0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADL5812ACPZ-R7

ADL5812ACPZ-R7

  • 厂商:

    AD(亚德诺)

  • 封装:

    VFQFN40_EP,CSP

  • 描述:

    IC MXR 700MHZ-2.8GHZ AMP 40LFCSP

  • 数据手册
  • 价格&库存
ADL5812ACPZ-R7 数据手册
Dual High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier ADL5812 FEATURES RF frequency: 700 MHz to 2800 MHz continuous LO frequency: 250 MHz to 2800 MHz, high-side or low-side inject IF range: 30 MHz to 450 MHz Power conversion gain of 6.7 dB at 1900 MHz SSB noise figure of 11.6 dB at 1900 MHz Input IP3 of 27.2 dBm at 1900 MHz Input P1dB of 12.5 dBm at 1900 MHz Typical LO drive of 0 dBm Single-ended, 50 Ω RF port Single-ended or balanced LO input port Single-supply operation: 3.6 V to 5.0 V Serial port interface control on all functions Exposed paddle 6 mm × 6 mm, 40-lead LFCSP package FUNCTIONAL BLOCK DIAGRAM V1LO4 V1LO3 32 IFGM1 40 39 38 37 36 35 34 33 RF1 1 RFCT1 2 NC 3 NC 4 NC 5 NC 6 NC 7 NC 8 RFCT2 9 RF2 10 11 12 13 14 15 16 17 18 19 20 V1LO2 31 30 29 IFON1 IFGD1 IFOP1 VPIF1 NC NC V1LO1 NC NC NC LOIP LOIN LE DATA CLK V2LO1 09913-001 ADL5812 28 27 BIAS GEN 26 25 24 SERIAL PORT INTERFACE 23 22 21 IFGM2 IFOP2 IFON2 IFGD2 VPIF2 V2LO4 V2LO3 APPLICATIONS Multiband/multistandard cellular base station diversity receivers Wideband radio link diversity downconverters Multimode cellular extenders and broadband receivers Figure 1. GENERAL DESCRIPTION The ADL5812 uses revolutionary new broadband, square wave limiting, local oscillator (LO) amplifiers to achieve an unprecedented radio frequency (RF) bandwidth of 700 MHz to 2800 MHz. Unlike conventional narrow-band sine wave LO amplifier solutions, this permits the LO to be applied either above or below the RF input over an extremely wide bandwidth. Because energy storage elements are not used, the dc current consumption also decreases with decreasing LO frequency. The ADL5812 uses highly linear, doubly balanced, passive mixer cores along with integrated RF and LO balancing circuits to allow single-ended operation. The ADL5812 incorporates programmable RF baluns, allowing optimal performance over a 700 MHz to 2800 MHz RF input frequency. The balanced passive mixer arrangement provides outstanding LO-to-RF and LO-to-IF leakages, excellent RF-to-IF isolation, and excellent intermodulation performance over the full RF bandwidth. The balanced mixer cores also provide extremely high input linearity, allowing the device to be used in demanding wideband applications where in-band blocking signals may otherwise result in the degradation of dynamic range. Blocker noise figure performance is comparable to narrow-band passive mixer designs. High linearity IF buffer amplifiers follow the passive mixer cores, yielding typical power conversion gains of 6.7 dB, and can be used with a wide range of output impedances. For low voltage applications, the ADL5812 is capable of operation at voltages down to 3.6 V with substantially reduced current. Two logic bits are provided to individually power down (1.5 mA for both channels) the two channels as desired. All features of the ADL5812 are controlled via a 3-wire serial port interface, resulting in optimum performance and minimum external components. The ADL5812 is fabricated using a BiCMOS high performance IC process. The device is available in a 40-lead, 6mm × 6mm, LFCSP package and operates over a −40°C to +85°C temperature range. An evaluation board is also available. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved. V2LO2 NC NC ADL5812 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Timing Characteristics ................................................................ 