0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADP2303ARDZ-R7

ADP2303ARDZ-R7

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOIC8_150MIL_EP

  • 描述:

    IC REG BUCK ADJ 3A 8SOIC

  • 数据手册
  • 价格&库存
ADP2303ARDZ-R7 数据手册
FEATURES APPLICATIONS Intermediate power rail conversion DC-to-DC point of load applications Communications and networking Industrial and instrumentation Healthcare and medical Consumer TYPICAL APPLICATIONS CIRCUIT VIN VIN BST ADP2302/ ADP2303 PGOOD SW EN FB VOUT 08833-001 ON OFF GND Figure 1. Typical Application Circuit 100 90 EFFICIENCY (%) Wide input voltage range: 3.0 V to 20 V Maximum load current 2 A for ADP2302 3 A for ADP2303 ±1.5% output accuracy over temperature Output voltage down to 0.8 V 700 kHz switching frequency Current-mode control architecture Automatic PFM/PWM mode Precision enable pin with hysteresis Integrated high-side MOSFET Integrated bootstrap diode Internal compensation and soft start Power-good output Undervoltage lockout (UVLO) Overcurrent protection (OCP) Thermal shutdown (TSD) 8-lead SOIC package with exposed paddle Supported by ADIsimPower™ design tool 80 70 60 VOUT = 3.3V 50 INDUCTOR: VLF10040T -4R7N5R4 DIODE: SSB43L 40 0 0.5 1.0 1.5 VOUT = 5.0V 2.0 2.5 OUTPUT CURRENT (A) 3.0 08833-002 Data Sheet 2 A/3 A, 20 V, 700 kHz, Nonsynchronous Step-Down Regulators ADP2302/ADP2303 Figure 2. ADP2303 Efficiency vs. Output Current at VIN = 12 V GENERAL DESCRIPTION The ADP2302/ADP2303 are fixed frequency, current-mode control, step-down, dc-to-dc regulators with an integrated power MOSFET. The ADP2302/ADP2303 can run from an input voltage of 3.0 V to 20 V, which makes them suitable for a wide range of applications. The output voltage of the ADP2302/ ADP2303 can be down to 0.8 V for the adjustable version, while the fixed output version is available in preset output voltage options of 5.0 V, 3.3 V, and 2.5 V. The 700 kHz operating frequency allows small inductor and ceramic capacitors to be used, providing a compact solution. Current mode control provides fast and stable line and load transient performance. The ADP2302/ADP2303 have integrated soft start circuitry to prevent a large inrush current at power-up. The power-good signal can be used to sequence devices that have an enable input. The precision enable threshold voltage allows the part to be easily sequenced from other input/output supplies. Other key features include undervoltage lockout (UVLO), overvoltage protection (OVP), thermal shutdown (TSD), and overcurrent protection (OCP). The ADP2302/ADP2303 devices are available in the 8-lead, SOIC package with exposed paddle and are rated for the −40oC to +125oC junction temperature range. Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010–2012 Analog Devices, Inc. All rights reserved. ADP2302/ADP2303 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  Overvoltage Protection (OVP) ................................................. 15  Applications ....................................................................................... 1  Power Good ................................................................................ 15  Typical Applications Circuit............................................................ 1  Control Loop............................................................................... 15  General Description ......................................................................... 