0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MIC39100-1.65BT

MIC39100-1.65BT

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TO-220-3

  • 描述:

    IC REG LINEAR 1.65V 1A TO220-3

  • 数据手册
  • 价格&库存
MIC39100-1.65BT 数据手册
MIC39100/1/2 1A, Low Voltage, Low Dropout Regulator with Reversed-Battery Protection Features General Description • Fixed and Adjustable Output Voltages to 1.24V • 410 mV Typical Dropout at 1A Load - Best Recommended for 3.0V to 2.5V Conversion - Best Recommended for 2.5V to 1.8V Conversion • 1A Minimum Guaranteed Output Current • 1% Initial Accuracy • Low Ground Current • Current-Limiting and Thermal-Shutdown Protection • Reversed-Battery and Reversed-Leakage Protection • Fast Transient Response • Low Profile SOT-223 Package • Power SO-8 Package The MIC39100, MIC39101, and MIC39102 are 1A low dropout linear voltage regulators that provide low voltage, high current output from an extremely small package. The MIC39100/1/2 offers extremely low dropout (typically 410 mV at 1A) and low ground current (typically 11 mA at 1A). Applications • • • • • • LDO Linear Regulator for PC Add-In Cards High-Efficiency Linear Power Supplies SMPS Post Regulator Multimedia and PC Processor Supplies Battery Chargers Low Voltage Microcontrollers and Digital Logic The MIC39100 is a fixed output regulator offered in the SOT-223 package. The MIC39101 and MIC39102 are fixed and adjustable regulators, respectively, in a thermally enhanced 8-lead SOIC package. The MIC39100/1/2 is ideal for PC add-in cards that need to convert from standard 5V to 3.3V, 3.3V to 2.5V, or 2.5V to 1.8V. A guaranteed maximum dropout voltage of 630 mV over all operating conditions allows the MIC39100/1/2 to provide 2.5V from a supply as low as 3.13V and 1.8V from a supply as low as 2.43V. The MIC39100/1/2 is fully protected with overcurrent limiting, thermal-shutdown, and reverse-battery protection. Fixed voltages of 5.0V, 3.3V, 2.5V, and 1.8V are available on MIC39100/1 with adjustable output voltages to 1.24V on MIC39102. Package Types MIC39100-XX (FIXED) SOT-223 (S) (Top View) GND TAB 1 IN 2 3 GND OUT  2017 Microchip Technology Inc. MIC39102 (ADJ.) SOIC-8 (M) (Top View) MIC39101-XX (FIXED) SOIC-8 (M) (Top View) EN 1 8 GND EN 1 8 GND IN 2 7 GND IN 2 7 GND OUT 3 6 GND OUT 3 6 GND FLG 4 5 GND ADJ 4 5 GND DS20005834A-page 1 MIC39100/1/2 Typical Application Circuits 2.5V/1A Regulator MIC39100 VIN 3.3V IN OUT 2.5V 10μF TANTALUM GND 2.5V/1A Regulator with Error Flag 100kŸ ERROR FLAG OUTPUT MIC39101 VIN 3.3V IN 2.5V OUT R1 ENABLE SHUTDOWN EN FLG GND 10μF TANTALUM 1.5V/1A Adjustable Regulator VIN 2.5V ENABLE SHUTDOWN DS20005834A-page 2 MIC39102 IN OUT 1.5V R1 EN ADJ GND R2 10μF TANTALUM  2017 Microchip Technology Inc. MIC39100/1/2 Functional Block Diagrams MIC39100 Fixed Regulator OU T IN O.V. ILIMIT REFERENCE 1.240V 18V THERMAL SHUTDOWN MIC39100 GND MIC39101 Fixed Regulator with Flag and Enable OU T IN O.V. ILIMIT 1.180V FL G REFERENCE 18V 1.240V EN THERMAL SHUTDOWN GND MIC39101 MIC39102 Adjustable Regulator OU T IN O.V. ILIMIT 18V 1.240V REFERENCE ADJ EN THERMAL SHUTDOWN MIC39102  2017 Microchip Technology Inc. GND DS20005834A-page 3 MIC39100/1/2 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings † Supply Voltage (VIN).................................................................................................................................... –20V to +20V Enable Voltage (VEN) ................................................................................................................................................