4 Absolute Maximum Ratings............................................................ 5 ESD Caution.................................................................................. 5 Pin Configuration and Function Descriptions............................. 6 Typical Performance Characteristics ............................................. 7 3.6 V Performance...................................................................... 16 Spurious Performance................................................................ 17 Circuit Description......................................................................... 20 RF Subsystem.............................................................................. 20 LO Subsystem ............................................................................. 21 Applications Information .............................................................. 22 Basic Connections...................................................................... 22 IF Port .......................................................................................... 22 Bias Resistor Selection ............................................................... 22 VGS Programming..................................................................... 23 Low-Pass Filter Programming.................................................. 23 RF Balun Programming ............................................................ 23 Register Structure ........................................................................... 24 Evaluation Board ............................................................................ 25 Outline Dimensions ....................................................................... 27 Ordering Guide .......................................................................... 27 REVISION HISTORY 7/11—Revision 0: Initial Version Rev. 0 | Page 2 of 28 ADL5812 SPECIFICATIONS VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = R2 = 1200 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted. Table 1. Parameter RF INPUT INTERFACE Return Loss Input Impedance RF Frequency Range OUTPUT INTERFACE Output Impedance IF Frequency Range DC Bias Voltage 1 LO INTERFACE LO Power Return Loss Input Impedance LO Frequency Range DYNAMIC PERFORMANCE Power Conversion Gain Voltage Conversion Gain SSB Noise Figure SSB Noise Figure Under Blocking Input Third-Order Intercept Input Second-Order Intercept Input 1 dB Compression Point LO-to-IF Output Leakage LO-to-RF Input Leakage RF-to-IF Output Isolation IF/2 Spurious IF/3 Spurious POWER INTERFACE Supply Voltage, VS Quiescent Current Power-Down Current 1 Test Conditions/Comments Tunable to >20 dB broadband via serial port Min Typ 10 50 Max Unit dB Ω MHz Ω||pF MHz V dBm dB Ω MHz dB dB dB dB dBm dBm dBm dBm dBm dB dBc dBc 700 Differential impedance, f = 200 MHz 30 Externally generated −6 VS 0 13.3 50 260||1.2 2800 450 +10 Low-side or high-side LO Including 4:1 IF port transformer and PCB loss ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential 5 dBm blocker present ±10 MHz from wanted RF input, LO source filtered fRF1 = 1900 MHz, fRF2 = 1901 MHz, fLO = 1697 MHz, each RF tone at −10 dBm fRF1 = 1900 MHz, fRF2 = 2000 MHz, fLO = 1697 MHz, each RF tone at −10 dBm Unfiltered IF output 250 6.7 13.1 11.6 21 27.2 55 12.5 −37 −46 26 −70 −78 3.6 5 412 1.5 2800 −10 dBm input power −10 dBm input power 5.5 Resistor programmable IF current V mA mA Supply voltage must be applied from external circuit through choke inductors. Rev. 0 | Page 3 of 28 ADL5812 TIMING CHARACTERISTICS Low logic level ≤ 0.4 V, and high logic level ≥ 1.4 V. Table 