0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADUC7023BCPZ62I

ADUC7023BCPZ62I

  • 厂商:

    AD(亚德诺)

  • 封装:

    VFQFN32

  • 描述:

    IC MCU 16/32B 62KB FLASH 32LFCSP

  • 数据手册
  • 价格&库存
ADUC7023BCPZ62I 数据手册
Precision Analog Microcontroller, 12-Bit Analog I/O, ARM7TDMI MCU with Enhanced IRQ Handler ADuC7023 Data Sheet FEATURES APPLICATIONS Analog I/O Multichannel, 12-bit, 1 MSPS ADC Up to 12 ADC channels Fully differential and single-ended modes 0 V to VREF analog input range 12-bit voltage output DACs 4 DAC outputs available On-chip voltage reference On-chip temperature sensor Voltage comparator Microcontroller ARM7TDMI core, 16-bit/32-bit RISC architecture JTAG port supports code download and debug Clocking options Trimmed on-chip oscillator (±3%) External watch crystal External clock source up to 44 MHz 41.78 MHz PLL with programmable divider Memory 62 kB Flash/EE memory, 8 kB SRAM In-circuit download, JTAG-based debug Software-triggered in-circuit reprogrammability Vectored interrupt controller for FIQ and IRQ 8 priority levels for each interrupt type Interrupt on edge or level external pin inputs On-chip peripherals 2× fully I2C-compatible channels SPI (20 Mbps in master mode, 10 Mbps in slave mode) With 4-byte FIFO on input and output stages Up to 20 GPIO pins—Digital only GPIOs are 5 V tolerant 3× general-purpose timers Watchdog timer (WDT) Programmable logic array (PLA) 16 PLA elements 16-bit, 5-channel PWM Power Specified for 3 V operation Active mode: 11 mA at 5 MHz, 28 mA at 41.78 MHz Packages and temperature range 32-lead 5 mm × 5 mm LFCSP 40-lead LFCSP 36-Lead WLCSP Fully specified for −40°C to +125°C operation Tools Low cost QuickStart development system Full third-party support Optical networking Industrial control and automation systems Smart sensors, precision instrumentation Base station systems Rev. H GENERAL DESCRIPTION The ADuC7023 is a fully integrated, 1 MSPS, 12-bit data acquisition system, incorporating high performance multichannel ADCs, 16-bit/32-bit MCUs, and Flash/EE memory on a single chip. The ADC consists of up to 12 single-ended inputs. An additional four inputs are available but are multiplexed with the four DAC output pins. The ADC can operate in single-ended or differential input modes. The ADC input voltage is 0 V to VREF. A low drift band gap reference, temperature sensor, and voltage comparator complete the ADC peripheral set. The DAC output range is programmable to one of two voltage ranges. The DAC outputs have an enhanced feature of being able to retain their output voltage during a watchdog or software reset sequence. The devices operate from an on-chip oscillator and a PLL, generating an internal high frequency clock of 41.78 MHz. This clock is routed through a programmable clock divider from which the MCU core clock operating frequency is generated. The microcontroller core is an ARM7TDMI®, 16-bit/32-bit RISC machine that offers up to 41 MIPS peak performance. Eight kilobytes of SRAM and 62 kilobytes of nonvolatile Flash/EE memory are provided on chip. The ARM7TDMI core views all memory and registers as a single linear array. The ADuC7023 contains an advanced interrupt controller. The vectored interrupt controller (VIC) allows every interrupt to be assigned a priority level. It also supports nested interrupts to a maximum level of eight per IRQ and FIQ. When IRQ and FIQ interrupt sources are combined, a total of 16 nested interrupt levels are supported. On-chip factory firmware supports in-circuit download via the I2C serial interface port, and nonintrusive emulation is supported via the JTAG interface. These features are incorporated into a low cost QuickStart™ development system supporting this MicroConverter® family. The part contains a 16-bit PWM with five output signals. For communication purposes, the part contains 2 × I2C channels that can be individually configured for master or slave mode. An SPI interface supporting both master and slave modes is also provided. The parts operate from 2.7 V to 3.6 V and are specified over an industrial temperature range of −40°C to +125°C. The ADuC7023 is available in either a 32-lead or 40-lead LFCSP package. A 36-ball wafer level CSP package (WLCSP) is also available. