0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADA4177-1ARMZ

ADA4177-1ARMZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    MSOP8_3X3MM

  • 描述:

    IC OPAMP GP 1 CIRCUIT 8MSOP

  • 数据手册
  • 价格&库存
ADA4177-1ARMZ 数据手册
OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet PIN CONNECTION DIAGRAM OUT A 1 TOP VIEW (Not to Scale) V+ OUT B 6 –IN B 5 +IN B The ADA4177-1/ADA4177-2/ADA4177-4 operate over the −40°C to +125°C industrial temperature range. The ADA4177-1/ ADA4177-2 are available in an 8-lead SOIC package and an 8-lead MSOP package. The ADA4177-4 is available in a 14-lead TSSOP and a 14-lead SOIC package. 12 10 8 VSY = ±15V 6 4 2 0 –2 –4 –6 –30 –10 10 30 VIN (V) 50 12282-446 –8 –10 –50 GENERAL DESCRIPTION Rev. E +IN A 3 8 7 Applications for these amplifiers include sensor signal conditioning (such as thermocouples, resistor thermal detectors (RTDs), and strain gages), process control front-end amplifiers, and precision diode power measurement in optical and wireless transmission systems. Wireless base station control circuits Optical network control circuits Instrumentation Sensors and controls Thermocouples, RTDs, strain gages, shunt current measurements The inputs of the ADA4177-1/ADA4177-2/ADA4177-4 feature outstanding precision amplifier robustness, providing input protection against signal excursions 32 V beyond either supply, as well as 70 dB of rejection for electromagnetic interference (EMI) at 1000 MHz. ADA4177-2 Figure 1. ADA4177-2, for Additional Packages and Models, See the Pin Configurations and Function Descriptions Section APPLICATIONS The ADA4177-1 single-channel, ADA4177-2 dual-channel, and ADA4177-4 quad-channel amplifiers feature low offset voltage (2 µV typical) and drift (1 µV/°C maximum), low input bias current, low noise, and low current consumption (500 µA typical). Outputs are stable with capacitive loads of more than 1000 pF with no external compensation. –IN A 2 V– 4 INPUT BIAS CURRENT (mA) Low offset voltage: 60 µV maximum at 25°C (8-lead and 14-lead SOIC) Low offset voltage drift: 1 µV/°C maximum (8-lead and 14-lead SOIC) Low input bias current: 1 nA maximum at 25°C Low voltage noise density: 8 nV/√Hz typical at 1 kHz Large signal voltage gain (AVO): 100 dB minimum over full supply voltage and operating temperature Input overvoltage protection to 32 V above and below the supply voltage rail Integrated EMI filter 70 dB typical rejection at 1000 MHz 90 dB typical rejection at 2400 MHz Rail-to-rail output swing Low supply current: 500 µA typical per amplifier Wide bandwidth Gain bandwidth product (AV = 100): 3.5 MHz typical Unity-gain crossover (AV = 1): 3.5 MHz typical −3 dB bandwidth (AV = 1): 6 MHz typical Dual-supply operation Specified at ±5 V to ±15 V, operates over ±2.5 V to ±18 V Unity-gain stable No phase reversal Long-term offset voltage drift (10,000 hours): 2 µV typical Temperature hysteresis: 2 µV typical 12282-001 FEATURES Figure 2. Overvoltage Current Limiting, Voltage Follower Configuration Table 1. Evolution of Protected Input Op Amps by Generation1 Gen. 1, OVP (10 V) OP191 OP291 OP491 1 Gen. 2, OVP (25 V) ADA4091-2 ADA4091-4 ADA4092-4 Gen. 3, OVP (32 V) ADA4096-2 ADA4096-4 Gen. 4 EMI Filters AD8657 AD8659 AD8546 AD8548 ADA4661-2 ADA4666-2 Gen. 5, OVP (32 V) + EMI ADA4177-1 ADA4177-2 ADA4177-4 Gen. means generation. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2014–2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Applications Information .............................................................. 26 Applications ....................................................................................... 1 Active Overvoltage Protection ................................................. 26 General Description ......................................................................... 1 Pin Connection Diagram ................................................................ 1 Limiting Overvoltage Current Out of the Positive Supply Pin ....................................................................................................... 27 Revision History ............................................................................... 3 EMI Protection ........................................................................... 28 Specifications..................................................................................... 4 Self Heating ................................................................................. 28 Electrical Characteristics, ±5 V .................................................. 4 Using the ADA4177-1/ADA4177-2/ADA4177-4 as a Comparator ................................................................................. 28 Electrical Characteristics, ±15 V ................................................ 6 Absolute Maximum Ratings ....................................................... 8 Maximum Power Dissipation ..................................................... 8 Thermal Resistance ...................................................................... 8 ESD Caution .................................................................................. 8 Pin Configurations and Function Descriptions ........................... 9 Typical Performance Characteristics ........................................... 12 Output Phase Reversal ............................................................... 29 Proper Printed Circuit Board (PCB) Layout .......................... 29 Long-Term Drift ......................................................................... 29 Temperature Hysteresis ............................................................. 30 Outline Dimensions ....................................................................... 31 Ordering Guide .......................................................................... 33 Theory of Operation ...................................................................... 25 Rev. E | Page 2 of 33 Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 REVISION HISTORY 8/2018—Rev. D to Rev. E Change to Input Capacitance (CINCM) Parameter, Table 2............ 4 Change to Input Capacitance (CINCM) Parameter, Table 3............ 6 Changes to Ordering Guide ...........................................................33 5/2017—Rev. C to Rev. D Changes to Features Section, Applications Section, and General Description Section ........................................................................... 1 Changes to Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14 ...................................................................................12 Changes to Figure 15 and Figure 16 .............................................13 Changes to Add an External Series Input Resistor Section and Figure 85 ...........................................................................................26 Changes to Self Heating Section ...................................................28 Added Long-Term Drift Section ...................................................29 Added Temperature Hysteresis Section, Figure 97, Figure 98, and Figure 99; Renumbered Sequentially ...............................................30 4/2015—Rev. B to Rev. C Added ADA4177-1 ............................................................ Universal Deleted Figure 2; Renumbered Sequentially ................................. 