0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HV57009PG-G

HV57009PG-G

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    PQFP80_20X14MM

  • 描述:

    IC64BITSRLPARALLEL80QFP

  • 数据手册
  • 价格&库存
HV57009PG-G 数据手册
HV57009 64-Channel Serial-to-Parallel Converter with P-Channel Open Drain Controllable Output Current Features General Description • • • • • • • The HV57009 is a low-voltage to high-voltage serial-to-parallel converter with P-channel open drain outputs. This device has been designed as a driver for plasma panels. 5V CMOS Logic Up to –85V Output Voltage Output Current Source Control 16 MHz Equivalent Data Rate Latched Data Outputs Forward and Reverse Shifting Options (DIR pin) Diode to VDD allows Efficient Power Recovery Applications • • • • • Plasma Panel Driver Display Driver Print Head Driver Relay Driver Microelectromechanical Systems Applications The device has two parallel 32-bit Shift registers, permitting data rates twice the speed of one in a single clock cycle. There are also 64 latches and control logic to perform the blanking of the outputs. HVOUT1 is connected to the first stage of the first Shift register through the blanking logic. Data is shifted through the Shift registers on the logic low-to-high transition of the clock. The DIR pin causes counter-clockwise shifting when connected to VSS and clockwise shifting when connected to VDD. A data output buffer is provided for cascading devices. This output reflects the current status of the last bit of the Shift register, HVOUT64. The operation of the Shift register is not affected by the latch enable (LE) and the blanking (BL) inputs. Data transfer from the Shift registers to the latches occurs when the LE input is high. The data in the latches is stored when LE is low. The HV57009 has 64 channels of output constant-current sourcing capability. They are adjustable from 0.1 mA to 2 mA through one external resistor or a current source. Package Type 80-lead PQFP (Top view) 80 1 See Table 2-1 for pin information.  2018 Microchip Technology Inc. DS20005856A-page 1 HV57009 Functional Block Diagram DI/O2A DI/O1A LE BL VDD I/O HVOUT1 HVOUT2 HVOUT3 • • • HVOUT32 Latch DIR CLK SR1 Latch Latch SR2 Latch Programmable Current I/O DI/O2B DI/O1B VSS VBP +IN HVOUT33 HVOUT34 HVOUT35 • • • HVOUT64 -IN Note: Each SR (shift register) provides 32 outputs. SR1 supplies outputs 1 to 32 and SR2 supplies outputs 33 to 64.  DS20005856A-page 2  2018 Microchip Technology Inc. HV57009 Typical Application Circuit  2018 Microchip Technology Inc. DS20005856A-page 3 HV57009 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings† Supply Voltage, VDD (Note 1) ................................................................................................................. –0.5V to +7.5V Output Voltage, VNN (Note 1) .......................................................................................................... VDD +0.5V to –95V Logic Input Levels (Note 1) ............................................................................................................ –0.3V to VDD +0.3V Ground Current (Note 2) ......................................................................................................................................... 1.5A Operating Ambient Temperature, TA .................................................................................................... –40°C to +85°C Storage Temperature, TS .................................................................................................................... –65°C to +150°C Continuous Total Power Dissipation: 80-lead PQFP (Note 3) ......................................................................................................................... 1200 mW † Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. Note 1: All voltages are referenced to VSS. 2: Duty cycle is limited by the total power dissipated in the package. 