1  Applications Information .............................................................. 16  Revision History ............................................................................... 2  ADIsimPower Design Tool ....................................................... 16  Specifications..................................................................................... 3  Programming Output Voltage .................................................. 16  Absolute Maximum Ratings............................................................ 4  Voltage Conversion Limitations ............................................... 16  Thermal Resistance ...................................................................... 4  Low Input Voltage Considerations .......................................... 17  ESD Caution .................................................................................. 4  Programming the Precision Enable ......................................... 17  Pin Configuration and Function Descriptions ............................. 5  Inductor ....................................................................................... 17  Typical Performance Characteristics ............................................. 6  Catch Diode ................................................................................ 18  Functional Block Diagram ............................................................ 13  Input Capacitor ........................................................................... 19  Theory of Operation ...................................................................... 14  Output Capacitor........................................................................ 19  Basic Operation .......................................................................... 14  Thermal Consideration ............................................................. 19  PWM Mode ................................................................................. 14  Design Example .............................................................................. 20  Power Saving Mode .................................................................... 14  Catch Diode Selection ............................................................... 20  Bootstrap Circuitry .................................................................... 14  Inductor Selection ...................................................................... 20  Precision Enable ......................................................................... 14  Output Capacitor Selection....................................................... 20  Integrated Soft Start ................................................................... 14  Resistive Voltage Divider Selection.......................................... 20  Current Limit .............................................................................. 14  Circuit Board Layout Recommendations ................................... 22  Short-Circuit Protection ............................................................ 14  Typical Application Circuits ......................................................... 23  Undervoltage Lockout (UVLO) ............................................... 15  Outline Dimensions ....................................................................... 