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010–2020 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADuC7023 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  Flash/EE Control Interface ....................................................... 40  Applications ...................................................................................... 1  Execution Time from SRAM and Flash/EE ........................... 43  General Description ......................................................................... 1  Reset and Remap ........................................................................ 43  Revision History ............................................................................... 3  Other Analog Peripherals ............................................................. 46  Functional Block Diagram .............................................................. 5  DAC ............................................................................................. 46  Specifications .................................................................................... 6  Power Supply Monitor .............................................................. 48  Timing Specifications .................................................................. 9  Comparator ................................................................................. 48  Absolute Maximum Ratings ......................................................... 14  Oscillator and PLL—Power Control ....................................... 50  ESD Caution................................................................................ 14  Digital Peripherals .......................................................................... 53  Pin Configurations and Function Descriptions ......................... 15  General-Purpose Input/Output ............................................... 53  Typical Performance Characteristics ........................................... 19  Serial Peripheral Interface ......................................................... 56  Terminology .................................................................................... 20  I C ..................................................................................................... 61  ADC Specifications .................................................................... 20  Configuring External Pins for I2C Functionality ................... 61  DAC Specifications .................................................................... 20  Serial Clock Generation ............................................................ 61  Overview of the ARM7TDMI Core ............................................. 21  I2C Bus Addresses ...................................................................... 61  Thumb Mode (T) ....................................................................... 21  I2C Registers ................................................................................ 62  Long Multiply (M) ..................................................................... 21  Programmable Logic Array (PLA) .......................................... 69  EmbeddedICE (I) ....................................................................... 21  Pulse-Width Modulator ................................................................ 73  Exceptions ................................................................................... 21  Pulse-Width Modulator General Overview ........................... 73  ARM Registers ............................................................................ 21  Processor Reference Peripherals .................................................. 78  Interrupt Latency........................................................................ 22  Interrupt System......................................................................... 78  Memory Organization ................................................................... 23  IRQ ............................................................................................... 78  Memory Access........................................................................... 