0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADM1085AKSZ-REEL7

ADM1085AKSZ-REEL7

  • 厂商:

    AD(亚德诺)

  • 封装:

    SC70-6

  • 描述:

    电源控制器,监视器 1 CHANNEL SC70-6

  • 数据手册
  • 价格&库存
ADM1085AKSZ-REEL7 数据手册
Simple Sequencers® in 6-Lead SC70 ADM1085/ADM1086/ADM1087 Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAMS VCC ADM1085/ADM1086 VIN CAPACITOR ADJUSTABLE DELAY 0.6V GND CEXT ENOUT ENIN VCC ADM1087 VIN CAPACITOR ADJUSTABLE DELAY 0.6V APPLICATIONS Desktop/notebook computers, servers Low power portable equipment Routers Base stations Line cards Graphics cards GND CEXT ENOUT 04591-001 Provide programmable time delays between enable signals Can be cascaded with power modules for multiple supply sequencing Power supply monitoring from 0.6 V Output stages High voltage (up to 22 V) open-drain output (ADM1085/ADM1087) Push-pull output (ADM1086) Capacitor-adjustable time delays High voltage (up to 22 V) enable and VIN inputs Low power consumption (15 μA) Specified over –40°C to +125°C temperature range 6-lead SC70 package ENIN Figure 1. GENERAL DESCRIPTION The ADM1085/ADM1086/ADM1087 are simple sequencing circuits that provide a time delay between the enabling of voltage regulators and/or dc-dc converters at power-up in multiple supply systems. When the output voltage of the first power module reaches a preset threshold, a time delay is initiated before an enable signal allows subsequent regulators to power up. Any number of these devices can be cascaded with regulators to allow sequencing of multiple power supplies. Threshold levels can be set with a pair of external resistors in a voltage divider configuration. With appropriate resistor values, the threshold can be adjusted to monitor voltages as low as 0.6 V. The ADM1086 has a push-pull output stage, with active high (ENOUT). The ADM1085 has an active-high (ENOUT) logic output; the ADM1087 has an active-low (ENOUT) output. Both the ADM1085 and ADM1087 have open-drain output stages that can be pulled up to voltage levels as high as 22 V through an external resistor. This level-shifting property ensures compatibility with enable input logic levels of different regulators and converters. Rev. B All four models have a dedicated enable input pin that allows the output signal to the regulator to be controlled externally. This is an active high input (ENIN) for the ADM1085 and ADM1086, and an active low input (ENIN) for the ADM1087. The Simple Sequencers are specified over the extended −40°C to +125°C temperature range. With low current consumption of 15 μA (typical) and 6-lead SC70 packaging, the parts are suitable for low-power portable applications. Table 1. Selection Table Output Stage ENOUT ENOUT Part No. Enable Input ADM1085 ENIN Open-drain ADM1086 ENIN Push-pull ADM1087 ENIN Open-drain Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2004–2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADM1085/ADM1086/ADM1087 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  Capacitor-Adjustable Delay Circuit ............................................9  Applications ....................................................................................... 1  Open-Drain and Push-Pull Outputs ....................................... 10  Functional Block Diagrams ............................................................. 1  Application Information ................................................................ 11  General Description ......................................................................... 1  Sequencing Circuits ................................................................... 11  Revision History ............................................................................... 