0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD9139BCPZ

AD9139BCPZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    VFQFN72

  • 描述:

    IC DAC 16BIT A-OUT 72LFCSP

  • 数据手册
  • 价格&库存
AD9139BCPZ 数据手册
16-Bit, 1600 MSPS, TxDAC+ Digital-toAnalog Converter AD9139 Data Sheet FEATURES GENERAL DESCRIPTION Selectable 1× or 2× interpolation filter Support input signal bandwidth up to 575 MHz Very small inherent latency variation: 85 dBc (bandwidth = 300 MHz) at zero IF Flexible 16-bit LVDS interface Supports word and byte load Multiple chip synchronization Fixed latency and data generator latency compensation FIFO eases system timing and includes error detection High performance, low noise PLL clock multiplier Digital inverse sinc filter Low power: 700 mW at 1230 MSPS 72-lead LFCSP The AD9139 is an 16-bit, high dynamic range digital-to-analog converter (DAC) that provides a sample rate of 1600 MSPS, permitting a multicarrier generation up to the Nyquist frequency. The AD9139 TxDAC+® includes features optimized for wideband communication applications, including 1× and 2× interpolation, a delay locked loop (DLL) powered high speed interface, sample error detection, and parity detection. A 3-wire serial port interface provides for the programming/readback of many internal parameters. A full-scale output current can be programmed over a range of 9 mA up to 33 mA. The AD9139 is available in a 72-lead LFCSP. PRODUCT HIGHLIGHTS 1. 2. APPLICATIONS Wireless communications: 3G/4G and MC-GSM base stations, wideband repeaters, software defined radios Wideband communications: point-to-point, LMDS/MMDS Transmit diversity/MIMO Instrumentation Automated test equipment 3. 4. 575 MHz achievable input signal bandwidth. Advanced low spurious and distortion design techniques provide high quality synthesis of wideband signals from baseband to high intermediate frequencies. Very small inherent latency variation simplifies both software and hardware design in the system. It allows easy multichip synchronization for most applications. Low power architecture improves power efficiency. FUNCTIONAL BLOCK DIAGRAM DLL 13-TAP DCIP/DCIN AD9139 16 HB1 2× DACOUTP DACOUTN DAC_CLK GAIN 1 INTERP MODE CTRL FIFO CTRL SED CTRL INTERFACE CTRL FRAMEP/PARITYP FRAMEN/PARITYN DAC 1 16-BIT DC OFFSET CONTROL GAIN CONTROL INV SINC FIFO 8-SAMPLE SED D0P/D0N LVDS DATA RECEIVER D15P/D15N 10 REF AND BIAS VREF FSADJ INTERNAL CLOCK TIMING AND CONTROL LOGIC PROGRAMMING REGISTERS SERIAL INPUT/OUTPUT PORT POWER-ON RESET MULTICHIP SYNCHRONIZATION DAC_CLK CLOCK MULTIPLIER DACCLKP DACCLKN REF RCVR REFP/SYNCP REFN/SYNCN 11744-001 IRQ2 RESET TXEN IRQ1 CS SCLK SDIO SYNC CLK RCVR Figure 1. Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013–2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD9139 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Multidevice Synchronization and Fixed Latency ....................... 29 Applications ....................................................................................... 1 Very Small Inherent Latency Variation ................................... 29 General Description ......................................................................... 1 Further Reducing the Latency Variation................................. 29 Product Highlights ........................................................................... 1 Synchronization Implementation ............................................ 29 Functional Block Diagram .............................................................. 1 Synchronization Procedures ..................................................... 30 Revision History ............................................................................... 3 Interrupt Request Operation ........................................................ 32 Specifications..................................................................................... 4 Interrupt Working Mechanism ................................................ 32 DC Specifications ......................................................................... 4 Interrupt Service Routine .......................................................... 32 Digital Specifications ................................................................... 5 Temperature Sensor ....................................................................... 33 Latency Variation Specifications ................................................ 6 DAC Input Clock Configurations ................................................ 34 AC Specifications.......................................................................... 6 Driving the DACCLK and REFCLK Inputs ........................... 34 Operating Speed Specifications .................................................. 6 Direct Clocking .......................................................................... 34 Absolute Maximum Ratings ....................................................... 7 Clock Multiplication .................................................................. 34 Thermal Resistance ...................................................................... 7 PLL Settings ................................................................................ 35 ESD Caution .................................................................................. 7 Configuring the VCO Tuning Band ........................................ 35 Pin Configuration and Function Descriptions ............................. 8 Automatic VCO Band Select .................................................... 35 Typical Performance Characteristics ........................................... 11 Manual VCO Band Select ......................................................... 35 Terminology .................................................................................... 