3: For operations above 25°C ambient, derate linearly to the maximum operating temperature at 20 mW/°C. RECOMMENDED OPERATING CONDITIONS Parameter Logic Supply Voltage Sym. Min. Typ. Max. Unit VDD 4.5 — 5.5 V HVOUT –85 — VDD V High-Level Input Voltage VIH VDD–1.2V — VDD V Low-Level Input Voltage VIL 0 High-Voltage Output Voltage Clock Frequency per Register Operating Ambient Temperature DS20005856A-page 4 fCLK DC TA –40 — 1.2 V — 8 MHz — 4.5 MHz — +85 °C Conditions  2018 Microchip Technology Inc. HV57009 DC ELECTRICAL CHARACTERISTICS Electrical Specifications: All voltages are referenced to VSS, VSS = 0, and TA = 25°C. Current going out of the chip is considered negative. Parameter Sym. Min. Typ. Max. Unit VDD Supply Current IDD — — 15 mA VDD = VDD maximum, fCLK = 8 MHz High-Voltage Supply Current INN — — –10 µA Outputs off, HVOUT = –85V (total of all outputs) IDDQ — — 100 µA All inputs = VDD, except +IN = VSS = GND VDD–0.5V — — V IO= –100 µA Quiescent VDD Supply Current High-Level Output Data Out VOH Conditions +1 — VDD V IO = –2 mA VOL — — +0.5 V IO = 100 µA High-Level Logic Input Current IIH — — 1 µA VIH = VDD Low-Level Logic Input Current IIL — — –1 µA VIL = 0V — — –2 mA VREF = 2V, REXT = 1 kΩ, See Figure 3-3 and Figure 3-4. –0.1 — — mA VREF = 0.1V, REXT = 1 kΩ, See Figure 3-3 and Figure 3-4. — — 10 % Low-Level Output HVOUT Data Out High-Output Source Current High-Voltage Output Source Current for IREF = 2 mA ICS ∆ICS VREF = 2V, REXT = 1 kΩ, AC ELECTRICAL CHARACTERISTICS Electrical Specifications: Logic signal inputs and data inputs have tr, tf ≤ 5 ns (10% and 90% points) for measurements. Parameter Sym. Min. fCLK DC tWL, tWH Typ. Max. Unit Conditions — 8 — 4.5 62 — — ns tSU 20 — — ns Data Hold Time after Clock Rises tH 15 — — ns Time from Latch Enable to HVOUT tON, tOFF — — 500 ns Latch Enable Pulse Width tWLE 25 — — ns Delay Time Clock to Latch Enable Low to High tDLE 45 — — ns Latch Enable Set-Up Time before Clock Rises tSLE 0 — — ns Delay Time Clock to Data Low to High tDLH — — 150 ns CL = 15 pF Delay Time Clock to Data High to Low tDHL — — 150 ns CL = 15 pF Maximum Allowable Clock Rise and Fall Time (10% and 90% Points) tr, tf — — 100 ns Clock Frequency Clock Width High or Low Data Set-Up Time before Clock Rises  2018 Microchip Technology Inc. MHz Per register MHz When cascading devices CL = 15 pF DS20005856A-page 5 HV57009 TEMPERATURE SPECIFICATIONS Parameter Sym. Min. Typ. Max. Unit Conditions Operating Ambient Temperature TA –40 — +85 °C Storage Temperature TS –65 — +150 °C JA — 37 — °C/W TEMPERATURE RANGE PACKAGE THERMAL RESISTANCE 80-lead PQFP Timing Waveforms VDD DATA INPUT 50% Data Valid 50% tf tH tSU CLK 50% 90% 50% 50% tWL VSS tr 90% 10% tWH VDD VSS 10% 50% VDD 50% VSS tDLH DATA OUT VDD 50% VSS tDLH VDD 50% 50% LE VSS tWLE tDLE HVOUT w/ Data Input Low tSLE IO = 0 tOFF 10% HVOUT w/ Data Input High DS20005856A-page 6 Previous IO = 0 VDD 90% 10% Previous IO = IREF tON 90% HVOUT(OFF) VDD IO = IREF HVOUT(OFF)  2018 Microchip Technology Inc. HV57009 2.0 PIN DESCRIPTION The details on the pins of HV57009 are listed on Table 2-1. Refer to Package Type for the location of pins. TABLE 2-1: PIN FUNCTION TABLE Pin Number Pin Name Description 1 HVOUT24 High-voltage output 2 HVOUT23 High-voltage output 3 HVOUT22 High-voltage output 4 HVOUT21 High-voltage output 5 HVOUT20 High-voltage output 6 HVOUT19 High-voltage output 7 HVOUT18 High-voltage output 8 HVOUT17 High-voltage output 9 HVOUT16 High-voltage output 10 HVOUT15 High-voltage output 11 HVOUT14 High-voltage output 12 HVOUT13 High-voltage output 13 HVOUT12 High-voltage output 14 HVOUT11 High-voltage output 15 HVOUT10 High-voltage output 16 HVOUT9 High-voltage output 17 HVOUT8 High-voltage output 18 HVOUT7 High-voltage output 19 HVOUT6 High-voltage output 20 HVOUT5 High-voltage output 21 HVOUT4 High-voltage output 22 HVOUT3 High-voltage output 23 HVOUT2 High-voltage output 24 HVOUT1 High-voltage output 25 DI/O1A Data Input/Output 1A pin 26 DI/O2A Data Input/Output 2A pin 27 NC No connection 28 NC No connection 29 LE Latch enable pin 30 CLK 31 BL 32 VSS Reference voltage (usually ground) 33 DIR Direction pin (See Note 1.) 