23  Fast Interrupt Request (FIQ) .................................................... 79  Flash/EE Memory....................................................................... 23  Vectored Interrupt Controller (VIC) ...................................... 80  SRAM ........................................................................................... 23  Timers .......................................................................................... 85  Memory Mapped Registers ....................................................... 23  Hardware Design Considerations .................................................. 90  ADC Circuit Overview .................................................................. 31  Power Supplies ............................................................................. 90  Transfer Function ...................................................................... 31  Grounding and Board Layout Recommendations ................ 91  Typical Operation ...................................................................... 32  Clock Oscillator .......................................................................... 91  MMR Interface ........................................................................... 32  Power-On Reset Operation ...................................................... 92  Converter Operation.................................................................. 35  Typical System Configuration .................................................. 93  Driving the Analog Inputs ........................................................ 36  Development Tools ........................................................................ 94  Calibration................................................................................... 36  PC-Based Tools .......................................................................... 94  Temperature Sensor ................................................................... 36  In-Circuit I2C Downloader ....................................................... 94  Band Gap Reference ................................................................... 38  Outline Dimensions ....................................................................... 95  Nonvolatile Flash/EE Memory ..................................................... 39  Ordering Guide .......................................................................... 97  2 Programming .............................................................................. 39  Security ........................................................................................ 40  Rev. H | Page 2 of 98 Data Sheet ADuC7023 REVISION HISTORY 11/2020—Rev. G to Rev. H Changes to Table 59 ........................................................................55 Updated Outline Dimensions .......................................................95 Changes to Ordering Guide...........................................................97 1/2015—Rev. F to Rev. G Changes to Table 53 ........................................................................51 Changes to I2C Section ...................................................................60 Changes to Table 65 ........................................................................61 Changes to Table 72 ........................................................................64 Changes to I2CREPS Bit Description, Table 73 .........................66 5/2014—Rev. E to Rev. F Change CONVSTART Pin to CONVSTART Pin ............... Throughout Change to Layout, Power Requirements Parameter, Table 1 ..... 