45 46 38 DNU 47 DNU 12 Vcc 37 Vcc 34 Vcc1 39 Vcc1 13 Vss 36 Vss 25 Vss1 48 Vss1 VDDSDHC C 0.1uF C 0.1uF C MT29F4G08ABAEAWP:E TR 4.6.5 C 0.1uF 0.1uF GND Interfacing with a Camera The Image Sensor Controller (ISC) system manages incoming data from a parallel sensor. It supports a single active interface. The parallel interface protocol can use a free-running clock or a gated clock strategy. It supports the ITU-R BT 656/1120 422 protocol with a data width of 8 bits or 10 bits and raw Bayer format. The internal image processor includes adjustable white balance, color filter array interpolation, color correction, gamma correction, 12-bit to 10-bit compression, programmable color space conversion and horizontal and vertical chrominance subsampling module. The module also integrates a triple channel Direct Memory Access Controller master interface. Two different schematics examples are shown below with different Image Sensor supply voltages. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 31 SAMA5D27 Wireless SOM1 Functional Description Figure 4-24. Camera Interface Example Schematic with VDDISC Set at 3.3V VDD_3V3 R 200k C53 0.1uF 25V 0402 GND 2 U VREF1 VREF2 3 SCL1 4 SDA1 ISC_TWCK ISC_TWD PD20 PD19 DOVDD_2V8 1 DOVDD_2V8 R 4k7 C 0.1uF 25V 0402 7 R 4k7 GND 6 SCL2 5 SDA2 GND EN ISI_SCL ISI_SDA 8 PCA9306DCUR VDD_3V3 1 C 1uF AVDD_3V U VIN 3 VOUT NC GND J IMAGE SENSOR CONNECTOR C 1uF EN 4 GND 5 2 GND AGND VDD_3V3 1 C 1uF VIN 3 NC 11 MIC5366-2.8YC5 GND 1 C 1uF 3 4 DVDD_1V5 U VIN VOUT 5 C 1uF EN NC GND 19 C 0.1uF Y7 PCLK Y6 Y2 Y5 Y3 Y4 GND A1 A2 A3 A4 A5 A6 A7 A8 VDD_3V3 2 11 GND B1 B2 B3 B4 B5 B6 B7 B8 20 18 17 16 15 14 13 12 Y4 Y5 Y6 Y7 Y8 Y9 IMAGE SENSOR Molex_52437-2491 AGND GND DOVDD_2V8 2 VCCA 10 OE C 0.1uF MIC5366-1.5YC5 GND XCLK PWDN RESET VSYNC HREF PCLK Y2 Y3 GND U 1 3 4 5 6 7 8 9 ISI_D2 ISI_D3 ISI_D4 ISI_D5 ISI_D6 ISI_D7 PC11 PC12 PC13 PC14 PC15 PC16 GND VDD_3V3 VCCB GND 2 GND 20 18 17 16 15 14 13 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ISI_SDA AVDD_3V ISI_SCL RESET VSYNC PWDN HREF DVDD_1V5 DOVDD_2V8 Y9 XCLK Y8 TXB0108 C 1uF EN 4 B1 B2 B3 B4 B5 B6 B7 B8 DOVDD_2V8 2 VCCA 10 OE 5 VOUT A1 A2 A3 A4 A5 A6 A7 A8 VDD_3V3 C 0.1uF DOVDD_2V8 U 1 3 4 5 6 7 8 9 ISI_MCK ISI_PWD ISI_RST ISI_VSYNC ISI_HSYNC ISI_PCK ISI_D0 ISI_D1 PC24 PC7 PC25 PC22 PC23 PC21 PC9 PC10 MIC5366-3.0YC5 R 0R U VCCB 19 C 0.1uF GND TXB0108 GND GND Figure 4-25. Camera Interface Example Schematic with VDDISC Set at Specific Voltage VDD_3V3 GND PD20 PD19 C53 0.1uF 25V 0402 DOVDD_2V8 R 200k 2 U VREF1 1 7 VREF2 3 SCL1 4 SDA1 ISC_TWCK ISC_TWD DOVDD_2V8 C 0.1uF 25V 0402 R 4k7 GND 6 SCL2 5 SDA2 GND R 4k7 ISI_SCL ISI_SDA 8 EN J IMAGE SENSOR CONNECTOR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 PCA9306DCUR GND VDD_3V3 1 C 1uF AVDD_3V U VIN 3 VOUT 5 C 1uF EN 4 NC GND 2 MIC5366-3.0YC5 R 0R GND AGND VDD_3V3 1 C 1uF 3 4 DVDD_1V5 U VIN VOUT 5 GND PC14 PC21 PC13 PC9 PC12 PC10 PC11 4.6.6 DOVDD Y9 XCLK Y8 Y7 PCLK Y6 Y2 Y5 Y3 Y4 Molex_52437-2491 2 AGND MIC5366-1.5YC5 GND RESET VSYNC PWDN HREF C 1uF EN NC ISI_SDA AVDD_3V ISI_SCL PC25 PC22 PC7 PC23 DVDD_1V5 VDD_ISC PC16 PC24 PC15 IMAGE SENSOR GND GND Connecting to the SPI Interface Four different FLEXCOM interfaces, with seven possible configurations (configured in SPI mode), and two pure SPI Interfaces, with four possible configurations, are available on the ATSAMA5D27-WLSOM1 module. The Flexible Serial Communication Controller (FLEXCOM) offers several serial communication protocols that are managed by the three submodules USART, SPI, and TWI. The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides communication with external devices in Master or Slave mode. It also enables communication between processors if an external processor is connected to the system. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 32 SAMA5D27 Wireless SOM1 Functional Description The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to other SPI devices. During a data transfer, one SPI system acts as the “master”' which controls the data flow, while the other devices act as “slaves'' which have data shifted into and out by the master. Different CPUs can take turn being masters (multiple master protocol, contrary to single master protocol where one CPU is always the master while all of the others are always slaves). One master can simultaneously shift data into multiple slaves. However, only one slave can drive its output to write data back to the master at any given time. A slave device is selected when the master asserts its NSS signal. If multiple slave devices exist, the master generates a separate slave select signal for each slave (NPCS). The SPI system consists of two data lines and two control lines: • • • • Master Out Slave In (MOSI)—This data line supplies the output data from the master shifted into the input(s) of the slave(s). Master In Slave Out (MISO)—This data line supplies the output data from a slave to the input of the master. There may be no more than one slave transmitting data during any particular transfer. Serial Clock (SPCK)—This control line is driven by the master and regulates the flow of the data bits. The master can transmit data at a variety of baud rates; there is one SPCK pulse for each bit that is transmitted. Slave Select (NSS)—This control line allows slaves to be turned on and off by hardware. Table 4-9. SPI Interface Configurations Interface Instance IO set Pin # PIO Pin Name SPI0 1 21 PA14 SPI0_SPCK SPI0 1 22 PA15 SPI0_MOSI SPI0 1 23 PA16 SPI0_MISO SPI0 1 24 PA17 SPI0_NPCS0 SPI0 2 76 PA30 SPI0_NPCS0 SPI0 2 75 PA31 SPI0_MISO SPI0 2 81 PB00 SPI0_MOSI SPI0 2 80 PB01 SPI0_SPCK SPI0 1 18 PC01 SPI1_SPCK SPI1 1 17 PC02 SPI1_MOSI SPI1 1 16 PC03 SPI1_MISO SPI1 1 19 PC04 SPI1_NPCS0 SPI1 1 20 PC05 SPI1_NPCS1 SPI1 1 176 PC06 SPI1_NPCS2 SPI1 1 177 PC07 SPI1_NPCS3 SPI1 3 132 PD25 SPI1_SPCK SPI1 3 127 PD26 SPI1_MOSI SPI1 3 123 PD27 SPI1_MISO SPI1 3 124 PD28 SPI1_NPCS0 SPI1 3 131 PD29 SPI1_NPCS1 SPI1 3 130 PD30 SPI1_NPCS2 © 2019 Microchip Technology Inc. Datasheet Comments DS60001590A-page 33 SAMA5D27 Wireless SOM1 Functional Description Table 4-10. FLEXCOM Interfaces Configurations in SPI Mode Interface Instance IO set Pin # PIO Pin Name Comments FLEXCOM0 1 28 PB28 FLEXCOM0_IO0 MOSI Signal FLEXCOM0 1 27 PB29 FLEXCOM0_IO1 MISO Signal FLEXCOM0 1 30 PB30 FLEXCOM0_IO2 SPCK Signal FLEXCOM0 1 26 PB31 FLEXCOM0_IO3 NPCS0 Signal FLEXCOM0 1 15 PC00 FLEXCOM0_IO4 NPCS1 Signal FLEXCOM2 1 171 PA06 FLEXCOM2_IO0 MOSI Signal FLEXCOM2 1 173 PA07 FLEXCOM2_IO1 MISO Signal FLEXCOM2 1 167 PA08 FLEXCOM2_IO2 SPCK Signal FLEXCOM2 1 172 PA09 FLEXCOM2_IO3 NPCS0 Signal FLEXCOM2 1 168 