34 VDD Logic supply voltage (See Note 2.) Note 1: 2: Clock pin Blanking pin Pin designation for DIR = VDD. 0.1 µF capacitor is needed between VDD and VBP (pin 40) for better output current stability and to prevent transient cross-coupling between outputs. See Figure 3-3 and Figure 3-4.  2018 Microchip Technology Inc. DS20005856A-page 7 HV57009 TABLE 2-1: Pin Number PIN FUNCTION TABLE (CONTINUED) Pin Name Description 35 –IN 36 DI/O2B Data Input/Output 2B pin 37 DI/O1B Data Input/Output 1B pin 38 NC No connection 39 +IN +IN input pin 40 VBP Bias control voltage (See Note 2.) 41 HVOUT64 High-voltage output 42 HVOUT63 High-voltage output 43 HVOUT62 High-voltage output 44 HVOUT61 High-voltage output 45 HVOUT60 High-voltage output 46 HVOUT59 High-voltage output 47 HVOUT58 High-voltage output 48 HVOUT57 High-voltage output 49 HVOUT56 High-voltage output 50 HVOUT55 High-voltage output 51 HVOUT54 High-voltage output 52 HVOUT53 High-voltage output 53 HVOUT52 High-voltage output 54 HVOUT51 High-voltage output 55 HVOUT50 High-voltage output 56 HVOUT49 High-voltage output 57 HVOUT48 High-voltage output 58 HVOUT47 High-voltage output 59 HVOUT46 High-voltage output 60 HVOUT45 High-voltage output 61 HVOUT44 High-voltage output 62 HVOUT43 High-voltage output 63 HVOUT42 High-voltage output 64 HVOUT41 High-voltage output 65 HVOUT40 High-voltage output 66 HVOUT39 High-voltage output 67 HVOUT38 High-voltage output 68 HVOUT37 High-voltage output 69 HVOUT36 High-voltage output 70 HVOUT35 High-voltage output 71 HVOUT34 High-voltage output 72 HVOUT33 High-voltage output 73 HVOUT32 High-voltage output Note 1: 2: –IN input pin Pin designation for DIR = VDD. 0.1 µF capacitor is needed between VDD and VBP (pin 40) for better output current stability and to prevent transient cross-coupling between outputs. See Figure 3-3 and Figure 3-4. DS20005856A-page 8  2018 Microchip Technology Inc. HV57009 TABLE 2-1: PIN FUNCTION TABLE (CONTINUED) Pin Number Pin Name 74 HVOUT31 High-voltage output 75 HVOUT30 High-voltage output 76 HVOUT29 High-voltage output 77 HVOUT28 High-voltage output 78 HVOUT27 High-voltage output 79 HVOUT26 High-voltage output 80 HVOUT25 High-voltage output Note 1: 2: Description Pin designation for DIR = VDD. 0.1 µF capacitor is needed between VDD and VBP (pin 40) for better output current stability and to prevent transient cross-coupling between outputs. See Figure 3-3 and Figure 3-4.  2018 Microchip Technology Inc. DS20005856A-page 9 HV57009 3.0 FUNCTIONAL DESCRIPTION Follow the steps in Table 3-1 to power up and power down the HV57009. TABLE 3-1: POWER-UP AND POWER-DOWN SEQUENCE Power-up Power-down Step Description Step 1 2 3 4 Connect ground. Apply VDD. Set all inputs (Data, CLK, Enable, etc.) to a known state. Apply VPP. 1 2 3 4 TABLE 3-2: Description Remove VPP. Remove all inputs. Remove VDD. Disconnect ground. TRUTH FUNCTION TABLE Function Inputs Outputs Data CLK LE BL DIR Shift Register High-voltage Output Data Out All O/P High X X X L X * ON * Data Falls Through (Latches Transparent) L ↑ H H X L...L ON L H ↑ H H X H...H OFF H Data Stored in Latches X X L H X * Inversion of stored data * DI/O1-2A ↑ H H H QN→QN+1 New ON or OFF DI/O1-2B DI/O1-2A ↑ L H H QN→QN+1 Previous ON or OFF DI/O1-2B DI/O1-2B ↑ L H L QN→QN-1 Previous ON or OFF DI/O1-2A DI/O1-2B ↑ H H L QN→QN-1 New ON or OFF DI/O1-2A I/O Relation Note: H = VDD (Logic)/VNN (HV Outputs) L = VSS ↑ = Low-to-high transition  * = Dependent on the