26  Thermal Shutdown (TSD)......................................................... 15  Ordering Guide .......................................................................... 26  REVISION HISTORY 6/12—Rev. 0 to Rev. A Change to Features Section ............................................................. 1 Added ADIsimPower Design Tool Section ................................. 16 Change to Voltage Conversion Limitations Section .................. 16 Updated Outline Dimensions ....................................................... 26 Changes to Ordering Guide .......................................................... 26 7/10—Revision 0: Initial Version Rev. A | Page 2 of 28 Data Sheet ADP2302/ADP2303 SPECIFICATIONS VIN = 3.3 V, TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted. Table 1. Parameters VIN Voltage Range Supply Current Shutdown Current Undervoltage Lockout Threshold FB Regulation Voltage Bias Current SW On Resistance1 Peak Current Limit Leakage Current Minimum On Time Minimum Off Time OSCILLATOR FREQUENCY SOFT START TIME EN Input Threshold Input Hysteresis Pull-Down Current BOOTSTRAP VOLTAGE PGOOD PGOOD Rising Threshold PGOOD Hysteresis PGOOD Deglitch Time2 PGOOD Output Low Voltage PGOOD Leakage Current THERMAL SHUTDOWN Threshold Hysteresis 1 2 Symbol VIN IVIN ISHDN UVLO VFB IFB Test Conditions Min 3.0 No switching, VIN = 12 V VEN = 0 V, VIN = 12 V VIN rising VIN falling 2.2 720 24 2.7 2.4 Max Unit 20 950 45 2.9 V μA μA V V ADP230xARDZ (adjustable) ADP230xARDZ-2.5 ADP230xARDZ-3.3 ADP230xARDZ-5.0 ADP230xARDZ (adjustable) 0.788 2.463 3.25 4.925 0.8 2.5 3.3 5.0 0.01 0.812 2.538 3.35 5.075 0.1 V V V V μA VBST − VSW = 5 V, ISW = 200 mA ADP2302, VBST − VSW = 5 V ADP2303, VBST − VSW = 5 V VEN = VSW = 0 V, VIN = 12 V 80 2.7 4.6 120 3.5 5.5 0.1 126 210 700 2048 160 4.4 6.4 5 170 280 805 mΩ A A μA ns ns kHz Clock cycles 1.2 100 1.2 5.0 1.28 V mV μA V 87.5 2.5 32 150 0.1 92.5 fSW 595 VEN 1.12 VBOOT Typ VIN = 12 V 4.7 82.5 VPGOOD = 5 V Rising temperature Pin-to-Pin measurements. Guaranteed by design. Rev. A | Page 3 of 28 150 15 5.3 300 1 % % Clock cycles mV μA °C °C ADP2302/ADP2303 Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Parameter VIN, EN, PGOOD SW BST to SW FB, NC Operating Junction Temperature Range Storage Temperature Range Soldering Conditions θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. MAX Rating −0.3 V to +24 V −1.0 V to +24 V −0.6 V to +6 V −0.3 V to +6 V −40°C to +125°C −65°C to +150°C JEDEC J-STD-020 Table 3. Thermal Resistance1 Package Type 8-Lead SOIC_N_EP 1 θJA 58.5 Unit °C/W JA is measured using natural convection on JEDEC 4-layer board. ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings apply individually only, not in combination. Unless otherwise specified, all voltages are referenced to GND. Rev. A | Page 4 of 28 Data Sheet ADP2302/ADP2303 BST 1 VIN 2 EN 3 ADP2302 ADP2303 TOP VIEW PGOOD 4 (Not to Scale) 8 SW 7 GND 6 NC 5 FB NOTES 1. NC = NO CONNECT. 2. THE EXPOSED PAD SHOULD BE SOLDERED TO AN EXTERNAL GROUND PLANE UNDERNEATH THE IC FOR THERMAL DISSIPATION. 