0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADP5304ACPZ-1-R7

ADP5304ACPZ-1-R7

  • 厂商:

    AD(亚德诺)

  • 封装:

    VFDFN10

  • 描述:

    IC REG BUCK PROG 50MA 10LFCSP

  • 数据手册
  • 价格&库存
ADP5304ACPZ-1-R7 数据手册
FEATURES TYPICAL APPLICATION CIRCUIT Input supply voltage range: 2.15 V to 6.50 V Operation down to 2.00 V typical Ultralow, 260 nA typical quiescent current with no load Selective output voltage from 1.2 V to 3.6 V (or 0.8 V to 5.0 V) ±2.5% output accuracy over the full temperature range Output current up to 50 mA in hysteresis mode VINOK flag to monitor the input voltage 100% duty cycle operation mode Quick output discharge (QOD) option Undervoltage lockout (UVLO), overcurrent protection (OCP), and thermal shutdown (TSD) protection 10-lead, 3 mm × 3 mm LFCSP package −40°C to +125°C operating junction temperature range VIN = 2.15V TO 6.5V 2.2µH 10µF ON OFF SW PVIN ADP5304 EN VOUT 10µF PGND MODE FB NC AGND VINOK VID EPAD VID0: 1.2V VID1: 1.5V VID2: 1.8V R0 VID3: 2.0V VID4: 2.1V VID5: 2.2V VID6: 2.3V VID7: 2.4V VID8: 2.5V VID9: 2.6V VID10: 2.7V VID11: 2.8V VID12: 2.9V VID13: 3.0V VID14: 3.3V VID15: 3.6V 13493-001 Data Sheet Ultralow Power Step-Down Regulator for Energy Harvesting ADP5304 Figure 1. APPLICATIONS Energy (gas, water) metering Energy harvesting applications Portable and battery-powered equipment Medical applications Keep-alive power supply GENERAL DESCRIPTION The ADP5304 is a high efficient, ultralow quiescent current step-down regulator that draws only 260 nA of quiescent current to regulate the output at no load. The ADP5304 runs from an input voltage range of 2.15 V to 6.50 V, allowing the use of the multiple alkaline, NiMH, and Lithium cells, or the use of a high impedance power source. The output voltage is selectable from 0.8 V to 5.0 V by an external VID resistor to ground. The total solution requires only four tiny external components. The ADP5304 operates in hysteresis mode via connecting the MODE pin to ground. In hysteresis mode, the regulator achieves excellent efficiency at a power of less than 1 mW and provides up to 50 mA of output load. The device enables very efficient power management to achieve the collection of small amounts of energy from the high impedance battery or the Rev. 0 energy harvester to charge up the conventional capacitor or super capacitor. The ADP5304 integrates an ultralow power comparator with a factory programmable voltage reference to monitor the voltage of the input power source. The voltage reference, with hysteresis, is the threshold for the stopping and the starting of the switching, allowing the use of the high impedance power source. Other key features of the ADP5304 include separate enabling and a QOD. Safety features, such as OCP, TSD, and input UVLO are also included. The ADP5304 is available in 10-lead, 3 mm × 3 mm LFCSP package rated for the −40°C to +125°C junction temperature range. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADP5304 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  Current Limit .............................................................................. 12  Applications ....................................................................................... 1  Short-Circuit Protection............................................................ 12  Typical Application Circuit ............................................................. 1  Soft Start ...................................................................................... 12  General Description ......................................................................... 1  Startup with Precharged Output .............................................. 12  Revision History ............................................................................... 