1 Change to Table 1 .............................................................................. 1 Added Figure 5, Figure 6, and Table 7; Renumbered Sequentially ........................................................................................ 9 Changes to Figure 16, Figure 17, Figure 19, and Figure 20 .......12 Changes to Figure 26 ......................................................................14 Changes to Figure 34, Figure 35, Figure 37, and Figure 39 .......16 Changes to Figure 46, Figure 47, Figure 49, and Figure 50 .......17 Changes to Figure 59 and Figure 62 .............................................19 Changes to Figure 63, Figure 65, Figure 66, and Figure 68 .......20 Changes to Figure 69 and Figure 72 .............................................21 Changes to Figure 75 and Figure 78 .............................................22 Added Figure 77 and Figure 80 .....................................................22 Added Figure 81 to Figure 83 ........................................................23 Changes to Theory of Operation Section ....................................24 Changes to Input Protection Circuit Section and Limiting Overvoltage Current Out of the Positive Supply Pin Section ... 26 Changes to Using the ADA4177-1/ADA4177-2/ADA4177-4 as a Comparator Section ..................................................................... 27 Changes to Ordering Guide ........................................................... 31 1/2015—Rev. A to Rev. B Added ADA4177-4 ............................................................ Universal Reorganized Layout ........................................................... Universal Added Figure 2; Renumbered Sequentially ................................... 1 Changes to Features and General Description Section................ 1 Changes to Table 2 ............................................................................ 3 Changes to Table 3 ............................................................................ 5 Changes to Table 5 ............................................................................ 7 Added Figure 6, Figure 7, and Table 7; Renumbered Sequentially ........................................................................................ 9 Added Figure 10 and Figure 13 ..................................................... 10 Replaced Figure 15 and Figure 18 ................................................. 11 Added Figure 14, Figure 16, Figure 17, and Figure 19 ............... 11 Changes to Figure 20, Figure 21, Figure 23, and Figure 24 ....... 12 Changes to Figure 32 and Figure 33 ............................................. 14 Changes to Figure 38 and Figure 41 ............................................. 15 Changes to Figure 58 and Figure 61 ............................................. 18 Changes to Figure 62, Figure 65, and Figure 66 .......................... 19 Changes to Figure 69 and Figure 72 ............................................. 20 Change to Figure 87 Caption ......................................................... 25 Updated Outline Dimensions........................................................ 27 Added Figure 93 and Figure 94 ..................................................... 28 Changes to Ordering Guide ........................................................... 29 10/2014—Rev. 0 to Rev. A Changes to Large Signal Voltage Gain Parameter, Test Conditions/Comments Column, Table 3....................................... 5 10/2014—Revision 0: Initial Version Rev. E | Page 3 of 33 ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet SPECIFICATIONS ELECTRICAL CHARACTERISTICS, ±5 V VSY = ±5.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage 8-Lead SOIC and 14-Lead SOIC Symbol Test Conditions/Comments Min Typ Max Unit 2 60 120 120 200 150 300 µV µV µV µV µV µV 40 110 µV µV 1 1.6 +1 +2 +0.75 +1.5 +3.5 1 8 4 100 µV/°C µV/°C nA nA nA nA V mA mA dB dB dB dB dB dB pF pF MΩ GΩ 25 V V V V V V V V mA 36 48 0.11 mA mA Ω VOS −40°C < TA < +125°C 8-Lead MSOP 3 −40°C < TA < +125°C 14-Lead TSSOP 3 −40°C < TA < +125°C Offset Voltage Matching 8-Lead SOIC 8-Lead MSOP Offset Voltage Drift 8-Lead SOIC and 14-Lead SOIC 8-Lead MSOP and 14-Lead TSSOP Input Bias Current ΔVOS/ΔT −40°C < TA < +125°C IB −40°C < TA < +125°C Input Offset Current IOS −40°C < TA < +125°C Input Voltage Range Overvoltage Current Limit1 IVR IOVP Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Input Capacitance Input Resistance OUTPUT CHARACTERISTICS Output Voltage High Low Output Current Short-Circuit Current Sourcing Sinking Closed-Loop Output Impedance CINDM CINCM RDIFF RCM VOH VOL IOUT ISC ZOUT 5 V < VCM < 37 V −37 V < VCM < −5 V VCM = −3.5 V to +3.5 V −40°C < TA < +125°C RL = 2 kΩ, VOUT = −4.5 V to +4.5 V −40°C < TA < +125°C RL = 10 kΩ, VOUT = −4.5 V to +4.5 V −40°C < TA < +125°C Differential mode Common mode Differential mode Common mode ILOAD = 1 mA −40°C < TA < +125°C ILOAD = 7 mA −40°C < TA < +125°C ILOAD = 1 mA −40°C < TA < +125°C ILOAD = 7 mA −40°C < TA < +125°C VDROPOUT < 1 V TA = 25°C f = 1 kHz, AV = 1 Rev. E | Page 4 of 33 −1 −2 −0.75 −1.5 −3.5 122 120 108 100 115 110 −0.4 +0.1 12 10 130 110 120 4.95 4.90 4.80 4.75 −4.95 −4.90 −4.80 −4.75 Data Sheet Parameter POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time To 0.1% To 0.01% Gain Bandwidth Product Unity-Gain Crossover −3 dB Closed-Loop Bandwidth Total Harmonic Distortion Plus Noise EMI Rejection of +INx f = 1000 MHz f = 2400 MHz NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density 1 ADA4177-1/ADA4177-2/ADA4177-4 Symbol Test Conditions/Comments Min Typ PSRR VS = ±2.5 V to ±18 V −40°C < TA < +125°C VOUT = 0 V −40°C < TA < +125°C 125 120 145 ISY SR tS GBP UGC f−3 dB THD + N EMIRR en p-p en in 500 Max Unit 560 600 dB dB µA µA RL = 2 kΩ 1.5 V/µs VIN = 1 V step, RL = 2 kΩ, AV = −1 VIN = 1 V step, RL = 2 kΩ, AV = −1 VIN = 10 mV p-p, RL = 2 kΩ, AV = 100 VIN = 10 mV p-p, RL = 2 kΩ, AV = 1 VIN = 10 mV p-p, RL = 2 kΩ, AV = 1 VIN = 1 V rms, RL = 2 kΩ, AV = +1, f = 1 kHz VIN = 200 mV p-p 1.8 3.5 3.5 3.5 6 0.003 µs µs MHz MHz MHz % 70 90 dB dB 175 10 8 0.2 nV p-p nV/√Hz nV/√Hz pA/√Hz 0.1 Hz to 10 Hz f = 10 Hz f = 1 kHz f = 1 kHz All inputs are stressed to 32 V beyond supplies for 500 ms. See Figure 71 for the typical input bias current vs. the input voltage over the overvoltage protected input range. Rev. E | Page 5 of 33 ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet ELECTRICAL CHARACTERISTICS, ±15 V VSY = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage 8-Lead SOIC and 14-Lead SOIC Symbol Test Conditions/Comments Min Typ Max Unit 2 60 120 120 200 150 300 µV µV µV µV µV µV 40 110 µV µV 1 1.6 +1 +2 +0.75 +1.5 +13.5 1 8 4 130 µV/°C µV/°C nA nA nA nA V mA mA dB dB dB dB dB dB pF pF MΩ GΩ 25 V V V V V V V V mA 53 65 0.08 mA mA Ω VOS −40°C < TA < +125°C 8-Lead MSOP 3 −40°C < TA < +125°C 14-Lead TSSOP 3 −40°C < TA < +125°C Offset Voltage Matching 8-Lead SOIC 8-Lead MSOP Offset Voltage Drift 8-Lead SOIC and 14-Lead SOIC 8-Lead MSOP and 14-Lead TSSOP Input Bias Current ΔVOS/ΔT −40°C < TA < +125°C IB −40°C < TA < +125°C Input Offset Current IOS −40°C < TA < +125°C Input Voltage Range Overvoltage Current Limit1 IVR IOVP Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Input