08833-003 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 3. Pin Configuration (Top View) Table 4. Pin Function Descriptions Pin No. 1 Mnemonic BST 2 VIN 3 EN 4 5 PGOOD FB 6 7 8 9 (EPAD) NC GND SW Exposed Pad Description Bootstrap Supply for the High-Side MOSFET Driver. A 0.1 μF capacitor is connected between SW and BST to provide a floating driver voltage for the power switch. Power Input. Connect to the input power source with a ceramic bypass capacitor to GND directly from this pin. Output Enable. Pull this pin high to enable the output. Pull this pin low to disable the output. This pin can also be used as a programmable UVLO input. This pin has an internal 1.2 μA pull-down current to GND. Power-Good Open-Drain Output. Feedback Voltage Sense Input. For the adjustable version, connect this pin to a resistive divider from VOUT. For the fixed output version, connect this pin to VOUT directly. Used for internal testing. Connect to GND or leave this pin floating to ensure proper operation. Ground. Connect this pin to the ground plane. Switch Node Output. Connect an inductor to VOUT and a catch diode to GND from this pin. The exposed pad should be soldered to an external ground plane underneath the IC for thermal dissipation. Rev. A | Page 5 of 28 ADP2302/ADP2303 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 90 80 80 70 VOUT = 2.5V VOUT = 3.3V VOUT = 5.0V 60 50 0.5 1.0 1.5 60 50 INDUCTOR: VLF10040T-6R8N4R5 DIODE: SSB43L 0 VOUT = 1.5V VOUT = 1.8V VOUT = 2.5V VOUT = 3.3V VOUT = 5.0V 2.0 2.5 3.0 OUTPUT CURRENT (A) 40 INDUCTOR: VLF10040T-4R7N5R4 DIODE: SSB43L 0 90 80 80 EFFICIENCY (%) 90 70 VOUT = 1.2V VOUT = 1.5V VOUT = 1.8V VOUT = 2.5V 60 40 0.5 1.0 1.5 2.0 2.5 3.0 OUTPUT CURRENT (A) 0 1.0 1.5 2.0 Figure 8. ADP2302 Efficiency, VIN = 18 V 90 90 80 80 EFFICIENCY (%) 100 70 VOUT = 1.5V VOUT = 1.8V VOUT = 2.5V VOUT = 3.3V VOUT = 5.0V 50 70 VOUT = 1.2V VOUT = 1.5V VOUT = 1.8V VOUT = 2.5V 60 50 INDUCTOR: VLF10040T-6R8N4R5 DIODE: SSB43L 0 0.5 1.0 OUTPUT CURRENT (A) INDUCTOR: VLF10040T-3R3N6R2 DIODE: SSB43L 1.5 2.0 08833-006 EFFICIENCY (%) 0.5 OUTPUT CURRENT (A) 100 40 3.0 INDUCTOR: VLF10040T-6R8N4R5 DIODE: SSB43L Figure 5. ADP2303 Efficiency, VIN = 5 V 60 2.5 VOUT = 2.5V VOUT = 3.3V VOUT = 5.0V 50 INDUCTOR: VLF10040T-2R2N7R1 DIODE: SSB43L 0 2.0 70 08833-005 EFFICIENCY (%) 100 40 1.5 Figure 7. ADP2303 Efficiency, VIN = 12 V 100 50 1.0 OUTPUT CURRENT (A) Figure 4. ADP2303 Efficiency, VIN = 18 V 60 0.5 40 0 0.5 1.0 OUTPUT CURRENT (A) 1.5 Figure 9. ADP2302 Efficiency, VIN = 5 V Figure 6. ADP2302 Efficiency, VIN = 12 V Rev. A | Page 6 of 28 2.0 08833-009 40 70 08833-007 90 08833-008 100 EFFICIENCY (%) 100 08833-004 EFFICIENCY (%) VIN = 3.3 V, TA = 25°C, unless otherwise noted. ADP2302/ADP2303 0.20 0.20 0.15 0.15 0.10 0.10 LOAD REGULATION (%) 0.05 0 –0.05 –0.10 –0.15 –0.05 –0.10 11 14 17 20 –0.20 VIN (V) 0 Figure 10. ADP2302 Line Regulation, VOUT = 3.3 V, IOUT = 2 A 1.0 OUTPUT CURRENT (A) 1.5 2.0 Figure 13. ADP2302 Load Regulation, VOUT = 3.3V, VIN = 12 V 0.20 0.15 0.15 0.10 0.10 LOAD REGULATION (%) 0.20 0.05 0 –0.05 –0.10 –0.15 0.05 0 –0.05 –0.10 8 11 14 17 08833-011 5 20 VIN (V) –0.20 0 0.5 1.0 1.5 2.0 2.5 3.0 OUTPUT CURRENT (A) 08833-014 –0.15 –0.20 Figure 14. ADP2303 Load Regulation, VOUT = 3.3 V, VIN = 12 V Figure 11. ADP2303 Line Regulation, VOUT = 3.3 V , IOUT = 3 A 900 50 45 850 QUIESCENT CURRENT (μA) 40 35 30 25 20 15 TJ = –40°C TJ = +25°C TJ = +125°C 10 5 800 750 700 650 500 2 4 6 8 10 12 14 16 VIN (V) 18 TJ = –40°C TJ = +25°C TJ = +125°C 600 550 20 08833-012 0 0.5 08833-013 8 08833-010 5 LINE REGULATION (%) 0 –0.15 –0.20 SHUTDOWN CURRENT (μA) 0.05 2 4 6 8 10 12 VIN (V) 14 16 Figure 15. Quiescent Current vs. VIN Figure 12. Shutdown Current vs. VIN Rev. A | Page 7 of 28 18 20 08833-015 LINE REGULATION (%) Data Sheet Data Sheet 810 812 790 810 770 808 750 806 FEEDBACK VOLTAGE (mV) 730 710 690 670 650 630 802 800 798 796 794 792 610 0 20 40 60 80 100 120 TEMPERATURE (°C) 788 –40 4.4 6.4 4.2 6.2 4.0 6.0 PEAK CURRENT LIMIT (A) PEAK CURRENT LIMIT (A) 20 40 60 80 100 120 120 Figure 19. 