2  100% Duty Operation ................................................................ 12  Detailed Functional Block Diagram .............................................. 3  Active Discharge ......................................................................... 12  Specifications..................................................................................... 4  Thermal Shutdown .................................................................... 12  Absolute Maximum Ratings............................................................ 5  Applications Information .............................................................. 13  Thermal Resistance ...................................................................... 5  External Component Selection ................................................ 13  ESD Caution .................................................................................. 5  Selecting the Inductor ................................................................ 13  Pin Configuration and Function Descriptions ............................. 6  Output Capacitor........................................................................ 13  Typical Performance Characteristics ............................................. 7  Input Capacitor ........................................................................... 14  Theory of Operation ...................................................................... 11  Layout Recommendations ........................................................ 14  Buck Regulator Operational Mode .......................................... 11  Typical Application Circuits ......................................................... 15  Adjustable and Fixed Output Voltages .................................... 11  Factory Programmable Options ................................................... 16  Undervoltage Lockout (UVLO) ............................................... 11  Outline Dimensions ....................................................................... 17  Enable/Disable ............................................................................ 11  Ordering Guide .......................................................................... 17  VINOK Function ........................................................................ 11  REVISION HISTORY 10/15—Revision 0: Initial Version Rev. 0 | Page 2 of 17 Data Sheet ADP5304 DETAILED FUNCTIONAL BLOCK DIAGRAM VINOK PVIN PVIN VINOK_TH DRIVER PVIN SW NC ILIM_HYS CONTROL LOGIC 0A (HYS) PVIN VINOK DRIVER PGND STANDBY 0.808V 0.8V FB INTERNAL FEEDBACK RESISTOR DIVIDER 1.2V 0.4V VID AGND EN PVIN UVLO BAND GAP BIAS AND HOUSEKEEPING 2.06V 2.00V 1.2V 0.4V 2MHz OSC MODE 13493-002 KEEP ALIVE BLOCK Figure 2. Rev. 0 | Page 3 of 17 ADP5304 Data Sheet SPECIFICATIONS VIN = 3.6 V, VOUT = 2.5 V, TJ = −40°C to +125°C for minimum and maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted. Table 1. Parameter INPUT SUPPLY VOLTAGE RANGE SHUTDOWN CURRENT Symbol VIN ISHUTDOWN QUIESCENT CURRENT Operating Quiescent Current IQ UNDERVOLTAGE LOCKOUT UVLO Threshold Rising Falling EN PIN Input Voltage Threshold High Low Input Leakage Current FB PIN Output Options by VID Resistor Fixed VID Code Threshold Accuracy from Active Mode to Standby Mode UVLO Adjustable VID Code Threshold Accuracy from Active Mode to Standby Mode Hysteresis of Threshold Accuracy from Active Mode to Standby Mode Feedback Bias Current SW PIN High-Side Power FET On Resistance Low-Side Power FET On Resistance Peak Current Minimum On Time VINOK PIN VINOK Monitor Threshold Range VINOK Monitor Accuracy Range VINOK Monitor Threshold Hysteresis VINOK Rising Delay VINOK Falling Delay Leakage Current for the VINOK Pin Output Low Voltage for the VINOK Pin SOFT START Default