2  Dual LOFO Sequencing ............................................................ 13  Specifications..................................................................................... 3  Simultaneous Enabling .............................................................. 13  Absolute Maximum Ratings............................................................ 4  Power Good Signal Delays ........................................................ 13  ESD Caution .................................................................................. 4  Quad-Supply Power Good Indicator ....................................... 14  Pin Configuration and Function Descriptions ............................. 5  Sequencing with FET Switches ................................................. 14  Typical Performance Characteristics ............................................. 6  Outline Dimensions ....................................................................... 15  Circuit Information .......................................................................... 9  Ordering Guide .......................................................................... 15  Timing Characteristics and Truth Tables .................................. 9  REVISION HISTORY 5/14—Rev. A to Rev. B Removed ADM1088 ...................................................... Throughout Changes to Capacitor-Adjustable Delay Circuit........................... 9 Removed Figure 26; Renumbered Sequentially.......................... 12 Changes to Ordering Guide .......................................................... 15 4/06—Rev. 0 to Rev. A Added Lead-Free Models .................................................. Universal Update Outline Dimensions ......................................................... 15 Changes to Ordering Guide .......................................................... 15 7/04—Revision 0: Initial Version Rev. B | Page 2 of 16 Data Sheet ADM1085/ADM1086/ADM1087 SPECIFICATIONS VCC = full operating range, TA = −40°C to +125°C, unless otherwise noted. Table 2. Parameter SUPPLY VCC Operating Voltage Range VIN Operating Voltage Range Supply Current VIN Rising Threshold, VTH_RISING VIN Falling Threshold, VTH_FALLING VIN Hysteresis VIN to ENOUT/ENOUT Delay VIN Rising VIN Falling VIN Leakage Current CEXT Charge Current Threshold Temperature Coefficient ENIN/ENIN to ENOUT/ENOUT Propagation Delay ENIN/ENIN Voltage Low ENIN/ENIN Voltage High ENIN/ENIN Leakage Current ENOUT/ENOUT Voltage Low ENOUT/ENOUT Voltage High (ADM1086) ENOUT/ENOUT Open-Drain Output Leakage Current (ADM1085/ADM1087) Min Typ 2.25 0 0.56 0.545 125 10 0.6 0.585 15 35 2 20 170 250 30 0.5 Max Unit 3.6 22 15 0.64 0.625 V V μA V V mV 375 0.3 VCC − 0.2 0.3 VCC + 0.2 170 0.4 0.8 VCC μs ms μs μA nA ppm/°C μs V V μA V V 0.4 Rev. B | Page 3 of 16 μA Test Conditions/Comments VCC = 3.3 V VCC = 3.3 V CEXT floating, C = 20 pF CEXT = 470 pF VIN = VTH_FALLING to (VTH_FALLING − 100 mV) VIN = 22 V VIN > VTH_RISING ENIN/ENIN = 22 V VIN < VTH_FALLING (ENOUT), VIN > VTH_RISING (ENOUT), ISINK = 1.2 mA VIN > VTH_RISING (ENOUT), VIN < VTH_FALLING (ENOUT), ISOURCE = 500 μA ENOUT/ENOUT = 22 V ADM1085/ADM1086/ADM1087 Data Sheet ABSOLUTE MAXIMUM RATINGS Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. TA = 25°C, unless otherwise noted. Table 3. Parameter VCC VIN CEXT ENIN, ENIN ENOUT, ENOUT (ADM1085, ADM1087) ENOUT, ENOUT (ADM1086) Operating Temperature Range Storage Temperature Range θJA Thermal Impedance, SC70 Lead Temperature Soldering (10 sec) Vapor Phase (60 sec) Infrared (15 sec) Rating −0.3 V to +6 V −0.3 V to +25 V −0.3 V to +6 V −0.3 V to +25 V −0.3 V to +25 V −0.3 V to +6 V ESD CAUTION −40°C to +125°C −65°C to +150°C 146°C/W 300°C 215°C 220°C Rev. B | Page 4 of 16 Data Sheet ADM1085/ADM1086/ADM1087 ENIN/ENIN 1 GND 2 VIN 3 ADM1085/ ADM1086/ ADM1087 6 VCC 5 CEXT 4 ENOUT/ENOUT TOP VIEW (Not to Scale) 04591-002 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 2. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1 Mnemonic ENIN, ENIN 2 3 GND VIN 4 ENOUT, ENOUT 5 CEXT 6 VCC Description Enable Input. Controls the status of the enable output. Active high for ADM1085/ADM1086. Active low for ADM1087. Ground. Input for the Monitored Voltage Signal. Can be biased via a voltage divider resistor network to customize the effective input threshold. Can precisely monitor an analog power supply output signal and detect when it has powered up. The voltage applied at this pin is compared with a 0.6 V on-chip reference. With this reference, digital signals with various logic level thresholds can also be detected. Enable Output. Asserted when the voltage at VIN is above VTH_RISING and the time delay has elapsed, provided that the enable input is asserted. Active high for the ADM1085/ADM1086. Active low for the ADM1087. External Capacitor Pin. The capacitance on this pin determines the time delay on the enable output. The delay is seen only when the voltage at VIN rises past VTH_RISING, and not when it falls below VTH_FALLING. Power Supply. Rev. B | Page 5 of 16 ADM1085/ADM1086/ADM1087 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 700 200 680 180 660 160 VIN LEAKAGE CURRENT (µA) TA = +125°C 640 620 600 580 560 VTRIP FALLING 540 140 TA = +25°C 120 100 80 TA = –40°C 60 40 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 0 04591-003 500 –40 0 4 6 8 10 12 16 18 20 22 Figure 6. VIN Leakage Current vs. VIN Voltage 12.0 200 190 11.5 TA = +125°C VIN LEAKAGE CURRENT (µA) TA = +25°C 11.0 10.5 10.0 TA = +125°C TA = –40°C 9.5 9.0 8.5 180 170 160 TA = +25°C 150 140 TA = –40°C 130 120 2.7 3.0 3.3 3.6 VCC (V) 100 2.1 04591-004 2.4 2.4 3.0 2.7 3.3 3.6 VCC (V) Figure 4. Supply Current vs. Supply Voltage 04591-007 110 8.0 2.1 Figure 7. VIN Leakage Current vs. VCC Voltage 20 10000 TA = +125°C 18 16 OUTPUT VOLTAGE (mV) 1000 14 12 10 8 6 4 TA = +25°C 100 TA = –40°C 10 1 2 0 0 2 4 6 8 10 12 14 16 18 VIN (V) 20 22 0.1 0.01 04591-005 SUPPLY CURRENT (µA) 14 VIN (V) Figure 3. VIN Threshold vs. Temperature ICC (µA) 2 04591-006 20 520 0.1 1 10 20 OUTPUT SINK CURRENT (mA) Figure 5. Supply Current vs. VIN Voltage Figure 8. Output Voltage vs. Output Sink Current Rev. B | Page 6 of 16 100 04591-008 VTRIP (mV) VTRIP RISING Data Sheet ADM1085/ADM1086/ADM1087 200 120 180 ENIN/ENIN LEAKAGE (µA) OUTPUT LOW VOLTAGE (mV) TA = +125°C 160 100 80 60 40 TA = +25°C 140 120 100 TA = –40°C 80 60 40 20 2.7 3.0 3.3 3.6 SUPPLY VOLTAGE (V) 0 0 6 8 10 12 14 16 18 20 22 Figure 12. ENIN/ ENIN Leakage Current vs. ENIN/ ENIN Voltage 100 200 90 180 80 160 70 140 60 1mV/µs 50 40 10mV/µs 30 100 80 60 40 10 20 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) TA = –40°C 120 20 –25 TA = +25°C 0 2.1 2.4 2.7 3.0 3.3 3.6 VCC (V) Figure 10. VCC Falling Propagation Delay vs. Temperature 04591-013 ENIN LEAKAGE (µA) TA = +125°C 04591-010 PROPAGATION DELAY (µs) 4 ENIN/ENIN (V) Figure 9. Output Low Voltage vs. Supply Voltage 0 –40 2 04591-012 2.4 04591-009 20 0 2.1 Figure 13. ENIN/ ENIN Leakage Current vs. VCC Voltage 500 10000 450 400 1000 CEXT (nF) 300 250 200 100 10 150 100 1 0 2.1 2.4 2.7 3.0 3.3 SUPPLY VOLTAGE (V) 3.6 0.1 0.562 2.390 5.02 22.9 53.2 241 520 2350 4480 26200 TIMEOUT DELAY (ms) Figure 14. CEXT Capacitance vs. Timeout Delay Figure 11. Output Fall Time vs. Supply Voltage Rev. B | Page 7 of 16 04591-014 50 04591-011 FALL TIME (ns) 350 Data Sheet 300 100 280 90 260 80 TRANSIENT DURATION (µs) 240 220 200 180 160 140 