Ultralow Distortion,
Ultralow Noise Op Amp
AD797
Data Sheet
FEATURES
GENERAL DESCRIPTION
Low noise
0.9 nV/√Hz typical (1.2 nV/√Hz maximum) input voltage
noise at 1 kHz
50 nV p-p input voltage noise, 0.1 Hz to 10 Hz
Low distortion
−120 dB total harmonic distortion at 20 kHz
Excellent ac characteristics
800 ns settling time to 16 bits (10 V step)
110 MHz gain bandwidth (G = 1000)
8 MHz bandwidth (G = 10)
280 kHz full power bandwidth at 20 V p-p
20 V/μs slew rate
Excellent dc precision
80 μV maximum input offset voltage
1.0 μV/°C VOS drift
Specified for ±5 V and ±15 V power supplies
High output drive current of 50 mA
The AD797 is a very low noise, low distortion operational amplifier
ideal for use as a preamplifier. The low noise of 0.9 nV/√Hz and
low total harmonic distortion of −120 dB in audio bandwidths
give the AD797 the wide dynamic range necessary for preamps
in microphones and mixing consoles.
APPLICATIONS
Furthermore, the AD797 has an excellent slew rate of 20 V/μs
and a 110 MHz gain bandwidth, which makes it highly suitable
for low frequency ultrasound applications.
The AD797 is also useful in infrared (IR) and sonar imaging
applications, where the widest dynamic range is necessary. The
low distortion and 16-bit settling time of the AD797 make it
ideal for buffering the inputs to Σ-Δ ADCs or the outputs of
high resolution DACs, especially when the device is used in
critical applications such as seismic detection or in spectrum
analyzers. Key features such as a 50 mA output current drive
and the specified power supply voltage range of ±5 V to ±15 V
make the AD797 an excellent general-purpose amplifier.
5
4
3
2
1
0
10
100
1k
10k
100k
10M
1M
FREQUENCY (Hz)
00846-002
INPUT VOLTAGE NOISE (nV/√Hz)
Professional audio preamplifiers
IR, CCD, and sonar imaging systems
Spectrum analyzers
Ultrasound preamplifiers
Seismic detectors
Σ-Δ ADC/DAC buffers
Figure 1. AD797 Voltage Noise Spectral Density
Table 1. Low Noise Op Amps
Voltage Noise
Single
Dual
Quad
Rev. K
0.9 nV
AD797
1.1 nV
AD8597
AD8599
1.8 nV
ADA4004-1
ADA4004-2
ADA4004-4
2.8 nV
AD8675/ADA4075-2
AD8676
3.2 nV
OP27
OP270
OP470
3.8 nV
AD8671
AD8672
AD8674
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©1992–2015 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
AD797
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Noise and Source Impedance Considerations ........................... 12
Applications ....................................................................................... 1
Low Frequency Noise ................................................................ 12
General Description ......................................................................... 1
Wideband Noise ......................................................................... 12
Revision History ............................................................................... 2
Bypassing Considerations ......................................................... 13
Specifications..................................................................................... 3
The Noninverting Configuration ............................................. 13
Absolute Maximum Ratings............................................................ 5
The Inverting Configuration .................................................... 14
Pin Configuration ............................................................................. 5
Driving Capacitive Loads .......................................................... 14
Thermal Resistance ...................................................................... 5
Settling Time ............................................................................... 14