15 PLL Enable Sequence ................................................................. 35 Serial Port Operation ..................................................................... 16 Analog Outputs............................................................................... 36 Data Format ................................................................................ 16 Transmit DAC Operation.......................................................... 36 Serial Port Pin Descriptions ...................................................... 16 Interfacing to Modulators ......................................................... 37 Serial Port Options ..................................................................... 16 Reducing LO Leakage and Unwanted Sidebands .................. 38 Data Interface .................................................................................. 18 Start-Up Routine ............................................................................ 39 LVDS Input Data Ports .............................................................. 18 Device Configuration Register Map and Description ............... 40 Word Interface Mode ................................................................. 18 SPI Configure Register .............................................................. 42 Byte Interface Mode ................................................................... 18 Power-Down Control Register ................................................. 42 Data Interface Configuration Options .................................... 18 Interrupt Enable 0 Register ....................................................... 42 DLL Interface Mode ................................................................... 18 Interrupt Enable 1 Register ....................................................... 42 Parity ............................................................................................ 21 Interrupt Flag 0 Register............................................................ 43 SED Operation ............................................................................ 21 Interrupt Flag 1 Register............................................................ 43 SED Example ............................................................................... 22 Interrupt Select 0 Register ......................................................... 43 Delay Line Interface Mode ........................................................ 22 Interrupt Select 1 Register ......................................................... 44 FIFO Operation .............................................................................. 24 Frame Mode Register ................................................................. 44 Resetting the FIFO ..................................................................... 25 Data Control 0 Register ............................................................. 44 Serial Port Initiated FIFO Reset ............................................... 25 Data Control 1 Register ............................................................. 44 Frame Initiated FIFO Reset ....................................................... 25 Data Control 2 Register ............................................................. 45 Digital Datapath.............................................................................. 27 Data Control 3 Register ............................................................. 45 Interpolation Filters ................................................................... 27 Data Status 0 Register ................................................................ 45 Inverse Sinc Filter ....................................................................... 28 DAC Clock Receiver Control Register .................................... 46 Digital Function Configuration................................................ 28 Reference Clock Receiver Control Register ............................ 46 Rev. A | Page 2 of 56 Data Sheet AD9139 PLL Control Register ..................................................................46 Gain Step Control0 Register ...................................................... 52 PLL Control Register ..................................................................47 Gain Step Control1 Register ...................................................... 52 PLL Control Register ..................................................................47 TX Enable Control Register ...................................................... 52 PLL Status Register .....................................................................47 DAC Output Control Register .................................................. 53 PLL Status Register .....................................................................48 DLL Cell Enable 0 Register ........................................................ 53 DAC FS Adjust LSB Register .....................................................48 DLL Cell Enable 1 Register ........................................................ 53 DAC FS Adjust MSB Register ....................................................48 SED Control Register ................................................................. 53 Die Temperature Sensor Control Register ...............................48 SED Pattern S0 Low Bits Register ............................................. 54 Die Temperature LSB Register ..................................................48 SED Pattern S0 High Bits Register ............................................ 54 Die Temperature MSB Register .................................................49 SED Pattern S1 Low Bits Register ............................................. 