0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADCLK925BCPZ-R2

ADCLK925BCPZ-R2

  • 厂商:

    AD(亚德诺)

  • 封装:

    VFQFN16_EP

  • 描述:

    IC CLK BUFFER 1:2 7.5GHZ 16LFCSP

  • 数据手册
  • 价格&库存
ADCLK925BCPZ-R2 数据手册
Ultrafast SiGe ECL Clock/Data Buffers ADCLK905/ADCLK907/ADCLK925 Data Sheet TYPICAL APPLICATION CIRCUITS 95 ps propagation delay 7.5 GHz toggle rate 60 ps typical output rise/fall 60 fs random jitter (RJ) On-chip terminations at both input pins Extended industrial temperature range: −40°C to +125°C 2.5 V to 3.3 V power supply (VCC − VEE) APPLICATIONS VREF VCC VT D Q D Q 06318-001 FEATURES VEE Figure 1. ADCLK905 ECL 1:1 Clock/Data Buffer Clock and data signal restoration and level shifting Automated test equipment (ATE) High speed instrumentation High speed line receivers Threshold detection Converter clocking VREF 1 VT1 VCC Q1 D1 Q1 D1 GENERAL DESCRIPTION VEE Q2 D2 VCC VT2 VREF 2 Figure 2. ADCLK907 ECL Dual 1:1 Clock/Data Buffer VREF The buffers offer 95 ps propagation delay, 7.5 GHz toggle rate, 10 Gbps data rate, and 60 fs random jitter (RJ). VT The inputs have center tapped, 100 Ω, on-chip termination resistors. A VREF pin is available for biasing ac-coupled inputs. D The ECL output stages are designed to directly drive 800 mV each side into 50 Ω terminated to VCC − 2 V for a total differential output swing of 1.6 V. Q2 06318-002 The ADCLK905/ADCLK907/ADCLK925 feature full-swing emitter coupled logic (ECL) output drivers. For PECL (positive ECL) operation, bias VCC to the positive supply and VEE to ground. For NECL (negative ECL) operation, bias VCC to ground and VEE to the negative supply. VEE D2 VCC Q1 Q1 D Q2 Q2 VEE 06318-003 The ADCLK905 (one input, one output), ADCLK907 (dual one input, one output), and ADCLK925 (one input, two outputs) are ultrafast clock/data buffers fabricated on the Analog Devices, Inc., proprietary XFCB3 silicon germanium (SiGe) bipolar process. Figure 3. ADCLK925 ECL 1:2 Clock/Data Fanout Buffer The ADCLK905/ADCLK907/ADCLK925 are available in 16-lead LFCSP packages. Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2007–2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADCLK905/ADCLK907/ADCLK925 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................9 Applications ....................................................................................... 1 Applications Information .............................................................. 12 General Description ......................................................................... 1 Power/Ground Layout and Bypassing ..................................... 12 Typical Application Circuits............................................................ 1 Output Stages ............................................................................... 12 Revision History ............................................................................... 2 Optimizing High Speed Performance ..................................... 12 Specifications..................................................................................... 3 Buffer Random Jitter .................................................................. 12 Electrical Characteristics ............................................................. 