ESD Caution .................................................................................. 5
Distortion Reduction ................................................................. 15
Typical Performance Characteristics ............................................. 6
Outline Dimensions ....................................................................... 18
Theory of Operation ...................................................................... 11
Ordering Guide .......................................................................... 19
REVISION HISTORY
3/15—Rev. J to Rev. K
Changes to Figure 35 ...................................................................... 12
Changes to Ordering Guide .......................................................... 19
2/14—Rev. I to Rev. J
Changes to Power Supply Rejection Parameter, Table 2 ............. 3
3/13—Rev. H to Rev. I
Added Figure 18................................................................................ 8
6/10—Rev. G to Rev. H
Added Table 1; Renumbered Sequentially .................................... 1
Moved Figure 1 to Absolute Maximum Ratings Section;
Renumbered Sequentially................................................................ 5
Changes to Table 3 ............................................................................ 5
Added Thermal Resistance Section and Table 4 .......................... 5
Moved Figure 3 to Typical Performance Characteristics
Section .............................................................................................. 10
Change to Noise and Source Impedance Considerations
Section .............................................................................................. 12
Changes to Ordering Guide .......................................................... 19
7/05—Rev. D to Rev. E
Updated Figure 1 Caption ................................................................1
Deleted Metallization Photo ............................................................6
Changes to Equation 1 ................................................................... 12
Updated Outline Dimensions ....................................................... 19
Changes to Ordering Guide .......................................................... 20
10/02—Rev. C to Rev. D
Deleted 8-Lead CERDIP Package (Q-8) ......................... Universal
Edits to Specifications .......................................................................2
Edits to Absolute Maximum Ratings ..............................................3
Edits to Ordering Guide ...................................................................3
Edits to Table I ...................................................................................9
Deleted Operational Amplifiers Graphic .................................... 15
Updated Outline Dimensions ....................................................... 15
9/08—Rev. F to Rev. G
Changes to Input Common-Mode Voltage Range Parameter,
Table 1 ................................................................................................ 3
1/08—Rev. E to Rev. F
Changes to Absolute Maximum Ratings ....................................... 5
Change to Equation 1 ..................................................................... 12
Changes to the Noninverting Configuration Section ................ 13
Updated Outline Dimensions ....................................................... 19
Changes to Ordering Guide .......................................................... 20
Rev. K | Page 2 of 19
Data Sheet
AD797
SPECIFICATIONS
TA = 25°C and VS = ±15 V dc, unless otherwise noted.