2. Serial Interface Timing Parameter t1 t2 t3 t4 t5 t6 t7 Limit 20 10 10 25 25 10 20 Unit ns minimum ns minimum ns minimum ns minimum ns minimum ns minimum ns minimum Test Conditions/Comments LE setup time DATA-to-CLK setup time DATA-to-CLK hold time CLK high duration CLK low duration CLK-to-LE setup time LE pulse width Timing Diagram t4 CLK t5 t2 DATA DB23 (MSB) DB22 t3 DB2 (CONTROL BIT C3) DB1 (CONTROL BIT C2) DB0 (LSB) (CONTROL BIT C1) t6 LE t7 t1 09913-002 Figure 2. Timing Diagram Rev. 0 | Page 4 of 28 ADL5812 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Supply Voltage, VPOS CLK, DATA, LE IF Output Bias RF Input Power LO Input Power Internal Power Dissipation θJA (Exposed Paddle Soldered Down) Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Rating 5.5 V 5.5 V 6.0 V 20 dBm 13 dBm 2.5 W 30°C 150°C −40°C to +85°C −65°C to +150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION Rev. 0 | Page 5 of 28 ADL5812 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS VPIF1 IFGM1 NC IFOP1 IFON1 NC IFGD1 V1LO4 V1LO3 V1LO2 RF1 1 RFCT1 2 NC 3 NC 4 NC 5 NC 6 NC 7 NC 8 RFCT2 9 RF2 10 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 ADL5812 TOP VIEW (Not to Scale) V1LO1 NC NC NC LOIP LOIN LE DATA CLK V2LO1 Figure 3. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1, 10 2, 9 3 to 8, 13, 16, 27 to 29, 35, 38 11, 40 12, 39 14, 15, 36, 37 17, 34 18 to 21, 30 to 33 22, 23, 24 25 26 Mnemonic RF1, RF2 RFCT1, RFCT2 NC VPIF1, VPIF2 IFGM1, IFGM2 IFOP1, IFOP2, IFON1, IFON2 IFGD1, IFGD2 V1LO1, V1LO2, V1LO3, V1LO4, V2LO1, V2LO2, V2LO3, V2LO4 CLK, DATA, LE LOIN LOIP EPAD Description RF Input. Should be ac-coupled. RF Balun Center Tap (AC Ground). No Connect. Can be grounded. Supply Voltage for IF Amplifier. IF Amplifier Bias Control. Differential Open-Collector IF Outputs. Should be pulled up to VCC via external inductors. Supply Return for IF Amplifier. Must be grounded. Positive Supply Voltages for LO Amplifiers. Serial Port Interface Control. Ground Return for LO Input. Must be ac coupled. LO Input. Should be ac-coupled. Exposed pad must be connected to ground. Rev. 0 | Page 6 of 28 09913-003 NOTES 1. NC = NO CONNECT. CAN BE GROUNDED. 2. EXPOSED PAD MUST BE CONNECTED TO GROUND. VPIF2 IFGM2 NC IFOP2 IFON2 NC IFGD2 V2LO4 V2LO3 V2LO2 11 12 13 14 15 16 17 18 19 20 ADL5812 TYPICAL PERFORMANCE CHARACTERISTICS VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = R2 = 1200 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted. 450 TA = –40°C TA = +25°C TA = +85°C 70 65 60 TA = –40°C TA = +25°C TA = +85°C 400 SUPPLY CURRENT (mA) INPUT IP2 (dBm) 09913-008 350 55 50 45 40 35 300 250 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) Figure 4. Supply Current vs. RF Frequency 12 11 10 20 19 18 17 16 INPUT P1dB (dBm) Figure 7. Input IP2 vs. RF Frequency TA = –40°C TA = +25°C TA = +85°C TA = –40°C TA = +25°C TA = +85°C CONVERSION GAIN (dB) 9 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9 8 7 6 5 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) Figure 5. Power Conversion Gain vs. RF Frequency 32 31 30 29 28 INPUT IP3 (dBm) Figure 8. Input P1dB vs. RF Frequency 16 15 14 SSB NOISE FIGURE (dB) TA = –40°C TA = +25°C TA = +85°C TA = –40°C TA = +25°C TA = +85°C 13 12 11 10 9 8 7 27 26 25 24 23 22 21 20 19 09913-019 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) Figure 6. Input IP3 vs. RF Frequency Figure 9. SSB Noise Figure vs. RF Frequency Rev. 0 | Page 7 of 28 09913-025 18 700 6 700 09913-020 09913-011 0 700 09913-016 200 700 30 700 ADL5812 450 VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V 65 63 61 59 INPUT IP2 (dBm) VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V 