3 Typical Application Circuits ......................................................... 13 Absolute Maximum Ratings ............................................................ 5 Evaluation Board Schematic ......................................................... 14 Thermal Resistance ...................................................................... 5 Outline Dimensions ....................................................................... 15 ESD Caution .................................................................................. 5 Ordering Guide .......................................................................... 15 Pin Configurations and Function Descriptions ........................... 6 REVISION HISTORY 2/2017—Rev. A to Rev. B Changes to Figure 4 and Table 4 ..................................................... 6 Changes to Figure 5 and Table 5 ..................................................... 7 Changes to Figure 6 and Table 6 ..................................................... 8 8/2016—Rev. 0 to Rev. A Changed CP-16-3 to CP-16-27 .................................... Throughout Changes to Figure 4 and Table 4 ..................................................... 6 Changes to Figure 5 and Table 5 ..................................................... 7 Changes to Figure 6 and Table 6 ..................................................... 8 Updated Outline Dimensions ....................................................... 15 Changes to Ordering Guide .......................................................... 15 8/2007—Revision 0: Initial Version Rev. B | Page 2 of 16 Data Sheet ADCLK905/ADCLK907/ADCLK925 SPECIFICATIONS ELECTRICAL CHARACTERISTICS Typical (Typ) values are given for VCC − VEE = 3.3 V and TA = 25°C, unless otherwise noted. Minimum (Min) and maximum (Max) values are given over the full VCC − VEE = 3.3 V ± 10% and TA = −40°C to +125°C variation, unless otherwise noted. Table 1. Parameter DC INPUT CHARACTERISTICS Input Voltage High Level Input Voltage Low Level Input Differential Range Input Capacitance Input Resistance, Single-Ended Mode Input Resistance, Differential Mode Input Resistance, Common Mode Input Bias Current DC OUTPUT CHARACTERISTICS Output Voltage High Level Output Voltage Low Level Output Voltage Differential Reference Voltage Output Voltage Output Resistance AC PERFORMANCE Propagation Delay Symbol Min VIH VIL VID VID 122.88 MHz Max Unit VEE + 1.6 VEE 0.2 VCC VCC − 0.7 3.4 V V V p-p 0.2 2.8 V p-p CIN VOH VOL VOD VREF 0.4 pF 50 100 50 20 Ω Ω kΩ µA VCC − 1.26 VCC − 1.99 610 VCC − 0.76 VCC − 1.54 1040 (VCC + 1)/2 250 tPD Propagation Delay Temperature Coefficient Propagation Delay Skew (Output to Output) ADCLK907 Propagation Delay Skew (Output to Output) ADCLK925 Propagation Delay Skew (Device to Device) Toggle Rate Random Jitter Rise/Fall Time Additive Phase Noise 622.08 MHz Typ −40°C to +85°C (±1.7 V between input pins) 85°C to 125°C (±1.4 V between input pins) Open VT V V mV 50 Ω to (VCC − 2.0 V) 50 Ω to (VCC − 2.0 V) 50 Ω to (VCC − 2.0 V) V Ω −500 µA to +500 µA VCC = 3.3 V ± 10%, VICM = VREF, VID = 0.5 V p-p VCC = 2.5 V ± 5%, VICM = V REF, VID = 0.5 V p-p 70 95 125 ps 70 95 125 ps 15 fs/°C ps VID = 0.5 V 10 ps VID = 0.5 V 35 7.5 ps GHz 6.5 GHz fs