Soft Start Time Start-Up Delay COUT DISCHARGE SWITCH ON RESISTANCE THERMAL SHUTDOWN Threshold Hysteresis VUVLO_RISING VUVLO_FALLING Min 2.15 1.90 VIH VIL IEN_LEAKAGE 1.2 VOUT_OPT VFB_FIX VFB_ADJ Typ Unit V nA nA Test Conditions/Comments 18 18 Max 6.50 40 130 260 260 640 360 500 1500 nA nA nA −40°C ≤ TJ ≤ +85°C −40°C ≤ TJ ≤ +125°C 100% duty cycle operation, VIN = 3.0 V, VOUT set as 3.3 V 2.06 2.00 2.14 V V VEN = 0 V, −40°C ≤ TJ ≤ +85°C VEN = 0 V, −40°C ≤ TJ ≤ +125°C 0.4 25 V V nA 0.8 −0.75 5.0 +0.75 V % 0.8 V to 5.0 V in different factory option TJ = 25°C −2.5 −3 +2.5 +3 % % −40°C ≤ TJ ≤ +125°C −40°C ≤ TJ ≤ +125°C VFB (HYS) 1 IFB 66 25 95 45 nA nA Output Option 0, VOUT = 2.5 V Output Option 1, VOUT = 1.3 V RDS (ON) H RDS (ON) L ILIM tMIN_ON 386 299 265 40 520 470 mΩ mΩ mA ns Pin to pin measurement Pin to pin measurement V % % % μs μs μA mV Factory programmable TJ = 25°C −40°C ≤ TJ ≤ +125°C Factory trim, 1 bit (350 μs, 2800 μs) Delay from the EN pin being pulled high VVINOK (RISE) 2.05 −1.5 −3 % 70 5.15 +1.5 +3 VVINOK (HYS) tVINOK_RISE tVINOK_FALL IVINOK_LEAKAGE VVINOK_LOW 1.5 190 130 0.1 50 tSS tSTART_DELAY RDIS 350 2 290 μs ms Ω TSHDN THYS 142 127 C C Rev. 0 | Page 4 of 17 1 100 IVINOK = 100 μA Data Sheet ADP5304 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Parameter PVIN to PGND SW to PGND FB to AGND VID to AGND EN to AGND VINOK to AGND MODE to AGND NC to AGND PGND to AGND Storage Temperate Range Operating Junction Temperature Range Rating −0.3 V to +7 V −0.3 V to PVIN + 0.3 V −0.3 V to +7 V −0.3 V to +7 V −0.3 V to +7 V −0.3 V to +7 V −0.3 V to +7 V −0.3 V to +7 V −0.3 V to +0.3 V −65°C to +150°C −40°C to +125°C θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 3. Thermal Resistance Package Type 10-Lead, 3 mm × 3 mm LFCSP ESD CAUTION Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. 0 | Page 5 of 17 θJA 57 θJC 0.86 Unit °C/W ADP5304 Data Sheet PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 10 PVIN EN 1 MODE 3 VID 4 FB 5 ADP5304 TOP VIEW (Not to Scale) 9 SW 8 PGND 7 AGND 6 VINOK NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD. SOLDER THE EXPOSED PAD TO A LARGE EXTERNAL COPPER GROUND PLANE UNDERNEATH THE IC FOR THERMAL DISSIPATION. 13493-003 NC 2 Figure 3. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1 2 3 4 Mnemonic EN NC MODE VID 5 6 7 8 9 10 FB VINOK AGND PGND SW PVIN EPAD Description Enable Input for the Regulator. A logic low on this pin disables the regulator. No Connect. Connect this pin to ground. Operating Mode Pin. Connect this pin to ground; the regulator operates in hysteresis mode. Voltage Configuration Pin. Connect one resistor from this pin to ground to configure the output voltage of the regulator. Feedback Sensing Input for the Regulator. Input Power-Good Signal. This open-drain output is the power-good signal for the input voltage. Analog Ground. Power Ground. Switching Node Output for the Regulator. Power Input for the Regulator. Exposed Pad. Solder the exposed pad to a large external copper ground plane underneath the IC for thermal dissipation. Rev. 0 | Page 6 of 17 Data Sheet ADP5304 TYPICAL PERFORMANCE CHARACTERISTICS VIN =3.6 V, VOUT = 2.5 V, L1 = 2.2 μH, CIN = COUT = 10 μF, fSW = 2 MHz, TA = 25°C, unless otherwise noted. 