54 Chip ID Register..........................................................................49 SED Pattern S1 High Bits Register ............................................ 54 Interrupt Configuration Register ..............................................49 SED Pattern S2 Low Bits Register ............................................. 54 Sync CTRL Register ....................................................................49 SED Pattern S2 High Bits Register ............................................ 54 Frame Reset CTRL Register .......................................................49 SED Pattern S3 Low Bits Register ............................................. 54 FIFO Level Configuration Register ..........................................50 SED Pattern S3 High Bits Register ............................................ 55 FIFO Level Readback Register ..................................................50 Parity Control Register ............................................................... 55 FIFO CTRL Register ...................................................................50 Parity Error Rising Edge Register ............................................. 55 Data Format Select Register.......................................................51 Parity Error Falling Edge Register ............................................ 55 Datapath Control Register .........................................................51 Version Register .......................................................................... 55 Interpolation Control Register ..................................................51 Packaging and Ordering Information .......................................... 56 Power-Down Data Input 0 Register..........................................51 Outline Dimensions ................................................................... 56 DAC_DC_OFFSET0 Register ...................................................51 Ordering Guide ........................................................................... 56 DAC_DC_OFFSET1 Register ...................................................51 DAC_GAIN_ADJ Register ........................................................52 REVISION HISTORY 3/14—Rev. 0 to Rev. A Change to Register 0x7F, Table 21.................................................41 Change to Table 80 ..........................................................................55 10/13—Revision 0: Initial Version Rev. A | Page 3 of 56 AD9139 Data Sheet SPECIFICATIONS DC SPECIFICATIONS TMIN to TMAX, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless otherwise noted. Table 1. Parameter RESOLUTION ACCURACY Differential Nonlinearity (DNL) Integral Nonlinearity (INL) MAIN DAC OUTPUT Offset Error Gain Error Full-Scale Output Current Output Compliance Range Output Resistance Gain DAC Monotonicity Settling Time to Within ±0.5 LSB MAIN DAC TEMPERATURE DRIFT Offset Gain Reference Voltage REFERENCE Internal Reference Voltage Output Resistance ANALOG SUPPLY VOLTAGES AVDD33 CVDD18 DIGITAL SUPPLY VOLTAGES DVDD18 DVDD18 Variation over Operating Conditions 1 POWER CONSUMPTION 1× Mode 2× Mode Phase-Locked Loop Inverse Sinc Reduced Power Mode (Power-Down) AVDD33 Current CVDD18 Current DVDD18 Current OPERATING RANGE 1 Test Conditions/Comments Min Typ 16 Max ±2.1 ±3.7 With internal reference 10 kΩ external resistor between FSADJ and AVSS −0.001 −3.2 19.06 −1.0 0 +2 19.8 LSB LSB +0.001 +4.7 20.6 +1.0 10 Guaranteed 20 % FSR % FSR mA V MΩ ns 0.04 100 30 1.17 Unit Bits ppm/°C ppm/°C ppm/°C 1.19 V kΩ 5 3.13 1.7 3.3 1.8 3.47 1.9 V V 1.7 −2.5% 1.8 1.9 +2.5% V V 57.3 0.4 26.6 4.5 +85 mW mW mW mW mW mW mW mA mA mA °C fDAC = 614 MSPS fDAC = 1230 MSPS fDAC = 800 MSPS fDAC = 1600 MSPS 440 700 670 1150 70 60 fDAC = 1230 MSPS −40 +25 This parameter specifies the maximum allowable variation of DVDD18 over operating conditions compared with the DVDD18 presented to the device at the time the data interface DLL is enabled. Rev. A | Page 4 of 56 Data Sheet AD9139 DIGITAL SPECIFICATIONS TMIN to TMAX, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless otherwise noted. Table 2. Parameter CMOS INPUT LOGIC LEVEL Input Logic High Logic Low CMOS OUTPUT LOGIC LEVEL Output Logic High Logic Low LVDS RECEIVER INPUTS Input Voltage Range Input Differential Threshold Input Differential Hysteresis Receiver Differential Input Impedance DLL SPEED RANGE DAC UPDATE RATE DAC Adjusted Update Rate DAC CLOCK INPUT (DACCLKP, DACCLKN) Differential Peak-to-Peak Voltage Common-Mode Voltage REFCLK/SYNCCLK INPUT (REFP/SYNCP, REFN/SYNCN) Differential Peak-to-Peak Voltage Common-Mode Voltage Input Clock Frequency SERIAL PORT INTERFACE Maximum Clock Rate Minimum Pulse Width High Low SDIO to SCLK Setup Time SDIO to SCLK Hold Time CS to SCLK Setup Time CS to SCLK Hold Time SDIO to SCLK Delay Symbol Min DVDD18 = 1.8 V DVDD18 = 1.8 V 1.2 DVDD18 = 1.8 V DVDD18 = 1.8 V Data and frame inputs 1.4 VIA or VIB VIDTH VIDTHH to VIDTHL RIN Typ 825 −175 0.6 V V 0.4 V V 575 1600 1150 800 500 1.25 2000 mV V 100 500 1.25 2000 mV V MHz 1.03 GHz ≤ fVCO ≤ 2.07 GHz SCLK 450 40 MHz 12.5 12.5 Wait time for valid output from SDIO Time for SDIO to relinquish the output bus 1.5 0.68 2.38 9.6 11 Rev. A | Page 5 of 56 1.4 8.5 1.2 With 2 mA loading With 2 mA loading mV mV mV Ω MHz MSPS MSPS MSPS 100 Self biased input, ac-coupled VIH VIL IIH IIL Unit 20 100 1× interpolation 2× interpolation tPWH tPWL tDS tDH tDCSB tDCSB tDV Max 1675 +175 250 SDIO High-Z to CS SDIO LOGIC LEVEL Voltage Input High Voltage Input Low Voltage Output High Voltage Output Low Test Conditions/Comments 1.36 0 ns ns ns ns ns ns ns ns 1.8 0 0.5 2 0.45 V V V V AD9139 Data Sheet LATENCY VARIATION SPECIFICATIONS Table 3. Parameter DAC LATENCY 1 VARIATION SYNC Off SYNC On 1 Min Typ Max Unit 1 0 2 