+20V ESD Rating ............................................................................................................................................................ Note 1 Maximum Power Dissipation (PD(MAX)) .................................................................................................................. Note 2 Operating Ratings ‡ Supply Voltage (VIN)................................................................................................................................. +2.25V to +16V Enable Voltage (VEN) ................................................................................................................................................+16V † Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. ‡ Notice: The device is not guaranteed to function outside its operating ratings. Note 1: Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 kΩ in series with 100 pF. 2: PD(MAX) = (TJ(MAX) – TA) ÷ θJA, where θJA depends upon the printed circuit layout (see Application Information). TABLE 1-1: ELECTRICAL CHARACTERISTICS Electrical Characteristics: VIN = VOUT + 1V; VEN = 2.25V; TJ = +25°C, bold values indicate –40°C ≤ TJ ≤ +125°C, unless noted. Note 1 Parameter Symbol Output Voltage VOUT Line Regulation Load Regulation Output Voltage Temperature Coefficient Dropout Voltage, Note 3 Ground Current, Note 4 Current Limit Min. Typ. Max. –1 — 1 Units Conditions IOUT = 10 mA % 10 mA ≤ IOUT ≤ 1A, VOUT +1V ≤ VIN ≤ 8V –2 — 2 — — 0.06 0.5 % IOUT = 10 mA, VOUT + 1V ≤ VIN ≤ 16V — — 0.2 1 % VIN = VOUT + 1V, 10 mA ≤ IOUT ≤ 1A ∆VOUT/ ∆T — 40 100 ppm/°C — 140 — 275 — — 300 500 VDO IGND IOUT(LIM) — 410 200 IOUT = 100 mA, ∆VOUT = –1% 250 mV 550 — 400 — 4 — — 6.5 — — 11 20 — 1.8 2.5 — — 0.8 2.25 — — IOUT = 500 mA, ∆VOUT = –1% IOUT = 750 mA, ∆VOUT = –1% IOUT = 1A, ∆VOUT = –1% 630 — Note 2 µA IOUT = 100 mA, VIN = VOUT + 1V mA IOUT = 750 mA, VIN = VOUT + 1V IOUT = 500 mA, VIN = VOUT + 1V IOUT = 1A, VIN = VOUT + 1V A VOUT = 0V, VIN = VOUT + 1V Enable Input Enable Input Voltage DS20005834A-page 4 VEN V Logic LOW (Off) Logic HIGH (On)  2017 Microchip Technology Inc. MIC39100/1/2 TABLE 1-1: ELECTRICAL CHARACTERISTICS (CONTINUED) Electrical Characteristics: VIN = VOUT + 1V; VEN = 2.25V; TJ = +25°C, bold values indicate –40°C ≤ TJ ≤ +125°C, unless noted. Note 1 Parameter Enable Input Current Symbol IEN Min. Typ. Max. 1 15 30 — — 75 — — 2 — — 4 Units Conditions VEN = 2.25V µA VEN = 0.8V Flag Output Output Leakage Voltage IFLG(LEAK) — 0.01 Output Low Voltage VFLG(DO) — 210 93 — Low Threshold High Threshold VFLG Hysteresis 1 2 300 400 µA VOH = 16V mV VIN = 2.250V, IOL = 250 µA, Note 5 — — — 99.2 — 1 — % of VOUT % % of VOUT — MIC39102 Only 1.228 Reference Voltage — 1.215 1.203 1.240 — Adjust Pin Bias Current — — 40 Reference Voltage Temperature