0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD9548/PCBZ

AD9548/PCBZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    AD9548 - Timing, Clock Generator Evaluation Board

  • 数据手册
  • 价格&库存
AD9548/PCBZ 数据手册
Quad/Octal Input Network Clock Generator/Synchronizer AD9548 Data Sheet FEATURES APPLICATIONS Supports Stratum 2 stability in holdover mode Supports reference switchover with phase build-out Supports hitless reference switchover Auto/manual holdover and reference switchover 4 pairs of reference input pins with each pair configurable as a single differential input or as 2 independent singleended inputs Input reference frequencies from 1 Hz to 750 MHz Reference validation and frequency monitoring (1 ppm) Programmable input reference switchover priority 30-bit programmable input reference divider 4 pairs of clock output pins with each pair configurable as a single differential LVDS/LVPECL output or as 2 singleended CMOS outputs Output frequencies up to 450 MHz 30-bit integer and 10-bit fractional programmable feedback divider Programmable digital loop filter covering loop bandwidths from 0.001 Hz to 100 kHz Optional low noise LC-VCO system clock multiplier Optional crystal resonator for system clock input On-chip EEPROM to store multiple power-up profiles Software controlled power-down 88-lead LFCSP package Network synchronization Cleanup of reference clock jitter GPS 1 pulse per second synchronization SONET/SDH clocks up to OC-192, including FEC Stratum 2 holdover, jitter cleanup, and phase transient control Stratum 3E and Stratum 3 reference clocks Wireless base station controllers Cable infrastructure Data communications GENERAL DESCRIPTION The AD9548 provides synchronization for many systems, including synchronous optical networks (SONET/SDH). The AD9548 generates an output clock synchronized to one of up to four differential or eight single-ended external input references. The digital PLL allows for reduction of input time jitter or phase noise associated with the external references. The AD9548 continuously generates a clean (low jitter), valid output clock even when all references have failed by means of a digitally controlled loop and holdover circuitry. The AD9548 operates over an industrial temperature range of −40°C to +85°C. FUNCTIONAL BLOCK DIAGRAM ANALOG FILTER STABLE SOURCE AD9548 CLOCK DISTRIBUTION CLOCK MULTIPLIER CHANNEL 0 DIVIDER CHANNEL 1 DIVIDER DIGITAL PLL CHANNEL 2 DIVIDER DAC REFERENCE INPUTS AND MONITOR MUX CHANNEL 3 DIVIDER SYNC EEPROM STATUS AND CONTROL PINS 08022-001 SERIAL CONTROL INTERFACE (SPI or I2C) Figure 1. Rev. G Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2009–2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD9548 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  Digital PLL (DPLL) Core .......................................................... 32  Applications ....................................................................................... 1  Direct Digital Synthesizer ......................................................... 34  General Description ......................................................................... 1  Tuning Word Processing ........................................................... 35  Functional Block Diagram .............................................................. 1  Loop Control State Machine ..................................................... 36  Revision History ............................................................................... 3  System Clock Inputs................................................................... 37  Specifications..................................................................................... 4  SYSCLK PLL Multiplier............................................................. 38  Supply Voltage ............................................................................... 4  Clock Distribution ..................................................................... 40  Supply Current .............................................................................. 4  Status and Control .......................................................................... 