0.8 V Feedback Voltage vs. Temperature 3.8 3.6 3.4 3.2 3.0 2.8 5.8 5.6 5.4 5.2 5.0 4.8 0 20 40 60 80 100 120 4.6 –40 08833-017 –20 TEMPERATURE (°C) –20 0 20 40 60 80 100 TEMPERATURE (°C) Figure 17. ADP2302 Current-Limit Threshold vs. Temperature, VBST − VSW = 5 V Figure 20. ADP2303 Current-Limit Threshold vs. Temperature, VBST − VSW = 5 V 1.30 2.8 1.25 ENABLE THRESHOLD (V) 2.9 2.7 RISING 2.6 2.5 2.4 FALLING RISING 1.20 1.15 FALLING 1.10 1.05 2.3 2.2 –40 –20 0 20 40 60 80 100 TEMPERATURE (°C) 120 1.00 –40 08833-018 UVLO THRESHOLD (V) 0 TEMPERATURE (°C) Figure 16. Frequency vs. Temperature 2.6 –40 –20 08833-019 –20 08833-020 790 08833-016 590 –40 804 –20 0 20 40 60 80 100 TEMPERATURE (°C) Figure 18. UVLO Threshold vs. Temperature Figure 21. Enable Threshold vs. Temperature Rev. A | Page 8 of 28 120 08833-021 FREQUENCY (kHz) ADP2302/ADP2303 Data Sheet ADP2302/ADP2303 270 150 265 145 260 140 MINIMUM ON TIME (ns) MINIMUM OFF TIME (ns) 255 250 245 240 235 230 225 220 135 130 125 120 115 110 215 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 100 –40 08833-022 205 –40 –20 0 20 40 60 80 100 08833-025 105 210 120 TEMPERATURE (°C) Figure 22. Minimum Off Time vs. Temperature Figure 25. Minimum On Time vs. Temperature 180 VOUT (AC) 170 1 MOSFET RESISTOR (mΩ) 160 150 140 IL 130 120 SW 110 4 100 VGS = 3V VGS = 4V VGS = 5V 90 80 2 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) CH1 5.00mV Figure 23. MOSFET RDSON vs. Temperature (Pin-to-Pin Measurement) B W CH2 5.00V M1.00µs CH4 2.00A Ω T 30.00% A CH2 7.50V 08833-026 60 –40 08833-023 70 Figure 26. Continuous Conduction Mode (CCM), VOUT = 3.3 V, VIN = 12 V VOUT (AC) 1 VOUT (AC) 1 IL 4 IL 4 SW SW 2 B W CH2 5.00V M1.00µs CH4 2.00A Ω T 30.00% A CH2 7.50V CH1 50.00mV Figure 24. Discontinuous Conduction Mode (DCM), VOUT = 3.3 V, VIN = 12 V Rev. A | Page 9 of 28 B W CH2 5.00V CH4 2.00A Ω M200µs A CH2 T 30.00% 7.50V Figure 27. Power Saving Mode, VOUT = 3.3 V, VIN = 12 V 08833-027 CH1 5.00mV 08833-024 2 ADP2302/ADP2303 Data Sheet VOUT VOUT 1 1 IL IL 4 4 EN EN SW 2 2 CH1 2.00V BW CH3 10.0V BW CH2 10.0V M1.00ms CH4 2.00A Ω T 20.20% A CH3 6.20V 08833-028 3 CH1 2.00V BW CH3 10.0V BW Figure 28. Soft Start Without Load, VOUT = 3.3 V, VIN = 12 V CH2 10.0V M1.00ms CH4 2.00A Ω T 20.20% A CH3 3.60V 08833-031 SW 3 Figure 31. Soft Start with Full Load, VOUT = 3.3 V, VIN = 12 V VOUT (AC) VOUT (AC) 1 1 IO IO 4 B W CH4 2.00A Ω M200µs T 20.00% A CH4 1.20A CH1 200mV B W CH4 2.00A Ω Figure 29. ADP2303 Load Transient, 0.5 A to 3.0 A, VOUT = 5.0 V, VIN = 12 V, L = 4.7 μH, COUT = 47 μF M200µs T 20.00% A CH4 1.88A 08833-032 CH1 500mV 08833-029 4 Figure 32. ADP2303 Load Transient, 0.5 A to 3.0 A, VOUT = 3.3 V, VIN = 12 V, L = 4.7 μH, COUT = 2 × 47 μF VOUT (AC) VOUT (AC) 1 1 IO IO 4 B W CH4 1.00A Ω M200µs T 20.00% A CH4 1.20A Figure 30. ADP2302 Load Transient, 0.5 A to 2.0 A, VOUT = 5.0 V, VIN = 12 V, L = 6.8 μH, COUT = 2 × 22 μF CH1 200mV B W CH4 1.00A Ω M200µs T 20.00% A CH4 1.20A 08833-033 CH1 200mV 08833-030 4 Figure 33. ADP2302 Load Transient, 0.5 