PA10 FLEXCOM2_IO4 NPCS1 Signal FLEXCOM2 2 127 PD26 FLEXCOM2_IO0 MOSI Signal FLEXCOM2 2 123 PD27 FLEXCOM2_IO1 MISO Signal FLEXCOM2 2 124 PD28 FLEXCOM2_IO2 SPCK Signal FLEXCOM2 2 131 PD29 FLEXCOM2_IO3 NPCS0 Signal FLEXCOM2 2 130 PD30 FLEXCOM2_IO4 NPCS1 Signal FLEXCOM3 2 56 PC18 FLEXCOM3_IO2 SPCK Signal FLEXCOM3 2 70 PC19 FLEXCOM3_IO1 MISO Signal FLEXCOM3 2 58 PC20 FLEXCOM3_IO0 MOSI Signal FLEXCOM3 2 63 PC21 FLEXCOM3_IO3 NPCS0 Signal FLEXCOM3 2 65 PC22 FLEXCOM3_IO4 NPCS1 Signal FLEXCOM4 1 39 PC28 FLEXCOM4_IO0 MOSI Signal FLEXCOM4 1 38 PC29 FLEXCOM4_IO1 MISO Signal FLEXCOM4 1 34 PC30 FLEXCOM4_IO2 SPCK Signal FLEXCOM4 1 36 PC31 FLEXCOM4_IO3 NPCS0 Signal FLEXCOM4 1 33 PD00 FLEXCOM4_IO4 NPCS1 Signal FLEXCOM4 2 119 PD12 FLEXCOM4_IO0 MOSI Signal FLEXCOM4 2 116 PD13 FLEXCOM4_IO1 MISO Signal FLEXCOM4 2 117 PD14 FLEXCOM4_IO2 SPCK Signal FLEXCOM4 2 114 PD15 FLEXCOM4_IO3 NPCS0 Signal FLEXCOM4 2 115 PD16 FLEXCOM4_IO4 NPCS1 Signal 4.6.7 Connecting to the I²C Interface Four different FLEXCOM interfaces, with seven possible configurations (configured in TWI mode), and one pure TWI Interface are available on the ATSAMA5D27-WLSOM1 module. The Flexible Serial Communication Controller (FLEXCOM) offers several serial communication protocols that are managed by the three submodules USART, SPI, and TWI. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 34 SAMA5D27 Wireless SOM1 Functional Description The Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of one clock line and one data line with speeds of up to 400 kbit/s in Fast mode and up to 3.4 Mbit/s in High-Speed Slave mode only, based on a byte-oriented transfer format. It can be used with any Two-wire Interface bus Serial EEPROM and I²C-compatible devices, such as a Real-Time Clock (RTC), Dot Matrix/Graphic LCD Controller and temperature sensor. The TWI is programmable as a master or a slave with sequential or single-byte access. Multiple master capability is supported. Table 4-11. I²C Interface Configurations Interface Instance IO set Pin # PIO Pin Name Comment TWI1 3 120 PD19 TWD1 TWI1 3 122 PD20 TWCK1 FLEXCOM0 1 28 PB28 FLEXCOM0_IO0 FLEXCOM0 1 27 PB29 FLEXCOM0_IO1 FLEXCOM2 1 171 PA6 FLEXCOM2_IO0 FLEXCOM2 1 173 PA7 FLEXCOM2_IO1 FLEXCOM2 2 127 PD26 FLEXCOM2_IO0 FLEXCOM2 2 123 PD27 FLEXCOM2_IO1 FLEXCOM3 1 22 FLEXCOM3 1 175 PA15 FLEXCOM3_IO0 Need external pull-up in case of FLEXCOM interface use as I²C/TWI PA13 FLEXCOM3_IO1 interface. FLEXCOM3 2 58 PC20 FLEXCOM3_IO0 FLEXCOM3 2 63 PC21 FLEXCOM3_IO1 FLEXCOM4 1 39 PC28 FLEXCOM4_IO0 FLEXCOM4 1 38 PC29 FLEXCOM4_IO1 FLEXCOM4 2 119 PD12 FLEXCOM4_IO0 FLEXCOM4 2 116 PD13 FLEXCOM4_IO1 4.6.8 No need of external pull-up. Already integrated in ATSAMA5D27WLSOM1 module Interfacing with CLASS-D Audio Output The Audio Class D Amplifier (CLASSD) is a digital input, pulse width modulated (PWM) output mono Class D amplifier. It features a high-quality interpolation filter embedding a digitally controlled gain, an equalizer and a deemphasis filter. On its input side, the CLASSD is compatible with most common audio data rates. On the output side, its PWM output can drive either: • • high-impedance single-ended or differential output loads (Audio DAC application) or, external MOSFETs through an integrated non-overlapping circuit (Class D power amplifier application). © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 35 SAMA5D27 Wireless SOM1 Functional Description Figure 4-26. CLASS-D Interface Example Schematic MAIN_VOLT (Up to 12V) C R CLASSD_R0 R C 22R 10000pF 25V PB1 D 10k 1N4148W 2 1 3 PB2 3 CLASSD_R1 10uF 25V R 1 22R 2 Q SSM3J56ACT C 10uF 25V C 10uF 25V C 10uF 25V GND Q SSM3K56ACT R 10k 0402 FB J 4 3 2 1 BLM18PG181SN1D GND GND FB TERMINAL 1x4 BLM18PG181SN1D R CLASSD_R2 R C 22R 10000pF 25V PB3 D 10k 1N4148W 2 1 3 PB4 3 CLASSD_R3 R 1 22R 2 Q SSM3J56ACT GND Q SSM3K56ACT R 10k GND 4.7 4.7.1 GND Antenna Certified Antenna References The ATSAMA5D27-WLSOM1 is FCC-ID certified with the following antenna references. In case of use of another reference, the end customer must pass another full certification. Table 4-12. ATSAMA5D27-WLSOM1 Certified Antenna References P/N Vendor RFA-02-P33 Aristotle 2 dBi PCB 150 mm RFA-02-D3 Aristotle 2dBi Dipole 150 mm RFA-02-G03 Aristotle 2dBi Metal Stamp 150 mm RFA-02-L2H1 Aristotle 2 dBi Dipole 150 mm Aristotle 2 dBi PCB 150 mm RFA-02-C2M2 Aristotle 2 dBi Dipole SMA to u.FL cable length of 100 mm RFA-02-P05 4.7.2 Antenna Gain @ 2.4 GHz Band Antenna Type Cable Length/ Remarks Antenna Placement Recommendations Particular attention must be given to the placement of the antenna and its cable. The following recommendations must be applied: © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 36 SAMA5D27 Wireless SOM1 Functional Description • • • • Ensure that the antenna cable is not expected to be routed over circuits generating electrical noise on the Host board. Antenna on the module should not be placed in direct contact or in close proximity of the plastic casing/objects. Do not enclose the antenna within a metal shield. Keep any components which may radiate noise, signals or harmonics within the 2.4 GHz to 2.5 GHz frequency band away from the antenna and, if possible, shield those components. Any noise radiated from the host board in this frequency band degrades the sensitivity of the module. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 37 SAMA5D27 Wireless SOM1 Electrical Characteristics 5. Electrical Characteristics 5.1 Absolute Maximum Ratings Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 5-1. Absolute Maximum Ratings 5.2 Characteristic Symbol Min. Max. Unit I/O Supply Voltage VDDANA, VDDISC, VDDSDHC -0.3 4.0 V Fuse Supply Voltage VDDFUSE -0.3 3.0 V Main Supply Voltage VDD_MAIN -0.3 6.0 V Backup Supply Voltage VDDBU -0.3 4.0 V Storage Temperature TSTORAGE -55 150 °C RF Input Power Maximum – – 23 dBm Maximum Input Current VDD_MAIN – 2 A Min. Max. Unit Recommended Operating Conditions The following table provides the operating ratings for the ATSAMA5D27-WLSOM1 module. Table 5-2. Recommended Operating Ratings 5.3 Characteristic Symbol I/O Supply Voltage VDDANA, VDDISC, VDDSDHC 1.6 3.6 V Fuse Supply Voltage VDDFUSE 2.25 2.75 V Main Supply Voltage VDD_MAIN 3.0 5.5 V Backup Supply Voltage VDDBU 1.65 3.6 V Operating Temperature TA -40 85 °C DC Characteristics The following characteristics are applicable to the operating temperature range TA = -40°C to +85°C, unless otherwise specified. Table 5-3. DC Electrical Characteristics for GPIO Inputs Pad Parameters Conditions Min. Typ. Max. Unit VIL Low-level Input Voltage All GPIO @ 3.3V -0.3 – 0.4 V VIH High-level Input Voltage