44  Power Dissipation ......................................................................... 4  Multifunction Pins (M0 to M7) ............................................... 44  Logic Inputs (M7 to M0, RESET, TDI, TCLK, TMS) .............. 5  IRQ Pin ........................................................................................ 45  Logic Outputs (M7 to M0, IRQ, TDO) ..................................... 5  Watchdog Timer ......................................................................... 46  System Clock Inputs (SYSCLKP/SYSCLKN) ........................... 5  EEPROM ..................................................................................... 46  Distribution Clock Inputs (CLKINP/CLKINN) ...................... 6  Serial Control Port ......................................................................... 51  Reference Inputs (REFA/REFAA to REFD/REFDD) .............. 7  SPI/I2C Port Selection................................................................ 51  Reference Monitors ...................................................................... 7  SPI Serial Port Operation .......................................................... 51  Reference Switchover Specifications .......................................... 8  I2C Serial Port Operation .......................................................... 56  Distribution Clock Outputs (OUT0 to OUT3) ........................ 8  Input/Output Programming Registers ........................................ 59  DAC Output Characteristics (DACOUTP/DACOUTN) ....... 9  Buffered/Active Registers .......................................................... 59  Time Duration of Digital Functions ........................................ 10  Autoclear Registers ...................................................................... 59  Digital PLL .................................................................................. 10  Register Access Restrictions ........................................................ 59  Digital PLL Lock Detection ...................................................... 10  Register Map ................................................................................... 60  Holdover Specifications ............................................................. 10  Register Map Bit Descriptions ...................................................... 70  Serial Port Specifications—SPI Mode ...................................... 11  Serial Port Specifications—I C Mode ...................................... 11  Serial Port Configuration (Register 0x0000 to Register 0x0005) ......................................................................... 70  Jitter Generation ......................................................................... 12  System Clock (Register 0x0100 to Register 0x0108) ............. 71  Absolute Maximum Ratings.......................................................... 14  General Configuration (Register 0x0200 to Register 0x0214) .. 72  ESD Caution ................................................................................ 14  DPLL Configuration (Register 0x0300 to Register 0x031B) 75  Pin Configuration and Function Descriptions ........................... 15  Clock Distribution Output Configuration (Register 0x0400 to Register 0x0419)........................................................................... 77  2 Typical Performance Characteristics ........................................... 18  Input/Output Termination Recommendations .......................... 23  Reference Input Configuration (Register 0x0500 to Register 0x0507) ......................................................................... 81  Getting Started ................................................................................ 24  Profile Registers (Register 0x0600 to Register 0x07FF) ........ 83  Power-On Reset .......................................................................... 24  Operational Controls (Register 0x0A00 to Register 0x0A10) ... 92  Initial M0 to M7 Pin Programming ......................................... 24  Clock Part Serial ID (Register 0x0C00 to Register 0x0C07) 97  Device Register Programming .................................................. 