7 Change to Table 8 ...........................................................................13 Changes to Figure 7 and Table 9...................................................14 Change to Table 21 .........................................................................28 Change to Figure 23 ........................................................................30 Change to JTAG Access Section ...................................................37 Changes to Table 36 ........................................................................42 Changes to Table 55 ........................................................................51 Changes to I2C Bus Addresses Section .........................................59 Change to Table 84 .........................................................................71 Added PWM2LEN Register Section ............................................75 7/2013—Rev. D to Rev. E Changes to Ordering Guide...........................................................95 7/2013—Rev. C to Rev. D Added WLCSP (Throughout) ......................................................... 1 Changes to Features Section ............................................................ 1 Added Shared Analog/Digital Inputs to AGND Rating of −0.3 V to AVDD + 0.3 V, Endnote 1, and Endnote 2; Table 8 ...13 Added Figure 9; Renumbered Sequentially; Added WLCSP Pin Numbers to Table 9 ........................................................................14 Changes to Pin P1.7/PWM3/SDA1/PLAI[6] and Pin P1.6/PWM2/SCL1/PLAI[5] Descriptions; Table 9 ....................16 Changes to ADC Circuit Overview Section, Transfer Function Section, and Figure 20 Caption .....................................................29 Changes to Typical Operation Section, ADCCON Register Section, and ADCON[13] Description in Table 24 ...................30 Changes to Bits[4:3] Value 10 Description; Table 24 ................31 Changes to Converter Operation Section and Deleted Pseudo Differential Mode Section ..............................................................33 Changes to Figure 27 and Figure 28 Caption..............................34 Changes to Table 30 and Following Text ....................................36 Changes to JTAG Access Section..................................................37 Changes to References to ADC and the DACs Section .............45 Changes to General-Purpose Input/Output Section..................51 Changes to SPIDIV Register Section............................................56 Changes to Bits[1:0] Value 01 Description; Table 66 ................61 Changes to T0CLRI Register Section ...........................................84 Changes to Figure 53 ......................................................................90 Updated Outline Dimensions ....................................................... 93 Changes to Ordering Guide .......................................................... 95 5/2012—Rev. B to Rev. C Changed SDATA to SDA and SCLK to SCL, Table 2; SDATA to SDA and SCLK to SCL, Table 3; and SDATA to SDA and SCLK to SCL, Figure 2...................................................................... 8 Changes to Figure 7, Figure 8, and Table 9 ................................. 14 Changed SCLK to SCL, Table 17 .................................................. 25 Changed SCLK to SCL, Table 18 .................................................. 26 Changes to Bit 6, Table 24 and 4 to 0, Description Column, Table 25 ............................................................................................ 30 Changed Reference in REFCON Register Section from Table 22 to Table 30 ........................................................................................ 35 Added Note 1 to Table 53 .............................................................. 49 Changes to Note 1, Table 55 .......................................................... 50 Changed SPICLK (Serial Clock I/O) Pin Section to SCLK (Serial Clock I/O) Pin Section ....................................................... 53 Changed SPICLK to SCLK in Serial Peripheral Interface Section and in SCLK (Serial Clock I/O) Pin Section ................. 53 Changes to Table 79........................................................................ 68 Changes to Timers Section ............................................................ 82 Added Hours, Minutes, Seconds, and 1/128 Format Section and Table 101 .......................................................................................... 82 Changes to T0LD Register Section and T1LD Register Section..... 83 Changes to T2LD Register Section....................................................... 