Coefficient — — 20 Adjust Pin Bias Current Temperature Coefficient — — 0.1 Note 1: 2: 3: 4: 5: 6: 1.252 1.265 V Note 6 1.277 80 IOUT = 10 mA nA — — ppm/°C — — nA/°C — 120 Specification for packaged product only. Output voltage temperature coefficient is ∆VOUT(WORST CASE) ÷ (TJ(MAX) – TJ(MIN)), where TJ(MAX) = +125°C and TJ(MIN) = –40°C. VDO = VIN – VOUT when VOUT decreases to 99% of its nominal output voltage with VIN = VOUT + 1V. For output voltages below 2.25V, dropout voltage is the input-to-output voltage differential with the minimum input voltage being 2.25V. Minimum input operating voltage is 2.25V. IGND is the quiescent current (IIN = IGND + IOUT). For a 2.5V device, VIN = 2.250V (device is in dropout). VREF ≤ VOUT ≤ (VIN – 1V), 2.25V ≤ VIN ≤ 16V, 10 mA ≤ IL ≤ 1A, TJ = TMAX.  2017 Microchip Technology Inc. DS20005834A-page 5 MIC39100/1/2 TEMPERATURE SPECIFICATIONS (Note 1) Parameters Sym. Min. Typ. Max. Units Conditions Junction Operating Temperature Range TJ –40 — +125 °C Storage Temperature Range TS –65 — +150 °C — Lead Temperature — — — +260 °C Soldering, 5s Thermal Resistance SOT-223 JC — 15 — °C/W — Thermal Resistance SOIC-8 JC — 20 — °C/W — Temperature Ranges — Package Thermal Resistances Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability. DS20005834A-page 6  2017 Microchip Technology Inc. MIC39100/1/2 2.0 Note: TYPICAL PERFORMANCE CURVES The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. 80 80 VIN = 5V VOUT = 3.3V VIN = 3.3V VOUT = 2.5V 60 PSRR (dB) PSRR (dB) 60 40 20 0 10 IOUT = 1A COUT = 10μF CIN = 0μF 100 1K 40 20 10K 100K IOUT = 1A COUT = 47μF CIN = 0μF 0 1M 1E+1 10 1E+2 100 1E+3 1K 1E+4 10K 1E+5 100K 1E+6 1M FREQUENCY (Hz) Power Supply Rejection FIGURE 2-1: Ratio. FREQUENCY (Hz) PSRR (dB) 60 40 20 IOUT = 1A COUT = 47μF CIN = 0μF DROPOUT VOLTAGE (mV) 80 VIN = 5V VOUT = 3.3V Power Supply Rejection FIGURE 2-4: Ratio. 500 450 100 50 0 OUTPUT CURRENT (mA) FIGURE 2-5: Current. 40 IOUT = 1A COUT = 10μF CIN = 0μF 0 1E+1 10 1E+2 100 1E+3 1K 1E+4 10K 1E+5 100K 1E+6 1M DROPOUT VOLTAGE (mV) 60 PSRR (dB) 1E+2 250 1E+3 500 1E+4 750 1E+5 1000 1E+6 1250 Dropout Voltage vs. Output 600 VIN = 3.3V VOUT = 2.5V 550 Power Supply Rejection  2017 Microchip Technology Inc. ILOAD = 1A 1.8V 500 3.3V 450 400 2.5V 350 300 1E+2 –40 –20 0 1E+3 20 401E+4 60 1E+5 80 100 120 TEMPERATURE (°C) FREQUENCY (Hz) FIGURE 2-3: Ratio. TA = 25°C 150 0 80 20 1.8V 200 FREQUENCY (Hz) Power Supply Rejection 3.3V 250 0 1E+1 10 1E+2 100 1E+3 1K 1E+4 10K 1E+5 100K 1E+6 1M FIGURE 2-2: Ratio. 2.5V 400 350 300 FIGURE 2-6: Temperature. Dropout Voltage vs. DS20005834A-page 7 MIC39100/1/2 2.0 2.6 GROUND CURRENT (mA) OUTPUT VOLTAGE (V) 2.8 ILOAD = 100mA 2.4 2.2 ILOAD = 750mA 2.0 ILOAD = 1A 1.8 1.6 1.4 2 1E+2 1E+3 1E+4 2.3 2.6 2.9 1.8 1.6 1.2 1.0 0.8 ILOAD = 10mA 0.6 0.4 0.2 0 3.5 3.2 ILOAD = 100mA 1.4 0 Dropout Characteristics FIGURE 2-7: (2.5V). GROUND CURRENT (mA) OUTPUT VOLTAGE (V) 6 8 Ground Current vs. Supply FIGURE 2-10: Voltage (2.5V). ILOAD = 100mA 3.4 3.2 3.0 ILOAD = 750mA 2.8 ILOAD = 1A 2.6 1E+2 1E+3 1E+4 2.8 3.2 3.6 4.0 30 25 15 10 5 0 4.4 ILOAD = 1A 20 0 Dropout Characteristics FIGURE 2-8: (3.3V). 