0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MIC920BC5-TR

MIC920BC5-TR

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TSSOP5

  • 描述:

    IC OPAMP GP 1 CIRCUIT SC70-5

  • 数据手册
  • 价格&库存
MIC920BC5-TR 数据手册
MIC920 80 MHz Low-Power SC70 Op Amp Features General Description • • • • • • • The MIC920 is a high-speed operational amplifier with a gain-bandwidth product of 80 MHz. The part is unity gain stable. It has a very low 550 μA supply current, and features the 5-Lead SC70 package. 80 MHz Gain Bandwidth Product 115 MHz –3dB Bandwidth 550 μA Supply Current (Typical) 5-Lead SC70 Package 3000V/μs Slew Rate (Typical) Drives Any Capacitive Load Unity Gain Stable Applications • • • • • Video Imaging Ultrasound Portable Equipment Line Drivers Supply voltage range is from ±2.5V to ±9V, allowing the MIC920 to be used in low voltage circuits or applications requiring large dynamic range. The MIC920 is stable driving any capacitative load and achieves excellent PSRR and CMRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC920 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables. Package Type Pin Configuration IN– V– IN+ 3 2 1 A37 4 5 OUT V+  2019 Microchip Technology Inc. Part Identification Functional Pinout ,1í 9í 3 2 IN+ 1 4 5 OUT V+ DS20006268A-page 1 MIC920 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings † Supply Voltage (VV+ to VV–) ....................................................................................................................................... 20V Differential Input Voltage (VIN+ to VIN–) (Note 1) .......................................................................................................... 4V Input Common Mode Range (VIN+ to VIN–) ...................................................................................................... VV+ to VV– ESD Rating (Note 2)................................................................................................................................................1.5 kV Operating Ratings ‡ Supply Voltage (VS)...................................................................................................................................... ±2.5V to ±9V † Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. ‡ Notice: The device is not guaranteed to function outside the operating ratings. Note 1: 2: Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to change). Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 kΩ in series with 100 pF. Pin 4 is ESD sensitive. DS20006268A-page 2  2019 Microchip Technology Inc. MIC920 ELECTRICAL CHARACTERISTICS (±5V) Electrical Characteristics: V+ = +5V, V– = –5V, VCM = 0V, RL = 10 MΩ; TA = 25°C, unless otherwise noted. Parameters Symbol Min. Typ. Max. Units Conditions Input Offset Voltage VOS — 0.43 5 mV –40°C ≤ TJ ≤ +85°C Input Offset Voltage ΔVOS/ΔTA Temperature Coefficient — 1 — μV/°C –40°C ≤ TJ ≤ +85°C Input Bias Current IB — 0.26 0.6 μA –40°C ≤ TJ ≤ +85°C Input Offset Current IOS — 0.04 0.3 μA –40°C ≤ TJ ≤ +85°C Input Common-Mode Range VCM –3.25 — +3.25 V CMRR > 72 dB, –40°C ≤ TJ ≤ +85°C Common-Mode Rejection Ratio CMRR 75 85 — dB –2.5V < VCM < +2.5V Power Supply Rejection Ratio PSRR 95 104 — dB ±3.5V < VS < ±9V Large-Signal Voltage Gain AVOL 65 82 — dB RL = 2k, VOUT = ±2V — 85 — dB RL = 100Ω, VOUT = ±1V +3.0 3.6 — V Positive, RL = 2 kΩ –40°C ≤ TJ ≤ +85°C — –3.6 –3.0 V Negative, RL = 2 kΩ –40°C ≤ TJ ≤ +85°C Maximum Output Voltage Swing VOUT Unity Gain-Bandwidth Product GBW — 67 — MHz Phase Margin PM — 32 — ° –3 dB Bandwidth BW — 100 — MHz AV = 1, CL = 1.7 pF, RL = 1 kΩ Slew Rate SR — 1350 — V/μs C = 1.7 pF, Gain = 1, VOUT = 5V, Peak to Peak, Positive SR = 1190V/μs Short-Circuit Output Current ISC 45 63 — 20 45 — Supply Current IS — 0.55 0.80 mA Input Voltage Noise — — 11 — nV/√Hz f = 10 kHz Input Current Noise — — 0.7 — pA/√Hz f = 10 kHz  2019 Microchip Technology Inc. mA CL = 1.7 pF — Source Sink No load, –40°C ≤ TJ ≤ +85°C DS20006268A-page 3 MIC920 ELECTRICAL CHARACTERISTICS Electrical Characteristics: V+ = +9V, V– = –9V, VCM = 0V RL = 10 MΩ; TJ = 25°C, unless otherwise noted. Parameters Symbol Min. Typ. Max. Units Conditions Input Offset Voltage VOS — 0.3 5 mV –40°C ≤ TJ ≤ +85°C Input Offset Voltage Temperature Coefficient ΔVOS/ΔTA — 1 — μV/°C –40°C ≤ TJ ≤ +85°C IB — 0.23 0.60 μA –40°C ≤ TJ ≤ +85°C Input Offset Current IOS — 0.04 0.3 μA –40°C ≤ TJ ≤ +85°C Input Common-Mode Range VCM –7.25 — +7.25 V CMRR > 75 dB, –40°C ≤ TJ ≤ +85°C Common-Mode Rejection Ratio CMRR 60 91 — dB –6.5V < VCM < +6.5V Power Supply Rejection Ratio PSRR 95 104 — dB ±3.5V < VS < ±9V Large-Signal Voltage Gain AVOL 75 84 — dB RL = 2k, VOUT = ±2V — 93 — dB RL = 100Ω, VOUT = ±1V 6.5 7.5 — V Positive, RL = 2 kΩ, –40°C ≤ TJ ≤ +85°C — –7.5 –6.2 V Negative, RL = 2 kΩ –40°C ≤ TJ ≤ +85°C 80 — MHz Input Bias Current Maximum Output Voltage Swing VOUT Unity Gain-Bandwidth Product GBW — Phase Margin PM — 30 — ° –3 dB Bandwidth BW — 115 — MHz AV = 1, CL = 1.7 pF, RL = 1 kΩ Slew Rate SR — 3000 — V/μs C = 1.7 pF, Gain = 1, VOUT = 5V, Peak to Peak, Positive SR = 2500V/μs Short-Circuit Output Current ISC 50 65 — 30 50 — Supply Current IS — 0.55 0.8 mA Input Voltage Noise — — 10 — nV/√Hz f = 10 kHz Input Current Noise — — 0.8 — pA/√Hz f = 10 kHz DS20006268A-page 4 mA CL = 1.7 pF — Source Sink No load, –40°C ≤ TJ ≤ +85°C  2019 Microchip Technology Inc. MIC920 TEMPERATURE SPECIFICATIONS (Note 1) Parameters Symbol Min. Typ. Max. Units Conditions Storage Temperature TS — — 150 °C Operating Junction Temperature Range TJ –40 — +85 °C — Lead Temperature — — — 260 °C Soldering, 5 sec. — — 450 — °C/W Temperature Ranges — Package Thermal Resistance Thermal Resistance SC70 Note 1: — The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +85°C rating. Sustained junction temperatures above +85°C can impact the device reliability.  