120 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 40 30 20 1 80 70 60 50 40 30 20 5 20 35 50 65 TEMPERATURE (°C) 80 95 110 125 04591-016 10 –10 100 1000 Figure 17. Maximum VIN Transient Duration vs. Comparator Overdrive 90 –25 10 COMPARATOR OVERDRIVE (mV) 100 PROPAGATION DELAY (µs) 50 0 Figure 15. CEXT Charge Current vs. Temperature 0 –40 60 10 04591-015 100 –40 70 04591-017 CHARGE CURRENT (nA) ADM1085/ADM1086/ADM1087 Figure 16. VIN to ENOUT/ ENOUT Propagation Delay (CEXT Floating) vs. Temperature Rev. B | Page 8 of 16 Data Sheet ADM1085/ADM1086/ADM1087 CIRCUIT INFORMATION TIMING CHARACTERISTICS AND TRUTH TABLES The enable outputs of the ADM1085/ADM1086/ADM1087 are related to the VIN and enable inputs by a simple AND function. The enable output is asserted only if the enable input is asserted and the voltage at VIN is above VTH_RISING, with the time delay elapsed. Table 5 and Table 6 show the enable output logic states for different VIN/enable input combinations when the capacitor delay has elapsed. The timing diagrams in Figure 18 and Figure 19 give a graphical representation of how the ADM1085/ADM1086/ ADM1087 enable outputs respond to VIN and enable input signals. Table 5. ADM1085/ADM1086 Truth Table VIN VTH_RISING ENIN 0 1 0 1 ENIN ENOUT 1 0 1 0 1 1 1 0 CAPACITOR-ADJUSTABLE DELAY CIRCUIT To minimize the delay between VIN falling below VTH_FALLING and the enable output deasserting, an NMOS transistor is connected in parallel with CINT. The output of the voltage detector is connected to the gate of this transistor so that, when VIN falls below VTH_FALLING, the transistor switches on and CINT discharges quickly. Table 6. ADM1087 Truth Table VTH_RISING Similarly, if the enable input is disabled while VIN is above the threshold, the enable output deasserts immediately. Unlike VIN, a low-to-high transition on ENIN (or high-to-low on ENIN) does not yield a time delay on ENOUT (ENOUT). Figure 20 shows the internal circuitry used to generate the time delay on the enable output. A 250 nA current source charges a small internal parasitic capacitance (CINT). When the capacitor voltage reaches 1.2 V, the enable output is asserted. The time taken for the capacitor to reach 1.2 V, in addition to the propagation delay of the comparator, constitutes the enable timeout, which is typically 35 μs. ENOUT 0 0 0 1 VIN When VIN reaches the upper threshold voltage (VTH_RISING), an internal circuit generates a delay (tEN) before the enable output is asserted. If VIN drops below the lower threshold voltage (VTH_FALLING), the enable output is deasserted immediately. VCC VIN VTH_RISING 250nA SIGNAL FROM VOLTAGE DETECTOR VTH_FALLING CINT 1.2V TO AND GATE AND OUTPUT STAGE CEXT ENOUT 04591-023 C tEN 04591-025 ENIN Figure 20. Capacitor-Adjustable Delay Circuit Figure 18. ADM1085/ADM1086 Timing Diagram VIN VTH_RISING Connecting an external capacitor to the CEXT pin delays the rise time—and therefore the enable timeout—further. The relationship between the value of the external capacitor and the resulting timeout is characterized by the following equation: VTH_FALLING tEN = (C × 4.8 ×106) + 35 μs ENOUT tEN 04591-024 ENIN where: C is expressed in farads (F), and tEN is expressed in seconds (sec). Figure 19. ADM1087 Timing Diagram Rev. B | Page 9 of 16 ADM1085/ADM1086/ADM1087 Data Sheet OPEN-DRAIN AND PUSH-PULL OUTPUTS The ADM1085 and ADM1087 have open-drain output stages that require an external pull-up resistor to provide a logic high voltage level. The geometry of the NMOS transistor enables the output to be pulled up to voltage levels as high as 22 V. The ADM1086 has a push-pull (CMOS) output stage that requires no external components to drive other logic circuits. An