24  Status Readback (Register 0x0D00 to Register 0x0D19) ...... 97  Theory of Operation ...................................................................... 26  Overview...................................................................................... 26  Reference Clock Inputs .............................................................. 27  Nonvolatile Memory (EEPROM) Control (Register 0x0E00 to Register 0x0E03) ........................................................................ 101  Reference Monitors .................................................................... 27  EEPROM Storage Sequence (Register 0x0E10 to Register 0x0E3F) ........................................................................ 101  Reference Profiles ....................................................................... 28  Power Supply Partitions............................................................... 106  Reference Switchover ................................................................. 30  3.3 V Supplies............................................................................ 106  Rev. G | Page 2 of 111 Data Sheet AD9548 1.8 V Supplies ........................................................................... 106  Calculation of the  Register Values .......................................110  Thermal Performance .................................................................. 107  Calculation of the  Register Values .......................................110  Calculating Digital Filter Coefficients ....................................... 108  Outline Dimensions ......................................................................111  Calculation of the  Register Values ..................................... 109  Ordering Guide .........................................................................111  Calculation of the β Register Values ...................................... 109  REVISION HISTORY 12/14—Rev. F to Rev. G Changes to Figure 7 Caption to Figure 12 Caption ....................19 Changes to System Clock Period Section ....................................39 Changes to Table 36 ........................................................................62 6/14—Rev. E to Rev. F Changes to Table 21 ........................................................................15 Added Figure 34; Renumbered Sequentially ...............................23 Changed Initial Pin Programming Section to Initial M0 to M7 Pin Programming Section ..............................................................24 Changes to Frequency Tuning Word History Section ...............36 Added Disabling Accidental Automatic EEPROM Download Section ..............................................................................................48 Changes to Buffered/Active Registers Section ............................59 Changes to Register Map Section, Opt Column, Table 36 ........60 Changes to Table 65 ........................................................................76 12/13—Rev. D to Rev. E Changes to Calculating Digital Filter Coefficients Section .....109 Changes to Calculation of the  Register Values Section ........110 6/13—Rev. C to Rev. D Change to Table 16 ..........................................................................10 Changes to IRQ Pin Section ..........................................................46 Changes to Programming the EEPROM to Include a Clock Part ID Section ................................................................................50 Changes to Bit 0, Table 121 ............................................................94 Changes to Status Readback (Register 0x0D00 to Register 0x0D19) Section ..............................................................................98 2/13—Rev. B to Rev. C Change to Pin 53, Description Column, Table 21 ......................17 Added Figure 33, Renumbered Sequentially ...............................23 Changes to Automatic Priority-Based Reference Switchover Section; Added Table 23, Renumbered Sequentially ......................30 Changes to Low Loop Bandwidth Applications Using a TCXO/OCXO Section ....................................................................37 Changes to EEPROM Upload Section and EEPROM Download Section ...........................................................................48 Added Programming the EEPROM to Include a Clock Part ID Section ................................................................................50 Changes to Read Section ................................................................ 