Capacitance Input Resistance OUTPUT CHARACTERISTICS Output Voltage High Low Output Current Short-Circuit Current Sourcing Sinking Closed-Loop Output Impedance CINDM CINCM RDIFF RCM VOH VOL IOUT ISC ZOUT 15 V < VCM < 47 V −47 V < VCM < −15 V VCM = −13.5 V to +13.5 V −40°C < TA < +125°C RL = 2 kΩ, VOUT = −14.2 V to +14.2 V −40°C < TA < +125°C RL = 10 kΩ, VOUT = −14.5 V to +14.5 V −40°C < TA < +125°C Differential mode Common mode Differential mode Common mode ILOAD = 1 mA −40°C < TA < +125°C ILOAD = 7 mA −40°C < TA < +125°C ILOAD = 1 mA −40°C < TA < +125°C ILOAD = 7 mA −40°C < TA < +125°C VDROPOUT < 1 V TA = 25°C f = 1 kHz, AV = 1 Rev. E | Page 6 of 33 −1 −2 −0.75 −1.5 −13.5 128 125 110 103 118 110 −0.3 +0.1 12 10 130 114 120 14.95 14.90 14.80 14.75 −14.95 −14.90 −14.80 −14.75 Data Sheet Parameter POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time To 0.1% To 0.01% Gain Bandwidth Product Unity-Gain Crossover −3 dB Closed-Loop Bandwidth Total Harmonic Distortion Plus Noise EMI Rejection of +INx f = 1000 MHz f = 2400 MHz NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density MULTIPLE AMPLIFIERS CHANNEL SEPARATION 1 ADA4177-1/ADA4177-2/ADA4177-4 Symbol Test Conditions/Comments Min Typ PSRR VS = ±2.5 V to ±18 V −40°C < TA < +125°C VOUT = 0 V −40°C < TA < +125°C 125 120 145 ISY SR tS GBP UGC f−3 dB THD + N EMIRR en p-p en in CS 500 Max Unit 580 620 dB dB µA µA RL = 2 kΩ 1.5 V/µs VIN = 10 V p-p, RL = 2 kΩ, AV = −1 VIN = 10 V p-p, RL = 2 kΩ, AV = −1 VIN = 10 mV p-p, RL = 2 kΩ, AV = 100 VIN = 10 mV p-p, RL = 2 kΩ, AV = 1 VIN = 10 mV p-p, RL = 2 kΩ, AV = 1 VIN = 1 V rms, AV = +1, RL = 2 kΩ, f = 1 kHz VIN = 200 mV p-p 5.5 7.5 3.5 3.5 6 0.002 µs µs MHz MHz MHz % 70 90 dB dB 175 10 8 0.2 127 nV p-p nV/√Hz nV/√Hz pA/√Hz dB 0.1 Hz to 10 Hz f = 10 Hz f = 1 kHz f = 1 kHz f = 1 kHz All inputs are stressed to 32 V beyond supplies for 500 ms. See Figure 74 for the typical input bias current vs. the input voltage over the overvoltage protected input range. Rev. E | Page 7 of 33 ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet ABSOLUTE MAXIMUM RATINGS Table 4. Parameter Supply Voltage Input Voltage Differential Input Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature, Soldering (10 sec)1 Electrostatic Discharge (ESD) Human Body Model (HBM)2 Field Induced Charged Device Model (FICDM)3 Machine Model (MM) Rating 36 V VSY ± 32 V ±VSY See the Maximum Power Dissipation section −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C 4 kV 1250 V 200 V 2 Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. The ADA4177-1/ADA4177-2/ADA4177-4 can drive a shortcircuit output current of up to 65 mA. However, the usable output load current drive is limited by the maximum power dissipation allowed by the device package. The absolute maximum junction temperature is 150°C (see Table 4). The junction temperature can be estimated as follows: PD = (VSY × ISY) + (VSY − VOUT) × ILOAD where: VSY is the power supply rail. ISY is the quiescent current. VOUT is the output of the amplifier. ILOAD is the output load. Do not exceed the 150°C maximum junction temperature for the device. Exceeding the junction temperature limit can cause degradation in the parametric performance or even destroy the device. Refer to Technical Article MS-2251, Data Sheet Intricacies— Absolute Maximum Ratings and Thermal Resistances, for more information. THERMAL RESISTANCE IPC/JEDEC J-STS-020D applicable standard. ESDA/JEDEC JS-001-2011 applicable standard. 3 JESD22-C101 (ESD FICDM standard of JEDEC) applicable standard. 1 MAXIMUM POWER DISSIPATION The power dissipated in the package (PD) is the sum of the quiescent power dissipation and the power dissipated by the output stage transistor. It is calculated as follows: Thermal resistance between junction and ambient (θJA) is specified for the worst case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 5. Thermal Resistance Package Type 8-Lead MSOP 8-Lead SOIC 14-Lead TSSOP 14-Lead SOIC ESD CAUTION TJ = PD × θJA + TA where: TJ is the die junction temperature. PD is the power dissipated in the package. θJA is the thermal resistance of the package. TA is the ambient temperature. Rev. E | Page 8 of 33 θJA 190 158 240 115 θJC 44 43 43 36 Unit °C/W °C/W °C/W °C/W Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 NIC NIC 1 8 NIC ADA4177-1 7 V+ –IN 2 ADA4177-1 7 V+ +IN 3 TOP VIEW (Not to Scale) 6 OUT +IN 3 TOP VIEW (Not to Scale) 6 OUT 5 NIC V– 4 5 NIC V– 4 NOTES 1. NIC = NOT INTERNALLY CONNECTED. 12282-205 8 –IN 2 NIC 1 NOTES 1. NIC = NOT INTERNALLY CONNECTED. Figure 4. ADA4177-1 8-Lead SOIC Pin Configuration Figure 3. ADA4177-1 8-Lead MSOP Pin Configuration Table 6. ADA4177-1 Pin Function Descriptions Pin No. 1, 5, 8 2 3 4 6 7 Mnemonic NIC −IN +IN V− OUT V+ 12282-105 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS Description Not Internally Connected. Inverting Input Channel. Noninverting Input Channel. Negative Supply Voltage. Output Channel. Positive Supply Voltage. Rev. E | Page 9 of 33 OUT A 1 Data Sheet 8 V+ –IN A 2 ADA4177-2 7 OUT B –IN A 2 ADA4177-2 +IN A 3 TOP VIEW (Not to Scale) 6 –IN B +IN A 3 5 +IN B TOP VIEW (Not to Scale) 12282-004 V– 4 OUT A 1 V– 4 Figure 5. ADA4177-2 8-Lead MSOP Pin Configuration Mnemonic OUT A −IN A +IN A V− +IN B −IN B OUT B V+ V+ 7 OUT B 6 –IN B 5 +IN B Figure 6. ADA4177-2 8-Lead SOIC Pin Configuration Table 7. ADA4177-2 Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 8 12282-005 ADA4177-1/ADA4177-2/ADA4177-4 Description Output Channel A. Inverting Input Channel A. Noninverting Input Channel A. Negative Supply Voltage. Noninverting Input Channel B. Inverting Input Channel B. Output Channel B. Positive Supply Voltage. Rev. E | Page 10 of 33 ADA4177-1/ADA4177-2/ADA4177-4 OUT A 1 14 OUT D –IN A 2 13 –IN D 3 ADA4177-4 V+ 4 TOP VIEW (Not to Scale) +IN B 5 10 +IN C –IN B 6 9 –IN C OUT B 7 8 OUT C 12 +IN D 11 V– –IN D ADA4177-4 12 +IN D TOP VIEW (Not to Scale) 11 V– 10 +IN C –IN B 6 9 –IN C OUT B 7 8 OUT C +IN B 5 Figure 8. ADA4177-4 14-Lead SOIC Pin Configuration Table 8. ADA4177-4 Pin Function Descriptions Mnemonic OUT A −IN A +IN A V+ +IN B −IN B OUT B OUT C −IN C +IN C V− +IN D −IN D OUT D OUT D 13 V+ 4 Figure 7. ADA4177-4 14-Lead TSSOP Pin Configuration Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 –IN A 2 +IN A 3 12282-206 +IN A OUT A 1 12282-207 Data Sheet Description Output Channel A. Inverting Input Channel A. Noninverting Input Channel A. Positive Supply Voltage. Noninverting Input Channel B. Inverting Input Channel B. Output Channel B. Output Channel C. Inverting Input Channel C. Noninverting Input Channel C. Negative Supply Voltage. Noninverting Input Channel D. Inverting Input Channel D. Output Channel D. Rev. E | Page 11 of 33 ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS Ambient temperature (TA) = 25°C unless otherwise noted. 