internal PMOS pull-up transistor provides the logic high voltage level. ADM1086 VCC VCC (≤22V) ADM1085/ADM1087 LOGIC 04591-026 04591-027 LOGIC Figure 22. Push-Pull Output Stage Figure 21. Open-Drain Output Stage Rev. B | Page 10 of 16 Data Sheet ADM1085/ADM1086/ADM1087 APPLICATION INFORMATION SEQUENCING CIRCUITS In Figure 23, three ADM1085s are used to sequence four supplies on power-up. Separate capacitors on the CEXT pins determine the time delays between enabling of the 3.3 V, 2.5 V, 1.8 V, and 1.2 V supplies. Because the dc-to-dc converters and ADM1085s are connected in a cascade, and the output of any converter is dependent on that of the previous one, an external controller can disable all four supplies simultaneously by disabling the first dc-to-dc converter in the chain. The ADM1085/ADM1086/ADM1087 are compatible with voltage regulators and dc-to-dc converters that have active high or active low enable or shutdown inputs, with a choice of opendrain or push-pull output stages. Figure 23 to Figure 25 illustrate how each of the ADM1085/ADM1086/ADM1087 simple sequencers can be used in multiple-supply systems, depending on which regulators are used and which output stage is preferred. For power-down sequencing, an external controller dictates when the supplies are switched off by accessing the ENIN inputs individually. 12V 3.3V DC/DC OUT 3.3V EN 3.3V IN DC/DC OUT ENABLE CONTROL OUT ENIN IN DC/DC OUT 1.2V 3.3V VCC VIN ENOUT ADM1085 CEXT EN 1.8V VCC VIN ENOUT ADM1085 ENIN DC/DC 3.3V VCC VIN EN 2.5V 3.3V 3.3V IN ENOUT ADM1085 CEXT ENIN CEXT 12V 3.3V 2.5V 1.8V 1.2V tEN1 tEN2 tEN3 EXTERNAL DISABLE Figure 23. Typical ADM1085 Application Circuit Rev. B | Page 11 of 16 04591-028 EN IN ADM1085/ADM1086/ADM1087 Data Sheet 12V EN IN DC/DC OUT EN 3.3V IN DC/DC OUT EN 2.5V 3.3V OUT 1.2V VCC VIN ENOUT ENIN IN DC/DC 3.3V ADM1086 CEXT EN 1.8V VCC VIN ENOUT ADM1086 ENIN OUT 3.3V VCC VIN IN DC/DC ENOUT ADM1086 CEXT ENIN CEXT ENABLE CONTROL 12V 3.3V 2.5V 1.8V tEN1 tEN2 tEN3 04591-029 1.2V EXTERNAL DISABLE Figure 24. Typical ADM1086 Application Circuit 12V IN ADP3334 OUT SD 3.3V IN ADP3334 OUT 2.5V 3.3V VCC VIN ENOUT ADM1087 ENIN CEXT Figure 25. Typical ADM1087 Application Circuit Using ADP3334 Voltage Regulators Rev. B | Page 12 of 16 04591-030 SD Data Sheet ADM1085/ADM1086/ADM1087 DUAL LOFO SEQUENCING SIMULTANEOUS ENABLING A power sequencing solution for a portable device, such as a PDA, is shown in Figure 26. This solution requires that the microprocessor power supply turn on before the LCD display turns on, and that the LCD display power-down before the microprocessor powers down. In other words, the last power supply to turn on is the first one to turn off (LOFO). The enable output can drive multiple enable or shutdown regulator inputs simultaneously. 12V 3.3V SD For the display power sequencing, the ADM1085 is equipped with Capacitor C2 to create the delay between the microprocessor and display power turning on. When the system is powered down, the ADM1085 turns off the display power immediately, while the 3.3 V regulator waits for C1 to discharge to 0.4 V before switching off. 9V SYSTEM POWER SWITCH OUT SD 3.3V MICROPROCESSOR POWER ENOUT 12V ADM1085 CEXT SD ENOUT 1.8V Figure 27. Enabling a Pair of Regulators from a Single ADM1085 POWER GOOD SIGNAL DELAYS Sometimes sequencing is performed by asserting power good signals when the voltage regulators are already on, rather than sequencing the power supplies directly. In these scenarios, a simple sequencer IC can provide variable delays so that enabling separate circuit blocks can be staggered in time. For example, in a notebook PC application, a dedicated microcomputer asserts a power good signal for North Bridge™ and South Bridge™ ICs. The ADM1086 delays the South Bridge signal, so that it is enabled after the North Bridge. 