52 Added Figure 56 .............................................................................. 54 Changes to tC Parameter, Description Column, Table 33 .......... 55 Added Table Summary Statement, Table 36 ................................ 60 Changes to Table 36 ........................................................................ 60 Added User Scratch Pad (Eight Bytes), Address 0x0C00 to Address 0x0C07, Table 36 .............................................................. 67 Changes to Table 39 ........................................................................ 70 Added Clock Part Serial ID (Register 0x0C00 to Register 0x0C07) Section and Table 131 ...................................... 98 Changes to Table 142 .................................................................... 102 Added Table 153 ............................................................................ 105 Added Table 154 ............................................................................ 106 7/11—Rev. A to Rev. B Changed AD9584 to AD9548........................................................ 32 Changed 437,749,988,378,041 to 43,774,988,378,041 ................ 34 Change to Calculating Digital Filter Coefficients Section....... 107 10/10—Rev. 0 to Rev. A Changes to Timing Parameter, Table 17 ...................................... 11 Added Low Loop Bandwidth Applications Using a TCXO/OCXO Section and Choosing a System Clock Oscillator Frequency Section .............................................................................................. 37 Moved System Clock Period Section ............................................ 39 Changes to Addr 0002, Table 35.................................................... 60 Changes to Addr 0600, Table 35.................................................... 62 Changes to Addr 0632, Table 35.................................................... 63 Changes to Addr 0680, Table 35.................................................... 64 Changes to Addr 06B2, Table 35 ................................................... 65 Changes to Address 0002 Description, Table 38 ......................... 70 Changes to Bit 7 and Bit 6, Table 78 ............................................. 83 Changes to Address 0629 and Address 062A, Table 87 and Bit 7 and Bit 6, Table 88 ........................................................................... 85 Changes to Address 065B and Address 065C, Table 97 and Bit 7 and Bit 6, Table 98 ........................................................................... 87 Changes to Address 06A9 and Address 06AA, Table 107 ......... 89 Changes to Bit 7 and Bit 6, Table 108 ........................................... 90 Changes to Address 06DB and Address 06DC, Table 117......... 92 4/09—Revision 0: Initial Version Rev. G | Page 3 of 111 AD9548 Data Sheet SPECIFICATIONS Minimum (min) and maximum (max) values apply for the full range of supply voltage and operating temperature variations. Typical (typ) values apply for AVDD3 = DVDD_I/O = 3.3 V; AVDD = DVDD = 1.8 V; TA= 25°C; IDAC = 20 mA (full scale), unless otherwise noted. SUPPLY VOLTAGE Table 1. Parameter SUPPLY VOLTAGE DVDD3 DVDD AVDD3 3.3 V Supply (Typical) 1.8 V Supply (Alternative) AVDD Min Typ Max Unit Test Conditions/Comments 3.135 1.71 3.135 3.135 1.71 1.71 3.30 1.80 3.30 3.30 1.80 1.80 3.465 1.89 3.465 3.465 1.89 1.89 V V V V V V Pin 7, Pin 82 Pin 1, Pin 6, Pin 12, Pin 14, Pin 15, Pin 77, Pin 83, Pin 88 Pin 21, Pin 22, Pin 47, Pin 60, Pin 66, Pin 67, Pin 73 Pin 31, Pin 37, Pin 38, Pin 44 Pin 31, Pin 37, Pin 38, Pin 44 Pin 23, Pin 24, Pin 29, Pin 34, Pin 41, Pin 50, Pin 55, Pin 59, Pin 63, Pin 70, Pin 74 SUPPLY CURRENT The test conditions for the maximum (max) supply current are the same as the test conditions for the All Blocks Running parameter of Table 3. The test conditions for the typical (typ) supply current are the same as the test conditions for the Typical Configuration parameter of Table 3. Table 2. Parameter SUPPLY CURRENT IDVDD3 IDVDD IAVDD3 IAVDD3 3.3 V Supply (Typical) 1.8 V Supply (Alternative) IAVDD Min Typ Max Unit Test Conditions/Comments 1.5 190 52 3 215 75 mA mA mA Pin 7, Pin 82 Pin 1, Pin 6, Pin 12, Pin 14, Pin 15, Pin 77, Pin 83, Pin 88 Pin 21, Pin 22, Pin 47, Pin 60, Pin 66, Pin 67, Pin 73 24 24 135 110 110 163 mA mA mA Pin 31, Pin 37, Pin 38, Pin 44 Pin 31, Pin 37, Pin 38, Pin 44 Pin 23, Pin 24, Pin 29, Pin 34, Pin 41, Pin 50, Pin 55, Pin 59, Pin 63, Pin 70, Pin 74 Typ Max Unit Test Conditions/Comments 800 1100 mW All Blocks Running 900 1400 mW Full Power-Down 13 fSYSCLK = 20 MHz1; fS = 1 GHz2; fDDS = 122.88 MHz3; one LVPECL clock distribution output running at 122.88 MHz (all others powered down); one input reference running at 100 MHz (all others powered down) fSYSCLK = 20 MHz1; fS = 1 GHz2; fDDS = 399 MHz3; all clock distribution outputs configured as LVPECL at 399 MHz; all input references configured as differential at 100 MHz; fractional-N active (R = 10, S = 39, U = 9, V = 10) Conditions = typical configuration; no external pull-up or pull-down resistors POWER DISSIPATION Table 3. Parameter POWER DISSIPATION Typical Configuration Min mW Rev. G | Page 4 of 111 Data Sheet Parameter Incremental Power Dissipation AD9548 Min Typ SYSCLK PLL Off Input Reference On Differential Single-Ended Output Distribution Driver On LVDS LVPECL CMOS Max Unit −105 mW 7 13 mW mW 70 75 65 mW mW mW Test Conditions/Comments Conditions = typical configuration; table values show the change in power due to the indicated operation. fSYSCLK = 1 GHz1; high frequency direct input mode. A single 3.3 V CMOS output with a 10 pF load. fSYSCLK is the frequency at the SYSCLKP and SYSCLKN pins. fS is the sample rate of the output DAC. 3 fDDS is the output frequency of the DDS. 1 2 LOGIC INPUTS (M7 TO M0, RESET, TDI, TCLK, TMS) Table 4. Parameter LOGIC INPUTS (M7 to M0, RESET, TDI, TCLK, TMS) Input High Voltage (VIH) Input Low Voltage (VIL) Input Current (IINH, IINL) Input Capacitance (CIN) Min Typ Max Unit 0.8 ±200 V V µA pF Max Unit Test Conditions/Comments 0.4 V V 1 1 μA μA IOH = 1 mA IOL = 1 mA Open-drain mode VOH = 3.3 V VOL =-0 V 2.1 ±80 3 Test Conditions/Comments LOGIC OUTPUTS (M7 TO M0, IRQ, TDO) Table 5. Parameter LOGIC OUTPUTS (M7 to M0, IRQ, TDO) Output High Voltage (VOH) Output Low Voltage (VOL) IRQ Leakage Current Active Low Output Mode Active High Output Mode Min Typ 2.7 SYSTEM CLOCK INPUTS (SYSCLKP/SYSCLKN) Table 6. Parameter SYSTEM CLOCK PLL BYPASSED Input Frequency Range Minimum Input Slew Rate Duty Cycle Common-Mode Voltage Differential Input Voltage Sensitivity Input Capacitance Input Resistance Min Typ 500 1000 40 Max Unit 1000 MHz V/μs 1.2 60 % V mV p-p 2 2.5 pF kΩ 100 Rev. G | Page 5 of 111 Test Conditions/Comments Minimum limit imposed for jitter performance Internally generated Minimum voltage across pins required to ensure switching between logic states; the instantaneous voltage on either pin must not exceed the supply rails; can accommodate single-ended input by ac grounding unused input Single-ended, each pin AD9548 Parameter SYSTEM CLOCK PLL ENABLED PLL Output Frequency Range Phase-Frequency Detector (PFD) Rate Frequency Multiplication Range VCO Gain High Frequency Path Input Frequency Range Minimum Input Slew Rate Frequency Divider Range Common-Mode Voltage Differential Input Voltage Sensitivity Input Capacitance Input Resistance Low Frequency Path Input Frequency Range Minimum Input Slew Rate Common-Mode Voltage Differential Input Voltage Sensitivity Input Capacitance Input Resistance Crystal Resonator Path Crystal Resonator Frequency Range Maximum Crystal Motional Resistance Data Sheet Min Typ 900 6 Max Unit 1000 150 255 MHz MHz Test Conditions/Comments Assumes valid system clock and PFD rates 70 MHz/V 100.1 200 500 1 MHz V/μs 8 1 V mV p-p 3 2.5 pF kΩ 100 3.5 50 100 MHz V/μs 1.2 V mV p-p 3 4 pF kΩ 100 10 50 100 MHz Ω Minimum limit imposed for jitter performance Binary steps (M = 1, 2, 4, 8) Internally generated Minimum voltage across pins required to ensure switching between logic states; the instantaneous