rms ps VID = 0.5 V >0.8 V differential output swing, VCC = 3.3 V ± 10% >0.8 V differential output swing, VCC = 2.5 V ± 5% VID = 1600 mV, 8 V/ns, VICM = 1.85 V 20%/80% dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz @10 Hz offset @100 Hz offset @1 kHz offset @10 kHz offset @100 kHz offset >1 MHz offset @10 Hz offset @100 Hz offset @1 kHz offset @10 kHz offset @100 kHz offset >1 MHz offset 50 6 RJ tR/tF Test Conditions/Comments 60 30 85 −138 −144 −152 −159 −161 −161 −135 −145 −153 −160 −161 −161 Rev. B | Page 3 of 16 ADCLK905/ADCLK907/ADCLK925 Parameter POWER SUPPLY Supply Voltage Requirement Power Supply Current ADCLK905 Negative Supply Current Positive Supply Current ADCLK907 Negative Supply Current Positive Supply Current ADCLK925 Negative Supply Current Positive Supply Current Power Supply Rejection 1 Output Swing Supply Rejection 2 1 2 Data Sheet Symbol Min VCC − VEE 2.375 IVEE IVCC IVEE IVCC IVEE IVCC PSRVCC PSRVCC Typ 24 25 47 48 48 50 94 96 29 31 76 77 3 26 Change in TPD per change in VCC. Change in output swing per change in VCC. Rev. B | Page 4 of 16 Max Unit Test Conditions/Comments 3.63 V 2.5 V − 5% to 3.3 V + 10% Static mA mA mA mA VCC − VEE = 2.5 V VCC − VEE = 3.3 V ± 10% VCC − VEE = 2.5 V VCC − VEE = 3.3 V ± 10% mA mA mA mA VCC − VEE = 2.5 V VCC − VEE = 3.3 V ± 10% VCC − VEE = 2.5 V VCC − VEE = 3.3 V ± 10% mA mA mA mA ps/V dB VCC − VEE = 2.5 V VCC − VEE = 3.3 V ± 10% VCC − VEE = 2.5 V VCC − VEE = 3.3 V ± 10% VCC − VEE = 3.0 V ± 20% VCC − VEE = 3.0 V ± 20% 40 63 80 126 51 97 Data Sheet ADCLK905/ADCLK907/ADCLK925 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Parameter Supply Voltage VCC − VEE Input Voltage D (D1, D2), D (D1, D2) D1, D2, D1, D2 to VT Pin (CML or PECL Termination) D (D1, D2) to D (D1, D2) Maximum Voltage on Output Pins Maximum Output Current Input Termination, VT to D (D1, D2), D (D1, D2) Voltage Reference, VREF Temperature Operating Temperature Range, Ambient Operating Temperature, Junction Storage Temperature Range θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Rating 6.0 V Table 3. Thermal Resistance Package Type 16-Lead LFCSP VEE − 0.5 V to VCC + 0.5 V ±40 mA ESD CAUTION ±1.8 V VCC + 0.5 V 35 mA ±2 V VCC − VEE −40°C to +125°C 150°C −65°C to +150°C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. B | Page 5 of 16 θJA 70 Unit °C/W ADCLK905/ADCLK907/ADCLK925 Data Sheet 13 VCC 14 VEE 16 VT 15 VREF PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS D 1 12 Q D 2 ADCLK905 11 Q NC 3 TOP VIEW (Not to Scale) 10 NC 9 NC NOTES 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN. 2. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT. IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED THERMAL AND/OR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE IS CONNECTED TO THIS EXPOSED PAD. ALLOW SUFFICIENT CLEARANCE TO VIAS AND OTHER COMPONENTS. 06318-004 VCC 8 VEE 7 NC 6 NC 5 NC 4 Figure 4. ADCLK905 Pin Configuration Table 4. Pin Function Descriptions for 1:1 ADCLK905 Buffer Pin No. 1 2 3, 4, 5, 6, 9, 10 7, 14 8, 13 11 12 15 16 Mnemonic D D NC Description Noninverting Input. Inverting Input. No Connect. No physical connection to the die. VEE VCC Q Q VREF VT EPAD Negative Supply Voltage. Positive Supply Voltage. Inverting Output. Noninverting Output. Reference Voltage. Reference voltage for biasing ac-coupled inputs. Center Tap. Center tap of 100 Ω input resistor. Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components. Rev. B | Page 6 of 16 13 VCC 14 VEE 16 VT1 ADCLK905/ADCLK907/ADCLK925 15 VREF 1 Data Sheet D1 1 12 Q1 D1 2 ADCLK907 11 Q1 D2 3 TOP VIEW (Not to Scale) 10 Q2 9 NOTES 1. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT. IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED THERMAL AND/OR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE IS CONNECTED TO THIS EXPOSED PAD. ALLOW SUFFICIENT CLEARANCE TO VIAS AND OTHER COMPONENTS. 06318-005 VEE 7 Q2 VCC 8 VT2 5 VREF2 6 D2 4 Figure 5. ADCLK907 Pin Configuration Table 5. Pin Function Descriptions for Dual 1:1 ADCLK907 Buffer Pin No. 1 2 3 4 5 6 7, 14 8, 13 9 10 11 12 15 16 Mnemonic D1 D1 D2 D2 VT2 VREF2 VEE VCC Q2 Q2 Q1 Q1 VREF1 VT1 EPAD Description Noninverting Input 1. Inverting Input 1. Noninverting Input 2. Inverting Input 2. Center Tap 2. Center tap of 100 Ω input resistor, Channel 2. Reference Voltage 2. Reference voltage for biasing ac-coupled inputs, Channel 2. Negative Supply Voltage. Positive Supply Voltage. Pin 8 and Pin 13 are not strapped internally. Inverting Output 2. Noninverting Output 2. Inverting Output 1. Noninverting Output 1. Reference Voltage 1. Reference voltage for biasing ac-coupled inputs, Channel 1. Center Tap 1. Center tap of 100 Ω input resistor, Channel 1. Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components. Rev. B | Page 7 of 16 13 VCC 14 VEE 16 VT Data Sheet 15 VREF ADCLK905/ADCLK907/ADCLK925 D 1 12 Q1 D 2 ADCLK925 11 Q1 NC 3 TOP VIEW (Not to Scale) 10 Q2 9 NOTES 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN. 2. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT. IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED THERMAL AND/OR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE IS CONNECTED TO THIS EXPOSED PAD. ALLOW SUFFICIENT CLEARANCE TO VIAS AND OTHER COMPONENTS. 06318-006 VEE 7 Q2 VCC 8 NC 5 NC 6 NC 4 Figure 6. ADCLK925 Pin Configuration Table 6. Pin Function Descriptions for 1:2 ADCLK925 Buffer Pin No. 1 2 3, 4, 5, 6 7, 14 8, 13 9 10 11 12 15 16 Mnemonic D D NC VEE VCC Q2 Q2 Q1 Q1 VREF VT EPAD Description Noninverting Input. Inverting Input. No Connect. No physical connection to the die. Negative Supply Voltage. Positive Supply Voltage. Inverting Output 2. Noninverting Output 2. Inverting Output 1. Noninverting Output 1. Reference Voltage. Reference voltage for biasing ac-coupled inputs. Center Tap. Center tap of 100 Ω input resistor. Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components. Rev. B | Page 8 of 16 Data Sheet ADCLK905/ADCLK907/ADCLK925 TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3 V, VEE = 0.0 V, TA = 25°C, outputs terminated 50 Ω to VCC − 2 V, unless otherwise noted. 