2 4 6 8 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) Ground Current vs. Supply FIGURE 2-11: Voltage (2.5V). 12 10 1.8V 2.5V 8 3.3V 6 4 2 GROUND CURRENT (mA) 1.4 14 GROUND CURRENT (mA) 4 35 3.6 2.4 2 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) 1.2 1.0 ILOAD = 100mA 0.8 0.6 ILOAD = 10mA 0.4 0.2 0 0 0 200 400 600 800 0 1000 DS20005834A-page 8 Ground Current vs. Output 4 6 8 SUPPLY VOLTAGE (V) OUTPUT CURRENT (mA) FIGURE 2-9: Current. 2 FIGURE 2-12: Voltage (3.3V). Ground Current vs. Supply  2017 Microchip Technology Inc. MIC39100/1/2 20 GROUND CURRENT (mA) GROUND CURRENT (mA) 50 40 ILOAD = 1A 30 20 10 2 4 6 15 8 10 Ground Current vs. Supply 20 40 60 80 100 120 Ground Current vs. FIGURE 2-16: Temperature. 3.40 0.8 ILOAD = 10mA 0.6 3.3V 2.5V 0.4 0.2 1.8V OUTPUT VOLTAGE (V) GROUND CURRENT (mA) 0 TEMPERATURE (°C) 1.0 3.35 3.30 3.25 TYPICAL 3.3V DEVICE 0 –40 –20 3.20 0 20 40 –40 –20 60 80 100 120 5.0 4.5 2.5V 4.0 3.3V 3.5 3.0 2.5 1.8V 2.0 1.5 1.0 0.5 ILOAD = 500mA 0 –40 –20 0 20 40 60 80 100 120 Ground Current vs.  2017 Microchip Technology Inc. 60 80 100 120 2.5 3.3V 2.0 1.5 2.5V 1.8V 1.0 0.5 0 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 2-15: Temperature. 20 40 Output Voltage vs. FIGURE 2-17: Temperature. SHORT-CIRCUIT CURRENT (A) Ground Current vs. FIGURE 2-14: Temperature. 0 TEMPERATURE (°C) TEMPERATURE (°C) GROUND CURRENT (mA) 3.3V 5 SUPPLY VOLTAGE (V) FIGURE 2-13: Voltage (3.3V). 1.8V 2.5V 0 –40 –20 0 0 ILOAD = 1A FIGURE 2-18: Temperature. Short-Circuit vs. DS20005834A-page 9 MIC39100/1/2 6 VOUT = 2.5V COUT = 10μF FLAG VOLTAGE (V) VIN = 5V 5 OUTPUT VOLTAGE (200mV/div) FLAG HIGH (OK) 4 3 1A 2 FLAG LOW (FAULT) 1 0 10 100 1K 10K 100K 1M 10M LOAD CURRENT (500mA/div) 100mA RESISTANCE (Ÿ) FIGURE 2-19: Error Flag Voltage vs. Pull-Up Resistor Value. TIME (250μs/div) FIGURE 2-22: Load Transient Response. ENABLE CURRENT (μA) 12 VIN = VOUT + 1V VEN = 2.4V 10 8 VOUT = 2.5V COUT = 47μF OUTPUT VOLTAGE (200mV/div) 6 4 1A 2 0 –40 –20 0 20 40 60 80 100 120 140 LOAD CURRENT (500mA/div) 10mA TEMPERATURE (°C) Enable Current vs. FIGURE 2-20: Temperature. TIME (500μs/div) FIGURE 2-23: Load Transient Response. FLAG VOLTAGE (mV) 250 200 VOUT = 2.5V COUT = 10μF FLAG-LOW VOLTAGE OUTPUT VOLTAGE (50mV/div) 150 100 VIN = 2.25V RPULL-UP = 22kŸ 50 INPUT VOLTAGE (2V/div) 0 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) FIGURE 2-21: Temperature. DS20005834A-page 10 Flag-Low Voltage vs. TIME (25μs/div) FIGURE 2-24: Line Transient Response.  2017 Microchip Technology Inc. MIC39100/1/2 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: PIN FUNCTION TABLE Pin Number MIC39100 Pin Number MIC39101 Pin Number MIC39102 Pin Name — 1 1 EN Enable (Input): CMOS-compatible control input. Logic HIGH = enable; logic LOW or OPEN = shutdown. 1 2 2 IN Supply (Input). Description 3 3 3 OUT Regulator Output. — 4 — FLG Flag (Output): Open-collector error flag output. Active LOW = output undervoltage. — — 4 ADJ Adjustable Input: Feedback input. Connect to resistive voltage-divider network. 2, TAB 5, 6, 7, 8 5, 6, 7, 8 GND Ground.  