100 100 90 90 60 VIN = 2.5V VIN = 3.0V VIN = 3.6V VIN = 4.2V VIN = 5.0V VIN = 6.0V 50 40 0.01 0.1 1 LOAD CURRENT (mA) 10 40 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 Figure 7. Hysteresis Efficiency vs. Load Current, VOUT = 1.5 V 100 100 90 90 EFFICIENCY (%) 80 70 VIN = 2.5V VIN = 3.0V VIN = 3.6V VIN = 4.2V VIN = 5.0V VIN = 6.0V 60 50 0.01 0.1 1 LOAD CURRENT (mA) 10 80 70 VIN = 3.0V VIN = 3.6V VIN = 4.2V VIN = 5.0V VIN = 6.0V 60 50 0.001 13493-005 EFFICIENCY (%) VIN = 2.5V VIN = 3.0V VIN = 3.6V VIN = 4.2V VIN = 5.0V VIN = 6.0V 60 50 Figure 4. Hysteresis Efficiency vs. Load Current, VOUT = 1.2 V 40 0.001 70 Figure 5. Hysteresis Efficiency vs. Load Current, VOUT = 1.8 V 0.01 0.1 1 LOAD CURRENT (mA) 10 13493-008 30 0.001 80 13493-007 EFFICIENCY (%) 70 13493-004 EFFICIENCY (%) 80 Figure 8. Hysteresis Efficiency vs. Load Current, VOUT = 2.5 V 2.10 100 2.08 UVLO THRESHOLD (V) RISING 80 70 VIN = 3.6V VIN = 4.2V VIN = 5.0V VIN = 6.0V 50 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 2.06 2.04 2.02 2.00 FALLING 1.98 1.96 Figure 6. Hysteresis Efficiency vs. Load Current, VOUT = 3.3 V –40 25 85 TEMPERATURE (°C) 125 Figure 9. UVLO Threshold, Rising and Falling vs. Temperature Rev. 0 | Page 7 of 17 13493-022 60 13493-006 EFFICIENCY (%) 90 ADP5304 Data Sheet 160 120 –40ºC +25ºC +85ºC +125ºC QUIESCENT CURRENT (nA) SHUTDOWN CURRENT (nA) 140 350 100 80 60 40 –40ºC +25ºC +85ºC +125ºC 300 250 200 150 2.9 3.5 4.1 4.7 VIN (V) 5.3 5.9 6.5 100 2.3 13493-012 2.9 Figure 10. Shutdown Current vs. VIN, EN = Low 5.3 5.9 6.5 400 –40ºC +25ºC +125ºC –40ºC +25ºC +125ºC 350 LOW-SIDE RDS (ON) L (mΩ) 600 HIGH-SIDE RDS (ON) H (mΩ) 4.1 4.7 VIN (V) Figure 13. Quiescent Current vs. VIN 700 500 400 300 200 300 250 200 150 2.9 3.5 4.1 4.7 VIN (V) 5.3 5.9 6.5 13493-017 100 2.3 3.5 100 2.3 2.9 3.5 4.1 4.7 VIN (V) 5.3 5.9 6.5 13493-020 0 2.3 13493-015 20 Figure 14. Low-Side RDS (ON) L vs. VIN Figure 11. High-Side RDS (ON) H vs. VIN 810 VOUT ACTIVE TO STANDBY 806 1 SW 804 STANDBY TO ACTIVE 802 800 2 798 IL 796 792 –40 25 85 TEMPERATURE (°C) 125 CH1 100mV CH2 2.00V CH4 500mA Ω M 200µs A CH4 T 39.60% 140mA 13493-023 4 794 13493-019 FEEDBACK VOLTAGE (mV) 808 Figure 15. Steady Waveform, ILOAD = 1 mA (IL is the Inductor Current) Figure 12. Feedback Voltage vs. Temperature Rev. 0 | Page 8 of 17 Data Sheet ADP5304 VIN VIN 3 3 VOUT VOUT 1 1 IL IL 4 2 2 CH1 1.00V CH3 2.00V CH2 5.00V CH4 500mA Ω M 100µs A CH1 T 40.40% 1.40V 13493-016 SW SW CH1 1.00V CH3 2.00V Figure 16. Soft Start, ILOAD = 50 mA CH2 5.00V CH4 200mA Ω M 100µs A CH1 T 40.40% 1.40V 13493-018 4 Figure 19. Soft Start with Precharge Function 1 VOUT (AC) VOUT (AC) 1 VIN 4 IOUT IL 4 2 M 200µs A CH4 T 20.80% 111mA CH1 50.0mV CH3 2.00V Figure 17. Load Transient, ILOAD from 0 mA to 50 mA CH2 5.00V CH4 500mA Ω M 2.00ms A CH3 T 30.00% 4.72V 13493-029 CH4 50.0mA Ω 980mV 13493-031 CH1 50.0mV 13493-028 SW Figure 20. Line Transient, ILOAD = 10 μA VIN 1 VOUT 1 2 IL 4 CH1 1.00V CH3 1.00V CH4 200mA Ω M 10.0ms A CH3 T 40.20% 4.80V 13493-030 3 CH1 2.00V BW CH3 1.00V BW CH2 1.00V BW M 4.00ms A CH3 T 20.20% Figure 21. VINOK Function at a 3.0 V VINOK Threshold Figure 18. Input Voltage Ramp-Up and Ramp-Down Rev. 0 | Page 9 of 17 ADP5304 Data Sheet VOUT VOUT 1 1 IL IL 4 4 SW 2 2 M 10µs A CH1 T 40.40% 1.40V CH1 1.00V CH2 5.00V CH4 200mV Ω Figure 22. Output Short Protection M 200µs A CH2 T 40.20% 1.68V 13493-043 CH2 5.00V CH4 200mA Ω 1.64V 13493-037 CH1 1.00V 13493-041 SW Figure 24. Output Short Recovery VIN EN VOUT 3 3 VOUT IL 1 SW 1 SW 2 CH1 1.00V CH3 1.00V CH2 2.00V CH4 2.00V Ω M 20.0ms A CH2 T 40.20% 1.56V 13493-042 2 CH1 1.00V CH3 2.00V Figure 23. 260 μA Current Source Charge Up, 100 μF Output Capacitor with 100 μA Load Current, and 3.0 V VINOK Threshold Rev. 0 | Page 10 of 17 CH2 2.00V M 4.00ms A CH3 T 40.00% Figure 25. Quick Output Discharge Function Data Sheet ADP5304 THEORY OF OPERATION The ADP5304 is a high efficient, ultralow quiescent current step-down regulator in a 10-lead LFCSP package, designed to meet demanding performance and board space requirements. The device enables direct connection to a wide input voltage range of 2.15 V to 6.50 V, allowing the use of high impedance power sources or energy harvester sources. BUCK REGULATOR OPERATIONAL MODE The ADP5304 buck regulator operates in hysteresis mode and charges the output