A to 2.0 A, VOUT = 3.3 V, VIN = 12 V, L = 6.8 μH, COUT = 2 × 22 μF Rev. A | Page 10 of 28 Data Sheet ADP2302/ADP2303 VOUT VOUT 1 1 IL IL SW 4 4 SW B W CH2 10.0V M40.0µs CH4 5.00A Ω T 30.00% A CH1 1.26V CH1 1.00V B W CH2 10.0V M400µs CH4 5.00A Ω T 30.00% A CH1 1.26V 08833-037 2 CH1 1.00mV 08833-034 2 Figure 37. Output Short Recovery, VOUT = 3.3 V, VIN = 12 V, L = 4.7 μH, COUT = 2 × 47 μF Figure 34. Output Short, VOUT = 3.3 V, VIN = 12 V, L = 4.7 μH, COUT = 2 × 47 μF VOUT VOUT 1 VIN VIN 1 SW 2 M1.00ms A CH3 T 23.40% 11.0V CH1 20.0mV BW CH2 10.0V BW M1.00ms CH3 5.00V BW T 23.40% A CH3 11.0V 80 180 80 180 64 144 64 144 48 108 48 108 32 72 32 72 16 36 16 36 0 0 0 0 PHASE (Degrees) –16 –36 –32 –72 –16 –36 –32 –72 –48 –108 –64 –144 –64 –180 –80 1k 10k 100k FREQUENCY (Hz) 1M –108 –48 08833-036 –80 CROSS FREQUENCY = 36kHz PHASE MARGIN = 60° Figure 36. ADP2302 Bode Plot, VOUT = 2.5 V, VIN = 12 V, L = 4.7 μH, COUT =3 × 22 μF –144 CROSS FREQUENCY = 42kHz PHASE MARGIN = 56° 1k 10k 100k FREQUENCY (Hz) 1M Figure 39. ADP2302 Bode Plot, VOUT = 3.3 V, VIN = 12 V, L = 6.8 μH, COUT = 2 × 22 μF Rev. A | Page 11 of 28 PHASE (Degrees) Figure 38. ADP2302 Line Transient, 7 V to 15 V, VOUT = 3.3 V, IOUT = 2 A, L = 6.8 μH, COUT = 2 × 22 μF MAGNITUDE (dB) Figure 35. ADP2303 Line Transient, 7 V to 15 V, VOUT = 3.3 V, IOUT = 3 A, L = 4.7 μH, COUT = 2 × 47 μF –180 08833-039 2 08833-038 3 08833-035 3 CH1 20.0mV BW CH2 10.0V BW CH3 5.00V BW MAGNITUDE (dB) SW 180 80 180 64 144 64 144 48 108 48 108 32 72 32 72 16 36 16 36 0 0 0 0 –16 –36 –32 –72 –48 –108 –144 –64 –180 –80 1k 10k 100k FREQUENCY (Hz) 1M –32 –72 –48 –108 1k Figure 40. ADP2302 Bode Plot, VOUT = 5 V, VIN = 12 V, L = 6.8 μH, COUT = 2 × 22 μF 10k 100k FREQUENCY (Hz) 1M –180 Figure 42. ADP2303 Bode Plot, VOUT = 2.5 V, VIN = 12 V, L = 3.3 μH, COUT = 2 × 47 μF 180 80 180 64 144 64 144 48 108 48 108 32 72 32 72 16 36 16 36 0 0 0 0 PHASE (Degrees) MAGNITUDE (B/A) (dB) 80 –16 –36 –32 –72 –48 –108 –144 –64 –180 –80 CROSS FREQUENCY = 19kHz PHASE MARGIN = 59° –64 –80 1k 10k 100k FREQUENCY (Hz) 1M 08833-041 MAGNITUDE (dB) –144 CROSS FREQUENCY = 26kHz PHASE MARGIN = 65° –16 –36 –32 –72 –48 –108 Figure 41. ADP2303 Bode Plot, VOUT = 3.3 V, VIN = 12 V, L = 4.7 μH, COUT = 2 × 47 μF –144 CROSS FREQUENCY = 28kHz PHASE MARGIN = 65° 1k 10k 100k FREQUENCY (Hz) 1M Figure 43. ADP2303 Bode Plot, VOUT = 5 V, VIN = 12 V, L = 4.7 μH, COUT = 47 μF Rev. A | Page 12 of 28 PHASE (B–A) (Degeres) –80 –36 –180 08833-143 CROSS FREQUENCY = 32kHz PHASE MARGIN = 59° –64 –16 08833-142 PHASE (Degrees) MAGNITUDE (B/A) (dB) 80 PHASE (B–A) (Degeres) Data Sheet 08833-040 MAGNITUDE (dB) ADP2302/ADP2303 Data Sheet ADP2302/ADP2303 FUNCTIONAL BLOCK DIAGRAM VIN VIN 2 THERMAL SHUTDOWN SHUTDOWN LOGIC UVLO SHUTDOWN IC 1.20V OFF CURRENT SENSE AMPLIFIER OCP EN 3 1.2µA OVP 0.880V BOOT REGULATOR CURRENT LIMIT THRESHOLD R 1 BST Q S VBIAS = 1.1V PGOOD 4 0.680V 8 RAMP GENERATOR SW VOUT CLK GENERATOR FREQUENCY FOLDBACK (⅛ fSW, ¼ fSW, ½ fSW, fSW) NC 6 gm 5 0.8V VOLTAGE REFERENCE FB ADP2302/ADP2303 7 GND Figure 44. Functional Block Diagram Rev. A | Page 13 of 28 08833-042 ON ADP2302/ADP2303 Data Sheet THEORY OF OPERATION The ADP2302/ADP2303 are nonsynchronous, step-down, dc-to-dc regulators, each with an integrated high-side power MOSFET. The high switching frequency and 8-lead SOIC package provide a small, step-down, dc-to-dc regulator solution. The