Table 2.
AD797A
Parameter
INPUT OFFSET VOLTAGE
Conditions
Supply
Voltage (V)
±5 V, ±15 V
Min
TMIN to TMAX
Offset Voltage Drift
INPUT BIAS CURRENT
±5 V, ±15 V
±5 V, ±15 V
TMIN to TMAX
INPUT OFFSET CURRENT
OPEN-LOOP GAIN
DYNAMIC PERFORMANCE
Gain Bandwidth Product
–3 dB Bandwidth
Full Power Bandwidth1
Slew Rate
Settling Time to 0.0015%
COMMON-MODE REJECTION
POWER SUPPLY REJECTION
INPUT VOLTAGE NOISE
INPUT CURRENT NOISE
INPUT COMMON-MODE
VOLTAGE RANGE
OUTPUT VOLTAGE SWING
Short-Circuit Current
Output Current3
TOTAL HARMONIC
DISTORTION
±5 V, ±15 V
TMIN to TMAX
VOUT = ±10 V
RLOAD = 2 kΩ
TMIN to TMAX
RLOAD = 600 Ω
TMIN to TMAX
At 20 kHz1
G = 1000
G = 10002
G = 10
VOUT = 20 V p-p,
RLOAD = 1 kΩ
RLOAD = 1 kΩ
10 V step
VCM = CMVR
TMIN to TMAX
VS = ±5 V to ±18 V
TMIN to TMAX
f = 0.1 Hz to 10 Hz
f = 10 Hz
f = 1 kHz
f = 10 Hz to 1 MHz
f = 1 kHz
RLOAD = 2 kΩ
RLOAD = 600 Ω
RLOAD = 600 Ω
RLOAD = 1 kΩ, CN = 50 pF,
f = 250 kHz, 3 V rms
RLOAD = 1 kΩ,
f = 20 kHz, 3 V rms
±15 V
1
1
1
1
14,000
±15 V
15 V
±15 V
±15 V
±15 V
±15 V
±5 V, ±15 V
±15 V
±15 V
±15 V
±15 V
±15 V
±15 V
±5 V
±15 V
±15 V
±5 V
±5 V, ±15 V
±5 V, ±15 V
±15 V
12.5
114
110
114
110
±11
±2.5
±12
±11
±2.5
30
±15 V
Rev. K | Page 3 of 19
Typ
25
50
0.2
0.25
0.5
100
120
20
6
15
5
20,000
AD797B
Max
80
125/180
1.0
1.5
3.0
400
600/700
Min
2
2
2
2
14,000
110
450
8
280
110
450
8
20
800
130
120
130
120
50
1.7
0.9
1.0
2.0
±12
12.5
±3
±13
±13
±3
80
50
−98
−120
1200
120
114
120
114
1.2
1.3
±11
±2.5
±12
±11
±2.5
Typ
10
30
0.2
0.25
0.25
80
120
20
10
15
7
20,000
Max
40
60
0.6
0.9
2.0
200
300
Unit
μV
μV
μV/°C
μA
μA
nA
nA
V/μV
V/μV
V/μV
V/μV
V/V
280
MHz
MHz
MHz
kHz
20
800
130
120
130
120
50
1.7
0.9
1.0
2.0
±12
V/μs
ns
dB
dB
dB
dB
nV p-p
nV/√Hz
nV/√Hz
μV rms
pA/√Hz
V
1200
2.5
1.2
1.2
−90
±3
±13
±13
±3
80
50
−98
−90
V
V
V
V
mA
mA
dB
−110
−120
−110
dB
30
AD797
Data Sheet
AD797A
Parameter
INPUT CHARACTERISTICS
Input Resistance
Differential
Common Mode
Input Capacitance
Differential4
Common Mode
OUTPUT RESISTANCE
POWER SUPPLY
Operating Range
Quiescent Current
Conditions
Supply
Voltage (V)
Min
AV = 1, f = 1 kHz
Typ
1
Max
3
Rev. K | Page 4 of 19
Typ
Max
Unit
7.5
100
kΩ
MΩ
20
5
3
20
5
3
pF
pF
mΩ
±18
10.5
V
mA
8.2
±18
10.5
Full power bandwidth = slew rate/2π VPEAK.
Specified using external decompensation capacitor.
Output current for |VS − VOUT| > 4 V, AOL > 200 kΩ.
4
Differential input capacitance consists of 1.5 pF package capacitance and 18.5 pF from the input differential pair.
2
Min
7.5
100
±5
±5 V, ±15 V
AD797B
±5
8.2
Data Sheet
AD797
ABSOLUTE MAXIMUM RATINGS
PIN CONFIGURATION
Parameter
Supply Voltage
Input Voltage
Differential Input Voltage1
Output Short-Circuit Duration
Storage Temperature Range
(N, R Suffix)
Operating Temperature Range
Lead Temperature (Soldering 60 sec)
1
Ratings
±18 V
±VS
±0.7 V
Indefinite within
maximum internal
power dissipation
−65°C to +125°C
–IN 2
DECOMPENSATION
AND DISTORTION
NEUTRALIZATION
7 +VS
+IN 3
6
OUTPUT
–VS 4
5
OFFSET NULL
OFFSET NULL 1
AD797
TOP VIEW
8
00846-001
Table 3.
Figure 2. 8-Lead Plastic Dual In-Line Package [PDIP] and
8-Lead Standard Small Outline Package [SOIC]
THERMAL RESISTANCE
θJA is specified for the device soldered on a 4-layer JEDEC
standard printed circuit board (PCB) with zero airflow for the
SOIC package, and a 2-layer JEDEC standard printed circuit
board (PCB) with zero airflow for the PDIP package.
−40°C to +85°C
300°C
The AD797 inputs are protected by back-to-back diodes. To achieve low
noise, internal current-limiting resistors are not incorporated into the design
of this amplifier. If the differential input voltage exceeds ±0.7 V, the input
current should be limited to less than 25 mA by series protection resistors.