400 SUPPLY CURRENT (mA) 350 57 55 53 51 300 250 49 47 09913-026 –20 0 20 40 60 80 –20 0 20 40 60 80 TEMPERATURE (°C) TEMPERATURE (°C) Figure 10. Supply Current vs. Temperature 8.0 Figure 13. Input IP2 vs. Temperature 16 15 14 INPUT P1dB (dBm) 7.5 CONVERSION GAIN (dB) VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V 7.0 13 12 11 6.5 6.0 5.5 10 9 –40 09913-027 –20 0 20 40 60 80 –20 0 20 40 60 80 TEMPERATURE (°C) TEMPERATURE (°C) Figure 11. Power Conversion Gain vs. Temperature 30 29 28 27 INPUT IP3 (dBm) SSB NOISE FIGURE (dB) Figure 14. Input P1dB vs. Temperature 14 VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V 13 VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V 12 26 25 24 23 22 21 09913-028 11 10 9 –20 0 20 40 60 80 –20 0 20 40 60 80 TEMPERATURE (°C) TEMPERATURE (°C) Figure 12. Input IP3 vs. Temperature Figure 15. SSB Noise Figure vs. Temperature Rev. 0 | Page 8 of 28 09913-031 20 –40 8 –40 09913-030 5.0 –40 09913-029 200 –40 45 –40 ADL5812 450 70 65 RF = 900MHz RF = 1900MHz RF = 2500MHz 400 SUPPLY CURRENT (mA) 60 INPUT IP2 (dBm) 350 55 50 45 40 300 250 09913-032 80 130 180 230 280 330 380 430 80 130 180 230 280 330 380 430 IF FREQUENCY (MHz) IF FREQUENCY (MHz) Figure 16. Supply Current vs. IF Frequency 10 9 8 16 14 12 INPUT P1dB (dBm) Figure 19. Input IP2 vs. IF Frequency RF = 900MHz RF = 1900MHz RF = 2500MHz CONVERSION GAIN (dB) 7 6 5 4 3 2 1 09913-033 10 8 6 4 2 0 RF = 900MHz RF = 1900MHz RF = 2500MHz 30 80 130 180 230 280 330 380 430 09913-036 09913-037 0 30 80 130 180 230 280 330 380 430 IF FREQUENCY (MHz) IF FREQUENCY (MHz) Figure 17. Power Conversion Gain vs. IF Frequency 35 33 31 29 SSB NOISE FIGURE (dB) 12 10 8 6 4 2 0 30 16 14 Figure 20. Input P1dB vs. IF Frequency RF = 900MHz RF = 1900MHz RF = 2500MHz RF = 900MHz RF = 1900MHz RF = 2500MHz INPUT IP3 (dBm) 27 25 23 21 19 17 09913-034 15 30 80 130 180 230 280 330 380 430 80 130 180 230 280 330 380 430 IF FREQUENCY (MHz) IF FREQUENCY (MHz) Figure 18. Input IP3 vs. IF Frequency Figure 21. SSB Noise Figure vs. IF Frequency Rev. 0 | Page 9 of 28 09913-035 200 30 RF = 900MHz RF = 1900MHz RF = 2500MHz 35 30 30 ADL5812 9 RF = 900MHz RF = 1900MHz RF = 2500MHz 16 8 RF = 900MHz RF = 1900MHz RF = 2500MHz 15 CONVERSION GAIN (dB) 6 INPUT P1dB (dBm) 09913-038 7 14 13 5 12 4 11 –4 –2 0 2 4 6 8 10 –4 –2 0 2 4 6 8 10 LO POWER (dBm) LO POWER (dBm) Figure 22. Power Conversion Gain vs. LO Power 30 29 28 –40 –45 –50 –55 –60 –65 –70 –75 700 Figure 25. Input P1dB vs. LO Power RF = 900MHz RF = 1900MHz RF = 2500MHz TA = –40°C TA = +25°C TA = +85°C INPUT IP3 (dBm) 27 26 25 24 23 22 –6 09913-039 IF/2 SPURIOUS (dB) –4 –2 0 2 4 6 8 10 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) LO POWER (dBm) Figure 23. Input IP3 vs. LO Power 75 70 65 IF/3 SPURIOUS (dB) Figure 26. IF/2 Spurious vs. RF Frequency, RF Power = −10 dBm –50 –55 –60 –65 –70 –75 –80 –85 –90 700 RF = 900MHz RF = 1900MHz RF = 2500MHz TA = –40°C TA = +25°C TA = +85°C INPUT IP2 (dBm) 60 55 50 45 40 35 –6 09913-040 –4 –2 0 2 4 6 8 10 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY(MHz) LO POWER (dBm) Figure 24. Input IP2 vs. LO Power Figure 27. IF/3 Spurious vs. RF Frequency, RF Power = −10 dBm Rev. 0 | Page 10 of 28 09913-013 09913-012 09913-041 3 –6 10 –6 ADL5812 100 MEAN: 7.37 SD: 0.12% 500 RF = 900MHz RF = 1900MHz RF = 2500MHz 10 80 PERCENTAGE (%) RESISTANCE (Ω) 400 8 CAPACITANCE (pF) 09913-060 09913-062 09913-057 60 300 6 40 200 4 20 100 2 09913-065 0 7.0 7.2 7.4 CONVERSION GAIN (dBm) 7.6 7.8 0 30 80 130 180 230 280 330 380 430 480 0 IF FREQUENCY (MHz) Figure 28. Conversion Gain Distribution 100 –5 Figure 31. IF