previous stage’s state. See Figure 3-2 for DIN and DOUT pin designation for clockwise and counter-clockwise shifts. DS20005856A-page 10  2018 Microchip Technology Inc. HV57009 VDD VDD DATA OUTPUT DATA INPUT VSS VSS Logic Data Output Logic Inputs VDD VDD ICS PCNTRL DATA INPUT To Internal Circuits HVOUT VSS Analog Input FIGURE 3-1: High Voltage Output Input and Output Equivalent Circuits. HVOUT32 DIR = VDD; CW (HVOUT1→HVOUT64) DIR = VSS; CCW (HVOUT64→HVOUT1) • HVOUT33 • • • SR1 • • CW • • CW • • SR1 HVOUT2 HVOUT1 Pin DIR = VDD DIR = VSS FIGURE 3-2: HVOUT63 HVOUT64 25 26 DI/O1A DI/O2A DI/O2A DI/O1A 36 37 DI/O2B DI/O1B DI/O1B DI/O2B Shift Register Operation.  2018 Microchip Technology Inc. DS20005856A-page 11 HV57009 3.1 Typical Current Programing Circuits VDD 0.1μF HV57009 VBP To other outputs Logic IOUT - + HVOUT +IN -IN VSS REXT RD *10kΩ CD *390pF IREF VREF *Required if REXT > 10 kΩ or REXT is replaced by a constant current source. FIGURE 3-3: Negative Control Circuit. VDD 0.1μF HV57009 VBP To other outputs Logic IOUT - + HVOUT +IN -IN VSS VREF REXT IREF RD *10kΩ CD *390pF *Required if REXT > 10 kΩ or REXT is replaced by a constant current source. FIGURE 3-4: Positive Control Circuit.  DS20005856A-page 12  2018 Microchip Technology Inc. HV57009 EQUATION 3-1: I OUT = I REF = V REF  R EXT 4 0.1k 0.2k 0.5k 1.0k 2.0k 3.0k 3 IOUT (mA) Figure 3-3 and Figure 3-4 show the programming circuits to control the high-voltage output current limit. A reference current IREF is set by the external resistor REXT and reference voltage VREF. The current mirror formed by the matching transistors uses the reference current to cap the maximum allowed current at the high-voltage output. The relationship between IOUT and IREF are shown in Equation 3-1 and Equation 3-2. 2 5.0K 1 0 0 1 2 3 4 5 VREF (V) EQUATION 3-2: If IOUT = 2 mA and VREF = –5V → REXT = 2.5 kΩ FIGURE 3-5: IOUT vs. IREF. If IOUT = 1 mA and REXT = 1 kΩ → VREF = –1V If REXT > 10 kΩ, add series network RD and CD to ground for stability as shown in Figure 3-3 and Figure 3-4. This control method behaves linearly as long as the operational amplifier is not saturated. However, it requires a negative power source and needs to provide a current IREF = IOUT for each HV57009 chip being controlled. If HVOUT ≥ +1V, the HVOUT cascade may no longer operate as a perfect current source, and the output current will diminish. This effect depends on the magnitude of the output current. Given IOUT and VREF, the REXT can be calculated using Equation 3-3: EQUATION 3-3: R EXT = V REF  I REF = V REF  I OUT The intersection of a set of IOUT and VREF values can be located in Figure 3-5. The value picked for REXT must always be in the shaded area for linear operation. This control method has the advantage that VREF is positive and draws leakage current only. If REXT > 10 kΩ, add series network RD and CD to ground for stability as shown in Figure 3-3 and Figure 3-4. Note: Lower reference current, IREF, results in higher distortion, ∆ICS, on the output.  2018 Microchip Technology Inc. DS20005856A-page 13 HV57009 4.0 PACKAGE MARKING INFORMATION 4.1 Packaging Information 80-lead PQFP Example XXXXXXXXX YYWWNNN HV57009PG e3 1822568 e3 Legend: XX...X Y YY WW NNN e3 * Note: DS20005856A-page 14 Product Code or Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.  2018 Microchip Technology Inc. HV57009 80-Lead PQFP Package Outline (PG) 20.00x14.00mm body, 3.40mm height (max), 0.80mm pitch, 3.90mm footprint D D1 E Note 1 (Index Area D1/4 x E1/4) E1 80 ș 1 e b Top View View B Gauge Plane L2 A A2 L L1 Seating Plane A1 Side View Seating Plane ș View B Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging. Note: 1. $3LQLGHQWL¿HUPXVWEHORFDWHGLQWKHLQGH[DUHDLQGLFDWHG7KH3LQLGHQWL¿HUFDQEHDPROGHGPDUNLGHQWL¿HUDQHPEHGGHGPHWDOPDUNHURU a printed indicator. Symbol Dimension (mm) MIN NOM MAX A A1 2.80* 0.25 3.40 - A2 b D D1 E E1 e 2.55 0.30 23.65* 19.80* 17.65* 13.80* 2.80 - 23.90 20.00 17.90 14.00 0.50* 3.05 0.45 24.15* 20.20* 18.15* 14.20* L L1 L2 0.73 0.80 BSC 0.88 1.03 1.95 REF 0.25 BSC ș ș 0O 5O 3.5O - 7 O 16O JEDEC Registration MO-112, Variation CB-1, Issue B, Sept.1995. 