Note, however, that this degrades the low noise performance of the device.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Table 4. Thermal Resistance
Package Type
8-Lead SOIC (R-8)
8-Lead PDIP (N-8)
ESD CAUTION
Rev. K | Page 5 of 19
θJA
120
103
θJC
43
50
Unit
°C/W
°C/W
AD797
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
10
5
0
5
10
15
20
SUPPLY VOLTAGE (±V)
HORIZONTAL SCALE (5sec/DIV)
Figure 3. Input Common-Mode Voltage Range vs. Supply Voltage
Figure 6. 0.1 Hz to 10 Hz Noise
0
INPUT BIAS CURRENT (µA)
15
10
+VOUT
–VOUT
5
0
0
5
10
15
20
SUPPLY VOLTAGE (±V)
–0.5
–1.0
–1.5
–2.0
–60
00846-005
–20
0
20
40
60
80
100
120
140
TEMPERATURE (°C)
Figure 4. Output Voltage Swing vs. Supply Voltage
Figure 7. Input Bias Current vs. Temperature
30
140
SHORT-CIRCUIT CURRENT (mA)
VS = ± 15V
20
10
VS = ±5
120
100
SOURCE CURRENT
SINK CURRENT
80
60
0
10
100
1k
LOAD RESISTANCE (Ω)
10k
40
–60
00846-006
OUTPUT VOLTAGE SWING (V p-p)
–40
–40
–20
0
20
40
60
80
100
120
TEMPERATURE (°C)
Figure 5. Output Voltage Swing vs. Load Resistance
Figure 8. Short-Circuit Current vs. Temperature
Rev. K | Page 6 of 19
140
00846-009
OUTPUT VOLTAGE SWING (±V)
20
00846-008
0
00846-007
VERTICAL SCALE (0.01µV/DIV)
15
00846-004
INPUT COMMON-MODE RANGE (±V)
20
Data Sheet
AD797
+125°C
9
+25°C
8
7
5
15
10
20
SUPPLY VOLTAGE (±V)
Figure 9. Quiescent Supply Current vs. Supply Voltage
125
CMR
60
100
40
75
20
1
10
100
1k
10k
100k
FREQUENCY (Hz)
–60
f = 1kHz
RL = 600Ω
G = +10
RL = 600Ω
G = +10
f = 10kHz
NOISE BW = 100kHz
THD + NOISE (dB)
9
6
–80
VS = ±5V
–100
3
0
±5
±10
±15
±20
SUPPLY VOLTAGE (±V)
–120
0.01
0.1
1
10
OUTPUT LEVEL (V)
Figure 10. Output Voltage vs. Supply Voltage for 0.01% Distortion
00846-014
VS = ±15V
00846-011
0
50
1M
Figure 12. Power Supply and Common-Mode Rejection vs. Frequency
12
OUTPUT VOLTAGE (V rms)
150
80
00846-010
0
PSR
+SUPPLY
PSR
–SUPPLY
100
–55°C
6
175
120
00846-013
10
COMMON MODE REJECTION (dB)
200
140
POWER SUPPLY REJECTION (dB)
QUIESCENT SUPPLY CURRENT (mA)
11
Figure 13. Total Harmonic Distortion (THD) + Noise vs. Output Level
30
1.0
OUTPUT VOLTAGE (V p-p)
±15V SUPPLIES
0.0015%
0.6
0.01%
0.4
RL = 600Ω
20
10
±5V SUPPLIES
0
0
2
4
6
8
STEP SIZE (V)
10
0
10k
100k
1M
FREQUENCY (Hz)
Figure 14. Large-Signal Frequency Response
Figure 11. Settling Time vs. Step Size (±)
Rev. K | Page 7 of 19
10M
00846-015
0.2
00846-012
SETTLING TIME (µs)
0.8
AD797
Data Sheet
100
3
2
1
0
1k
10k
100k
1M
10M
FREQUENCY (Hz)
1
1
10
100
1k
10k
FREQUENCY (Hz)
Figure 18. Current Noise Density VS = ±15 V
Figure 15. Input Voltage Noise Spectral Density
120
120
35
100
PHASE MARGIN
80
60
40
GAIN
20
40
*RS = 100
WITHOUT
RS*
20
*SEE FIGURE 26.