85 Updated Outline Dimensions ....................................................... 92 Changes to Ordering Guide .......................................................... 93 7/2010—Rev. A to Rev. B Changes to Temperature Sensor Parameter in Table 1 ............... 6 Change to Table 10 and changes to Table 11 .............................. 23 Changes to Table 12 and Table 13 ................................................ 24 Changes to Table 16 and Table 17 ................................................ 25 Changes to Table 18........................................................................ 26 Change to Table 21 and changes to Table 22 .............................. 27 Changes to Table 24........................................................................ 29 Changes to ADCGN Register and ADCOF Register Sections . 32 Changes to Temperature Sensor Section ..................................... 34 Changes to Table 29........................................................................ 35 Change to REMAP Register and RSTCLR Register Sections ... 41 Change to RSTKEY1 Register and RSTKEY2 Register Sections ............................................................................................. 42 Changes to Oscillator and PLL—Power Control Section ......... 48 Changes to General-Purpose Input/Output Section ................. 51 Changes to Serial Peripheral Interface Section ........................... 53 Changes to Table 75........................................................................ 67 Changes to Table 83 and Pulse-Width Modulator General Overview Section ............................................................................ 70 Changes to Table 84........................................................................ 71 Change to Table 85 ......................................................................... 72 Change to FIQSTAN Register Section ......................................... 81 Change to T2CLRI Register Section............................................. 85 Rev. H | Page 3 of 98 ADuC7023 Data Sheet 6/2010—Rev. 0 to Rev. A Changes to Temperature Sensor Parameter in Table 1 .............. 6 Changes to Table 24 ....................................................................... 29 Changes to Temperature Sensor Section .................................... 34 Changes to DACBKEY0 Register Section and to Table 43 ...... 47 Changes to Ordering Guide .......................................................... 93 1/2010—Revision 0: Initial Version Rev. H | Page 4 of 98 Data Sheet ADuC7023 FUNCTIONAL BLOCK DIAGRAM ADC0 MUX 12-BIT DAC DAC1 12-BIT DAC DAC2 12-BIT DAC DAC3 40-LEAD LFCSP TEMP SENSOR ADC2/CMP0 VECTORED INTERRUPT CONTROLLER BAND GAP REF CMPOUT DAC0 ADuC7023 1MSPS 12-BIT ADC ADC12 ADC3/CMP1 12-BIT DAC VREF XCLKI ARM7TDMI-BASED MCU WITH ADDITIONAL PERIPHERALS OSC AND PLL XCLKO PSM PLA 2k × 32 SRAM 31k × 16 FLASH/EEPROM GPIO PWM POR 3 GENERALPURPOSE TIMERS SPI, 2 × I2C JTAG 08675-001 RST Figure 1. Rev. H | Page 5 of 98 ADuC7023 Data Sheet SPECIFICATIONS AVDD = IOVDD = 2.7 V to 3.6 V, VREF = 2.5 V internal reference, fCORE = 41.78 MHz, TA = −40°C to +125°C, unless otherwise noted. Table 1. Parameter ADC CHANNEL SPECIFICATIONS ADC Power-Up Time DC Accuracy1, 2 Resolution Integral Nonlinearity Min Max 5 ±0.6 ±1.0 ±0.5 +0.7/−0.6 1 ±1.5 ±1 ±1 ±2 ±1 ±2 +1/−0.9 69 −78 −75 −80 ±1 20 Bits LSB LSB LSB LSB LSB Test Conditions/Comments Eight acquisition clocks and fADC/2 VCM ± VREF/26 0 to VREF ±6 ±4 ±15 75 51 1 AVDD 2.5 V internal reference 1.0 V external reference 2.5 V internal reference 1.0 V external reference ADC input is a dc voltage LSB LSB LSB LSB dB dB dB dB 2.5 0.625 Unit μs 12 Differential Nonlinearity3, 4 DC Code Distribution ENDPOINT ERRORS5 Offset Error Offset Error Match Gain Error Gain Error Match DYNAMIC PERFORMANCE Signal-to-Noise Ratio (SNR) Total Harmonic Distortion (THD) Peak Harmonic or Spurious Noise Channel-to-Channel Crosstalk ANALOG INPUT Input Voltage Ranges Differential Mode Single-Ended Mode Leakage Current Input Capacitance ON-CHIP VOLTAGE REFERENCE Output Voltage Accuracy Reference Temperature Coefficient Power Supply Rejection Ratio Output Impedance