2019 Microchip Technology Inc. DS20006268A-page 5 MIC920 2.0 Note: TYPICAL PERFORMANCE CURVES The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. 1.2 Vr = r2.5V 1.15 1.1 Vr = r5V 1.05 Vr = r9V 1 0.95 OFFSET VOLTAGE (mV) OFFSET VOLTAGE (mV) 1.25 0.9 -40 -20 0 20 40 60 80 100 TEMPERATURE q(C) FIGURE 2-1: Temperature. Offset Voltage vs. 2.2 2 Vr = r2.5V 1.8 1.6 –40qC 1.4 1.2 +25qC 1 0.8 0.6 0.4 0.2 +85qC 0 -900 -540 -180 180 540 900 COMMON-MODE VOLTAGE (V) FIGURE 2-4: Offset Voltage vs. Common-Mode Voltage. 0.55 Vr = r5V 0.50 Vr = r2.5V 0.45 0.40 0.35 0.30 -40 -20 0 20 40 60 80 100 TEMPERATURE q(C) +85qC +25qC –40qC 3.8 5.1 6.4 7.7 SUPPLY VOLTAGE (V) FIGURE 2-3: Voltage. DS20006268A-page 6 9 Supply Current vs. Supply –40qC +25qC +85qC COMMON-MODE VOLTAGE (V) FIGURE 2-5: Offset Voltage vs. Common-Mode Voltage. OFFSET VOLTAGE (mV) 0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.46 0.44 0.42 0.40 2.5 Supply Current vs. Vr = r5V 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 Vr = r9V –40qC +25qC +85qC -7.40 -5.92 -4.44 -2.96 -1.48 0 1.48 2.96 4.44 5.92 7.40 SUPPLY CURRENT (mA) FIGURE 2-2: Temperature. 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -3.40 -2.72 -2.04 -1.36 -0.68 0 0.68 1.36 2.04 2.72 3.40 SUPPLY CURRENT (mA) Vr = r9V OFFSET VOLTAGE (mV) 0.60 COMMON-MODE VOLTAGE (V) FIGURE 2-6: Offset Voltage vs. Common-Mode Voltage.  2019 Microchip Technology Inc. 5.5 5.0 4.5 4.0 85qC 3.5 3.0 2.5 –40qC 2.0 1.5 1.0 0.5 0 FIGURE 2-10: Current (Sinking). 25qC 11 10 9 8 7 6 5 4 3 2 1 0 Vr = r9V 25qC –40qC 85qC FIGURE 2-11: Output Voltage vs. Output Current (Sourcing). 1 25qC 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 OUTPUT CURRENT (mA) FIGURE 2-9: Output Voltage vs. Output Current (Sourcing).  2019 Microchip Technology Inc. Output Voltage vs. Output OUTPUT CURRENT (mA) Vr = r5V 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 OUTPUT VOLTAGE (V) FIGURE 2-8: Short Circuit Current vs. Supply Voltage (Sinking). OUTPUT CURRENT (mA) Vr = r9V 85qC –40qC 50 45 40 35 30 25 20 15 10 5 0 SHORT-CIRCUIT CURRENT (mA) 17 20 23 26 29 32 35 38 25qC 85qC 41 44 47 –40qC 50 2.0 3.4 4.8 6.2 7.6 9.0 SUPPLY VOLTAGE (V) –40qC 45.0 40.5 36.0 31.5 27.0 22.5 18.0 13.5 9.0 4.5 0 3.4 4.8 6.2 7.6 9.0 SUPPLY VOLTAGE (V) FIGURE 2-7: Short Circuit Current vs. Supply Voltage (Sourcing). Vr = r5V 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 85qC OUTPUT VOLTAGE (V) –40qC 25qC 0.5 85qC 0 -0.5 -1.0 -1.5 -2.0 25qC -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 OUTOUT VOLTAGE (V) 84 80 76 72 68 64 60 56 52 48 44 40 2.0 OUTOUT VOLTAGE (V) SHORT-CIRCUIT CURRENT (mA) MIC920 OUTPUT CURRENT (mA) FIGURE 2-12: Current (Sinking). Output Voltage vs. Output DS20006268A-page 7 MIC920 BIAS CURRENT (PA) 0.30 0.25 r5V 0.20 0.15 r9V 0.10 0.05 CLOSED-LOOP GAIN (dB) 0.35 0.00 -40 -20 0 20 40 60 80 100 TEMPERATURE q(C) Closed-Loop Frequency 25 20 15 10 5 r9.0V 0 r5.0V -5 r2.5V -10 -15 Av = 2 R = RI = 475: -20 F -25 1E+6 10E+6 100E+6 200E+6 1M 100M 10M FREQUENCY (Hz) FIGURE 2-15: Response. DS20006268A-page 8 Closed-Loop Frequency FIGURE 2-16: Frequency. CLOSED-LOOP GAIN (dB) 25 20 15 10 5 r9.0V 0 -5 r5.0V -10 r2.5V -15 Av = –1 -20 R+ = R = 475: I -25 1E+6 10E+6 100E+6 200E+6 1M 100M 10M FREQUENCY (Hz) FIGURE 2-14: Response. GAIN (dB) Bias Current vs. Closed-Loop Gain vs. 50 40 30 20 1.7pF 10 200pF 0 100pF -10 1000pF 800pF -20 600pF 400pF -30 Vr = r9V -40 Av = 1 -50 1E+6 1E+7 1E+8 2E+8 1M 10M 100M FREQUENCY (Hz) FIGURE 2-17: Response. OPEN-LOOP GAIN (dB) GAIN (dB) FIGURE 2-13: Temperature. 50 40 30 20 10 400pF 200pF 0 0 100pF -10 1000pF 800pF -20 600pF -30 Vr = r5V -40 Av = 1 -50 1E+6 10E+6 100E+6 200E+6 100M 1M 10M FREQUENCY (Hz) Closed-Loop Frequency 50 Vr = r5V 40 30 20 121pF 50pF 10 1.7pF 0 1000pF 471pF -10 200pF -20 -30 -40 -50 6 6 10M6 100M 1M 6 1x10 10x10 100x10 200x10 FREQUENCY (Hz) FIGURE 2-18: Frequency. Open-Loop Gain vs.  2019 Microchip Technology Inc. 33 70 31 65 29 60 27 55 Gain Bandwidth 50 25 0 1 2 3 4 5 6 7 8 9 10 SUPPLY VOLTAGE (rV) FIGURE 2-20: Gain Bandwidth and Phase Margin vs. Supply Voltage. 40 Phase Margin 35 30 20 Gain Bandwidth 10 0 0 25 20 200 400 600 800 1000 CAPACITIVE LOAD (pF) FIGURE 2-21: Margin vs. Load. Gain Bandwidth and Phase  2019 Microchip Technology Inc. PHASE MARGIN (q) 35 30 30 Gain Bandwidth 20 10 25 20 200 400 600 800 1000 CAPACITIVE LOAD (pF) Gain Bandwidth and Phase 100 Vr = r5V 100: 60 -20 180 135 No Load 20 0 225 Phase 90 40 Gain 45 0 100: -45 -40 -90 -60 -135 -80 -180 -100 100k FIGURE 2-23: Response. 45 50 40 40 -225 1M 10M 100M CAPACITIVE LOAD (pF) Open-Loop Frequency 50 PHASE MARGIN (q) GAIN BANDWIDTH (MHz) Vr = r5V 60 30 50 100 80 60 40 20 0 -20 -40 -60 -80 -100 100k FIGURE 2-24: Response. 225 180 100: 135 Phase 90 No Load 45 0 Gain 100: -45 -90 -135 -180 -225 1M 10M 100M CAPACITIVE LOAD (pF) Vr = r9V PHASE MARGIN (q) 75 40 Phase Margin PHASE M ARG IN (q) 35 70 45 60 80 80 55 50 70 FIGURE 2-22: Margin vs. Load. 37 Phase Margin PHASE MARGIN (q) GAIN BANDWIDTH (MHz) 85 Open-Loop Gain vs. Vr = r9V 80 0 0 G A IN B A N D W ID T H (d B ) FIGURE 2-19: Frequency. 