80 80 NUMBER OF AMPLIFIERS 60 50 40 30 20 70 60 50 40 30 0 VOS (µV) VOS (µV) Figure 12. Input Offset Voltage (VOS) Distribution, VSY = ±15 V, 8-Lead SOIC 60 60 VSY = ±5V 8-LEAD MSOP VSY = ±15V 8-LEAD MSOP 50 30 20 40 30 20 0 0 VOS (µV) 12282-400 10 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90 100 10 VOS (µV) Figure 10. Input Offset Voltage (VOS) Distribution, VSY = ±5 V, 8-Lead MSOP 12282-401 40 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90 100 NUMBER OF AMPLIFIERS 50 Figure 13. Input Offset Voltage (VOS) Distribution, VSY = ±15 V, 8-Lead MSOP 300 300 VSY = ±5V 14-LEAD SOIC VSY = ±15V 14-LEAD SOIC 250 200 150 100 200 150 100 0 0 VOS (µV) 12282-503 50 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40 45 50 50 VOS (µV) Figure 11. Input Offset Voltage (VOS) Distribution, VSY = ±5 V, 14-Lead SOIC Figure 14. Input Offset Voltage (VOS) Distribution, VSY = ±15 V, 14-Lead SOIC Rev. E | Page 12 of 33 12282-504 NUMBER OF AMPLIFIERS 250 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40 45 50 NUMBER OF AMPLIFIERS 12282-403 0 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40 45 50 10 12282-402 10 Figure 9. Input Offset Voltage (VOS) Distribution, VSY = ±5 V, 8-Lead SOIC NUMBER OF AMPLIFIERS VSY = ±15V 8-LEAD SOIC 20 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40 45 50 NUMBER OF AMPLIFIERS 70 90 VSY = ±5V 8-LEAD SOIC Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 90 80 60 50 40 30 50 40 30 10 0 0 12282-501 10 VOS (µV) 160 VSY = ±5V 8-LEAD SOIC, 14-LEAD SOIC 120 80 40 40 VOS (µV) 80 0 0 –40 –40 –80 –80 –120 –120 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) –160 –40 12282-508 –160 –40 300 200 100 100 VOS (µV) 200 0 –200 –200 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 12282-512 –100 –10 5 20 35 50 65 80 95 110 125 Figure 17. Input Offset Voltage (VOS) vs. Temperature, VSY = ±5 V, 8-Lead MSOP and 14-Lead TSSOP VSY = ±15V 8-LEAD MSOP, 14-LEAD TSSOP 0 –100 –25 –10 Figure 19. Input Offset Voltage (VOS) vs. Temperature, VSY = ±15 V, 8-Lead SOIC and 14-Lead SOIC VSY = ±5V 8-LEAD MSOP, 14-LEAD TSSOP –300 –40 –25 TEMPERATURE (°C) Figure 16. Input Offset Voltage (VOS) vs. Temperature, VSY = ±5 V, 8-Lead SOIC and 14-Lead SOIC 300 VSY = ±15V 8-LEAD SOIC, 14-LEAD SOIC 12282-511 120 Figure 18. Input Offset Voltage (VOS) Distribution, VSY = ±15 V, 14-Lead TSSOP –300 –40 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) Figure 20. Input Offset Voltage (VOS) vs. Temperature, VSY = ±15 V, 8-Lead MSOP and 14-Lead TSSOP Rev. E | Page 13 of 33 12282-515 160 VOS (µV) 60 20 Figure 15. Input Offset Voltage (VOS) Distribution, VSY = ±5 V, 14-Lead TSSOP VOS (µV) 70 20 VOS (µV) VSY = ±15V 14-LEAD TSSOP 12282-502 NUMBER OF AMPLIFIERS 70 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90 100 NUMBER OF AMPLIFIERS 80 VSY = ±5V 14-LEAD TSSOP –100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90 100 90 ADA4177-1/ADA4177-2/ADA4177-4 80 VSY = ±5V 8-LEAD SOIC, 14-LEAD SOIC 70 70 60 60 NUMBER OF AMPLIFIERS 50 40 30 20 50 40 30 20 10 0.70 0.45 0.20 –0.05 0.95 TCVOS (µV/°C) 0 –0.55 12282-513 –0.30 Figure 21. Temperature Coefficient of Offset Voltage (TCVOS), VSY = ±5 V, 8-Lead SOIC and 14-Lead SOIC 35 0.45 0.70 0.95 VSY = ±15V 8-LEAD MSOP, 14-LEAD TSSOP 30 NUMBER OF AMPLIFIERS 25 20 15 10 25 20 15 10 5 5 –0.30 –0.05 0.70 0.45 0.20 0.95 TCVOS (µV/°C) Figure 22. Temperature Coefficient of Offset Voltage (TCVOS), VSY = ±5 V, 8-Lead MSOP and 14-Lead TSSOP 100 0 –0.55 12282-514 0 –0.55 100 80 60 60 AVERAGE + 3σ VOS (µV) AVERAGE 0 –20 AVERAGE – 3σ –20 VCM (V) 1 2 3 4 5 –100 –15 12282-407 0 AVERAGE – 3σ –40 –80 –1 AVERAGE + 3σ AVERAGE –60 –2 0.95 0 –80 –3 0.70 20 –60 –4 0.45 VSY = ±15V 40 20 0.20 Figure 25. Temperature Coefficient of Offset Voltage (TCVOS), VSY = ±15 V, 8-Lead MSOP and 14-Lead TSSOP VSY = ±5V –40 –0.05 TCVOS (µV/°C) 80 40 –0.30 12282-517 NUMBER OF AMPLIFIERS 0.20 Figure 24. Temperature Coefficient of Offset Voltage (TCVOS), VSY = ±15 V, 8-Lead SOIC and 14-Lead SOIC VSY = ±5V 8-LEAD MSOP, 14-LEAD TSSOP 30 VOS (µV) –0.05 TCVOS (µV/°C) 35 –100 –5 –0.30 12282-516 10 0 –0.55 40 VSY = ±15V 8-LEAD SOIC, 14-LEAD SOIC Figure 23. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VSY = ±5 V –10 –5 0 VCM (V) 5 10 15 12282-408 NUMBER OF AMPLIFIERS 80 Data Sheet Figure 26. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VS = ±15 V Rev. E | Page 14 of 33 Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 5.00 15.00 VOL AT ILOAD = 1mA VOH AT ILOAD = 1mA 4.96 4.94 VOL AT ILOAD = 7mA 4.92 VOL AT ILOAD = 1mA 14.98 OUTPUT VOLTAGE SWING (V) 4.90 4.88 4.86 VOH AT ILOAD = 7mA 4.84 VOH AT ILOAD = 1mA 14.96 14.94 VOL AT ILOAD = 7mA 14.92 14.90 14.88 14.86 VOH AT ILOAD = 7mA 14.84 14.82 4.82 VSY = ±15V 14.80 –50 –25 4.80 –50 –25 0 25 75 50 100 125 TEMPERATURE (°C) 12282-409 VSY = ±5V 0 25 50 75 100 12282-410 OUTPUT VOLTAGE SWING (V) 4.98 125 TEMPERATURE (°C) Figure 27. Output Voltage Swing vs. Temperature, VSY = ±5 V Figure 30. Output Voltage Swing vs. Temperature, VSY = ±15 V 300 450 VSY = ±15V VSY = ±5V 400 NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS 250 200 150 100 350 300 250 200 150 100 50 12282-412 1.0 0.8 0.6 0.4 0.2 0 –0.2 –0.4 –0.6 INPUT BIAS CURRENT (nA) Figure 28. Input Bias Current Distribution, VSY = ±5 V Figure 31. Input Bias Current Distribution, VSY = ±15 V 0.2 0.2 VSY = ±5V VCM = 0V VSY = ±15V VCM = 0V 0 IB – I B+ –0.1 –0.2 –0.3 IB– 0 –0.1 –0.2 –0.3 –25 0 25 50 75 100 125 TEMPERATURE (°C) Figure 29. Input Bias Current (IB) vs. Temperature, VSY = ±5 V –0.5 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) Figure 32. Input Bias Current (IB) vs. Temperature, VSY = ±15 V Rev. E | Page 15 of 33 12282-414 –0.4 12282-413 –0.4 –0.5 –50 I B+ 0.1 INPUT BIAS CURRENT (nA) 0.1 INPUT BIAS CURRENT (nA) –0.8 12282-411 INPUT BIAS CURRENT (nA) –1.0 0 1.0 0.8 0.6 0.4 0.2 0 –0.2 –0.4 –0.6 –0.8 0 –1.0 50 ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet 0.6 10 0.2 –40°C +25°C +85°C +125°C 0 0 5 10 15 20 25 30 34 40 VSY (V) 0 OUTPUT DROPOUT VOLTAGE (mV) 10 1 0.001 –40°C +25°C +85°C +125°C 0.01 0.1 1 10 100 SINK CURRENT (mA) OUTPUT DROPOUT VOLTAGE (mV) 10 –40°C +25°C +85°C +125°C 1 10 100 SOURCE CURRENT (mA) 12282-423 OUTPUT DROPOUT VOLTAGE (mV) 100 0.1 30 35 1k 100 10 10k 1k 0.01 25 –40°C +25°C +85°C +125°C 0.01 0.1 1 10 100 Figure 37. Output Dropout Voltage vs. Sink Current, VSY = ±15 V VSY = ±5V 1 0.001 20 SINK CURRENT (mA) Figure 34. Output Dropout Voltage vs. Sink Current, VSY = ±5 V 10k 15 VSY = ±15V 1 0.001 12282-421 OUTPUT DROPOUT VOLTAGE (mV) 10k 100 10 Figure 36. Offset Voltage (VOS) vs. Power Supply Voltage (VSY) VSY = ±5V 1k 5 VSY (V) Figure 33. Supply Current per Amplifier (ISY) vs. Power Supply Voltage (VSY) 10k –5 –10 12282-406 0.1 0 12282-422 0.3 5 Figure 35. Output Dropout Voltage vs. Source Current, VSY = ±5 V VSY = ±15V 1k 100 10 1 0.001 –40°C +25°C +85°C +125°C 0.01 0.1 1 10 100 SOURCE CURRENT (mA) Figure 38. Output Dropout Voltage vs. Source Current, VSY = ±15 V Rev. E | Page 16 of 33 12282-424 ISY (mA) 0.4 12282-419 OFFSET VOLTAGE (µV) 0.5 Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 100 80 80 60 60 40 40 20 20 0 0 PHASE WITH CL = 0pF PHASE WITH CL = 100pF PHASE WITH CL = 200pF –40 GAIN WITH CL = 0pF GAIN WITH CL = 100pF GAIN WITH CL = 200pF –60 –80 1k 10k 1M 40 20 FREQUENCY (Hz) –80 1k –60 10k 100k –40 1M G = +10 20 G = +1 –20 G = +100 G = +10 20 G = +1 0 –20 100k 10k 1M –40 1k 12282-427 –40 1k 10M FREQUENCY (Hz) 10k 100k 1M Figure 43. Closed-Loop Gain vs. Frequency, VSY = ±15 V 146 146 VSY = ±5V VSY = ±15V 144 142 142 140 140 CMRR (dB) 144 138 136 138 136 134 134 132 132 –25 0 25 50 TEMPERATURE (°C) 75 100 125 130 –50 12282-429 130 –50 10M FREQUENCY (Hz) Figure 40. Closed-Loop Gain vs. Frequency, VSY = ±5 V CMRR (dB) –80 100M 10M VSY = ±15V 40 CLOSED-LOOP GAIN (dB) CLOSED-LOOP GAIN (dB) GAIN WITH CL = 0pF GAIN WITH CL = 100pF GAIN WITH CL = 200pF 60 G = +100 0 –20 Figure 42. Open-Loop Gain and Phase vs. Frequency, VSY = ±15 V VSY = ±5V 40 PHASE WITH CL = 0pF PHASE WITH CL = 100pF PHASE WITH CL = 200pF FREQUENCY (Hz) Figure 39. Open-Loop Gain and Phase vs. Frequency, VSY = ±5 V 60 0 0 –20 –60 –80 100M 10M 40 20 –40 –60 100k 60 12282-428 –40 –20 60 Figure 41. Common-Mode Rejection Ratio (CMRR) vs. Temperature, VSY = ±5 V –25 0 25 50 TEMPERATURE (°C) 75 100 125 12282-430 –20 120 VSY = ±15V AV = –10 100 RL = 2kΩ TA = 25°C 80 PHASE (Degrees) 100 12282-425 OPEN-LOOP GAIN (dB) 80 120 12282-426 100 120 OPEN-LOOP GAIN (dB) VSY = ±5V AV = –10 RL = 2kΩ TA = 25°C PHASE (Degrees) 120 Figure 44. Common-Mode Rejection Ratio (CMRR) vs. Temperature, VSY = ±15 V Rev. E | Page 17 of 33 ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet 1000 1000 VSY = ±15V VSY = ±5V 100 100 AV = +100 AV = +10 AV = +1 0.1 0.1 0.01 0.01 0.001 0.0001 0.001 0.01 0.1 1 10 FREQUENCY (MHz) 0.001 0.0001 0.001 0.01 0.1 1 10 FREQUENCY (MHz) Figure 45. Output Impedance (ZOUT) vs. Frequency, VSY = ±5 V Figure 48. Output Impedance (ZOUT) vs. Frequency, VSY = ±15 V 3 12.5 VSY = ±5V VIN = 4V p-p AV = +1 RL = 2kΩ CL = 300pF 2 VSY = ±15V VIN = 20V p-p AV = +1 RL = 2kΩ CL = 300pF 10.0 7.5 5.0 VOUT (2.5V/DIV) 1 VOUT (1V/DIV) AV = +1 1 12282-432 ZOUT (Ω) AV = +10 1 AV = +100 10 12282-431 ZOUT (Ω) 10 0 –1 2.5 0 –2.5 –5.0 –7.5 –2 –3 TIME (100µs/DIV) –12.5 TIME (100µs/DIV) Figure 46. Large Signal Transient Response, VSY = ±5 V Figure 49. Large Signal Transient Response, VSY = ±15 V 0.10 0.10 VSY = ±5V VIN = 100mV p-p AV = +1 RL = 2kΩ CL = 1000pF VSY = ±15V VIN = 100mV p-p AV = +1 RL = 2kΩ CL = 1000pF 0.05 VOUT (V) 0.05 0 –0.05 0 –0.10 TIME (100µs/DIV) 12282-435 –0.05 Figure 47. Small Signal Transient Response, VSY = ±5 V –0.10 TIME (100µs/DIV) Figure 50. Small Signal Transient Response, VSY = ±15 V Rev. E | Page 18 of 33 12282-436 VOUT (V) 12282-434 12282-433 –10.0 Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 0.6 4 3 2 0.05 INPUT 1 0 10 0.2 8 INPUT 0 6 –0.2 4 –0.4 2 –0.6 OUTPUT –0.05 12 0.4 OUTPUT 0 0 12282-437 –0.8 –1 –0.10 TIME (10µs/DIV) –1.0 –2 TIME (10µs/DIV) Figure 51. Positive Overload Recovery, VSY = ±5 V 0.8 2 VSY = ±15V VIN = 225mV AV = –100 RL = 10kΩ CL = 35pF 0.7 0 OUTPUT 0.6 –1 0.10 –2 0.05 –3 INPUT 0 –4 –0.05 –5 INPUT VOLTAGE (V) 0.15 0 OUTPUT –2 0.5 –4 0.4 –6 0.3 –8 0.2 –10 –12 0.1 0 10 5 15 20 INPUT –14 0 –6 25 12282-439 –0.10 –5 TIME (5µs/DIV) –0.1 –5 0 5 10 15 20 –16 25 TIME (5µs/DIV) Figure 52. Negative Overload Recovery, VSY = ±5 V Figure 55. Negative Overload Recovery, VSY = ±15 V 145 140 VSY = ±5V TO ±15V VSY = ±5V VSY = ±15V 120 140 CMRR (dB) 100 135 80 60 40 130 125 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) 0 0.1 1 10 100 1k 10k FREQUENCY (kHz) Figure 56. Common-Mode Rejection Ratio (CMRR) vs. Frequency, VSY = ±5 V and VSY = ±15 V Figure 53. Power Supply Rejection Ratio (PSRR) vs. Temperature, VSY = ±5 V to ±15 V Rev. E | Page 19 of 33 12282-455 20 12282-420 PSRR (dB) INPUT VOLTAGE (V) 0.20 1 VSY = ±5V VIN = 75mV AV = –100 RL = 10kΩ CL = 35pF OUTPUT VOLTAGE (V) 0.25 Figure 54. Positive Overload Recovery, VSY = ±15 V OUTPUT VOLTAGE (V) 0.10 14 OUTPUT VOLTAGE (V) 0.8 12282-440 0.15 VSY = ±15V VIN = 225mV AV = –100 RL = 10kΩ CL = 35pF 5 INPUT VOLTAGE (V) INPUT VOLTAGE (V) 0.20 16 1.0 OUTPUT VOLTAGE (V) VSY = ±5V VIN = 75mV AV = –100 RL = 10kΩ CL = 35pF 12282-438 6 0.25 ADA4177-1/ADA4177-2/ADA4177-4 120 Data Sheet 120 VSY = ±5V 100 VSY = ±15V 100 PSRR– PSRR– 80 PSRR (dB) PSRR+ 40 60 PSRR+ 40 20 20 0 0 1 10 100 1k 10k FREQUENCY (kHz) –20 0.1 12282-456 –20 0.1 100 50 40 VSY = ±15V AV = +1 RL = 2kΩ VIN = 100mV p-p OS– OVERSHOOT (%) OS+ 20 30 OS+ 20 10 10 0.1 1 10 LOAD CAPACITANCE (nF) 0 0.01 12282-458 0 0.01 Figure 58. Small Signal Overshoot vs. Load Capacitance, VSY = ±5 V 1.0 –1.0 5 0.015 0.003 0 0.010 0.002 –5 0.001 OUTPUT –1.5 0 –2.0 –0.001 –2.5 0.4 0.8 1.2 1.6 2.0 2.4 2.8 TIME (µs) INPUT (V) VSY = ±5V VIN = 1V p-p RL = 2kΩ 0 0.020 0.004 OUTPUT (V) INPUT (V) 10 0.005 OUTPUT –10 0 –15 –0.005 –20 –0.002 –25 –0.003 3.2 –30 12282-548 0 –0.4 10 INPUT INPUT –0.5 1 Figure 61. Small Signal Overshoot vs. Load Capacitance, VSY = ±15 V 0.005 0.5 0.1 LOAD CAPACITANCE (nF) 12282-459 OVERSHOOT (%) OS– –3.0 –0.8 10k Figure 60. Power Supply Rejection Ratio (PSRR) vs. Frequency, VSY = ±15 V VSY = ±5V AV = +1 RL = 2kΩ VIN = 100mV p-p 30 1k Figure 59. Positive Settling Time to 0.1%, VSY = ±5 V –0.010 VSY = ±15V VIN = 10V p-p RL = 2kΩ –0.015 –0.020 –2 –1 0 1 2 3 4 5 6 7 TIME (µs) Figure 62. Positive Settling Time to 0.1%, VSY = ±15 V Rev. E | Page 20 of 33 OUTPUT (V) 40 10 FREQUENCY (kHz) Figure 57. Power Supply Rejection Ratio (PSRR) vs. Frequency, VSY = ±5 V 50 1 12282-457 60 8 12282-551 PSRR (dB) 80 Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 0.020 INPUT 5 0.015 0 0.003 0 0.010 –0.5 0.002 –5 0.001 OUTPUT 0 –10 0 –15 –0.005 –0.010 –0.001 –20 –2.5 –0.002 –25 –0.003 3.2 –30 –0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 TIME (µs) 12282-552 –2.0 VSY = ±15V VIN = 10V p-p RL = 2kΩ –0.020 –2 –1 2 3 4 5 6 7 8 20 VSY = ±5V VSY = ±15V VSY = ±15V VSY = ±5V VOLTAGE NOISE CORNER (nV/√Hz) AV = +1 100 10 1 100 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 64. Voltage Noise Density vs. Frequency, VSY = ±5 V and VSY = ±15 V 12 8 4 0 0.5 1.0 1.5 2.0 2.5 3.0 FREQUENCY (Hz) Figure 67. Voltage Noise Corner vs. Frequency, VSY = ±5 V and VSY = ±15 V 1 VSY = ±5V RL = 2kΩ VIN = 1V rms 80kHz >500kHz VSY = ±15V RL = 2kΩ VIN = 1V rms 80kHz >500kHz 0.1 THD + N (%) 0.1 0.01 0.001 0.01 0.001 0.0001 0.1 1 10 FREQUENCY (kHz) 100 12282-470 0.0001 0.00001 0.01 16 0 12282-468 VOLTAGE NOISE DENSITY (nV/√Hz) 1 Figure 66. Negative Settling Time 0.1%, VSY = ±15 V 1k THD + N (%) 0 TIME (µs) Figure 63. Negative Settling Time to 0.1%, VSY = ±5 V 1 –0.015 12282-483 –3.0 –0.8 0.005 OUTPUT 0.00001 0.01 Figure 65. THD + N vs. Frequency, VSY = ±5 V 0.1 1 10 FREQUENCY (kHz) Figure 68. THD + N vs. Frequency, VSY = ±15 V Rev. E | Page 21 of 33 100 12282-471 –1.5 INPUT (V) –1.0 OUTPUT (V) 0.004 0.5 INPUT (V) 10 0.005 OUTPUT (V) VSY = ±5V VIN = 1V p-p RL = 2kΩ INPUT 12282-555 1.0 ADA4177-1/ADA4177-2/ADA4177-4 1 Data Sheet 1 VSY = ±5V RL = 2kΩ fIN = 1kHz 0.1 THD + N (%) 0.1 0.01 0.01 0.01 0.1 1 10 AMPLITUDE (V rms) 12282-472 0.0001 0.001 0.0001 0.001 0.1 1 10 AMPLITUDE (V rms) Figure 69. THD + N vs. Amplitude, VSY = ±5 V Figure 72. THD + N vs. Amplitude, VSY = ±15 V VSY = ±5V TIME (1s/DIV) Figure 70. 0.1 Hz to 10 Hz Noise, VSY = ±5 V Figure 73. 