Output Impedance (R Parallel C Equivalent) MEAN: 26.43 SD: 0.55% –6 –7 –8 –9 –10 –11 –12 –13 –14 –15 –16 –17 –18 –19 80 RF RETURN LOSS (dB) PERCENTAGE (%) 60 40 20 24 26 INPUT IP3 (dBm) 28 30 09913-066 0 22 –20 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) Figure 29. Input IP3 Distribution 100 Figure 32. RF Port Return Loss, Fixed IF –5 MEAN: 11.82 SD: 0.30% –6 –7 –8 LO RETURN LOSS (dB) 09913-064 80 –9 –10 –11 –12 –13 –14 –15 –16 –17 –18 –19 PERCENTAGE (%) 60 40 20 0 10.8 11.3 11.8 INPUT P1dB (dBm) 12.3 12.8 –20 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) Figure 30. Input P1dB Distribution Figure 33. LO Return Loss Rev. 0 | Page 11 of 28 ADL5812 –10 –10 –15 TA = –40°C TA = +25°C TA = +85°C 2× LO LEAKAGE (dBm) –15 –20 –25 –30 –35 –40 –45 –50 09913-023 2 × LO TO RF 2 × LO TO IF RF-TO-IF ISOLATION (dB) –20 –25 –30 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) 700 900 1100 1300 1500 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) Figure 34. RF-to-IF Isolation vs. RF Frequency –10 –15 –20 LO-TO-IF LEAKAGE (dBm) –10 Figure 37. 2XLO Leakage vs. LO Frequency TA = –40°C TA = +25°C TA = +85°C 3× LO LEAKAGE (dBm) –15 –20 –25 –30 –35 –40 –45 –50 –55 –60 –65 09913-021 3 × LO TO RF 3 × LO TO IF –25 –30 –35 –40 –45 –50 –55 –60 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) 700 900 1100 1300 1500 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) Figure 35. LO-to-IF Leakage vs. LO Frequency –10 –15 –20 LO-TO-RF LEAKAGE (dBm) Figure 38. 3XLO Leakage vs. LO Frequency TA = –40°C TA = +25°C TA = +85°C –25 –30 –35 –40 –45 –50 –55 700 900 1100 1300 1500 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) Figure 36. LO-to-RF Leakage vs. LO Frequency 09913-022 –60 500 Rev. 0 | Page 12 of 28 09913-005 –70 500 09913-004 –35 700 –55 500 ADL5812 16 CONVERSION GAIN AND NOISE FIGURE (dB) VGS = 0 VGS = 1 VGS = 2 VGS = 3 VGS = 4 VGS = 5 VGS = 6 VGS = 7 550 14 500 RF = 900MHz RF = 1900MHz RF = 2500MHz SUPPLY CURRENT (mA) GAIN NOISE FIGURE 12 450 10 400 8 350 6 300 09913-042 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 IF BIAS RESISTOR VALUE (Ω) Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency for All VGS Settings, RFB and LPF Use Optimum Settings CONVERSION GAIN (dB) AND NOISE FIGURE (dB) Figure 42. Supply Current vs. IF Bias Resistor Value 22 20 18 16 14 12 10 8 6 4 2 500 GAIN NOISE FIGURE 30 INPUT IP3 INPUT IP3 (dBm), INPUT P1dB (dBm) RF = 900MHz RF = 1900MHz RF = 2500MHz INPUT IP3 30 27 24 21 INPUT IP3 09913-006 09913-059 25 20 18 15 12 9 6 3 15 10 5 VGS = 0 VGS = 1 VGS = 2 VGS = 3 VGS = 4 VGS = 5 VGS = 6 VGS = 7 INPUT P1dB 09913-043 0 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 600 700 800 0 900 1000 1100 1200 1300 1400 1500 1600 RF FREQUENCY (MHz) IF BIAS RESISTOR VALUE (Ω) Figure 40. Input IP3 and Input P1dB vs. RF Frequency for All VGS Settings, RFB and LPF Use Optimum Settings 30 Figure 43. Power Conversion Gain, Noise Figure, and Input IP3 vs. IF Bias Resistor Value 70 CHANNEL-TO-CHANNEL ISOLATION (dB) 25 RF = 956MHz RF = 1950MHz RF = 2583MHz 60 50 40 30 20 10 0 700 TA = –40°C TA = +25°C TA = +85°C NOISE FIGURE (dB) 20 15 10 5 09913-061 0 –30 –25 –20 –15 –10 –5 0 5 10 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) RF BLOCKER LEVEL (dBm) Figure 41. SSB Noise Figure vs. 10 MHz Offset Blocker Level Figure 44. IF Channel-to-Channel Isolation vs. RF Frequency Rev. 0 | Page 13 of 28 09913-058 4 700 250 500 ADL5812 12 11 10 17 RFB = 0 RFB = 1 RFB = 2 RFB = 3 RFB = 4 RFB = 5 RFB = 6 RFB = 7 16 15 14 CONVERSION GAIN (dB) 9 8 7 6 5 4 3 2 1 INPUT P1dB (dBm) 13 12 11 10 9 8 7 6 RFB = 0 RFB = 1 RFB = 2 RFB = 3 RFB = 4 RFB = 5 