voltage slightly higher than its nominal output voltage with PWM pulses via the regulation of constant peak inductor current. When the output voltage increases until the output sense signal exceeds the hysteresis upper threshold, the regulator enters the standby mode. In standby mode, the high-side and low-side MOSFET and a majority of the circuitry are disabled to allow a low quiescent current, as well as high efficiency performance. During standby mode, the output capacitor supplies the energy into the load and the output voltage decreases until it falls below the hysteresis comparator lower threshold. Then, the buck regulator wakes up into active mode and generates the PWM pulses to charge the output again. Table 5. Output Voltage Options by the VID Pin VID Configuration Short to ground Short to PVIN RVID = 499 kΩ RVID = 316 kΩ RVID = 226 kΩ RVID = 174 kΩ RVID = 127 kΩ RVID = 97.6 kΩ RVID = 76.8 kΩ RVID = 56.2 kΩ RVID = 43 kΩ RVID = 32.4 kΩ RVID = 25.5 kΩ RVID = 19.6 kΩ RVID = 15 kΩ RVID = 11.8 kΩ VOUT, Factory Option 0 (V) 3.0 2.5 3.6 3.3 2.9 2.8 2.7 2.6 2.4 2.3 2.2 2.1 2.0 1.8 1.5 1.2 VOUT, Factory Option 1 (V) 3.1 1.3 5.0 4.5 4.2 3.9 3.4 3.2 1.9 1.7 1.6 1.4 1.1 1.0 0.9 0.8 UNDERVOLTAGE LOCKOUT (UVLO) The buck regulator is forced to operate in hysteresis mode via connecting the MODE pin to ground. The regulator only draws 260 nA of quiescent current to regulate the output under zero load, which allows the regulator to act as keep-alive power supply in battery-powered applications or energy harvesting systems. The undervoltage lockout circuitry monitors the input voltage level on the PVIN pin. If input voltage falls below 2.00 V (typical), the regulator turns off. After the input voltage rises above 2.06 V (typical), the soft start period initiates, and when the EN pin is high, the regulator enables. ADJUSTABLE AND FIXED OUTPUT VOLTAGES ENABLE/DISABLE The ADP5304 provides adjustable output voltage settings via the connection of one resistor through the VID pin to AGND. The VID detection circuitry works in the start-up period, and the voltage ID code is sampled and held into the internal register and does not change until the next power recycle. Furthermore, the ADP5304 provides a fixed output voltage programmed via the factory fuse. In this condition, connect the VID pin to the PVIN pin. The ADP5304 includes a separate enable (EN) pin. A logic high on the EN pin starts the regulator. Due to the low quiescent current design, it is typical for the regulator to start switching after a delay of a few milliseconds from the EN pin being pulled high. For output voltage settings, the feedback resistor divider is built in to the ADP5304, and the feedback pin (FB) must be tied directly to the output. An ultralow power voltage reference and an integrated high impedance (50 MΩ, typical) feedback divider network contribute to low quiescent current. Table 5 lists the output voltage options by the VID pin configurations. It is recommended to use a 1% resistor. The ADP5304 includes an open-drain VINOK output that can be used to indicate the input voltage status. The VINOK output becomes active high when the input voltage on the PVIN pin is above the reference threshold. When the input voltage falls below the reference threshold, the VINOK pin goes low. Note that a relatively long validation time of 130 μs typical exists for the VINOK output status to change due to the ultralow power comparator design. A logic low on the EN pin immediately disables the regulator and brings the regulator into extremely low current consumption. VINOK FUNCTION Rev. 0 | Page 11 of 17 ADP5304 Data Sheet The ADP5304 VINOK threshold also determines the time when the buck regulator starts and stops switching. When the input voltage is below the