0.1 Hz to 10 Hz Noise, VSY = ±15 V 15.0 12.5 12282-465 12282-464 INPUT VOLTAGE (50nV/DIV) INPUT VOLTAGE (50nV/DIV) VSY = ±15V TIME (1s/DIV) 12.5 VSY = ±5V VSY = ±15V 10.0 10.0 INPUT BIAS CURRENT (mA) 7.5 7.5 5.0 2.5 0 –2.5 –5.0 –7.5 5.0 2.5 0 –2.5 –5.0 –7.5 –10.0 –10.0 –12.5 –12.5 –15.0 –40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40 VIN (V) 12282-466 INPUT BIAS CURRENT (mA) 0.01 12282-473 0.001 0.001 Figure 71. Input Bias Current vs. Input Voltage (VIN) Including Input Overvoltage Range (Beyond VSY = ±5 V ) –15.0 –50 –40 –30 –20 –10 0 10 20 30 40 50 VIN (V) Figure 74. Input Bias Current vs. Input Voltage (VIN) Including Input Overvoltage Range (Beyond VSY = ±15 V) Rev. E | Page 22 of 33 12282-467 THD + N (%) VSY = ±15V RL = 2kΩ fIN = 1kHz Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 3000 1000 600 +125°C +85°C +25°C –40°C 2000 INPUT BIAS CURRENT (pA) 800 INPUT BIAS CURRENT (pA) VSY = ±15V VSY = ±5V +125°C +85°C +25°C –40°C 400 200 0 –200 –400 –600 1000 0 –1000 –1000 –5 –4 –3 –2 –1 0 1 2 3 4 –2000 –15 12282-480 –1000 5 COMMON-MODE VOLTAGE (V) –90 5 10 15 VSY = ±15V VIN = 10V p-p AV = +1000 RL = 2kΩ CHANNEL SEPARATION (dB) –100 1 –110 –120 –130 0.01 0.1 1 10 100 FREQUENCY (kHz) –150 0.01 0.1 1 10 100 FREQUENCY (kHz) Figure 76. Current Noise Density vs. Frequency, VSY = ±5 V and VSY = ±15 V 12282-474 –140 12282-475 Figure 79. Channel Separation vs. Frequency, VSY = ±15 V 45 60 VSY = ±5V VSY = ±15V 55 SOURCING CURRENT (mA) 40 35 30 25 45 40 35 –25 0 25 50 TEMPERATURE (°C) 75 100 125 30 –50 12282-600 20 –50 50 Figure 77. Output Short-Circuit Sourcing Current vs. Temperature, VSY = ±5 V –25 0 25 50 TEMPERATURE (°C) 75 100 125 12282-601 CURRENT NOISE DENSITY (pA/√Hz) 0 Figure 78. Input Bias Current vs. Common-Mode Voltage (VCM) and Temperature, VSY = ±15 V VSY = ±15V VSY = ±5V 0.1 0.001 SOURCING CURRENT (mA) –5 COMMON-MODE VOLTAGE (V) Figure 75. Input Bias Current vs. Common-Mode Voltage (VCM) and Temperature, VSY = ±5 V 10 –10 12282-481 –800 Figure 80. Output Short-Circuit Sourcing Current vs. Temperature, VSY = ±15 V Rev. E | Page 23 of 33 ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet –20 –30 VSY = ±15V VSY = ±5V –40 SINKING CURRENT (mA) –30 –35 –40 –60 –70 –45 –25 0 25 50 75 100 125 TEMPERATURE (°C) –80 –50 12282-602 –50 –50 Figure 81. Output Short-Circuit Sinking Current vs. Temperature, VSY = ±5 V 1 0 –1 50 100 150 200 250 300 TIME (Seconds) 350 12282-604 –2 0 0 25 50 75 100 125 Figure 83. Output Short-Circuit Sinking Current vs. Temperature, VSY = ±15 V 2 –3 –25 TEMPERATURE (°C) 3 CHANGE IN VOS (µV) –50 12282-603 SINKING CURRENT (mA) –25 Figure 82. Offset Voltage Short-Term Drift Rev. E | Page 24 of 33 Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E | Page 25 of 33 OVP OVP gm 12282-449 N BIAS The ADA4177-1/ADA4177-2/ADA4177-4 are precision, bipolar op amps that integrate both input overvoltage protection (OVP) and input EMI filtering while maintaining a low 2 nA maximum bias current and a rail-to-rail output operation. Figure 84 shows a conceptual schematic of the main amplifier that uses super beta, bipolar input transistors and bias current cancellation to minimize the input bias current. The inputs are cascoded to protect the super beta input devices from damage during overvoltage conditions. The cascoded inputs feed into an active load that makes up the primary gain stage. A buffered transconductance (gm) stage converts a differential voltage to a differential current to drive the output stage. The rail-to-rail output can swing to 50 mV maximum (for example, the guaranteed room temperature limit for VOH is 14.95 V when the positive supply is 15 V) with a 1 mA load at 25°C. P BIAS THEORY OF OPERATION Figure 84. Conceptual Schematic ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet APPLICATIONS INFORMATION ACTIVE OVERVOLTAGE PROTECTION Add External Clamping Diodes The ADA4177-1/ADA4177-2/ADA4177-4 use active overvoltage protection to protect the devices from damage when the inputs are driven to a voltage up to 32 V above the positive supply voltage or 32 V below the negative supply voltage. The ADA4177-1/ADA4177-2/ADA4177-4 not only protect the input from damage, but they also reduce the input noise. Precision op amps have a low VOS and a high common-mode rejection ratio (CMRR). Both of these characteristics simplify system calibration and minimize dynamic error. To maintain these specifications in the presence of ESD events, bipolar op amps often have internal clamp diodes and small limiting resistors in series with their inputs; however, these do not address fault conditions where the inputs exceed the rails. In these cases, the system designer commonly adds clamping diodes (D1 and D2) along with a series resistor (ROVP), shown in Figure 86. When an op amp does not have input overvoltage protection, moving the input voltage above or below the supply voltage can cause excessive input current, which can damage the op amp. To avoid this, add a series resistor at the input. To protect the op amp from a 30 V transient beyond either rail, limit the input current to 5 mA, and add a 6 kΩ series resistor to the input. However, a trade-off of adding the series resister is its added thermal noise. The 6 kΩ series resistor exhibits 10 nV/√Hz of thermal noise, which adds quadrature thermal noise from the resistor with the op amp noise. N TOTAL = N OP AMP 2 + N RESISTOR 2 where: NTOTAL is the total noise. NOP AMP is the op amp noise. NRESISTOR is the thermal noise generated by the resistor. When the additional thermal noise from the series resistor is added to the thermal noise (8 nV/√Hz) of the ADA4177-1/ADA4177-2/ ADA4177-4, the 6 kΩ series resistor brings the total thermal noise to 12 nV/√Hz, which is a 70% increase in thermal noise. Figure 85 shows how noise from the additional source resistance adds to the total noise at the amplifier input; the higher the source resistance, the higher the total noise. Because the ADA4177-1/ ADA4177-2/ADA4177-4 have integrated input protection for overvoltage conditions, the noise trade-off is avoided. 18 RF VOUT D1 V– Figure 86. Common Scheme for Protecting Precision Amplifier Inputs from Overvoltage Conditions If the signal source at VIN is driven to one diode voltage beyond the op amp supplies, the fault current is limited by ROVP. Schottky diodes have a low forward knee voltage of 200 mV less than a typical small signal diode. Therefore, all overvoltage currents are shunted through the external diodes (D1 and D2). The reverse leakage current for a typical Schottky diode is extremely variable with the reverse voltage level. Therefore, as the noninverting input of the op amp swings, the D1 and D2 leakage currents do not match, and the differences pass through ROVP, creating a voltage drop. The voltage drop on ROVP appears as a variation in VOS, which can drastically reduce the CMRR performance. Because the ADA4177-1/ADA4177-2/ADA4177-4 have integrated input protection during overvoltage conditions, the degradation in performance is avoided. Input Protection Circuit The ADA4177-1/ADA4177-2/ADA4177-4 inputs provide overvoltage protection without the trade-offs encountered in the common design methods. The conceptual schematic of the input is shown in Figure 87. TOTAL NOISE 16 14 RESISTOR NOISE 12 D2 ROVP VIN V+ 10 J1B J2B J1A J2A 8 ADA4177-1/ADA4177-2/ADA4177-4 NOISE 6 VIN2 2 0 0 5000 10000 15000 20000 25000 30000 TOTAL SOURCE RESISTANCE Figure 85. Equivalent Thermal Noise vs. Total Source Resistance Rev. E | Page 26 of 33 V– Figure 87. Conceptual Schematic of the Inputs of the ADA4177-1/ADA4177-2/ADA4177-4 12282-442 VIN1 4 12282-445 EQUIVALENT THERMAL NOISE (nV/√Hz) 20 V+ 12282-441 Common Protection Methods Add an External Series Input Resistor Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 J1A, J1B, J2A, and J2B are depletion mode junction field effect transistors (JFETs) that replace the series resistance in the conventional protection scheme. Under normal operation, the input bias current of the ADA4177-1/ADA4177-2/ADA4177-4 flows