All GPIO @ 3.3V 2.3 – 3.6 V VOL Low-level Output Voltage I0 Max. – – 0.41 V VOH High-level Output Voltage I0 Max. 2.9 – – V © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 38 SAMA5D27 Wireless SOM1 Electrical Characteristics ...........continued Pad 5.4 Parameters Conditions Min. Typ. Max. Unit IIL Low-level Input Current All GPIO @ 3.3V -1 – 1 µA IIH High-level Input Current All GPIO @ 3.3V -1 – 1 µA IOL Low-level Output Current All GPIO @ 3.3V / Low -2 – – mA All GPIO @ 3.3V / High -32 – – mA IOH High-level Output Current All GPIO @ 3.3V / Low – – 2 mA All GPIO @ 3.3V / High – – 32 mA Radio Performances Refer to the ATWILC3000 data sheet, section 4.4, “IEEE 802.11 b/g/n Radio Performance”. Refer to the ATWILC3000 data sheet, section 4.5, “Bluetooth Radio Performance”. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 39 SAMA5D27 Wireless SOM1 Mechanical Characteristics Module Outline Drawings Figure 6-1. ATSAMA5D27-WLSOM1 Module Drawing S 143 142 144 146 145 152 149 147 148 150 151 158 153 154 161 159 160 155 156 162 157 164 163 171 170 167 165 166 172 168 169 180 177 178 179 174 173 175 176 186 183 181 188 187 182 185 184 PIN 1 CORNER 1 141 140 2 139 3 4 138 5 137 6 7 136 8 135 134 9 133 10 132 131 11 12 130 129 13 TOP VIEW dA2 14 128 15 127 16 126 17 125 18 124 19 123 20 21 122 121 22 120 23 119 24 25 118 aaa P1t 117 26 116 27 115 28 114 29 113 30 112 31 111 32 110 33 109 34 108 35 107 36 106 37 105 38 39 104 103 40 102 41 101 42 100 P2 99 43 44 98 45 46 47 97 nx fff 96 dA1 91 92 93 90 A 94 84 89 86 88 87 85 83 82 81 80 79 72 78 75 77 76 74 73 71 70 69 68 66 67 63 65 64 60 57 59 58 56 62 61 55 54 51 53 52 50 48 49 95 P2Eb E TP10 TP11 e aaa P1b TP9 D 6.1 Mechanical Characteristics BOTTOM VIEW 6. TP3 TP6 TP2 TP1 TP4 GND P2 TP8 fff x n fff TP7 P2Ea jjj x m jjj Pads : Body : Tests Points Origin in mm Y X SAMA5D27-WLSOM1 DIMENSIONS 188 40.8 x 40.8 x 3.287 Pads Pitch : Drawn by : R C R SAMA5D27-WLSOM1_POD A09 07/29/2019 0.8 Table 6-1. ATSAMA5D27-WLSOM1 Module Dimensions (in mm) Symbol Common Dimensions Min. Typ. Max. X E 40.700 40.800 40.900 Y D 40.700 40.800 40.900 Pad Pitch E – 0.800 – PCB Thickness S 1.150 1.200 1.250 Total Thickness A1 – 3.287 3.387 Top Side P1t – 0.800 – Bottom Side P1b – 1.500 – P2 – 0.600 – aaa – 0.200 – Body Size Pad Length (1) Pad Width (1) Pad Space (1) © 2019 Microchip Technology Inc. Datasheet Comments Solder Mask Defined 0.550 DS60001590A-page 40 SAMA5D27 Wireless SOM1 Mechanical Characteristics ...........continued Common Dimensions Symbol Min. Typ. Max. Opening Drill Diameter fff – 0.400 – Pad Count n – 188 – Test Point Diameter jjj – 1.000 – Test Point Count m – 10 – X P2Ea – 2.000 – Y P2Eb – 2.000 – X dA1 – 5.011 – Y dA2 – 6.161 – Pad Axis to Edge (1) U.FL Antenna Axis to Edge Comments Note:  1. Tolerances are defined upon: – IPC A600 – Class2 – IPC 2615 2. Test points placed under module are for production purposes only. No connection on these points is allowed. They are listed to avoid any contact with the main board vias or copper areas. Table 6-2. Test Point Position Compared to Center Origin Test Point Number X Y Voltage Point TP1 -13.875 3.000 VDDUTMII TP2 -15.900 3.825 VDD_3V3 TP3 -13.700 1.225 VDDOSC_PLL TP4 -17.975 8.000 GND TP6 -9.025 2.775 VDDIODDR TP7 -9.500 16.825 VDDCORE TP8 -4.850 15.550 