threshold, the regulator stops switching in hysteresis mode. After the input source charges the input capacitor voltage above a hysteresis from the threshold, the regulator resumes switching. The regulator operates the input voltage in a hysteresis window around the threshold considered as the maximum power point tracking (MPPT). The high impedance input power source or small input power application employs the ADP5304 to charge the large output capacitor via trickle charging. Different VINOK thresholds are factory programmable from 2.05 V to 5.15 V in 50 mV steps. To order a device with options other than the default options, contact your local Analog Devices, Inc., sales or distribution representative. CURRENT LIMIT The buck regulators in the ADP5304 have protection circuitry that limits the direction and the amount of current to a certain level that flows through the high-side MOSFET and the low-side MOSFET in cycle by cycle mode. The positive current limit on the high-side MOSFET limits the amount of current that can flow from the input to the output. The negative current limit on the low-side MOSFET prevents the inductor current from reversing direction and flowing out of the load. SHORT-CIRCUIT PROTECTION The buck regulators in the ADP5304 include frequency foldback to prevent current runaway on a hard short. When the output voltage at the feedback pin (FB) falls below 0.3 V typical, indicating the possibility of a hard short at the output, the switching frequency in active mode reduces to half of the internal oscillator frequency. The reduction in the switching frequency allows more time for the inductor to discharge, preventing a runaway of output current. SOFT START The ADP5304 has an internal soft start function that ramps the output voltage in a controlled limitation upon startup, thereby limiting the inrush current. This prevents possible input voltage drops when a battery or a high impedance power source is connected to the input of the device. The typical soft start time or the regulator is 350 μs. STARTUP WITH PRECHARGED OUTPUT The buck regulators in the ADP5304 include a precharged start-up feature to protect the low-side FETs from damage during startup. If the output voltage is precharged before the regulator is turned on, the regulator prevents reverse inductor current—which discharges the output capacitor—until the internal soft start reference voltage exceeds the precharged voltage on the feedback pin. 100% DUTY OPERATION When the input voltage approaches the output voltage, the ADP5304 stops switching and enters 100% duty cycle operation. It connects the output via the inductor and the internal high-side power switch to the input. When the input voltage is charged again and the required duty cycle falls to 95% typical, the buck immediately restarts switching and regulation without allowing overshoot on the output voltage. The ADP5304 draws an ultralow quiescent current of only 640 nA typical during 100% duty cycle operation. ACTIVE DISCHARGE The regulator in the ADP5304 integrates an optional, factory programmable discharge switch from the switching node to ground. This switch turns on when its associated regulator is disabled, which helps discharge the output capacitor quickly. The typical value of the discharge switch is 290 Ω for the regulator. By default, the discharge function is not enabled. The active discharge function can be enabled by the factory fuse THERMAL SHUTDOWN If the ADP5304 junction temperature exceeds 142C, the thermal shutdown circuit turns the IC off, except for the internal linear regulator. Extreme junction temperatures can be the result of high current operation, poor circuit board design, or high ambient temperature. A 15C hysteresis is included so that the ADP5304 does