voltage on either pin must not exceed the supply rails; can accommodate single-ended input by ac grounding unused input Single-ended, each pin Minimum limit imposed for jitter performance Internally generated Minimum voltage across pins required to ensure switching between logic states; the instantaneous voltage on either pin must not exceed the supply rails; can accommodate single-ended input by ac grounding unused input Single-ended, each pin Fundamental mode, AT cut See the System Clock Inputs section for recommendations DISTRIBUTION CLOCK INPUTS (CLKINP/CLKINN) Table 7. Parameter DISTRIBUTION CLOCK INPUTS (CLKINP/CLKINN) Input Frequency Range Minimum Slew Rate Min Typ 62.5 75 Max Unit 500 MHz V/μs Common-Mode Voltage Differential Input Voltage Sensitivity 100 mV mV p-p Differential Input Power Sensitivity −15 dBm Input Capacitance Input Resistance 700 3 5 Rev. G | Page 6 of 111 pF kΩ Test Conditions/Comments Minimum limit imposed for jitter performance. Internally generated. Capacitive coupling required; can accommodate single-ended input by ac grounding unused input; the instantaneous voltage on either pin must not exceed the supply rails. The same as voltage sensitivity but specified as power into a 50 Ω load. Each pin has a 2.5 kΩ internal dcbias resistance. Data Sheet AD9548 REFERENCE INPUTS (REFA/REFAA TO REFD/REFDD) Table 8. Parameter DIFFERENTIAL OPERATION Frequency Range Sinusoidal Input LVPECL Input LVDS Input Minimum Input Slew Rate Min Typ 10 1 1 40 Max Unit 750 750 × 106 750 × 106 MHz Hz Hz V/μs Common-Mode Input Voltage Differential Input Voltage Sensitivity 2 ±65 V mV Input Resistance Input Capacitance 25 3 kΩ pF Minimum Pulse Width High Minimum Pulse Width Low SINGLE-ENDED OPERATION Frequency Range (CMOS) Minimum Input Slew Rate 620 620 Minimum limit imposed for jitter performance Internally generated Minimum differential voltage across pins required to ensure switching between logic levels; the instantaneous voltage on either pin must not exceed the supply rails ps ps 1 40 Input Voltage High (VIH) 1.2 V to 1.5 V Threshold Setting 1.8 V to 2.5 V Threshold Setting 3.0 V to 3.3 V Threshold Setting Input Voltage Low (VIL) 1.2 V to 1.5 V Threshold Setting 1.8 V to 2.5 V Threshold Setting 3.0 V to 3.3 V Threshold Setting Input Resistance Input Capacitance Minimum Pulse Width High Minimum Pulse Width Low Test Conditions/Comments 250 ×106 0.9 1.2 1.9 Hz V/μs Minimum limit imposed for jitter performance V V V 0.27 0.5 1.0 V V V kΩ pF ns ns 45 3 1.5 1.5 REFERENCE MONITORS Table 9. Parameter REFERENCE MONITORS Reference Monitor Loss of Reference Detection Time Frequency Out-of Range Limits Validation Timer Redetect Timer 1 Min 9.54 × 10−7 0.001 0.001 Typ Max Unit Test Conditions/Comments 1.2 sec 0.1 65.535 65.535 Δf/fREF sec sec Calculated using the nominal phase detector period (NPDP = R/fREF)1 Programmable (lower bound subject to quality of SYSCLK) Programmable in 1 ms increments Programmable in 1 ms increments fREF is the frequency of the active reference; R is the frequency division factor determined by the R-divider. Rev. G | Page 7 of 111 AD9548 Data Sheet REFERENCE SWITCHOVER SPECIFICATIONS Table 10. Parameter REFERENCE SWITCHOVER SPECIFICATIONS Maximum Output Phase Perturbation (Phase Build-Out Switchover) Maximum Time/Time Slope (Hitless Switchover) Min Max Unit Test Conditions/Comments 40 200 ps 65,535 ns/sec Assumes a jitter-free reference; satisfies Telcordia GR-1244-CORE requirements Minimum/maximum values are programmable upper bounds; a minimum value ensures 1, min[22, max(0, x)], 0) z = round(α × 216+α 1 −α 2 −α 3 ) α 0 = min[65,535 , max(1, z )] Using the example value of α = 0.012735446 yields w = 6, so α1 = 6 ln ( x) ln (2) x = 0 and y = 0, so α2 = 0 and α3 = 0 z = 53,416.332099584, so α0 = 53,416 where ln() is the natural log function and x is a positive, nonzero number. Assume that the coefficient calculations for α, β, γ, and δ yield the following results: α = 0.012735446 This leads to the following quantized value, which is very close to the desired value of 0.012735446: α quantized = 53416 × 2 −22 ≈ 0.01273566821 CALCULATION OF THE β REGISTER VALUES β = −6.98672 × 10 −5 The quantized β coefficient consists