1 DAC clock cycles DAC clock cycles DAC latency is defined as the elapsed time from a data sample clocked at the input to the device until the analog output begins to change. AC SPECIFICATIONS TMIN to TMAX, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless otherwise noted. Table 4. Parameter SPURIOUS-FREE DYNAMIC RANGE (SFDR) fDAC = 737.28 MSPS Bandwidth (BW) = 125 MHz BW = 270 MHz fDAC = 983.04 MSPS BW = 360 MHz fDAC = 1228.8 MSPS BW = 200 MHz BW = 500 MHz TWO-TONE INTERMODULATION DISTORTION (IMD) fDAC = 737.28 MSPS fDAC = 983.04 MSPS fDAC = 1228.8 MSPS NOISE SPECTRAL DENSITY (NSD) fDAC = 737.28 MSPS fDAC = 983.04 MSPS fDAC = 1228.8 MSPS W-CDMA ADJACENT CHANNEL LEAKAGE RATIO (ACLR) fDAC = 983.04 MSPS fDAC = 1228.8 MSPS W-CDMA SECOND (ACLR) fDAC = 983.04 MSPS fDAC = 1228.8 MSPS Test Conditions/Comments −14 dBFS single tone fOUT = 200 MHz Min Typ Max Unit 85 80 dBc dBc 85 dBc 85 75 dBc dBc 80 82 80 dBc dBc dBc −160 −161.5 −164.5 dBm/Hz dBm/Hz dBm/Hz 81 83 80 dBc dBc dBc 85 86 86 dBc dBc dBc fOUT = 200 MHz fOUT = 280 MHz −12 dBFS each tone fOUT = 200 MHz fOUT = 200 MHz fOUT = 280 MHz Eight-tone, 500 kHz tone spacing fOUT = 200 MHz fOUT = 200 MHz fOUT = 280 MHz Single carrier fOUT = 200 MHz fOUT = 20 MHz fOUT = 280 MHz Single carrier fOUT = 200 MHz fOUT = 20 MHz fOUT = 280 MHz OPERATING SPEED SPECIFICATIONS Table 5. Interpolation Factor 1× 2× DVDD18, CVDD18 = 1.8 V ± 5% fDCI (MSPS) Max fDAC (MSPS) Max 575 1150 350 1400 DVDD18, CVDD18 = 1.9 V ± 5% or 1.8 V ± 2% fDCI (MSPS) Max fDAC (MSPS) Max 575 1150 375 1500 Rev. A | Page 6 of 56 DVDD18, CVDD18 = 1.9 V ± 2% fDCI (MSPS) Max fDAC (MSPS) Max 575 1150 400 1600 Data Sheet AD9139 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 6. Parameter AVDD33 to GND DVDD18, CVDD18 to GND FSADJ, VREF, DACOUTP/DACOUTN, to GND D15P to D0P/D15N to D0N, FRAMEP/FRAMEN, DCIP/DCIN to GND DACCLKP/DACCLKN, REFP/SYNCP/REFN/SYNCN to GND RESET, IRQ1, IRQ2, CS, SCLK, SDIO to GND Junction Temperature Storage Temperature Range Rating −0.3 V to +3.6 V −0.3 V to +2.1 V −0.3 V to AVDD33 + 0.3 V −0.3 V to DVDD18 + 0.3 V −0.3 V to CVDD18 + 0.3 V The exposed pad (EPAD) must be soldered to the ground plane (AVSS) for the 72-lead LFCSP. The EPAD provides an electrical, thermal, and mechanical connection to the board. Typical θJA, θJB, and θJC values are specified for a 4-layer board in still air. Airflow increases heat dissipation, effectively reducing θJA and θJB. Table 7. Thermal Resistance −0.3 V to DVDD18 + 0.3 V Package 72-Lead LFCSP 125°C −65°C to +150°C ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. A | Page 7 of 56 θJA 20.7 θJB 10.9 θJC 1.1 Unit °C/W Conditions EPAD soldered to ground plane AD9139 Data Sheet 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 CVDD18 CVDD18 VREF FSADJ AVDD33 DACOUTP DACOUTN AVDD33 CVDD18 CVDD18 DACCLKP DACCLKN CVDD18 CVDD18 AVDD33 DNC DNC AVDD33 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 AD9139 TOP VIEW 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 CS SCLK SDIO IRQ1 IRQ2 DVDD18 DVDD18 D0N D0P D1N D1P DVDD18 D2N D2P D3N D3P D4N D4P 11744-002 DVDD18 D11P D11N D10P D10N D9P D9N D8P D8N DCIP DCIN D7P D7N D6P D6N D5P D5N DVDD18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 CVDD18 REFP/SYNCP REFN/SYNCN CVDD18 RESET TXEN DVDD18 FRAMEP/PARITYP FRAMEN/PARITYN D15P D15N DVDD18 D14P D14N D13P D13N D12P D12N NOTES 1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN. 2. THE EXPOSED PAD MUST BE SOLDERED TO THE GROUND PLANE (AVSS, DVSS, CVSS). THE EPAD PROVIDES AN ELECTRICAL, THERMAL, AND MECHANICAL CONNECTION TO THE BOARD. Figure 2. Pin Configuration Table 8. Pin Function Descriptions Pin No. 1 2 3 4 5 6 Mnemonic CVDD18 REFP/SYNCP REFN/SYNCN CVDD18 RESET TXEN 7 DVDD18 8 9 10 11 12 FRAMEP/PARITYP FRAMEN/PARITYN D15P D15N DVDD18 13 14 15 16 17 18 19 D14P D14N D13P D13N D12P D12N DVDD18 20 21 22 23 D11P D11N D10P D10N Description 1.8 V PLL Supply. CVDD18 supplies the power to the clock receivers, clock multiplier, and clock distribution. PLL Reference Clock/Synchronization Clock Input, Positive. PLL Reference Clock/Synchronization Clock Input, Negative. 1.8 V PLL Supply. CVDD18 supplies the power to the clock receivers, clock multiplier, and clock distribution. Reset, Active Low. CMOS levels with respect to DVDD18. Recommended reset pulse length is 1 µs. Active High Transmit Path Enable. CMOS levels with respect to DVDD18. A low level on this pin triggers two selectable actions in the DAC. See Register 0x43 in Table 64 for details. 1.8 V Digital Supply. Pin 7 supplies power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Frame/Parity Input, Positive. Frame/Parity Input, Negative. Data Bit 15 (MSB), Positive. Data Bit 15 (MSB), Negative. 1.8 V Digital Supply. Pin 12 supplies the power to the digital core and digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Data Bit 14, Positive. Data Bit 14, Negative. Data Bit 13, Positive. Data Bit 13, Negative. Data Bit 12, Positive. Data Bit 12, Negative. 1.8 V Digital Supply. Pin 19 supplies power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Data Bit 11, Positive. Data Bit 11, Negative. Data Bit 10, Positive. Data Bit 10, Negative. Rev. A | Page 8 of 56 Data Sheet Pin No. 24 25 26 27 28 29 30 31 32 33 34 35 36 Mnemonic D9P D9N D8P D8N DCIP DCIN D7P D7N D6P D6N D5P D5N DVDD18 37 38 39 40 41 42 43 D4P D4N D3P D3N D2P D2N DVDD18 44 45 46 47 48 D1P D1N D0P D0N DVDD18 49 DVDD18 50 IRQ2 51 IRQ1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 SDIO SCLK CS AVDD33 DNC DNC AVDD33 CVDD18 CVDD18 DACCLKN DACCLKP CVDD18 CVDD18 AVDD33 DACOUTN DACOUTP AVDD33 FSADJ VREF CVDD18 AD9139 Description Data Bit 9, Positive. Data Bit 9, Negative. Data Bit 8, Positive. Data Bit 8, Negative. Data Clock Input, Positive. Data Clock Input, Negative. Data Bit 7, Positive. Data Bit 7, Negative. Data Bit 6, Positive. Data Bit 6, Negative. Data Bit 5, Positive. Data Bit 5, Negative. 