not return to operation after thermal shutdown until the junction temperature falls below 127C. When the device exits thermal shutdown, a soft start is initiated for each enabled channel. A different soft start time (2800 μs) can be programmed for ADP5304 via the factory fuse (see Table 11). Rev. 0 | Page 12 of 17 Data Sheet ADP5304 APPLICATIONS INFORMATION This section describes the external components selection for the ADP5304. The typical application circuit is shown in Figure 26. VIN = 2.15V TO 6.50V 2.2µH SW PVIN 10µF MLCC ADP5304 EN VOUT = 1.8V A minimum requirement of the dc current rating of the inductor is for it to be equal to the maximum load current plus half of the inductor current ripple (ΔIL), as shown by the following equations: 10µF MLCC PGND I L  VOUT R2 1MΩ NC VINOK where IPK is the peak inductor current. AGND VID R1 19.6kΩ Use the inductor series from the different vendors shown in Table 6. 13493-038 EPAD      IPK = ILOAD (MAX) +   I L   2  FB MODE  1 – VOUT  VIN   L f  SW  Figure 26. Typical Application Circuit EXTERNAL COMPONENT SELECTION The ADP5304 is optimized for operation with a 2.2 μH inductor and 10 μF output capacitors for various output voltages using the closed-loop compensation and adaptive slope compensation circuits. The selection of components depends on the efficiency, the load current transient, and other application requirements. The trade-offs among performance parameters, such as efficiency and transient response, are made by varying the choice of external components. SELECTING THE INDUCTOR The high switching frequency of the ADP5304 allows the use of small surface-mount power inductors. The dc resistance (DCR) value of the selected inductor affects efficiency. In addition, it is recommended to select a multilayer inductor rather than a magnetic iron inductor because the high switching frequency increases the core temperature rise and enlarges the core loss. OUTPUT CAPACITOR Output capacitance is required to minimize the voltage overshoot, the voltage undershoot, and the ripple voltage present on the output. Capacitors with low equivalent series resistance (ESR) values produce the lowest output ripple. Furthermore, use capacitors such as X5R and X7R dielectric capacitors. Do not use Y5V and Z5U capacitors, because they are unsuitable choices due to their large capacitance variation over temperature and their dc bias voltage changes. Because ESR is important, select the capacitor using the following equation: ESRCOUT  VRIPPLE ΔI L where: ESRCOUT is the ESR of the chosen capacitor. VRIPPLE is the peak-to-peak output voltage ripple. Increasing the output capacitor value has no effect on stability and may reduce output ripple and enhance load transient response. ADP5304 can charge up the conventional capacitor or super capacitor. When choosing the output capacitor value, it is important to account for the loss of capacitance due to output voltage dc bias. Use the capacitor series from the different vendors shown in Table 7. Table 6. Recommended Inductors Vendor TDK Wurth Coilcraft 1 Model MLP2016V2R2MT0S1 74479889222 LPS3314-222MR Inductance (μH) 2.2 2.2 2.2 Dimensions (mm) 2.0 × 1.6 × 0.85 2.5 × 2.0 × 1.2 3.3 × 3.3 × 1.3 DCR (mΩ) 280 250 100 ISAT1 (A) 1.0 1.7 1.5 ISAT is the dc current at which the inductance drops 30% (typical) from its value without current. Table 7. Input and Output Capacitors Vendor Murata Murata Murata Model GRM188D71A106MA73 GRM21BR71A106KE51 GRM31CR60J107ME39 Capacitance (μF) 10 10 100 Rev. 0 | Page 13 of 17 Size 0603 0805 1206 ADP5304 Data Sheet Use the following equation to determine the rms input current: INPUT CAPACITOR An input capacitor is required to reduce the input voltage ripple, input ripple current, and source impedance. Place the input