VDDPLAA TP9 -8.875 -1.025 VLDO1 TP10 10.825 -15.800 VDDA_3V3 TP11 4.350 -14.250 VBAT © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 41 SAMA5D27 Wireless SOM1 Mechanical Characteristics Module Land Pattern (Host Board PCB Footprint) Figure 6-2. ATSAMA5D27-WLSOM1 Land Pattern Drawing LAND PATTERN RECOMMENDATIONS PIN 1 CORNER S1 1.6 1.6 10.75 4.75 S2 10.9 k W 9.75 8.5 3.75 8.5 3.25 1 10 1 4 2.5 0.2 1.25 0.2 L 5 6.2 Inside square, keepout area No signals and power vias, no tracks are allowed. Pads : Body : SAMA5D27-WLSOM1 DIMENSIONS 188 40.8 x 40.8 x 3.287 Pads Pitch : Drawn by : R C R SAMA5D27-WLSOM1_POD A09 07/29/2019 0.8 Table 6-3. ATSAMA5D27-WLSOM1 Land Pattern Dimensions (in mm) Symbol Common Dimensions Min. Typ. Max. Land Pattern Pad Width W – 0.600 – Land Pattern Pad Length L – 2.000 – Land Pattern Pad X Space S1 – 37.800 – Land Pattern Pad Y Space S2 – 37.800 – k – 0.200 – Land Pattern Pad Space © 2019 Microchip Technology Inc. Datasheet Comments Solder Mask Defined 0.550 DS60001590A-page 42 SAMA5D27 Wireless SOM1 Mechanical Characteristics Figure 6-3. GND Pads Overview and Layout Recommendation WRONG GOOD Note:  It is recommended to use the layout as shown on the right above. This solution increases RF performance of the Wi-Fi and Bluetooth communications and optimizes heat sink capability of the system; on the host board, do not apply thermal brakes on the TOP layout around GND pads. 6.3 Other Characteristics Table 6-4. ATSAMA5D27-WLSOM1 Other Characteristics Parameter Weight © 2019 Microchip Technology Inc. Measurement Value Unit 7.91 g Datasheet Comments DS60001590A-page 43 SAMA5D27 Wireless SOM1 Assembly and Storage Information 7. Assembly and Storage Information 7.1 Storage Condition 7.1.1 Moisture Barrier Bag Before Opening A moisture barrier bag must be stored at a temperature of less than 30°C with humidity under 85% RH. The calculated shelf life for the dry-packed product is 12 months from the date the bag is sealed. 7.1.2 Moisture Barrier Bag Open Humidity indicator cards must be blue, RH < 30%. 7.2 Motherboard Solder Paste The SnAgCu eutectic solder with melting temperature of 217°C is most commonly used for lead-free solder reflow application. This alloy is widely accepted in the semiconductor industry due to its low cost, relatively low melting temperature, and good thermal fatigue resistance. Some recommended pastes include NC-SMQ® 230 flux and Indalloy® 241 solder paste made up of 95.5 Sn/3.8 Ag/0.7 Cu or SENJU N705-GRN3360-K2-V Type 3, or SENJU M705-GRN360-K-V, no clean paste. 7.3 Motherboard Stencil Design The recommended stencil is a laser-cut, stainless-steel type with thickness of 100 μm to 130 μm and an approximate ratio of 1:1 for stencil opening to pad dimension. To improve paste release, a positive taper with bottom opening 25 μm larger than the top is utilized. Local manufacturers may find other combinations of stencil thickness and aperture size to get good results. 7.4 Bake Information The ATSAMA5D27-WLSOM1 module is rated MSL 3, indicating that storage and assembly processes must be compliant with IPC/JEDEC J-STD-033C. The ATSAMA5D27-WLSOM1 module has a total thickness of 3.287 mm (PCB and SMD mounted) and is comparable to a die package. Thus baking instructions must comply with Table 4-1 of J-STD-033-C as a package body comprised between 2.0 mm and 4.5 mm. Refer to the highlighted information in the table below. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 44 SAMA5D27 Wireless SOM1 Assembly and Storage Information Figure 7-1. IPC/JEDEC Table 7.5 Reflow Profile The ATSAMA5D27-WLSOM1 is assembled using standard lead-free reflow profile IPC/JEDEC J-STD-020E. In addition to the initial assembly solder, we recommend a maximum of two additional soldering processes: • • the assembly on main board a spare heating pass in case the module must be removed from the main board for analysis The ATSAMA5D27-WLSOM1 can be soldered to the host PCB by using the standard and lead-free solder reflow profile. To avoid damage to the module, follow the JEDEC recommendations as well as those listed below: • • • • Do not exceed the peak temperature (Tp) of 245ºC. Refer to the solder paste data sheet for specific reflow profile recommendations. Use no-clean flux solder paste. Use only one flow. If the PCB requires multiple flows, mount the module at the time of the final flow. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 45 SAMA5D27 Wireless SOM1 Assembly and Storage Information Figure 7-2. Reflow Profile Example used for Soldering ATSAMA5D27-WLSOM1 Module on ATSAMA5D27WLSOM1-EK1 Board - Supplier Tp > Tc - User Tp < Tc Tc Supplier tp Tc -5°C Te m p e r a t u r e Tp Max. Ramp Up Rate = 3°C/s Max. Ramp Down Rate = 6°C/s TL Tsmax User tp tp Tc -5°C tL Preheat Area Tsmin ts 25 Time 25°C to Peak Time IPC-020e-5-1 Table 7-1. Reflow Profile Table Parameters Profile Feature J-STD-020E Profile Pre-heat Temperature Min Tsmin 150°C Pre-heat Temperature Max Tsmax 200°C ts (from Tsmin to Tsmax) 60 to 120 seconds TL to Tp 3°C/sec. max. Liquidous Temperature Time maintained above 217°C tL 60 to 150 seconds Peak Temperature TP 245°C Time (tP) within 5°C of the specified classification temperature (TC) tP 30 seconds TP to TL 6°C/sec. max. – 8 minutes max. Temperature Rise Ramp-up Rate Ramp-down rate Time 25°C to peak temperature © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 46 SAMA5D27 Wireless SOM1 Regulatory Approval 8. Regulatory Approval Refer to the ATWILC3000 data sheet, section 16. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 47 SAMA5D27 Wireless SOM1 Ordering Information 9. Ordering Information Table 9-1. Ordering Details Ordering Code ATSAMA5D27-WLSOM1 Package Description Regulatory Information 40.8 x 40.8 x 3.287 mm Certified Microchip MPU Wireless module with SAMA5D27, WILC3000 and U.FL connector FCC, IC, CE © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 48 SAMA5D27 Wireless SOM1 Revision History 10. Revision History 10.1 Rev. A - 10/2019 First issue. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 49 SAMA5D27 Wireless SOM1 The Microchip Web Site Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: • • • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives Customer Change Notification Service Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on “Customer Change Notification” and follow the registration instructions. Customer Support Users of Microchip products can receive assistance through several channels: • • • • Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://www.microchip.com/support © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 50 SAMA5D27 Wireless SOM1 Product Identification System To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. ATSAMA5 D27 - WLSOM1 Architecture Product Group Architecture: ATSAMA5 = Arm Cortex-A5 CPU Product Group: D27-WLSOM1 Certified MPU Wireless module with SAMA5D27, WILC3000 and U.FL connector Examples: • ATSAMA5D27-WLSOM1 = System-On-Module (SOM) based on the SAMA5D27, with 2 Gb LPDDR2 SDRAM running up to 500 MHz, and a Wi-Fi/BT Wireless module Microchip Devices Code Protection Feature Note the following details of the code protection feature on Microchip devices: • • • • • Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Legal Notice Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 51 SAMA5D27 Wireless SOM1 Trademarks The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: 978-1-5224-5095-5 AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. Quality Management System Certified by DNV ISO/TS 16949 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 52 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Austin, TX Tel: 512-257-3370 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078 Australia - Sydney Tel: 61-2-9868-6733 China - Beijing Tel: 86-10-8569-7000 China - Chengdu Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588 China - Dongguan Tel: 86-769-8702-9880 China - Guangzhou Tel: 86-20-8755-8029 China - Hangzhou Tel: 86-571-8792-8115 China - Hong Kong SAR Tel: 852-2943-5100 China - Nanjing Tel: 86-25-8473-2460 China - Qingdao Tel: 86-532-8502-7355 China - Shanghai Tel: 86-21-3326-8000 China - Shenyang Tel: 86-24-2334-2829 China - Shenzhen Tel: 86-755-8864-2200 China - Suzhou Tel: 86-186-6233-1526 China - Wuhan Tel: 86-27-5980-5300 China - Xian Tel: 86-29-8833-7252 China - Xiamen Tel: 86-592-2388138 China - Zhuhai Tel: 86-756-3210040 India - Bangalore Tel: 91-80-3090-4444 India - New Delhi Tel: 91-11-4160-8631 India - Pune Tel: 91-20-4121-0141 Japan - Osaka Tel: 81-6-6152-7160 Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu Tel: 82-53-744-4301 Korea - Seoul Tel: 82-2-554-7200 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 Malaysia - Penang Tel: 60-4-227-8870 Philippines - Manila Tel: 63-2-634-9065 Singapore Tel: 65-6334-8870 Taiwan - Hsin Chu Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei Tel: 886-2-2508-8600 Thailand - Bangkok Tel: 66-2-694-1351 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 Finland - Espoo Tel: 358-9-4520-820 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Garching Tel: 49-8931-9700 Germany - Haan Tel: 49-2129-3766400 Germany - Heilbronn Tel: 49-7131-67-3636 Germany - Karlsruhe Tel: 49-721-625370 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Rosenheim Tel: 49-8031-354-560 Israel - Ra’anana Tel: 972-9-744-7705 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Padova Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-72884388 Poland - Warsaw Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820 © 2019 Microchip Technology Inc. Datasheet DS60001590A-page 53
ATSAMA5D27-WLSOM1 价格&库存

很抱歉,暂时无法提供与“ATSAMA5D27-WLSOM1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ATSAMA5D27-WLSOM1
    •  国内价格 香港价格
    • 12+480.0749712+58.23858

    库存:0

    ATSAMA5D27-WLSOM1
    •  国内价格
    • 12+449.19171
    • 60+435.71620

    库存:0