Internal VREF Power-On Time EXTERNAL REFERENCE INPUT Input Voltage Range DAC CHANNEL SPECIFICATIONS DC Accuracy7 Resolution Relative Accuracy Differential Nonlinearity Offset Error Gain Error8 Gain Error Mismatch DC Accuracy9 Resolution Relative Accuracy Differential Nonlinearity Offset Error Gain Error10 Gain Error Mismatch ANALOG OUTPUTS Output Voltage Range 1 Output Voltage Range 2 Output Impedance Typ V V μA pF V mV ppm/°C dB Ω ms fIN = 10 kHz sine wave, fSAMPLE = 1 MSPS Includes distortion and noise components Measured on adjacent channels During ADC acquisition 0.47 μF from VREF to AGND TA = 25°C TA = 25°C V RL = 5 kΩ, CL = 100 pF 12 ±2 Guaranteed monotonic 2.5 V internal reference 0.1 Bits LSB LSB mV % % 12 ±2.5 ±1 ±15 ±1 0.1 Bits LSB LSB mV % % Guaranteed monotonic 2.5 V internal reference 0 to 2.5 0 to AVDD 2 V V Ω ±1 ±15 ±1 Rev. H | Page 6 of 98 % of full scale on DAC0 RL = 1 kΩ, CL = 100 pF % of full scale on DAC0 VREF range: AGND to AVDD Data Sheet Parameter DAC IN OP AMP MODE DAC Output Buffer in Op Amp Mode Input Offset Voltage Input Offset Voltage Drift Input Offset Current Input Bias Current Gain Unity-Gain Frequency CMRR Settling Time Output Slew Rate PSRR DAC AC CHARACTERISTICS Voltage Output Settling Time Digital-to-Analog Glitch Energy COMPARATOR Input Offset Voltage Input Bias Current Input Voltage Range Input Capacitance Hysteresis4, 6 Response Time TEMPERATURE SENSOR Voltage Output at 25°C Voltage TC Accuracy with No Calibration Accuracy with One Point Calibration Using Contents of TEMPREF Register θJA Thermal Impedance 40-Lead LFCSP 32-Lead LFCSP POWER SUPPLY MONITOR (PSM) IOVDD Trip Point Selection Power Supply Trip Point Accuracy POWER-ON RESET WATCHDOG TIMER (WDT) Timeout Period FLASH/EE MEMORY Endurance11 Data Retention12 DIGITAL INPUTS Logic 1 Input Current Logic 0 Input Current Input Capacitance LOGIC INPUTS4 VINL, Input Low Voltage VINH, Input High Voltage LOGIC OUTPUTS VOH, Output High Voltage VOL, Output Low Voltage13 CRYSTAL INPUTS XCLKI AND XCLKO Logic Inputs, XCLKI Only VINL, Input Low Voltage VINH, Input High Voltage XCLKI Input Capacitance XCLKO Output Capacitance ADuC7023 Min Typ Unit Test Conditions/Comments ±0.25 8 0.3 0.4 80 5 80 10 1.5 75 mV μV/°C nA nA dB MHz dB μs V/μs dB 5 kΩ load RL = 5 kΩ, CL = 100 pF 10 ±20 μs nV-sec ±10 1 mV μA V pF mV AGND Max AVDD – 1.2 7 2 15 3 μs 1.369 4.42 ±3 ±1.5 V mV/°C °C °C 26 32.5 °C/W °C/W 2.79 ±2 2.41 V % V 0 512 10,000 20 1 LSB change at major carry (where maximum number of bits simultaneously change in the DACxDAT register) Hysteresis can be turned on or off via the CMPHYST bit in the CMPCON register 100 mV overdrive and configured with CMPRES = 11 Indicates die temperature One trip point Of the selected nominal trip point voltage sec Cycles Years ±0.2 −40 −80 10 RL = 5 kΩ, CL = 100 pF RL = 5 kΩ, CL = 100 pF ±1 −60 −120 μA μA μA pF 0.8 V V TJ = 85°C All digital inputs excluding XCLKI and XCLKO VIH = VDD or VIH = 5 V VIL = 0 V; except TDI VIL = 0 V; TDI All logic inputs excluding XCLKI 2.0 2.4 0.4 1.1 1.7 20 20 V V V V pF pF Rev. H | Page 7 of 98 All digital outputs excluding XCLKO ISOURCE = 1.6 mA ISINK = 1.6 mA ADuC7023 Parameter INTERNAL OSCILLATOR MCU CLOCK RATE From 32 kHz Internal Oscillator From 32 kHz External Crystal Using an External Clock Data Sheet Min IOVDD Current in Pause Mode IOVDD Current in Sleep Mode Additional Power Supply Currents ADC DAC ESD TESTS HBM Passed FICDM Passed Max Test Conditions/Comments ±3 Unit kHz % 44 41.78 kHz MHz MHz MHz CD = 7 CD = 0 TA = 85°C TA = 125°C Core clock = 41.78 MHz 326 41.78 0.05 0.05 START-UP TIME At Power-On From Pause/Nap Mode From Sleep Mode From Stop Mode PROGRAMMABLE LOGIC ARRAY (PLA) Pin Propagation Delay Element Propagation Delay POWER REQUIREMENTS14, 15 Power Supply Voltage Range AVDD to AGND and IOVDD to DGND Analog Power Supply Currents AVDD Current Digital Power Supply Current IOVDD Current in Normal Mode Typ 32.768 66 24 3.07 1.58 1.7 ms ns μs ms ms 12 2.5 ns ns 2.7 3.6 200 8.5 11 28 14 230 10 15 35 20 650 1.4 0.7 400 1 From input pin to output pin V μA ADC in idle mode mA mA mA mA μA Code executing from Flash/EE CD = 7 CD = 3 CD = 0 (41.78 MHz clock) CD = 0 (41.78 MHz clock) TA = 125°C mA mA μA 3 1.0 CD = 0 CD = 7 At 1 MSPS At 62.5 kSPS Per DAC 2.5 V reference, TA = 25°C kV kV All ADC channel specifications are guaranteed during normal microcontroller core operation. Apply to all ADC input channels. 