2.37V Q Q 1.37V 200ps/DIV 100ps/DIV Figure 7. Output Waveform, VCC = 3.3 V Figure 10. Output Waveform, VCC = 3.3 V –90 –90 AGILENT E5500 CARRIER: 122.88MHz NO SPURS –110 –120 –120 L[f] (dBc/Hz) –110 –130 –140 –130 –140 –150 –150 –160 –160 100 1k 10k 100k 1M 10M 100M f (Hz) –170 10 06318-008 –170 10 AGILENT E5500 CARRIER: 622.08MHz NO SPURS –100 100 100k 10k 1M 10M 100M f (Hz) Figure 11. Phase Noise at 622.08 MHz Figure 8. Phase Noise at 122.88 MHz 300 –90 –100 1k 06318-011 –100 06318-010 06318-007 Q 1.37V L[f] (dBc/Hz) Q 100mV/DIV 100mV/DIV 2.37V AGILENT E5500 CARRIER: 245.76MHz NO SPURS 250 RMS JITTER (fs) –120 –130 –140 200 150 100 –150 50 –170 10 100 1k 10k 100k 1M f (Hz) 10M 100M 0 0 1 2 3 4 5 6 INPUT SLEW RATE (V/ns) Figure 12. RMS Jitter vs. Input Slew Rate Figure 9. Phase Noise at 245.76 MHz Rev. B | Page 9 of 16 7 8 06318-012 –160 06318-009 L[f] (dBc/Hz) –110 ADCLK905/ADCLK907/ADCLK925 Data Sheet 1.1 0.09 +125°C 0.8 0.7 +25°C 0.6 –55°C 0.5 +25°C 0.07 –55°C 0.06 0.05 0.04 0.03 +125°C 0.02 0.01 0.4 1 2 3 4 SUPPLY VOLTAGE (V) +25°C –55°C 0 0 1 2 3 4 SUPPLY VOLTAGE (V) Figure 13. VOD vs. Power Supply Voltage 06318-016 POWER SUPPLY CURRENT (A) 0.9 06318-013 Figure 16. Power Supply Current vs. Supply Voltage, ADCLK925 0.07 100 0.06 99 +125°C 0.05 98 +25°C 0.03 tPD (ps) –55°C 0.04 97 +125°C 96 –55°C 0 2.5 3.0 3.5 4.0 POWER SUPPLY VOLTAGE (V) 94 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 06318-017 95 06318-018 0.01 +25°C 06318-014 0.02 11.5 OUTPUT SWING (V) 1.0 POWER SUPPLY CURRENT (A) +125°C 0.08 VID (V) Figure 14. Power Supply Current vs. Power Supply Voltage, ADCLK905 Figure 17. Propagation Delay vs. VID 110 1.8 1.4 105 1.2 VOD (V) +125°C 100 1.0 0.8 +25°C 0.6 95 0.4 –55°C 12.5 9.5 8.5 7.5 6.5 5.5 10.5 INPUT COMMON MODE (V) Figure 15. Propagation Delay vs. VICM; Input Swing = 200 mV 0 4.5 3.6 3.5 3.1 2.5 2.6 1.5 2.1 0.5 0.2 90 1.6 06318-015 PROPAGATION DELAY (ps) 1.6 FREQUENCY (GHz) Figure 18. Toggle Rate, Differential Output Swing vs. Frequency Rev. B | Page 10 of 16 Data Sheet ADCLK905/ADCLK907/ADCLK925 1 1 C4 C4 2 2 06318-023 3 06318-019 17ps/DIV 58ps/DIV 3 Figure 19. 2.488 Gbps PRBS 223 − 1 with OC-48/STM-16 Mask, Measured p-p Jitter 8.1 ps, Source p-p Jitter 3.5 ps Figure 22. 8.50 Gbps PRBS 223 − 1 with FC8500E ABS Beta Rx Mask, Measured p-p Jitter 10.9 ps, Source p-p Jitter 4.4 ps 1 1 C4 C4 2 3 58ps/DIV 06318-022 15ps/DIV 3 Figure 20. 9.95 Gbps PRBS 223 − 1 with OC-193/STM-64 Mask, Measured p-p Jitter 10.5 ps, Source p-p Jitter 6.0 ps 06318-021 2 Figure 23. 2.5 Gbps PRBS 223 − 1 with PCI Express 2.5 Rx Mask, Measured p-p Jitter 8.1 ps, Source p-p Jitter 3.5 ps 1 1 C4 C4 3 29ps/DIV 06318-020 34ps/DIV 3 Figure 21. 4.25 Gbps PRBS 223 − 1 with FC4250 (Optical) Mask, Measured p-p Jitter 8.2 ps, Source p-p Jitter 3.4 ps 06318-024 2 2 Figure 24. 5.0 Gbps PRBS 223 − 1 with PCI Express 5.0 Rx Mask, Measured p-p Jitter 8.7 ps, Source p-p Jitter 3.5 ps Rev. B | Page 11 of 16 ADCLK905/ADCLK907/ADCLK925 Data Sheet APPLICATIONS INFORMATION POWER/GROUND LAYOUT AND BYPASSING OPTIMIZING HIGH SPEED PERFORMANCE The ADCLK905/ADCLK907/ADCLK925 buffers are designed for very high speed applications. Consequently, high speed design techniques must be used to achieve the specified performance. It is critically important to use low impedance supply planes for both the negative supply (VEE) and the positive supply (VCC) planes as part of a multilayer board. Providing the lowest inductance return path for switching currents ensures the best possible performance in the target application. As with any high speed circuit, proper design and layout techniques are essential to obtaining the specified performance. Stray