1.8 V Digital Supply. Pin 36 supplies the power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Data Bit 4, Positive. Data Bit 4, Negative. Data Bit 3, Positive. Data Bit 3, Negative. Data Bit 2, Positive. Data Bit 2, Negative. 1.8 V Digital Supply. Pin 43 supplies the power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Data Bit 1, Positive. Data Bit 1, Negative. Data Bit 0, Positive. Data Bit 0, Negative. 1.8 V Digital Supply. Pin 48 supplies the power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. 1.8 V Digital Supply. Pin 49 supplies the power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Second Interrupt Request. Open-drain, active low output. Connect an external pull-up to DVDD18 through a 10 kΩ resistor. First Interrupt Request. Open-drain, active low output. Connect an external pull-up to DVDD18 through a 10 kΩ resistor. Serial Port Data Input/Output. CMOS levels with respect to DVDD18. Serial Port Clock Input. CMOS levels with respect to DVDD18. Serial Port Chip Select. Active low (CMOS levels with respect to DVDD18). 3.3 V Analog Supply. Do No Connect. Leave this pin floating. Do No Connect. Leave this pin floating. 3.3 V Analog Supply. 1.8 V Clock Supply. CVDD18 supplies the power to the clock receivers and clock distribution. 1.8 V Clock Supply. CVDD18 supplies the power to the clock receivers and clock distribution. DAC Clock Input, Negative. DAC Clock Input, Positive. 1.8 V Clock Supply. CVDD18 supplies the power to the clock receivers and clock distribution. 1.8 V Clock Supply. CVDD18 supplies the power to the clock receivers and clock distribution. 3.3 V Analog Supply. DAC Current Output, Negative. DAC Current Output, Positive. 3.3 V Analog Supply. Full-Scale Current Output Adjust. Place a 10 kΩ resistor from this pin to AVSS. Voltage Reference. Nominally 1.2 V output. Decouple VREF to AVSS. 1.8 V Clock Supply. Pin 71 supplies power to the clock receivers, clock multiplier, and clock distribution. Rev. A | Page 9 of 56 AD9139 Pin No. 72 Mnemonic CVDD18 EPAD Data Sheet Description 1.8 V Clock Supply. Pin 72 supplies power to the clock receivers, clock multiplier, and clock distribution. Exposed Pad. The exposed pad (EPAD) must be soldered to the ground plane (AVSS, DVSS, CVSS). The EPAD provides an electrical, thermal, and mechanical connection to the board. Rev. A | Page 10 of 56 Data Sheet AD9139 TYPICAL PERFORMANCE CHARACTERISTICS –40 –40 fDAC = 737.28MHz fDAC = 983.04MHz fDAC = 1228.8MHz –50 –70 –80 –80 –90 –90 –100 0 100 200 300 400 500 600 700 fOUT (MHz) –100 Figure 3. Single-Tone (0 dBFS) SFDR vs. fOUT in the First Nyquist Zone over fDAC 0 100 150 200 250 300 350 400 fOUT (MHz) Figure 6. Single-Tone SFDR Excluding 2nd and 3rd Harmonics vs. fOUT in the First Nyquist Zone over fDAC and Digital Back Off –40 –40 0dBFS –6dBFS –12dBFS –16dBFS –50 fDAC = 737.28MHz fDAC = 983.04MHz fDAC = 1228.8MHz –50 –60 –70 –70 –80 –80 –90 –90 100 200 300 400 500 600 700 fOUT (MHz) –100 11744-004 0 0 100 200 300 400 500 600 700 fOUT (MHz) Figure 4. Single-Tone Second Harmonic vs. fOUT in the First Nyquist Zone over Digital Back Off, fDAC = 1228.8 MHz 11744-008 IMD (dBc) –60 –100 Figure 7. Two-Tone Third IMD vs. fOUT over fDAC –40 –40 0dBFS –6dBFS –12dBFS –16dBFS –50 0dBFS –6dBFS –12dBFS –16dBFS –50 –60 –70 –70 –80 –80 –90 –90 –100 0 100 200 300 400 fOUT (MHz) 500 600 700 Figure 5. Single-Tone Third Harmonic vs. fOUT in the First Nyquist Zone over Digital Back Off, fDAC = 1228.8 MHz Rev. A | Page 11 of 56 –100 0 100 200 300 400 500 600 fOUT (MHz) Figure 8. Two-Tone Third IMD vs. fOUT over Digital Back Off, fDAC = 1228.8 MHz 700 11744-009 IMD (dBc) –60 11744-005 THIRD HARMONIC (dBc) 50 11744-006 SFDR (dBc) –70 11744-003 SFDR (dBc) 0dBFS –12dBFS –60 –60 SECOND HARMONIC (dBc) fDAC = 800MHz fDAC = 1600MHz –50 AD9139 Data Sheet –40 –150 PLL OFF PLL ON 0dBFS –12 dBFS PLL OFF PLL ON –50 –155 NSD (dBm/Hz) IMD (dBc) –60 –70 –160 –80 –165 0 100 200 300 400 500 600 700 fOUT (MHz) Figure 9. Two-Tone Third IMD vs. fOUT over PLL on and off, fDAC = 1228.8 MHz –145 –170 11744-010 –100 0 100 200 400 300 500 600 700 fOUT (MHz) 11744-013 –90 Figure 12. Single-Tone NSD vs. fOUT, over Digital Back Off, PLL on and off –60 fDAC = 737.28MHz fDAC = 983.04MHz fDAC = 1228.8MHz fDAC = 1228.8MHz fDAC = 983.04MHz –65 –150 PLL OFF PLL ON ACLR (dBc) NSD (dBm/Hz) –70 –155 –160 –75 –80 –165 0 100 200 300 400 500 600 700 fOUT (MHz) –90 11744-011 –170 0 100 200 300 400 500 600 fOUT (MHz) 11744-014 –85 Figure 13. 1-Carrier WCDMA 1st Adjacent ACLR vs. fOUT over fDAC PLL on and off Figure 10. Single-Tone (0 dBFS) NSD vs. fOUT over fDAC –150 0dBFS –6dBFS –12dBFS –16dBFS –60 PLL OFF PLL ON –70 ACLR (dBc) NSD (dBm/Hz) fDAC = 1228.8MHz fDAC = 983.04MHz –65 –155 –160 –75 –80 –165 100 200 300 400 fOUT (MHz) 500 600 700 –90 0 100 200 300 400 500 600 fOUT (MHz) Figure 11. Single-Tone NSD vs. fOUT, over Digital Back Off, fDAC = 1228.8 MHz Rev. A | Page 12 of 56 Figure 14. 1-Carrier WCDMA 2nd Adjacent ACLR vs. fOUT over fDAC PLL on and off 11744-015 0 11744-012 –85 –170 AD9139 11744-017 11744-023 Data Sheet Figure 15. Two-Tone Third IMD Performance, IF = 200 MHz, fDAC = 1228.8 MHz, −9 dBFS Figure 18. 4-Carrier WCDMA ACLR Performance, IF = 200 MHz, fDAC = 1228.8 MHz 1.0 1× INTERPOLATION 2× INTERPOLATION 0.9 POWER (W) 0.8 0.7 0.6 0.5 0.4 0.2 200 400 600 11744-019 0 800 1000 1200 1400 fDAC (MHz) 11744-024 0.3 Figure 19. Total Power Consumption vs. fDAC over Interpolation Figure 16. 