3 Measured using the factory-set default values in the ADC offset register (ADCOF) and gain coefficient register (ADCGN). 4 Not production tested but supported by design and/or characterization data on production release. 5 Measured using the factory-set default values in ADCOF and ADCGN with an external AD845 op amp as an input buffer stage as shown in Figure 28. Based on external ADC system components, the user may need to execute a system calibration to remove external endpoint errors and achieve these specifications (see the Calibration section). 6 The input signal can be centered on any dc common-mode voltage (VCM) as long as this value is within the ADC voltage input range specified. 7 DAC linearity is calculated using a reduced code range of 100 to 3995. 8 DAC gain error is calculated using a reduced code range of 100 to internal 2.5 V VREF. 9 DAC linearity is calculated using a reduced code range of 100 to 3995. 10 DAC gain error is calculated using a reduced code range of 100 to internal 2.5 V VREF. 11 Endurance is qualified as per JEDEC Standard 22 Method A117 and measured at −40°C, +25°C, +85°C, and +125°C. 12 Retention lifetime equivalent at junction temperature (TJ) = 85°C as per JEDEC Standard 22 Method A117. Retention lifetime derates with junction temperature. 13 Test carried out with a maximum of eight I/Os set to a low output level. 14 Power supply current consumption is measured in normal, pause, and sleep modes under the following conditions: normal mode with 3.6 V supply, pause mode with 3.6 V supply, and sleep mode with 3.6 V supply. 15 IOVDD power supply current decreases typically by 2 mA during a Flash/EE erase cycle. 2 Rev. H | Page 8 of 98 Data Sheet ADuC7023 TIMING SPECIFICATIONS Table 2. I2C Timing in Fast Mode (400 kHz) Parameter tL tH tSHD tDSU tDHD tRSU tPSU tBUF tR tF Description SCL low pulse width SCL high pulse width Start condition hold time Data setup time Data hold time Setup time for repeated start Stop condition setup time Bus-free time between a stop condition and a start condition Rise time for both SCL and SDA Fall time for both SCL and SDA Min 200 100 300 100 0 100 100 1.3 Slave Max Master Typ 1360 1140 Unit ns ns ns ns ns ns ns μs ns ns 740 400 800 300 300 200 Table 3. I2C Timing in Standard Mode (100 kHz) Parameter tL tH tSHD tDSU tDHD tRSU tPSU tBUF tR tF Description SCL low pulse width SCL high pulse width Start condition hold time Data setup time Data hold time Setup time for repeated start Stop condition setup time Bus-free time between a stop condition and a start condition Rise time for both SCL and SDA Fall time for both SCL and SDA tBUF Slave Max Min 4.7 4.0 4.0 250 0 4.7 4.0 4.7 Unit μs ns μs ns μs μs μs μs μs ns 3.45 1 300 tSUP tR MSB tDSU LSB tSHD P S tDHD 2–7 tR tRSU tH 1 SCL (I) MSB tF tDSU tDHD tPSU ACK 8 tL 9 tSUP STOP START CONDITION CONDITION 1 S(R) REPEATED START Figure 2. I2C-Compatible Interface Timing Rev. H | Page 9 of 98 tF 08675-002 SDA (I/O) ADuC7023 Data Sheet Table 4. SPI Master Mode Timing (Phase Mode = 1) Parameter tSL tSH tDAV tDSU tDHD tDF tDR tSR tSF Min Typ (SPIDIV + 1) × tUCLK (SPIDIV + 1) × tUCLK Max 25 1 × tUCLK 2 × tUCLK 5 5 5 5 12.5 12.5 12.5 12.5 tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider. SCLK (POLARITY = 0) tSH tSL tSR tSF SCLK (POLARITY = 1) tDAV tDF MSB MOSI MISO tDR MSB IN BIT 6 TO BIT 1 BIT 6 TO BIT 1 tDSU tDHD Figure 3. SPI Master Mode Timing (Phase Mode = 1) Rev. H | Page 10 of 98 LSB LSB IN 08675-003 1 Description SCLK low pulse width1 SCLK high pulse width1 Data output valid after SCLK edge Data input setup time before SCLK edge1 Data input hold time after SCLK edge1 Data output fall time Data output rise time SCLK rise time SCLK fall time Unit ns ns ns ns ns ns ns ns ns Data Sheet ADuC7023 Table 5. SPI Master Mode Timing (Phase Mode = 0) Parameter tSL tSH tDAV tDOSU tDSU tDHD tDF tDR tSR tSF Min Typ (SPIDIV + 1) × tUCLK (SPIDIV + 1) × tUCLK Max Unit ns ns ns ns ns ns