capacitance, inductance, inductive power and ground impedances, or other layout issues can severely limit performance and cause oscillation. Discontinuities along input and output transmission lines can also severely limit the specified jitter performance by reducing the effective input slew rate. It is also important to adequately bypass the input and output supplies. A 1 µF electrolytic bypass capacitor should be placed within several inches of each power supply pin to ground. In addition, multiple high quality 0.001 µF bypass capacitors should be placed as close as possible to each of the VEE and VCC supply pins and should be connected to the GND plane with redundant vias. High frequency bypass capacitors should be carefully selected for minimum inductance and ESR. Parasitic layout inductance should be strictly avoided to maximize the effectiveness of the bypass at high frequencies. OUTPUT STAGES The specified performance can be achieved only by using proper transmission line terminations. The outputs of the ADCLK905/ ADCLK907/ADCLK925 buffers are designed to directly drive 800 mV into 50 Ω cable or microstrip/stripline transmission lines terminated with 50 Ω referenced to VCC − 2 V. The PECL output stage is shown in Figure 25. The outputs are designed for best transmission line matching. If high speed signals must be routed more than a centimeter, either the microstrip or the stripline technique is required to ensure proper transition times and to prevent excessive output ringing and pulse widthdependent propagation delay dispersion. VCC In a 50 Ω environment, input and output matching have a significant impact on performance. The buffer provides internal 50 Ω termination resistors for both D and D inputs. The return side should normally be connected to the reference pin provided. The termination potential should be carefully bypassed, using ceramic capacitors to prevent undesired aberrations on the input signal due to parasitic inductance in the termination return path. If the inputs are directly coupled to a source, care must be taken to ensure the pins are within the rated input differential and common-mode ranges. If the return is floated, the device exhibits 100 Ω cross termination, but the source must then control the common-mode voltage and supply the input bias currents. There are ESD/clamp diodes between the input pins to prevent the application of excessive offsets to the input transistors. ESD diodes are not optimized for best ac performance. When a clamp is desired, it is recommended that appropriate external diodes be used. BUFFER RANDOM JITTER The ADCLK905/ADCLK907/ADCLK925 are specifically designed to minimize added random jitter over a wide input slew rate range. Provided sufficient voltage swing is present, random jitter is affected most by the slew rate of the input signal. Whenever possible, excessively large input signals should be clamped with fast Schottky diodes because attenuators reduce the slew rate. Input signal runs of more than a few centimeters should be over low loss dielectrics or cables with good high frequency characteristics. Q VEE 06318-025 Q Figure 25. Simplified Schematic Diagram of the ADCLK905/ADCLK907/ADCLK925 PECL Output Stage Rev. B | Page 12 of 16 Data Sheet