through the J1A and J2A transistors without pinching off the channel. To achieve excellent noise performance, J1A and J2A must have a low on resistance (RDSON) of approximately 300 Ω. When either input exceeds the rail by more than a diode, large currents flow through either J1A or J2A, which causes the channels to pinch off and effectively raises their resistance. Figure 88 shows the positive overvoltage and negative overvoltage characteristics as the FET channel pinches. LIMITING OVERVOLTAGE CURRENT OUT OF THE POSITIVE SUPPLY PIN Because the positive power supply of the system can be incapable of sinking the large overvoltage current of 8 mA (see Figure 88), care was taken to divide down this current into the positive rail during an overvoltage event. As shown in Figure 90, Q1L is a lateral PNP transistor that serves two purposes. First, the emitter base acts as a clamping diode to route the overvoltage current away from the V+ pin and to the V− pin. Second, it divides down this current via the beta of Q1L. At an emitter current of 8 mA, the beta of Q1L is approximately 8, which reduces the current injected into the positive supply by a factor of 8. 12 V+ 10 J1B 6 4 +IN 2 0 –4 –30 –10 10 30 50 VIN (V) 12282-500 –8 –10 –50 V– Figure 91 shows the positive and negative supply currents when the input voltage exceeds the supply voltages (and overvoltage condition). The current at the V+ terminal does not reverse direction during an overvoltage event because the current is directed to V− via the collector of Q1L. 8 Figure 88. Input Bias Current During Positive and Negative Overvoltage, VSY = ±15 V, Voltage Follower Configuration 300Ω AT 2V 8 6 4 SUPPLY CURRENT (mA) Figure 89 shows how the JFET effective resistance increases exponentially as shown by the measurements at 2 V, 20 V, and 40 V overvoltage. As the overvoltage increases from 2 V to 40 V, the resistance increases from 300 Ω to 3.5 kΩ (a factor of 11). 10 J1A Figure 90. Overvoltage Protection Circuitry –2 –6 POSITIVE SUPPLY CURRENT 2 0 –2 –4 –6 –8 2.2kΩ AT 20V NEGATIVE SUPPLY CURRENT 3.5kΩ AT 40V –10 –12 –40 –20 –10 0 10 20 30 40 Figure 91. Supply Current vs. Input Differential, Circuit Configured at Unity Gain with V+ = +15 V and V− = −15 V 2 0 –2 2.5 –30 INPUT DIFFERENTIAL (V) 4 12282-452 6 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 VIN (V) 12282-454 OVERVOLTAGE (mV) Q1L VSY = ±15V 12282-443 INPUT BIAS CURRENT (mA) 8 If negative overvoltage transients are expected, ensure that the negative voltage source driving V− can handle sourcing current without forcing current into the device and causing the supply voltage to change. Figure 89. Overvoltage vs. Input Voltage (VIN), Voltage Follower Configuration Rev. E | Page 27 of 33 ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet  100 mV   EMIRR = 20 × log    ΔVOS  where: 100 mV is generally the peak-to-peak input used for the test. ΔVOS is the change in the op amp offset as a result of the input signal. Figure 92 shows the input EMI protection of the ADA4177-1/ ADA4177-2/ADA4177-4. 100 80 60 40 WITH TWO INPUTS IN OVERVOLTAGE 20 0 0 5 10 15 20 25 30 35 40 CONTINUOUS OVERVOLTAGE (V) Figure 93. Maximum Operating Temperature vs. Continuous Overvoltage for One Input and Two Inputs (θJA = 150°C/W) USING THE ADA4177-1/ADA4177-2/ADA4177-4 AS A COMPARATOR The ADA4177-1/ADA4177-2/ADA4177-4 can be used as a comparator as long as relatively small input impedance can be tolerated. That is, the input differential pair is diode clamped but the overvoltage protection circuitry limits the differential. Figure 94 shows the input current vs. the input differential voltage with ±15 V supplies. 80 60 40 20 8 6 100 1000 FREQUENCY (MHz) 4 Figure 92. EMI Rejection Ratio Peak Voltage vs. Frequency SELF HEATING During an overvoltage condition, the ADA4177-1/ADA4177-2/ ADA4177-4 dissipate heat according to the thermal resistance (θJA) of the package it is in, which, in turn, heats up the die. Ensure that the specified operating junction temperature does not exceed 150°C for device protection. Extended overtemperature exposure can cause some operating specifications to shift outside of their guaranteed limits. INPUT CURRENT (mA) 0 10 WITH ONE INPUT IN OVERVOLTAGE 120 As shown in Figure 88, the ADA4177-1/ADA4177-2/ADA4177-4 inputs sink by approximately 8 mA at 15 V overvoltage. In that condition, the ADA4177-1/ADA4177-2/ADA4177-4 dissipate 120 mW of power. If the package has a θJA of 100°C/W, the junction temperature rises by approximately 12°C over the ambient temperature of the package and junction. In such a case, derate the ambient operating temperature by 12°C (125°C minus 12°C) for an absolute maximum operating temperature of 113°C. Rev. E | Page 28 of 33 2 0 –2 –4 –6 –8 –20 –15 –10 –5 0 5 10 15 20 INPUT DIFFERENTIAL (V) Figure 94. Input Current vs. Input Differential with ±15 V Supplies 12282-451 100 INPUT +IN VSY = ±15V RF POWER = –16dBm (50mV p-p) 12282-453 EMI REJECTION RATIO PEAK VOLTAGE (dB) 120 140 12282-447 The ADA4177-1/ADA4177-2/ADA4177-4 inputs are also protected from high frequency EMI. In an op amp with no EMI protection, signals not within the bandwidth of the op amp couple into sensitive amplifier inputs and become rectified as they travel through the amplifier, eventually appearing as ac feedthrough on top of a dc offset. When an input filter is not provided, these offsets can be quite large. These offsets are referred to as the electromagnetic interference rejection ratio (EMIRR). The amplifier EMIRR is defined as When the junction temperature exceeds the absolute maximum junction temperature of 150°C, add an additional series resistance to the inputs to further decrease the overvoltage current. Figure 93 shows the maximum operating temperature vs. the continuous overvoltage at θJA = 150°C/W. MAXIMUM OPERATING TEMPERATURE (°C) EMI PROTECTION Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Figure 95 shows the input and output of a comparator circuit referenced to ground using the ADA4177-1/ADA4177-2/ ADA4177-4. The supply voltages are ±5 V. The −INx input is grounded and a positive input is stepped to ±1 V. Both the positive and negative recovery is approximately 4 µs. PROPER PRINTED CIRCUIT BOARD (PCB) LAYOUT The ADA4177-1/ADA4177-2/ADA4177-4 are high precision devices. To ensure optimum performance at the PCB level, take care in the design of the board layout. To avoid leakage currents, maintain a clean and moisture free board surface. Coating the surface creates a barrier to moisture accumulation and reduces parasitic resistance on the board. Keeping supply traces short and properly bypassing the power supplies minimizes the power supply disturbances caused by the output current variation, such as when driving an ac signal into a heavy load. Connect bypass capacitors as closely as possible to the device supply pins. Stray capacitances are a concern at the outputs and the inputs of the amplifier. Keep the signal traces at least 5 mm from supply lines to minimize coupling. VOUT 12282-448 VIN Figure 95. ADA4177-1/ADA4177-2/ADA4177-4 Used as a Comparator with ±5 V Supplies and a ±1 V Input Step, Voltage Follower Configuration OUTPUT PHASE REVERSAL Phase reversal is defined as a change in polarity in the amplifier transfer function. Many op amps exhibit phase