RFB = 6 RFB = 7 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) 09913-051 09913-052 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) Figure 45. Conversion Gain vs. RF Frequency for All RFB Settings, VGS and LPF Use Optimum Settings 30 29 28 09913-049 0 700 5 700 Figure 47. Input P1dB vs. RF Frequency for All RFB Settings, VGS and LPF Use Optimum Settings 18 16 14 12 10 8 6 4 700 26 25 24 23 22 21 20 700 RFB = 0 RFB = 1 RFB = 2 RFB = 3 RFB = 4 RFB = 5 RFB = 6 RFB = 7 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) 09913-050 NOISE FIGURE (dB) 27 INPUT IP3 (dBm) RFB = RFB = RFB = RFB = RFB = RFB = RFB = RFB = 0 1 2 3 4 5 6 7 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) Figure 46. Input IP3 vs. RF Frequency for All RFB Settings, VGS and LPF Use Optimum Settings Figure 48. Noise Figure vs. RF Frequency for All RFB Settings, VGS and LPF Use Optimum Settings Rev. 0 | Page 14 of 28 ADL5812 10 9 8 CONVERSION GAIN (dB) 16 14 12 INPUT P1dB (dBm) 7 6 5 4 3 2 1 0 700 LPF LPF LPF LPF =0 =1 =2 =3 09913-053 10 8 6 4 2 0 700 LPF LPF LPF LPF =0 =1 =2 =3 09913-055 09913-056 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) Figure 49. Conversion Gain vs. RF Frequency for All LPF Settings, RFB and VGS Use Optimum Settings 30 28 26 NOISE FIGURE (dB) Figure 51. Input P1dB vs. RF Frequency for All LPF Settings, RFB and VGS Use Optimum Settings 16 15 14 13 12 11 10 9 8 7 09913-054 LPF LPF LPF LPF =0 =1 =2 =3 24 INPUT IP3 (dBm) 22 20 18 16 14 12 10 700 LPF LPF LPF LPF =0 =1 =2 =3 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) 6 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) Figure 50. Input IP3 vs. RF Frequency for All LPF Settings, RFB and VGS Use Optimum Settings Figure 52. Noise Figure vs. RF Frequency for All LPF Settings, RFB and VGS Use Optimum Settings. Rev. 0 | Page 15 of 28 ADL5812 3.6 V PERFORMANCE VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = R2 = 800 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted. 290 285 280 SUPPLY CURRENT (mA) TA = –40°C TA = +25°C TA = +85°C 70 60 50 INPUT IP2 (dBm) 275 270 265 260 255 250 245 240 09913-044 40 30 20 10 0 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) RF FREQUENCY (MHz) Figure 53. Supply Current vs. RF Frequency at 3.6 V 9 8 10 7 CONVERSION GAIN (dB) INPUT P1dB (dBm) Figure 56. Input IP2 vs. RF Frequency at 3.6 V 12 6 5 4 3 2 1 0 700 TA = –40°C TA = +25°C TA = +85°C 09913-045 8 6 4 2 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) Figure 54. Power Conversion Gain vs. RF Frequency at 3.6 V 30 24 22 20 18 NOISE FIGURE (dB) Figure 57. Input P1dB vs. RF Frequency at 3.6 V 25 TA = –40°C TA = +25°C TA = +85°C TA = –40°C TA = +25°C TA = +85°C INPUT IP3 (dBm) 20 16 14 12 10 8 6 15 10 5 4 2 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) 09913-046 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz) Figure 55. Input IP3 vs. RF Frequency at 3.6 V Figure 58. SSB Noise Figure vs. RF Frequency at 3.6 V Rev. 0 | Page 16 of 28 09913-063 0 700 0 700 09913-048 0 700 TA = –40°C TA = +25°C TA = +85°C - 09913-047 235 700 TA = –40°C TA = +25°C TA = +85°C ADL5812 SPURIOUS PERFORMANCE (N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was only measured for frequencies less than 6 GHz. Typical noise floor of the measurement system = −100 dBm. 5 V Performance VS = 5 V, TA = 25°C, RF power = −10 dBm, LO power = 0 dBm, R1 = R2 = 1200 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted. Table 5. RF = 900 MHz, LO = 697 MHz 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 −30.4 −60.9 −86.0 −100.0
ADL5812ACPZ-R7 价格&库存

很抱歉,暂时无法提供与“ADL5812ACPZ-R7”相匹配的价格&库存,您可以联系我们找货

免费人工找货