ADCLK905/ADCLK907/ADCLK925 TYPICAL APPLICATION CIRCUITS VCC VREF VREF VT D D D D CONNECT VT TO VREF . NOTES 1. PLACING A BYPASS CAPACITOR FROM VT TO GROUND CAN IMPROVE THE NOISE PERFORMANCE. Figure 26. Interfacing to CML Inputs 06318-029 CONNECT VT TO VCC. 06318-026 VT Figure 28. AC Coupling Differential Signals VREF VREF VT VT D D D D CONNECT VT, VREF , AND D. PLACE A BYPASS CAPACITOR FROM VT TO GROUND. ALTERNATIVELY, VT, VREF , AND D CAN BE CONNECTED, GIVING A CLEANER LAYOUT AND A 180º PHASE SHIFT. 06318-030 CONNECT VT TO VCC − 2V. 06318-028 VCC – 2V Figure 29. Interfacing to AC-Coupled Single-Ended Inputs Figure 27. Interfacing to PECL Rev. B | Page 13 of 16 C27 1 1 RED TP3 2.2UF BLK VEE C24 TP4 .1UF VEE J10 .1UF C22 C23 Solder bridges will be completed by end user if desired. .1UF J7 C21 D2_B D2 CAL_2 C17 C19 1 D1 4 D2 3 D2 2 D1 LFCSP16-3X3 ADCLK9XX matched length ×2 C25 J1 2.2UF 0Ω resistors are NOT to be installed. .1UF D1_B C1 D1 .1UF J2 .1UF .1UF C11 C12 VT1 R1 16 VT 1 5 VT2 R2 VT2 C15 VREF1 15 0 VREF1 .1UF 7 VREF2 6 C2 .1UF C9 C10 .1UF C14 0 VREF2 C26 .1UF .1UF VEE 14 VEE_14 VCC 13 VCC_13 VEE_7 VEE .1UF .1UF VCC Q1 Q1_B .01UF VEE VCC C16 .1UF Q2_B Q2 matched lengths PAD VAL C45 PAD Q2 9 Q2 10 Q1 11 Q1 12 A1 C4 J8 C5 Solder bridges will be completed by end user if desired. .1UF 8 VCC C44 C6 C13 .1UF C3 .01UF .1UF 0Ω resistors are NOT to be installed. C7 matched length ×2 .1UF VCC_8 .1UF RED TP2 J9 J4 1 C8 TP1 BLK J3 J5 Solder bridges will be completed by end user if desired. Jumpers are NOT to be installed. J6 J12 VT2 1 1 1 1 0 0 0 0 VREF2 C39 VT1 C40 JP4 JP3 JP2 JP1 2 2 2 2 VREF2 VT2 C28 C32 CAL_1 .1UF C38 C41 .1UF J11 1 Figure 30. Evaluation Board Schematic .1UF .1UF .1UF C29 C33 .1UF VREF2 .1UF .1UF .1UF C18 .1UF C20 VREF1 VT1 VT2 C37 VT1 C42 C30 C34 .1UF .1UF .1UF .1UF 1 1 1 1 .1UF .1UF 0 0 0 0 JP5 JP6 JP7 JP8 .1UF 2 2 2 2 RED TP8 RED TP5 1 C36 C43 .1UF VREF1 RED TP7 RED TP6 .1UF .1UF 1 1 C31 1 C35 Rev. B | Page 14 of 16 .1UF VREF1 ADCLK905/ADCLK907/ADCLK925 Data Sheet EVALUATION BOARD SCHEMATIC 06318-031 Data Sheet ADCLK905/ADCLK907/ADCLK925 OUTLINE DIMENSIONS PIN 1 INDICATOR 0.30 0.25 0.20 0.50 BSC PIN 1 INDICATOR 16 13 1 12 1.65 1.50 SQ 1.45 EXPOSED PAD 9 TOP VIEW 0.80 0.75 0.70 0.50 0.40 0.30 4 8 BOTTOM VIEW 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF SEATING PLANE 5 0.20 MIN FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6. 01-26-2012-A 3.10 3.00 SQ 2.90 Figure 31. 16-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-16-27) Dimensions shown in millimeters ORDERING GUIDE Model1 ADCLK905BCPZ-WP ADCLK905BCPZ-R7 ADCLK905BCPZ-R2 ADCLK907BCPZ-WP ADCLK907BCPZ-R7 ADCLK907BCPZ-R2 ADCLK925BCPZ-WP ADCLK925BCPZ-R7 ADCLK925BCPZ-R2 ADCLK905/PCBZ ADCLK907/PCBZ ADCLK925/PCBZ 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] Evaluation Board Evaluation Board Evaluation Board Z = RoHS Compliant Part. Rev. B | Page 15 of 16 Package Option CP-16-27 CP-16-27 CP-16-27 CP-16-27 CP-16-27 CP-16-27 CP-16-27 CP-16-27 CP-16-27 Branding Y03 Y03 Y03 Y06 Y06 Y06 Y08 Y08 Y08 ADCLK905/ADCLK907/ADCLK925 Data Sheet NOTES ©2007–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06318-0-2/17(B) Rev. B | Page 16 of 16
ADCLK925BCPZ-R2 价格&库存

很抱歉,暂时无法提供与“ADCLK925BCPZ-R2”相匹配的价格&库存,您可以联系我们找货

免费人工找货