ADP2302/ADP2303 can operate with an input voltage from 3.0 V to 20 V while regulating an output voltage down to 0.8 V. The ADP2302 can provide 2 A maximum continuous output current, and the ADP2303 can provide 3 A maximum continuous output current. BASIC OPERATION The ADP2302/ADP2303 use the fixed-frequency, peak currentmode PWM control architecture from medium to high loads, but shift to a pulse-skip mode control scheme at light loads to reduce the switching power losses and improve efficiency. When these devices operate in fixed-frequency PWM mode, output regulation is achieved by controlling the duty cycle of the integrated MOSFET. While the devices are operating in pulse-skip mode at light loads, the output voltage is controlled in a hysteretic manner with higher output ripple. In this mode of operation, the regulator periodically stops switching for a few cycles, thus keeping the conversion losses minimal to improve efficiency. PWM MODE In PWM mode, the ADP2302/ADP2303 operate at a fixed frequency, set by an internal oscillator. At the start of each oscillator cycle, the MOSFET switch is turned on, providing a positive voltage across the inductor. The inductor current increases until the current-sense signal crosses the peak inductor current threshold that turns off the MOSFET switch; this threshold is set by the error amplifier output. During the MOSFET off time, the inductor current declines through the external diode until the next oscillator clock pulse comes and a new cycle starts. POWER SAVING MODE To achieve higher efficiency, the ADP2302/ADP2303 smoothly transition to the pulse-skip mode when the output load decreases below the pulse-skip current threshold. When the output voltage dips below the regulation, the ADP2302/ADP2303 enter PWM mode for a few oscillator cycles until the voltage increases to regulation range. During the idle time between bursts, the MOSFET switch is turned off, and the output capacitor supplies all the output current. Because the pulse-skip mode comparator monitors the internal compensation node, which represents the peak inductor current information, the average pulse-skip load current threshold depends on the input voltage (VIN), the output voltage (VOUT), the inductor, and the output capacitor. Because the output voltage occasionally dips below regulation and then recovers, the output voltage ripple in the power saving mode is larger than the ripple in the PWM mode of operation. BOOTSTRAP CIRCUITRY The ADP2302/ADP2303 each have an integrated boot regulator, which requires that a 0.1 μF ceramic capacitor (X5R or X7R) be placed between the BST and SW pins to provide the gate drive voltage for the high-side MOSFET. There is at least a 1.2 V difference between the BST and SW pins to turn on the high-side MOSFET. This voltage should not exceed 5.5 V in case the BST pin is supplied with the external voltage source through a diode. The ADP2302/ADP2303 generate a typical 5.0 V bootstrap voltage for the gate drive circuit by differentially sensing and regulating the voltage between the BST and SW pins. There is a diode integrated on the chip that blocks the reverse voltage between the VIN and BST pins when the MOSFET switch is turned on. PRECISION ENABLE The ADP2302/ADP2303 provide a precision enable circuit that has 1.2 V reference threshold with 100 mV hysteresis. When the voltage at the EN pin