of two components, β0 and β1 according to γ = −7.50373 × 10 −5 δ = 0.002015399 − β ≈ β quantized = β 0 × 2 − (17 + β1 ) These values are floating point numbers that must be quantized according to the bit widths of the linear and exponential components of the coefficients as they appear in the register map. Note that the calculations that follow indicate a positive value for the register entries of β and γ. The reason is that β and γ, which are supposed to be negative values, are stored in the AD9548 registers as positive values. The AD9548 converts the stored values to negative numbers within its signal processing core. A detailed description of the register value computations for α, β, γ, and δ is contained in the Calculation of the α Register Values section to the Calculation of the δ Register Values section. CALCULATION OF THE α REGISTER VALUES The quantized α coefficient consists of four components, α0, α1, α2, and α3 according to α ≈ α quantized = α 0 × 2 −16−α1 +α 2 +α3 where β0 and β1 are the register values. Calculation of β1 is a two-step process that leads to the calculation of β0, which is also a two-step process. x = −ceil(log 2 ( β )) β 1 = min[31, max(0, x)] y = round( β × 217 + β1 ) β 0 = min[131,071 , max(1, y )] Using the example value of −β = 6.98672 × 10−5 yields x = 13, so β1 = 13 y = 75,019.3347657728, so β0 = 75,019 This leads to the following quantized value, which is very close to the desired value of 6.98672x10−5: where α0, α1, α2, and α3 are the register values. α2 provides front-end gain, α3 provides back-end gain, and α1 shifts the Rev. G | Page 109 of 111 β quantized = 75,019 × 2 −30 ≈ 6.986688823 × 10 −5 AD9548 Data Sheet CALCULATION OF THE γ REGISTER VALUES CALCULATION OF THE δ REGISTER VALUES The quantized γ coefficient consists of two components, γ0 and γ1 according to The quantized δ coefficient consists of two components, δ0 and δ1, according to δ ≈ δ quantized = δ 0 × 2 − (15 + δ − γ ≈ γ quantized = γ 0 × 2 − (17 + γ 1 ) where γ0 and γ1 are the register values. Calculation of γ1 is a twostep process that leads to the calculation of γ0, which is also a two-step process. x = −ceil(log 2 ( γ )) y = round( γ × 2 ) y = round(δ × 215 + δ 1 ) δ 0 = min[32,767 , max(1, y )] Using the example value of −γ = 7.50373 × 10 yields −5 Given the example value of δ = 0.002015399, the preceding formulas yield x = 13, so γ1 = 13 x = 8, δ1 = 8 y = 80,570.6873700352, so γ1 = 80,571 This leads to the following quantized value, which is very close to the desired value of 7.50373x10−5: γ quantized = 80571 × 2 Calculation of δ1 is a two-step process that leads to the calculation of δ0, which is also a two-step process. δ 1 = min[31, max(0, x)] γ 0 = min[131,071 , max(1, y )] −30 where δ0 and δ1 are the register values. x = −ceil(log 2 (δ )) γ 1 = min[31, max(0, x)] 17 + γ 1 ≈ 7.503759116 × 10 1) −5 y = 16,906.392174592, δ0 = 16,906 This leads to the following quantized value, which is very close to the desired value of 0.002015399: δ quantized = 16906 × 2 −23 ≈ 0.002015352249 Rev. G | Page 110 of 111 Data Sheet AD9548 OUTLINE DIMENSIONS 12.10 12.00 SQ 11.90 0.60 MAX 0.30 0.23 0.18 0.60 MAX 88 67 66 1 PIN 1 INDICATOR PIN 1 INDICATOR 11.85 11.75 SQ 11.65 0.50 BSC 0.50 0.40 0.30 23 22 10.50 REF 0.70 0.65 0.60 0.05 MAX 0.01 NOM COPLANARITY 0.08 0.20 REF SEATING PLANE FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. *COMPLIANT TO JEDEC STANDARDS MO-220-VRRD EXCEPT FOR MINIMUM THICKNESS AND LEAD COUNT. 07-02-2012-B 12° MAX 45 44 BOTTOM VIEW TOP VIEW *0.90 0.85 0.75 6.15 6.00 SQ 5.85 EXPOSED PAD Figure 71. 88-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 12 mm × 12 mm Body, Very Thin Quad (CP-88-2) Dimensions shown in millimeters ORDERING GUIDE Model1 AD9548BCPZ AD9548BCPZ-REEL7 AD9548/PCBZ 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 88-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 88-Lead Lead Frame Chip Scale Package [LFCSP_VQ] Evaluation Board Z = RoHS Compliant Part. ©2009–2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08022-0-12/14(G) Rev. G | Page 111 of 111 Package Option CP-88-2 CP-88-2 CP-88-2
AD9548/PCBZ 价格&库存

很抱歉,暂时无法提供与“AD9548/PCBZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货