1-Carrier WCDMA ACLR Performance, IF = 200 MHz, fDAC = 1228.8 MHz 350 1× INTERPOLATION 2× INTERPOLATION DVDD18 CURRENT (mA) 300 250 200 150 100 0 11744-021 0 Figure 17. Single-Tone Performance, IF = 200 MH, fDAC = 1228.8 MHz Rev. A | Page 13 of 56 200 400 600 800 1000 1200 fDAC (MHz) Figure 20. DVDD18 Current vs. fDAC over Interpolation 1400 11744-025 50 AD9139 Data Sheet 35 250 AVDD33 (mA) CVDD18 (mA), PLL OFF CVDD18 (mA), PLL ON DIGITAL GAIN AND OFFSET INVERSE SINC 30 SUPPLY CURRENT (mA) 25 20 15 10 150 100 50 0 0 200 400 600 800 1000 1200 1400 fDAC (MHz) Figure 21. DVDD18 Current vs. fDAC over Digital Functions 0 0 200 400 600 800 1000 1200 fDAC (MHz) Figure 22. CVDD18 and AVDD18 Current vs. fDAC Rev. A | Page 14 of 56 1400 11744-027 5 11744-026 DVDD18 CURRENT (mA) 200 Data Sheet AD9139 TERMINOLOGY Integral Nonlinearity (INL) INL is the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero scale to full scale. Settling Time Settling time is the time required for the output to reach and remain within a specified error band around its final value, measured from the start of the output transition. Differential Nonlinearity (DNL) DNL is the measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code. Spurious Free Dynamic Range (SFDR) SFDR is the difference, in decibels, between the peak amplitude of the output signal and the peak spurious signal within the dc to Nyquist frequency of the DAC. Typically, the interpolation filters reject energy in this band. This specification, therefore, defines how well the interpolation filters work and the effect of other parasitic coupling paths on the DAC output. Offset Error Offset error is the deviation of the output current from the ideal of 0 mA. For DACOUTP, 0 mA output is expected when all inputs are set to 0. For DACOUTN, 0 mA output is expected when all inputs are set to 1. Gain Error Gain error is the difference between the actual and ideal output span. The actual span is determined by the difference between the output when all inputs are set to 1 and the output when all inputs are set to 0. Output Compliance Range The output compliance range is the range of allowable voltage at the output of a current output DAC. Operation beyond the maximum compliance limits can cause either output stage saturation or breakdown, resulting in nonlinear performance. Temperature Drift Temperature drift is specified as the maximum change from the ambient (25°C) value to the value at either TMIN or TMAX. For offset and gain drift, the drift is reported in ppm of fullscale range (FSR) per degree Celsius. For reference drift, the drift is reported in ppm per degree Celsius. Power Supply Rejection (PSR) PSR is the maximum change in the full-scale output as the supplies are varied from minimum to maximum specified voltages. Signal-to-Noise Ratio (SNR) SNR is the ratio of the rms value of the measured output signal to the rms sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. The value for SNR is expressed in decibels. Interpolation Filter If the digital inputs to the DAC are sampled at a multiple rate of fDATA (interpolation rate), a digital filter can be constructed that has a sharp transition band near fDATA/2. Images that typically appear around fDAC (output data rate) can be greatly suppressed. Adjacent Channel Leakage Ratio (ACLR) ACLR is the ratio in decibels relative to the carrier (dBc) between the measured power within a channel relative to its adjacent channel. Complex Image Rejection In a traditional two-part upconversion, two images are created around the second IF frequency. These images have the effect of wasting transmitter power and system bandwidth. By placing the real part of a second complex modulator in series with the first complex modulator, either the upper or lower frequency image near the second IF can be rejected. Rev. A | Page 15 of 56 AD9139 Data Sheet SERIAL PORT OPERATION 54 CS SPI PORT 53 SCLK 52 SDIO 11744-028 The serial port is a flexible, synchronous serial communications port that allows easy interfacing to many industry standard microcontrollers and microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the Motorola SPI and Intel® SSR protocols. The interface allows read/write access to all registers that configure the AD9139. MSB first or LSB first transfer formats are supported. The serial port interface is a 3-wire only interface. The input and output share a single input/output (SDIO) pin. SERIAL PORT PIN DESCRIPTIONS Serial Clock (SCLK) The serial clock pin, SCLK, synchronizes data to and from the device and runs the internal state machines. The maximum frequency of SCLK is 40 MHz. All data input is read on the rising edge of SCLK. All data is driven out on the falling edge of SCLK. Chip Select (CS) Figure 23. Serial Port Interface Pins There are two phases to a communication cycle with the AD9139. Phase 1 is the instruction cycle (the writing of an instruction byte into the device), coincident with the first 16 SCLK rising edges. The instruction word provides the serial port controller with information regarding the data transfer cycle, Phase 2, of the communication cycle. The Phase 1 instruction word defines whether the upcoming data transfer is a read or write, together with the starting register address for the following data transfer. A logic high on the CS pin, followed by a logic low, resets the serial port timing to the initial state of the instruction cycle. From this state, the next 16 rising SCLK edges represent the instruction bits of the current I/O operation. The remaining SCLK edges are for Phase 2 of the communication cycle. Phase 2 is the actual data transfer between the device and the system controller. Phase 2 of the communication cycle is a transfer of one data byte. Registers change immediately upon writing to the last bit of each transfer byte. DATA FORMAT The instruction byte contains the information shown in Table 9. Table 9. Serial Port Instruction Word I15 (MSB) R/W A14 