is greater than 1.2 V (typical), the part is enabled. If the EN voltage falls below 1.1 V (typical), the chip is disabled. The precision enable threshold voltage allows the ADP2302/ADP2303 to be easily sequenced from other input/ output supplies. It also can be used as a programmable UVLO input by using a resistive divider. An internal 1.2 μA pull-down current prevents errors if the EN pin is left floating. INTEGRATED SOFT START The ADP2302/ADP2303 have an internal digital soft start circuitry to limit the output voltage rise time and reduce the inrush current at power up. The soft start time is fixed at 2048 clock cycles. CURRENT LIMIT The ADP2302/ADP2303 include current-limit protection circuitry to limit the amount of positive current flowing through the highside MOSFET switch. The positive current limit on the power switch limits the amount of current that can flow from the input to the output. SHORT-CIRCUIT PROTECTION The ADP2302/ADP2303 include frequency foldback to prevent output current runaway when there is a hard short on the output. The switching frequency is reduced when the voltage at the FB pin drops below a certain value, which allows more time for the inductor current to decline, but increases the ripple current while regulating the peak current. This results in a reduction in average output current and prevents output current runaway. The correlation between the switching frequency and the FB pin voltage is shown in Table 5. Rev. A | Page 14 of 28 Data Sheet ADP2302/ADP2303 Table 5. Correlation Between fSW and VFB OVERVOLTAGE PROTECTION (OVP) FB Pin Voltage VFB ≥ 0.6 V 0.4 V < VFB < 0.6 V 0.2 V < VFB ≤ 0.4 V VFB ≤ 0.2 V The ADP2302/ADP2303 provide an overvoltage protection feature to protect the system against an output short to a higher voltage supply. If the feedback voltage is above 0.880 V, the internal high-side MOSFET is turned off, until the voltage at FB decreases to 0.850 V. At that time, the ADP2302/ADP2303 resume normal operation. Switching Frequency fSW 1/2 fSW 1/4 fSW 1/8 fSW When a hard short (VFB ≤ 0.2 V) is removed, a soft start cycle is initiated to regulate the output back to its level during normal operation, which helps to limit the inrush current and prevent possible overshoot on the output voltage. UNDERVOLTAGE LOCKOUT (UVLO) The ADP2302/ADP2303 have fixed, internally set undervoltage lockout circuitry (UVLO). If the input voltage drops below 2.4 V, the ADP2302/ADP2303 shut down and the MOSFET switch turns off. After the voltage rises above 2.7 V, the soft start period is initiated, and the part is enabled. THERMAL SHUTDOWN (TSD) If the ADP2302/ADP2303 junction temperature rises above 150C, the thermal shutdown circuit disables the chip. Extreme junction temperature can be the result of high current operation, poor circuit board design, or high ambient temperature. A 15C hysteresis is included so that when thermal shutdown occurs, the ADP2302/ADP2303 do not return to operation until the onchip temperature drops below 135C. When the devices recover from thermal shutdown, a soft start is initiated. POWER GOOD The PGOOD pin is an active high, open-drain output and requires a resistor to pull it up to a voltage (
ADP2303ARDZ-R7 价格&库存

很抱歉,暂时无法提供与“ADP2303ARDZ-R7”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ADP2303ARDZ-R7
  •  国内价格
  • 1+20.13120
  • 10+17.56080
  • 30+15.95160

库存:0