capacitor as close as possible to the PVIN pin. A low ESR X7R or X5R capacitor is highly recommended to minimize the input voltage ripple. I RMS  I LOAD ( MAX V OUT V IN  V OUT V IN )  For most applications, a 10 μF capacitor is sufficient. The input capacitor can be increased without any limit for better input voltage filtering. LAYOUT RECOMMENDATIONS Figure 27 shows the typical printed circuit board (PCB) layout for the ADP5304. EN 1 10 PVIN NC 2 9 SW ADP5304 8 PGND TOP VIEW VID 4 7 AGND FB 5 6 VINOK 100kΩ 0201 5.7 10µF 6.3V/XR5 0603 4.6 Figure 27. PCB Layout for the ADP5304 Rev. 0 | Page 14 of 17 13493-044 MODE3 L1 2.2µH 0603 10µF 10V/XR5 0603 Data Sheet ADP5304 TYPICAL APPLICATION CIRCUITS controlled by a microcontroller or a processor (see Figure 29). The VINOK function can achieve the maximum power point tracking. The ADP5304 can be used as a keep-alive, ultralow power stepdown regulator to extend the battery life and load pulse current capability with super capacitors (see Figure 28), and as a battery-powered equipment or wireless sensor network VIN = 2.0V TO 3.0V CR2032 2.2µH SW PVIN 10µF ADP5304 EN VOUT = 1.8V ADC/RF/AFE 1mF PGND FB R1 19.6kΩ 1% R2 1MΩ VID MCU (ALWAYS ON) VINOK NC 13493-039 AGND MODE Figure 28. Typical ADP5304 Application with a Coin Cell Battery (CR2032) PIEZOELECTRIC HARVESTER 2.2µH PVIN SW ADP5304 ADC/RF/AFE 10mF 10µF EN VOUT = 1.8V PGND FB R1 19.6kΩ 1% R2 1MΩ VID VINOK MCU (ALWAYS ON) NC 13493-040 AGND MODE Figure 29. Typical ADP5304 Application with a Piezoelectric Harvester Rev. 0 | Page 15 of 17 ADP5304 Data Sheet FACTORY PROGRAMMABLE OPTIONS To order a device with options other than the default options, contact your local Analog Devices sales or distribution representative. Table 8. Output Voltage VID Setting Options Option Option 0 Option 1 Description VID resistor to set the output voltage as follows: 1.2 V, 1.5 V, 1.8 V, 2.0 V, 2.1 V, 2.2 V, 2.3 V, 2.4 V, 2.5 V, 2.6 V, 2.7 V, 2.8 V, 2.9 V, 3.0 V, 3.3 V, 3.6 V, 3.3 V (default) VID resistor to set the output voltage as follows: 0.8 V, 0.9 V, 1.0 V, 1.1 V, 1.3 V, 1.4 V, 1.6 V, 1.7 V, 1.9 V, 3.1 V, 3.4 V, 3.9 V, 4.2 V, 4.5 V, 5.0 V Table 10. Output Discharge Functionality Options Option Option 0 Option 1 Table 11. Soft Start Timer Options Option Option 0 Option 1 Table 9. VINOK Monitor Threshed Options Option Option 0 Option 1 Option 2 Option 3 … Option 20 … Option 62 Option 63 Description Output discharge function disabled for buck regulator (default) Output discharge function enabled form buck regulator VINOK Monitor Threshold (V) 2.05 2.10 2.15 2.20 … 3.00 (default) … 5.10 5.15 Rev. 0 | Page 16 of 17 Description 350 μs (default) 2800 μs Data Sheet ADP5304 OUTLINE DIMENSIONS 2.48 2.38 2.23 3.10 3.00 SQ 2.90 0.50 BSC 10 6 1.74 1.64 1.49 EXPOSED PAD 0.50 0.40 0.30 1 5 BOTTOM VIEW TOP VIEW 0.80 0.75 0.70 SEATING PLANE 0.30 0.25 0.20 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 MIN PIN 1 INDICATOR (R 0.15) FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 0.20 REF 02-05-2013-C PIN 1 INDEX AREA Figure 30. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD] 3 mm × 3 mm Body, Very Very Thin, Dual Lead (CP-10-9) Dimensions shown in millimeters ORDERING GUIDE Model1 ADP5304ACPZ-1-R7 Temperature Range −40°C to +125°C ADP5304ACPZ-2-R7 −40°C to +125°C ADP5304-EVALZ 1 Package Description 10-Lead Lead Frame Chip Scale Package [LFCSP_WD] Without Output Discharge, VINOK Threshold = 3.00 V 10-Lead Lead Frame Chip Scale Package [LFCSP_WD] Without Output Discharge, VINOK Threshold = 4.00 V Evaluation Board Z = RoHS Compliant Part. ©2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D13493-0-10/15(0) Rev. 0 | Page 17 of 17 Package Option CP-10-9 CP-10-9
ADP5304ACPZ-1-R7 价格&库存

很抱歉,暂时无法提供与“ADP5304ACPZ-1-R7”相匹配的价格&库存,您可以联系我们找货

免费人工找货