to A0 (Bit 14 to Bit 0 of the instruction word) determine the register that is accessed during the data transfer portion of the communication cycle. For multibyte transfers, A14 is the starting address; the device generates the remaining register addresses based on the SPI_LSB_FIRST bit. I[14:0] A[14:0] R/W (Bit 15 of the instruction word) determines whether a read or a write data transfer occurs after the instruction word write. Logic 1 indicates a read operation, and Logic 0 indicates a write operation. CS is an active low input that starts and gates a communication cycle. It allows the use of multiple devices on the same serial communications line. The SDIO pin enters a high impedance state when the CS input is high. During the communication cycle, CS remains low. Serial Data I/O (SDIO) The SDIO pin is a bidirectional data line. SERIAL PORT OPTIONS The serial port supports both MSB first and LSB first data formats; the SPI_LSB_FIRST bit (Register 0x00, Bit 6) controls this functionality. The default is MSB first (SPI_LSB_FIRST = 0). When SPI_LSB_FIRST = 0 (MSB first), the instruction and data bits must be written from MSB to LSB. Multibyte data transfers in MSB first format start with an instruction word that includes the register address of the most significant data byte. Subsequent data bytes must follow from high address to low address. In MSB first mode, the serial port internal word address generator decrements for each data byte of the multibyte communication cycle. When SPI_LSB_FIRST = 1 (LSB first), the instruction and data bits must be written from LSB to MSB. Multibyte data transfers in LSB first format start with an instruction word that includes the register address of the least significant data byte. Subsequent data bytes must follow from low address to high address. In LSB first mode, the serial port internal word address generator increments for each data byte of the multibyte communication cycle. When the MSB first mode is active, the serial port controller data address decrements from the data address written toward 0x00 for multibyte I/O operations. If the LSB first mode is active, the serial port controller data address increments from the data address written toward 0xFF for multibyte I/O operations. Rev. A | Page 16 of 56 Data Sheet AD9139 tDCSB INSTRUCTION CYCLE tSCLK DATA TRANSFER CYCLE CS CS tPWH SCLK R/W A14 A13 A3 A2 A1 A0 D7N D6N D5N D30 D20 D10 D00 tDS SDIO Figure 24. Serial Register Interface Timing, MSB First INSTRUCTION CYCLE tDH INSTRUCTION BIT 15 INSTRUCTION BIT 14 11744-031 SCLK 11744-029 SDIO tPWL Figure 26. Timing Diagram for Serial Port Register Write CS DATA TRANSFER CYCLE CS SCLK A0 A1 A2 A12 A13 A14 R/W D00 D10 D20 D4N D5N D6N D7N tDV SDIO Figure 25. Serial Register Interface Timing, LSB First DATA BIT n DATA BIT n – 1 Figure 27. Timing Diagram for Serial Port Register Read Rev. A | Page 17 of 56 11744-032 SDIO 11744-030 SCLK AD9139 Data Sheet DATA INTERFACE LVDS INPUT DATA PORTS DATA INTERFACE CONFIGURATION OPTIONS The AD9139 has a 16-bit LVDS bus that accepts 16-bit data either in word wide (16-bit) or byte wide (8-bit) formats. In the word wide interface mode, the data is sent over the entire 16-bit data bus. In the byte wide interface mode, the data is sent over the lower 8-bit (D7 to D0) LVDS bus. Table 10 lists the pin assignment of the bus and the SPI register configuration for each mode. To provide more flexibility for the data interface, additional options are listed in Table 11. Table 11. Data Interface Configuration Options Register 0x26, Bit 7 DATA_FORMAT Table 10. LVDS Input Data Modes Interface Mode Word Byte Input Data Width D15 to D0 D7 to D0 DLL INTERFACE MODE A source synchronous LVDS interface is used between the data host and the AD9139 to achieve high data rates while simplifying the interface. The FPGA or ASIC feeds the AD9139 with 16-bit input data. Together with the input data, the FPGA or ASIC provides a DDR DCI. SPI Register Configuration Register 0x26, Bit 0 = 0 Register 0x26, Bit 0 = 1 WORD INTERFACE MODE In word mode, the digital clock input (DCI) signal is a reference bit that generates a double data rate (DDR) data sampling clock. Time align the DCI signal with the data. A delay locked loop (DLL) circuit, designed to operate with DCI clock rates between 250 MHz and 575 MHz, generates a phase shifted version of the DCI signal, called a data sampling clock (DSC), to register the input data on both the rising and falling edges. AD9139 WORD MODE INPUT DATA[15:0] S1 S2 S3 11744-033 S0 DCI Figure 28. AD9139 Timing Diagram for Word Mode BYTE INTERFACE MODE In byte mode, the required sequence of the input data stream is S0[15:8], S0[7:0], S1[15:8], S1[7:0], and so forth. A frame signal is required to align the order of input data bytes properly. Time align both the DCI signal and frame signal with the data. The rising edge of the frame indicates the start of the sequence. The frame can be either a one shot or periodical signal as long as its first rising edge is correctly captured by the device. For a one shot frame, the frame pulse must be held at high for at least one DCI cycle. For a periodical frame, the frequency must be fDCI/(2 × n) Figure 29 is an example of signal timing in byte mode. AD9139 WORD MODE S0[15:8] S0[7:0] S1[15:8] As shown in Figure 31, the DCI clock edges must be coincident with the data bit transitions with minimum skew and jitter. The nominal sampling point of the input data occurs in the middle of the DCI clock edges because this point corresponds to the center of the data eye. This is also equivalent to a nominal phase shift of 90°of the DCI clock. The data timing requirements are defined by a data valid window (DVW) that is dependent on the data clock input skew, input data