2017 Microchip Technology Inc. DS20005834A-page 11 MIC39100/1/2 4.0 APPLICATION INFORMATION The MIC39100/1/2 is a high performance, low dropout voltage regulator suitable for moderate to high current voltage regulator applications. Its 630 mV dropout voltage at full load and over temperature makes it especially valuable in battery-powered systems and as high efficiency noise filters in post-regulator applications. Unlike older NPN-pass transistor designs, where the minimum dropout voltage is limited by the base-to-emitter voltage drop and collector-to-emitter saturation voltage, dropout performance of the PNP output of these devices is limited only by the low VCE saturation voltage. A trade-off for the low dropout voltage is a varying base drive requirement that reduces the drive requirement to only 2% of the load current. The MIC39100/1/2 regulator is fully protected from damage due to fault conditions. Linear current limiting is provided. Output current during overload conditions is constant. Thermal shutdown disables the device when the die temperature exceeds the maximum safe operating temperature. Transient protection allows device (and load) survival even when the input voltage spikes above and below nominal. The output structure of these regulators allows voltages in excess of the desired output voltage to be applied without reverse current flow. The value of the output capacitor can be increased without limit. Higher capacitance values help to improve transient response and ripple rejection and reduce output noise. 4.2 Input Capacitor An input capacitor of 1 µF or greater is recommended when the device is more than four inches away from the bulk ac supply capacitance or when the supply is a battery. Small, surface mount, ceramic chip capacitors can be used for bypassing. Larger values will help to improve ripple rejection by bypassing the input to the regulator, further improving the integrity of the output voltage. 4.3 Error Flag The MIC39101 features an error flag (FLG) that monitors the output voltage and signals an error condition when this voltage drops 5% below its expected value. The error flag is an open-collector output that pulls low under fault conditions and may sink up to 10 mA. Low output voltage signifies a number of possible problems, including an overcurrent fault (the device is in current-limit) or low input voltage. The flag output is inoperative during overtemperature conditions. A pull-up resistor from FLG to either VIN or VOUT is required for proper operation. For information regarding the minimum and maximum values of pull-up resistance, refer to Figure 2-19. MIC39100-x.x. VIN IN CIN FIGURE 4-1: 4.1 OUT GND VOUT COUT Capacitor Requirements. Output Capacitor The MIC39100/1/2 requires an output capacitor to maintain stability and improve transient response. Proper capacitor selection is important to ensure proper operation. The MIC39100/1/2 output capacitor selection is dependent upon the equivalent series resistance (ESR) of the output capacitor to maintain stability. When the output capacitor is 10 µF or greater, the output capacitor should have an ESR less than 2Ω. This will improve transient response as well as promote stability. Ultra-low ESR capacitors (
MIC39100-1.65BT 价格&库存

很抱歉,暂时无法提供与“MIC39100-1.65BT”相匹配的价格&库存,您可以联系我们找货

免费人工找货