90 GAIN BANDWIDTH (MHz) 50 Vr = r9V 40 30 20 121pF 50pF 10 1.7pF 0 1000pF 471pF -10 200pF -20 -30 -40 -50 6 6 10M6 100M 1M 6 1x10 10x10 100x10 200x10 FREQUENCY (Hz) GAIN BANDWIDTH (dB) OPEN-LOOP GAIN (dB) MIC920 Open-Loop Frequency DS20006268A-page 9 MIC920 120 120 V± = ±9V 100 100 80 80 PSRR (dB) PSRR (dB) V± = ±5V 60 40 60 40 20 0 0.1 20 1 FIGURE 2-25: Frequency. 10 100 1k FREQUENCY (kHz) 0 0.1 10k Positive PSRR vs. FIGURE 2-28: Frequency 120 V± = ±5V 80 CMRR (dB) PSRR (dB) 100 60 40 20 0 0.1 1 FIGURE 2-26: Frequency. 10 100 1k FREQUENCY (kHz) 10k Negative PSRR vs. 100 90 80 70 60 50 40 30 20 10 0 100x10 100 0 FIGURE 2-29: Ratio. 1 10 100 1k FREQUENCY (kHz) 10k Negative PSRR vs. V± = ±5V 1x10 1k3 10x10 10k3 100x10 100k3 1x10 1M6 10x10 10M6 FREQUENCY (Hz) Common-Mode Rejection 120 V± = ±9V 80 CMRR (dB) PSRR (dB) 100 60 40 20 0 0.1 1 FIGURE 2-27: Frequency DS20006268A-page 10 10 100 1k FREQUENCY (kHz) 10k Positive PSRR vs. 100 90 80 70 60 50 40 30 20 10 0 100x10 100 0 FIGURE 2-30: Ratio. V± = ±9V 1x10 1k3 10x10 10k3 100x10 100k3 1x10 1M6 10x10 10M6 FREQUENCY (Hz) Common-Mode Rejection  2019 Microchip Technology Inc. MIC920 1400 3000 V± = ±5V 1000 800 600 400 2000 1500 1000 500 200 Positive Slew Rate. 1200 V± = ±5V SLEW RATE (V/μs) 1000 800 600 400 200 0 0 FIGURE 2-32: Negative Slew Rate. SLEW RATE (V/μs) Negative Slew Rate. 60 50 40 30 20 10 0 10 FIGURE 2-35: Frequency. 100 1000 10000 100000 FREQUENCY (Hz) Voltage Noise Density vs. 2.5 V± = ±9V 3000 2500 2000 1500 1000 500 FIGURE 2-33: 200 400 600 800 1000 LOAD CAPACITANCE (pF) 70 200 400 600 800 1000 LOAD CAPACITANCE (pF) 3500 0 0 FIGURE 2-34: NOISE VOLTAGE (nV/Hz1/2) FIGURE 2-31: 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) 200 400 600 800 1000 LOAD CAPACITANCE (pF) Positive Slew Rate.  2019 Microchip Technology Inc. NOISE CURRENT (pA/Hz1/2) 0 0 V± = ±9V 2500 SLEW RATE (V/μs) SLEW RATE (V/μs) 1200 2.0 1.5 1.0 0.5 0 10 FIGURE 2-36: Frequency. 100 1000 10000 100000 FREQUENCY (Hz) Current Noise Density vs. DS20006268A-page 11 TIME (100ns/div) VCC = ±5.0V CL = 1.7μF Av = 1.0V/V TIME (100ns/div) FIGURE 2-40: Response. TIME (100ns/div) VCC = ±9.0V CL = 100pF Av = +1 FIGURE 2-41: Response. DS20006268A-page 12 Small Signal Pulse VCC = ±5.0V CL = 1000pF Av = +1V/V OUTPUT (50mV/div) TIME (100ns/div) FIGURE 2-39: Response. VCC = ±9.0V CL = 1000pF Av = +1V/V TIME (100ns/div) INPUT (50mV/div) Small Signal Pulse OUTPUT (50mV/div) INPUT (50mV/div) FIGURE 2-38: Response. Small Signal Pulse OUTPUT (50mV/div) INPUT (50mV/div) Small Signal Pulse OUTPUT (50mV/div) INPUT (50mV/div) FIGURE 2-37: Response. VCC = ±5.0V CL = 100pF Av = +1V/V OUTPUT (50mV/div) INPUT (50mV/div) VCC = ±9.0V CL = 1.7μF Av = 1.0V/V OUTPUT (50mV/div) INPUT (50mV/div) MIC920 Small Signal Pulse TIME (100ns/div) FIGURE 2-42: Response. Small Signal Pulse  2019 Microchip Technology Inc. MIC920 OUTPUT (2V/div) OUTPUT (2V/div) V = ±5V CL = 1.7pF Av = 1 Positive SR = 1350V/μsec Negative SR = 1190V/sec V = ±9V CL = 100pF Av = 1 Positive SR = 672V/μsec Negative SR = 424V/sec TIME (10ns/div) FIGURE 2-43: Large Signal Response. TIME (50ns/div) FIGURE 2-46: Large Signal Response. Output (2V/div) OUTPUT (2V/div) V = ±5V CL = 1000pF Av = 1 Positive SR = 75V/μsec Negative SR = 41V/sec V = ±9V CL = 1.7pF Av = 1 Positive SR = 3000V/μsec Negative SR = 2500V/μsec TIME (10ns/div) FIGURE 2-44: Large Signal Response. TIME (100ns/div) FIGURE 2-47: Large Signal Response. OUTPUT (2V/div) OUTPUT (2V/div) V = ±5V CL = 100pF Av = 1 Positive SR = 373V/μsec Negative SR = 290V/sec V = ±9V CL = 1000pF Av = 1 Positive SR = 97V/μsec Negative SR = 60V/sec TIME (50ns/div) FIGURE 2-45: Large Signal Response.  2019 Microchip Technology Inc. TIME (100ns/div) FIGURE 2-48: Large Signal Response. DS20006268A-page 13 MIC920 3.0 TEST CIRCUITS V+ 10μF V+ R2 5k 10μF 0.1μF Ÿ BNC Input BNC 0.1μF 10k 10k 10k R1 5k Input 3 4 BNC Output 5 0.1μF MIC920 4 BNC Output 1 5EŸ 5DŸ 5 MIC920 3 R7c 2k 2k 2 0.1μF R6 1 2 5k Ÿ R3 200k 0.1μF BNC 10μF V– All resistors 1% R4 Ÿ Input 50 R5 5k 0.1μF § R2 R2 + R 5 + R4 · VOUT = VERROR ¨1 + + ¸ © R1 ¹ R7 All resistors: 1% metal film 10μF V– FIGURE 3-1: PSRR vs. Frequency. 100pF FIGURE 3-3: V+ CMRR vs. Frequency. V+ 10μF 10pF R1 Ÿ 10μF 3 R3 27k S1 S2 R5 Ÿ R2 4k 3 5 MIC920 0.1μF MIC920 4 BNC 1 2 R4 27k 0.1μF 5 0.1F To Dynamic Analyzer VIN Ÿ 4 1 2 0.1μF 1k Ÿ VOUT FET Probe CL 10μF 10pF 10μF V– V– FIGURE 3-2: DS20006268A-page 14 Noise Measurement. FIGURE 3-4: Closed Loop Frequency Response Measurement.  2019 Microchip Technology Inc. MIC920 4.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 4-1. TABLE 4-1: PIN FUNCTION TABLE Pin Number Symbol Description 1 IN+ Non-inverting input. 2 V– Negative Supply (Input). 3 IN– Inverting Input. 4 OUT Output: Amplifier Output 5 V+ Positive Supply (Input).  2019 Microchip Technology Inc. DS20006268A-page 15 MIC920 5.0 APPLICATION INFORMATION The MIC920 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable, capable of driving high capacitance loads. 5.1 Driving High Capacitance The MIC920 is stable when driving high capacitance, making it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive limited capacitance. Note: 5.2 Increasing load capacitance does reduce the speed of the device. In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (
MIC920BC5-TR 价格&库存

很抱歉,暂时无法提供与“MIC920BC5-TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货