0
100
1k
SLEW RATE
RISING EDGE
25
100
SLEW RATE
FALLING EDGE
90
20
0
WITH RS*
10k
100k
1M
FREQUENCY (Hz)
10M
100M
15
–60
–40
–20
0
20
40
60
80
100
120
80
140
TEMPERATURE (°C)
Figure 16. Open-Loop Gain and Phase Margin vs. Frequency
Figure 19. Slew Rate and Gain/Bandwidth Product vs. Temperature
160
300
OVERCOMPENSATED
OPEN-LOOP GAIN (dB)
150
0
140
120
–150
–300
–60
100
–40
–20
0
20
40
60
80
100
TEMPERATURE (°C)
120
140
100
1k
LOAD RESISTANCE (Ω)
Figure 20. Open-Loop Gain vs. Load Resistance
Figure 17. Input Offset Current vs. Temperature
Rev. K | Page 8 of 19
10k
00846-020
UNDER COMPENSATED
00846-018
INPUT OFFSET CURRENT (nA)
110
30
SLEW RATE (V/µs)
80
60
GAIN/BANDWIDTH PRODUCT
PHASE MARGIN (Degrees)
WITHOUT
RS*
WITH RS*
00846-017
OPEN-LOOP GAIN (dB)
100
GAIN/BANDWIDTH PRODUCT (MHz (G = 1000))
100
00846-019
10
10
00846-055
CURRENT NOISE DENSITY (pA/√Hz)
4
00846-016
INPUT VOLTAGE NOISE (nV/√Hz)
5
Data Sheet
AD797
50mV
100ns
100
90
10
1
WITHOUT CN*
0.1
10
100
1k
10k
100k
1M
FREQUENCY (Hz)
00846-024
0%
00846-021
0.01
10
WITH CN*
*SEE FIGURE 33.
Figure 21. Magnitude of Output Impedance vs. Frequency
Figure 24. Inverter Small-Signal Pulse Response
20pF
100Ω
+VS
1kΩ
1kΩ
2
7
AD797
3
VIN
VOUT
6
RS*
7
AD797
3
VOUT
6
600Ω
4
**
4
–VS
*
*VALUE OF SOURCE RESISTANCE
(SEE THE NOISE AND SOURCE IMPEDANCE
CONSIDERATIONS SECTION).
**SEE FIGURE 36.
–VS
*SEE FIGURE 36.
Figure 22. Inverter Connection
Figure 25. Follower Connection
1µs
5V
100
100
90
90
10
0%
5V
00846-023
10
0%
Figure 23. Inverter Large-Signal Pulse Response
1µs
00846-026
VIN
2
*
**
00846-025
+VS
00846-022
MAGNITUDE OF OUTPUT IMPEDANCE (Ω)
100
Figure 26. Follower Large-Signal Pulse Response
Rev. K | Page 9 of 19
AD797
Data Sheet
50mV
100ns
100
100
90
90
10
0%
00846-027
10
0%
500ns
00846-029
50mV
Figure 29. 16-Bit Settling Time Negative Input Pulse
Figure 27. Follower Small-Signal Pulse Response
–90
500ns
100
THD (dB)
90
–100
0.001
–110
0.0003
–120
0.0001
THD (%)
50mV
00846-028
–130
100
300
1k
3k
10k
30k
FREQUENCY (Hz)
Figure 28. 16-Bit Settling Time Positive Input Pulse
Figure 30. THD vs. Frequency
Rev. K | Page 10 of 19
100k
300k
00846-003
MEASUREMENT
LIMIT
10
0%
Data Sheet
AD797
THEORY OF OPERATION
The architecture of the AD797 was developed to overcome
inherent limitations in previous amplifier designs. Previous
precision amplifiers used three stages to ensure high open-loop
gain (see Figure 31) at the expense of additional frequency compensation components. Slew rate and settling performance are
usually compromised, and dynamic performance is not adequate
beyond audio frequencies. As can be seen in Figure 31, the first
stage gain is rolled off at high frequencies by the compensation
network. Second stage noise and distortion then appears at the
input and degrade performance. The AD797, on the other hand,
uses a single ultrahigh gain stage to achieve dc as well as dynamic
precision. As shown in the simplified schematic (Figure 32),
Node A, Node B, and Node C track the input voltage, forcing
the operating points of all pairs of devices in the signal path to
match. By exploiting the inherent matching of devices fabricated on
the same IC chip, high open-loop gain, CMRR, PSRR, and low
VOS are guaranteed by pairwise device matching (that is, NPN
to NPN and PNP to PNP), not by an absolute parameter such as
beta and the early voltage.