jitter, and the variations of the DLL delay line across delay settings. The DVW is defined as DVW = tDATA PERIOD − tDATA SKEW − tDATA JITTER The available margin for data interface timing is given by tMARGIN = DVW − (tS + tH) The difference of the setup and hold times, which is also called the keep out window, or KOW, is the area where data transitions are prohibited. The timing margin allows the user to set the DLL delay, as shown in Figure 30. where n is a positive integer, that is, 1, 2, 3, … INPUT DATA[7:0] Description Select between binary and twos complement formats. S1[7:0] 11744-034 DCI FRAME Figure 29. Timing Diagram for Byte Mode Rev. A | Page 18 of 56 Data Sheet AD9139 tH tDATA JITTER tS INPUT DATA DATA EYE tDATA PERIOD DCI DATA SAMPLE CLOCK tH + tS tDCI SKEW DLL PHASE DELAY tDATA JITTER DATA EYE INPUT DATA tDATA PERIOD 11744-035 DCI DATA SAMPLE CLOCK Figure 30. LVDS Data Port Timing Requirements Figure 30 shows that the ideal location for the DSC signal is 90° out of phase from the DCI input; however, due to skew of the DCI relative to the data, it may be necessary to change the DSC phase offset to sample the data at the center of its eye diagram. Vary the sampling instance in discrete increments by offsetting the nominal DLL phase shift value of 90° via Register 0x0A, Bits[3:0]. This register is a signed value. The MSB is the sign and the LSBs are the magnitude. The following equation defines the phase offset relationship: Phase Offset = 90° + n × 11.25°, |n| < 7 where n is the DLL phase offset setting. Figure 31 shows the DSC setup and hold times with respect to the DCI signal and data signals. Table 12 lists the guaranteed values across the operating conditions. These values were obtained using a 50% duty cycle and a DCI swing of 450 mV p-p. For best performance, maintain a duty cycle variation below ±5% and set the DCI input as high as possible, up to 1200 mV p-p. Table 12. DLL Phase Setup and Hold Times (Guaranteed) Frequency, fDCI (MHz) 307 368 491 DATA 614 DCI tS tH 11744-036 DSC Figure 31. LVDS Data Port Setup and Hold Times Rev. A | Page 19 of 56 Time (ps) tS tH tS tH tS tH tS tH Data Port Setup and Hold Times (ps) at DLL Phase −3 0 +3 −125 −385 −695 834 1120 1417 −70 −305 −534 753 967 1207 −81 −245 −402 601 762 928 −54.0 −167 −277 497 603 721 AD9139 Data Sheet Table 13. DLL Phase Setup and Hold Times (Typical) Frequency, fDCI 1 (MHz) 250 275 300 325 350 375 400 425 450 475 500 525 550 575 1 Time (ps) tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH Data Port Setup and Hold Times (ps) at DLL Phase −6 −93 468 −87 451 −82 422 −46 405 −23 383 −7 401 −46 385 4 358 11 354 −15 355 9 313 −7 311 −5 300 8 312 −5 −196 579 −172 537 −166 500 −114 483 −92 451 −82 466 −98 445 −52 408 −34 406 −51 399 −28 354 −52 356 −39 340 −28 348 −4 −312 707 −264 646 −256 598 −190 563 −180 524 −150 504 −161 503 −110 465 −92 457 −95 451 −77 399 −100 395 −74 378 −66 379 −3 −416 825 −364 757 −341 703 −271 647 −252 607 −225 569 −243 546 −170 524 −147 516 −147 499 −128 445 −147 438 −107 423 −102 414 −2 −530 947 −464 878 −426 803 −358 740 −328 682 −315 641 −303 604 −229 595 −209 573 −198 556 −183 500 −187 489 −147 468 −143 453 −1 −658 1067 −556 977 −515 897 −447 832 −409 762 −391 718 −384 674 −297 625 −269 637 −255 613 −233 555 −237 537 −192 510 −181 496 0 −770 1188 −653 1092 −622 1000 −538 914 −491 844 −461 783 −448 748 −394 692 −324 693 −313 675 −288 615 −285 592 −249 560 −245 544 +1 −878 1315 −756 1218 −715 1105 −612 1000 −574 930 −526 863 −513 826 −449 762 −386 731 −366 727 −333 668 −335 645 −302 610 −280 599 +2 −983 1442 −859 1311 −809 1203 −706 1100 −654 1011 −595 941 −578 890 −517 829 −446 792 −425 779 −390 726 −387 692 −352 659 −336 654 +3 −1093 1570 −956 1423 −900 1303 −806 1200 −731 1097 −661 1025 −643 965 −579 900 −509 852 −480 815 −438 783 −436 746 −397 710 −366 708 +4 −1193 1697 −1053 1537 −1001 1411 −891 1292 −819 1186 −726 1106 −713 1039 −641 966 −564 917 −530 873 −495 825 −483 799 −440 756 −406 759 +5 −1289 1777 −1151 1653 −1097 1522 −966 1380 −889 1277 −786 1187 −771 1110 −704 1032 −622 983 −585 930 −545 881 −530 850 −486 810 −443 806 +6 −1412 1876 −1251 1728 −1184 1612 −1044 1476 −959 1358 −853 1264 −833 1178 −752 1097 −672 1042 −640 988 −594 934 −581 909 −529 865 −488 847 Table 13 shows characterization data for selected fDCI frequencies. Other frequencies are possible; use Table 13 to estimate performance. Table 13 shows the typical times for various DCI clock frequencies that are required to calculate the data valid margin. Use Table 13 to determine the amount of margin that is available for tuning of the DSC sampling point. Maximizing the opening of the eye in both the DCI and data signals improves the reliability of the data port interface. Use differential controlled impedance traces of equal length (that is, delay) between the host processor and the AD9139 input. To ensure coincident transitions with the data bits, implement the DCI signal as an additional data line with an alternating (010101…) bit sequence from the same output drivers that are used for the data. The DCI signal is ac-coupled by default; thus, removing the DCI signal may cause DAC output chatter due to randomness on the DCI input. To avoid this, disable the DAC output whenever the DCI signal is not present by setting the DAC output current power-down bit in Register 0x01[7] to 1. When the DCI signal is again present, enable the DAC output by programming Register 0x01[7] to 0. Register 0x0D optimizes the DLL stability over the operating frequency range. Table 14 shows the recommended settings. Table 14. DLL Configuration Options DCI Speed ≥350 MHz
AD9139BCPZ 价格&库存

很抱歉,暂时无法提供与“AD9139BCPZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AD9139BCPZ
    •  国内价格
    • 1008+314.67700

    库存:5000