7KLVGLPHQVLRQLVQRWVSHFL¿HGLQWKH-('(&GUDZLQJ Drawings not to scale. S D # DSPD 80PQFPPG V i C041309  2018 Microchip Technology Inc. DS20005856A-page 15 HV57009 NOTES: DS20005856A-page 16  2018 Microchip Technology Inc. HV57009 APPENDIX A: REVISION HISTORY Revision A (April 2018) • Converted Supertex Doc # DSFP-HV57009 to Microchip DS20005856A • Removed “HVCMOS® Technology” in the Features section • Changed the package marking format • Made minor changes throughout the document  2018 Microchip Technology Inc. DS20005856A-page 17 HV57009 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office. XX PART NO. Device - Package Options X - Environmental X Media Type Device: HV57009 = 64-Channel Serial-to-Parallel Converter with P-Channel Open Drain Controllable Output Current Package: PG = 80-lead PQFP Environmental: G = Lead (Pb)-free/RoHS-compliant Package Media Type: (blank) = 66/Tray for a PG Package DS20005856A-page 18 Example:  a) HV57009PG-G: 64-Channel Serial-to-Parallel Converter with P-Channel Open Drain Controllable Output Current, 80-lead PQFP, 66/Tray  2018 Microchip Technology Inc. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV Trademarks The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-2951-7 == ISO/TS 16949 ==  2018 Microchip Technology Inc. DS20005856A-page 19 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Australia - Sydney Tel: 61-2-9868-6733 India - Bangalore Tel: 91-80-3090-4444 China - Beijing Tel: 86-10-8569-7000 India - New Delhi Tel: 91-11-4160-8631 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 China - Chengdu Tel: 86-28-8665-5511 India - Pune Tel: 91-20-4121-0141 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 China - Chongqing Tel: 86-23-8980-9588 Japan - Osaka Tel: 81-6-6152-7160 Finland - Espoo Tel: 358-9-4520-820 China - Dongguan Tel: 86-769-8702-9880 Japan - Tokyo Tel: 81-3-6880- 3770 China - Guangzhou Tel: 86-20-8755-8029 Korea - Daegu Tel: 82-53-744-4301 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 China - Hangzhou Tel: 86-571-8792-8115 Korea - Seoul Tel: 82-2-554-7200 China - Hong Kong SAR Tel: 852-2943-5100 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 China - Nanjing Tel: 86-25-8473-2460 Malaysia - Penang Tel: 60-4-227-8870 China - Qingdao Tel: 86-532-8502-7355 Philippines - Manila Tel: 63-2-634-9065 China - Shanghai Tel: 86-21-3326-8000 Singapore Tel: 65-6334-8870 China - Shenyang Tel: 86-24-2334-2829 Taiwan - Hsin Chu Tel: 886-3-577-8366 China - Shenzhen Tel: 86-755-8864-2200 Taiwan - Kaohsiung Tel: 886-7-213-7830 Israel - Ra’anana Tel: 972-9-744-7705 China - Suzhou Tel: 86-186-6233-1526 Taiwan - Taipei Tel: 886-2-2508-8600 China - Wuhan Tel: 86-27-5980-5300 Thailand - Bangkok Tel: 66-2-694-1351 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 China - Xian Tel: 86-29-8833-7252 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Austin, TX Tel: 512-257-3370 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078 DS20005856A-page 20 China - Xiamen Tel: 86-592-2388138 China - Zhuhai Tel: 86-756-3210040 Germany - Garching Tel: 49-8931-9700 Germany - Haan Tel: 49-2129-3766400 Germany - Heilbronn Tel: 49-7131-67-3636 Germany - Karlsruhe Tel: 49-721-625370 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Rosenheim Tel: 49-8031-354-560 Italy - Padova Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-7289-7561 Poland - Warsaw Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820  2018 Microchip Technology Inc. 10/25/17
HV57009PG-G 价格&库存

很抱歉,暂时无法提供与“HV57009PG-G”相匹配的价格&库存,您可以联系我们找货

免费人工找货