VOUT
BUFFER
gm
RL
C1
R1
GAIN = gm × R1 × 5 × 106
The elimination of second-stage noise effects has the additional
benefit of making the low noise of the AD797 (5 × 106 and VOS < 80 μV,
while at the same time providing a THD + noise of less than
−120 dB and true 16-bit settling in less than 800 ns.
Rev. K | Page 11 of 19
Figure 33. AD797 Block Diagram
00846-032
R1
gm
C
CN
j C N j C j
A
A
When CN is equal to CC, the ideal single-pole op amp response
is attained:
a.
gm
AD797
Data Sheet
NOISE AND SOURCE IMPEDANCE CONSIDERATIONS
LOW FREQUENCY NOISE
The AD797 ultralow voltage noise of 0.9 nV/√Hz is achieved
with special input transistors running at nearly 1 mA of collector
current. Therefore, it is important to consider the total inputreferred noise (eNtotal), which includes contributions from voltage
noise (eN), current noise (iN), and resistor noise (√4 kTRS).
Analog Devices specifies low frequency noise as a peak-to-peak
quantity in a 0.1 Hz to 10 Hz bandwidth. Several techniques can
be used to make this measurement. The usual technique involves
amplifying, filtering, and measuring the amplifier noise for a
predetermined test time. The noise bandwidth of the filter is
corrected for, and the test time is carefully controlled because
the measurement time acts as an additional low frequency roll-off.
e N total [e N 2 4 kTR S (i N R S ) 2 ]1 / 2
(1)
where RS is the total input source resistance.
This equation is plotted for the AD797 in Figure 34. Because
optimum dc performance is obtained with matched source
resistances, this case is considered even though it is clear from
Equation 1 that eliminating the balancing source resistance
lowers the total noise by reducing the total RS by a factor of 2.
At very low source resistance (RS < 50 Ω), the voltage noise of the
amplifier dominates. As source resistance increases, the Johnson
noise of RS dominates until a higher resistance of RS > 2 kΩ is
achieved; the current noise component is larger than the
resistor noise.
100
The plot in Figure 6 uses a slightly different technique: an FFTbased instrument (Figure 35) is used to generate a 10 Hz brickwall
filter. A low frequency pole at 0.1 Hz is generated with an
external ac coupling capacitor, which is also the instrument being
dc coupled.
Several precautions are necessary to attain optimum low
frequency noise performance:
TOTAL NOISE
NOISE (nV/√Hz)
10
RESISTOR
NOISE
ONLY
1
Care must be used to account for the effects of RS. Even
a 10 Ω resistor has 0.4 nV/√Hz of noise (an error of 9%
when root sum squared with 0.9 nV/√Hz).
The test setup must be fully warmed up to prevent eOS drift
from erroneously contributing to input noise.
Circuitry must be shielded from air currents. Heat flow out
of the package through its leads creates the opportunity for
a thermoelectric potential at every junction of different metals.
Selective heating and cooling of these by random air currents
appears as 1/f noise and obscures the true device noise.
The results must be interpreted using valid statistical
techniques.
100kΩ
+VS
*
100
1000
10000
SOURCE RESISTANCE (Ω)
2
7
AD797
Figure 34. Noise vs. Source Resistance
3
1.5µF
6
4
VOUT
HP 3465
DYNAMIC SIGNAL
ANALYZER
(10Hz)
*
The AD797 is the optimum choice for low noise performance if
the source resistance is kept