5V POWER_GOOD EN NORTH BRIDGE IC DISPLAY POWER ADM1086 CEXT 3.3V 5V C2 VIN SYSTEM POWER 9V ENOUT EN ADM1086 ENIN CEXT 0V 9V VC1 Figure 28. Power Good Delay 0V 2.5V 0V 5V DISPLAY POWER 0V 04591-032 MICROPROCESSOR POWER Figure 26. Dual LOFO Power-Supply Sequencing Rev. B | Page 13 of 16 SOUTH BRIDGE IC 04591-034 ENIN OUT ENABLE CONTROL 9V SD ADP3333 5V IN ADP3333 04591-033 ENIN MICROCOMPUTER VIN OUT 2.5V 5V 3.3V IN ADP3333 VCC VIN C1 9V ADP3333 3.3V An RC network connects the battery and the SD input of the ADP3333 voltage regulator. This causes power-up and powerdown transients to appear at the SD input when the battery is connected and disconnected. The 3.3 V microprocessor supply turns on quickly on power-up and turns off slowly on powerdown. This is due to two factors: Capacitor C1 charges up to 9 V on power-up and charges down from 9 V on power-down, and the SD pin has logic high and logic low input levels of 2 V and 0.4 V. SD ADP3333 2.5V IN ADM1085/ADM1086/ADM1087 Data Sheet QUAD-SUPPLY POWER GOOD INDICATOR SEQUENCING WITH FET SWITCHES The enable output of the Simple Sequencers is equivalent to an AND function of VIN and ENIN. ENOUT is high only when the voltage at VIN is above the threshold and the enable input (ENIN) is high as well. Although ENIN is a digital input, it can tolerate voltages as high as 22 V and can detect if a supply is present. Therefore, a simple sequencer can monitor two supplies and assert what can be interpreted as a power good signal when both supplies are present. The outputs of two ADM1085s can be wire-AND’ed together to make a quadsupply power good indicator. The open-drain outputs of the ADM1085 and ADM1087 can drive external FET transistors that can switch on power supply rails. All that is needed is a pull-up resistor to a voltage source that is high enough to turn on the FET. 12V 3.3V VIN ENOUT ADM1085 3.3V 9V VIN ENOUT CEXT POWER_GOOD 2.5V ADM1085 Figure 30. Sequencing with a FET Switch 5V ENIN 3.3V 2.5V VIN ENOUT 1.8V ENIN 04591-035 ADM1085 Figure 29. Quad-Supply Power Good Indicator Rev. B | Page 14 of 16 04591-036 ENIN 3.3V Data Sheet ADM1085/ADM1086/ADM1087 OUTLINE DIMENSIONS 2.20 2.00 1.80 6 5 4 1 2 3 2.40 2.10 1.80 0.65 BSC 1.30 BSC 1.00 0.90 0.70 1.10 0.80 0.10 MAX COPLANARITY 0.10 0.30 0.15 SEATING PLANE 0.40 0.10 0.22 0.08 0.46 0.36 0.26 COMPLIANT TO JEDEC STANDARDS MO-203-AB 072809-A 1.35 1.25 1.15 Figure 31. 6-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-6) Dimensions shown in millimeters ORDERING GUIDE Model1 ADM1085AKSZ-REEL7 Temperature Range −40°C to +125°C Ordering Quantity 3k ADM1086AKSZ-REEL7 −40°C to +125°C 3k ADM1087AKSZ-REEL7 −40°C to +125°C 3k EVAL-ADM1087EBZ 1 Package Description 6-Lead Thin Shrink Small Outline Transistor Package (SC70) 6-Lead Thin Shrink Small Outline Transistor Package (SC70) 6-Lead Thin Shrink Small Outline Transistor Package (SC70) Evaluation Board for the ADM1087 device. This board can also be used to evaluate the other devices in the family. Sample can be ordered separately. Z = RoHS Compliant Part. Rev. B | Page 15 of 16 Package Option KS-6 Branding M7R KS-6 M8M KS-6 M7S ADM1085/ADM1086/ADM1087 Data Sheet NOTES ©2004–2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04591-0-5/14(B) Rev. B | Page 16 of 16
ADM1085AKSZ-REEL7 价格&库存

很抱歉,暂时无法提供与“ADM1085AKSZ-REEL7”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ADM1085AKSZ-REEL7
  •  国内价格
  • 1+5.76720
  • 10+4.60080
  • 30+4.01760
  • 100+3.44520
  • 500+3.09960

库存:0

ADM1085AKSZ-REEL7
  •  国内价格
  • 1+3.81375
  • 10+3.67250
  • 100+3.33350
  • 500+3.16400

库存:0

ADM1085AKSZ-REEL7

库存:0