reversal when the voltage applied to the input is greater than the maximum common-mode voltage. In some instances, this phase reversal can cause permanent damage to the amplifier. In feedback loops, it can result in system lockups or equipment damage. The ADA4177-1/ADA4177-2/ADA4177-4 are immune to phase reversal problems even at input voltages beyond the power supply settings. A variation in temperature across the PCB can cause a mismatch in the Seebeck voltages at solder joints and other points where dissimilar metals are in contact, resulting in thermal voltage errors. To minimize these thermocouple effects, orient resistors so that heat sources warm both ends equally. Ensure, where possible, that input signal paths contain matching numbers and types of components, to match the number and type of thermocouple junctions. For example, dummy components such as zero value resistors can be used to match real resistors in the opposite input path. Place matching components in close proximity to each other, and orient them in the same manner. Ensure that leads are of equal length so that thermal conduction is in equilibrium. Keep heat sources on the PCB as far away from amplifier input circuitry as is practical. The use of a ground plane is highly recommended. A ground plane reduces EMI noise and maintains a constant temperature across the circuit board. 12282-482 LONG-TERM DRIFT Figure 96. Output Showing No Phase Reversal in Overvoltage Condition The stability of a precision signal path over its lifetime or between calibration procedures is dependent on the long-term stability of the analog components in the path, such as op amps, references, and data converters. To help system designers predict the long-term drift of circuits that use the ADA4177-1/ ADA4177-2/ADA4177-4, Analog Devices measured the offset voltage of multiple units for 10,000 hours (more than 13 months) using a high precision measurement system, including an ultrastable oil bath. To replicate real-world system performance, the devices under test (DUTs) were soldered onto an FR4 PCB using a standard reflow profile (as defined in the JEDEC J-STD020D standard), as opposed to testing them in sockets. This manner of testing is important because expansion and contraction of the PCB can apply stress to the integrated circuit (IC) package and contribute to shifts in the offset voltage. Rev. E | Page 29 of 33 ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet The ADA4177-1/ADA4177-2/ADA4177-4 have extremely low long-term drift, as shown in Figure 97. The red, blue, and green traces show sample units. Note that the ADA4177-1/ADA4177-2/ ADA4177-4 have a mean drift over 10,000 hours of less than 2 µV, or 2% of their maximum specified offset voltage of 60 µV at room temperature. In the three full cycles, the offset hysteresis is typically only 2 µV, or less than 2% of its 120 µV maximum offset voltage over the full operating temperature range. The histogram in Figure 99 shows that the hysteresis is larger when the device is cycled through only a half cycle, from room temperature to hot 125°C and back to room temperature. 80 8 MEAN MEAN PLUS ONE STANDARD DEVIATION MEAN MINUS ONE STANDARD DEVIATION 4 2 0 –2 –4 VSY = 10V 27 UNITS TA = 25°C 0 –20 –40 –80 –40 10,000 12282-197 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 20 –60 –8 TIME (Hours) 40 0 20 40 60 TEMPERATURE (°C) 80 100 120 Figure 98. Change in Offset Voltage over Three Full Temperature Cycles Figure 97. Measured Long-Term Drift of the ADA4177-1/ADA4177-2/ ADA4177-4 Offset Voltage over 10,000 Hours NUMBER OF DEVICES TEMPERATURE HYSTERESIS In addition to stability over time as described in the Long-Term Drift section, it is useful to know the temperature hysteresis, that is, the stability vs. cycling of temperature. Hysteresis is an important parameter because it tells the system designer how closely the signal returns to its starting amplitude after the ambient temperature changes and subsequent return to room temperature. Figure 98 shows the change in input offset voltage as the temperature cycles three times from room temperature to +125°C to −40°C and back to room temperature. The dotted line is an initial preconditioning cycle to eliminate the original temperature induced offset shift from exposure to production solder reflow temperatures. –20 12282-198 –6 60 50 45 VSY = 10V 27 UNITS × 3 CYCLES 40 HALF CYCLE = +26°C, +125°C, +26°C 35 FULL CYCLE = +26°C, +125°C, +26°C, –40°C, +26°C 30 25 20 15 10 5 0 50 45 40 35 30 25 20 15 10 5 0 –18 –15 –12 –9 –6 –3 0 3 6 HALF CYCLE FULL CYCLE 9 OFFSET VOLTAGE HYSTERESIS (µV) 12 15 18 12282-199 SAMPLE 1 SAMPLE 2 SAMPLE 3 PRECONDITION CYCLE 1 CYCLE 2 CYCLE 3 VSY = 10V CHANGE IN OFFSET VOLTAGE (µV) CHANGE IN OFFSET VOLTAGE (µV) 6 Figure 99. Histogram Showing the Temperature Hysteresis of the Offset Voltage over Three Full Cycles and over Three Half Cycles Rev. E | Page 30 of 33 Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 5.15 4.90 4.65 5 1 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.80 0.55 0.40 0.23 0.09 6° 0° 0.40 0.25 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 100. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 1 5 6.20 (0.2441) 5.80 (0.2284) 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 0.50 (0.0196) 0.25 (0.0099) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 101. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) Rev. E | Page 31 of 33 012407-A 8 4.00 (0.1574) 3.80 (0.1497) ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet 5.10 5.00 4.90 14 8 4.50 4.40 4.30 6.40 BSC 1 7 PIN 1 0.65 BSC 1.20 MAX 0.15 0.05 COPLANARITY 0.10 0.20 0.09 0.30 0.19 0.75 0.60 0.45 8° 0° SEATING PLANE 061908-A 1.05 1.00 0.80 COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 Figure 102. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters 8.75 (0.3445) 8.55 (0.3366) 8 14 1 7 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 6.20 (0.2441) 5.80 (0.2283) 0.50 (0.0197) 0.25 (0.0098) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 103. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches) Rev. E | Page 32 of 33 060606-A 4.00 (0.1575) 3.80 (0.1496) Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 ORDERING GUIDE Model1 ADA4177-1ARMZ ADA4177-1ARMZ-R7 ADA4177-1ARMZ-RL ADA4177-1ARZ ADA4177-1ARZ-R7 ADA4177-1ARZ-RL ADA4177-2ARMZ ADA4177-2ARMZ-R7 ADA4177-2ARMZ-RL ADA4177-2ARZ ADA4177-2ARZ-R7 ADA4177-2ARZ-RL ADA4177-4ARUZ ADA4177-4ARUZ-R7 ADA4177-4ARUZ-RL ADA4177-4ARZ ADA4177-4ARZ-R7 ADA4177-4ARZ-RL 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 14-Lead Thin Shrink Small Outline Package [TSSOP] 14-Lead Thin Shrink Small Outline Package [TSSOP] 14-Lead Thin Shrink Small Outline Package [TSSOP] 14-Lead Standard Small Outline Package [SOIC_N] 14-Lead Standard Small Outline Package [SOIC_N] 14-Lead Standard Small Outline Package [SOIC_N] Z = RoHS Compliant Part. ©2014–2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D12282-0-8/18(E) Rev. E | Page 33 of 33 Package Option RM-8 RM-8 RM-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 R-8 R-8 R-8 RU-14 RU-14 RU-14 R-14 R-14 R-14 Marking Code A3E A3E A3E A36 A36 A36
ADA4177-1ARMZ 价格&库存

很抱歉,暂时无法提供与“ADA4177-1ARMZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ADA4177-1ARMZ
    •  国内价格
    • 1+6.21500

    库存:0