ns ns ns ns 25 75 1 × tUCLK 2 × tUCLK 5 5 5 5 12.5 12.5 12.5 12.5 tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider. SCLK (POLARITY = 0) tSH tSL tSR tSF SCLK (POLARITY = 1) tDAV tDOSU MSB MOSI MISO tDF MSB IN tDSU tDR BIT 6 TO BIT 1 BIT 6 TO BIT 1 LSB LSB IN 08675-004 1 Description SCLK low pulse width1 SCLK high pulse width1 Data output valid after SCLK edge Data output setup before SCLK edge Data input setup time before SCLK edge1 Data input hold time after SCLK edge1 Data output fall time Data output rise time SCLK rise time SCLK fall time tDHD Figure 4. SPI Master Mode Timing (Phase Mode = 0) Rev. H | Page 11 of 98 ADuC7023 Data Sheet Table 6. SPI Slave Mode Timing (Phase Mode = 1) Parameter tSS Description SS to SCLK edge tSL tSH tDAV tDSU tDHD tDF tDR tSR tSF tSFS SCLK low pulse width1 SCLK high pulse width1 Data output valid after SCLK edge Data input setup time before SCLK edge1 Data input hold time after SCLK edge1 Data output fall time Data output rise time SCLK rise time SCLK fall time SS high after SCLK edge Typ Max (SPIDIV + 1) × tUCLK (SPIDIV + 1) × tUCLK 25 1 × tUCLK 2 × tUCLK 5 5 5 5 12.5 12.5 12.5 12.5 0 tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider. SS tSFS tSS SCLK (POLARITY = 0) tSH tSL tSR tSF SCLK (POLARITY = 1) tDAV tDF MSB MOSI MISO MSB IN tDR BIT 6 TO BIT 1 BIT 6 TO BIT 1 tDSU LSB LSB IN 08675-005 1 Min 200 tDHD Figure 5. SPI Slave Mode Timing (Phase Mode = 1) Rev. H | Page 12 of 98 Unit ns ns ns ns ns ns ns ns ns ns ns Data Sheet ADuC7023 Table 7. SPI Slave Mode Timing (Phase Mode = 0) Parameter tSS Description SS to SCLK edge tSL tSH tDAV tDSU tDHD tDF tDR tSR tSF tDOCS tSFS SCLK low pulse width1 SCLK high pulse width1 Data output valid after SCLK edge Data input setup time before SCLK edge1 Data input hold time after SCLK edge1 Data output fall time Data output rise time SCLK rise time SCLK fall time Data output valid after SS edge SS high after SCLK edge Typ Max Unit ns (SPIDIV + 1) × tUCLK (SPIDIV + 1) × tUCLK ns ns ns ns ns ns ns ns ns ns ns 25 1 × tUCLK 2 × tUCLK 5 5 5 5 12.5 12.5 12.5 12.5 25 0 tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider. SS tSFS tSS SCLK (POLARITY = 0) tSH tSL tSR tSF SCLK (POLARITY = 1) tDAV tDOCS tDF MSB MOSI MISO MSB IN tDSU tDR BIT 6 TO BIT 1 BIT 6 TO BIT 1 LSB LSB IN 08675-006 1 Min 200 tDHD Figure 6. SPI Slave Mode Timing (Phase Mode = 0) Rev. H | Page 13 of 98 ADuC7023 Data Sheet ABSOLUTE MAXIMUM RATINGS AGND = GNDREF, TA = 25°C, unless otherwise noted. Table 8. Parameter AVDD to IOVDD AGND to DGND IOVDD to DGND, AVDD to AGND Digital Input Voltage to DGND1 Digital Output Voltage to DGND1 Shared Analog/Digital Inputs to AGND2 VREF to AGND Analog Inputs to AGND Analog Outputs to AGND Operating Temperature Range, Industrial Storage Temperature Range Junction Temperature θJA Thermal Impedance 40-Lead LFCSP 32-Lead LFCSP 36-Lead WLCSP Peak Solder Reflow Temperature SnPb Assemblies (10 sec to 30 sec) RoHS Compliant Assemblies (20 sec to 40 sec) Rating −0.3 V to +0.3 V −0.3 V to +0.3 V −0.3 V to +6 V −0.3 V to +5.3 V −0.3 V to IOVDD + 0.3 V −0.3 V to AVDD + 0.3 V −0.3 V to AVDD + 0.3 V −0.3 V to AVDD + 0.3 V −0.3 V to AVDD + 0.3 V −40°C to +125°C −65°C to +150°C 150°C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Only one absolute maximum rating can be applied at any one time. ESD CAUTION 26°C/W 32.5°C/W 50°C/W 240°C 260°C 1 These limits apply to the P0.0, P0.1, P0.2, P0.3, P0.4, P0.5, P0.6, P0.7, P1.0, P1.1, P1.6, and P1.7 pins. 2 These limits apply to the P1.2, P1.3, P1.4, P1.5, P2.0, P2.2, P2.3, and P2.4 pins. Rev. H | Page 14 of 98 Data Sheet ADuC7023 40 39 38 37 36 35 34 33 32 31 32 31 30 29 28 27 26 25 AGND ADC3/CMP1 ADC2/CMP0 ADC1 ADC0 VREF P1.3/ADC5/IRQ3/PLAI[4] P1.2/ADC4/IRQ2/PLAI[3]/ECLK P2.4/ADC9/PLAI[10] P2.3/ADC8/PLAO[7] AGND ADC3/CMP1 ADC2/CMP0 ADC1 ADC0 VREF P1.3/ADC5/IRQ3/PLAI[4] P1.2/ADC4/IRQ2/PLAI[3]/ECLK PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 P0.5/SDA0/PLAI[1]/COMPOUT 8 ADuC7023 TOP VIEW (Not to Scale) 24 23 22 21 20 19 18 17 P0.3/PLAO[9]/TCK P0.2/PLAO[8]/TDI P0.1/PLAI[9]/TDO P0.0/nTRST/ADCBUSY/PLAI[8]/BM TMS RTCK XCLKO XCLKI NOTES 1. EXPOSED PAD. THE PADDLE NEEDS TO BE SOLDERED AND EITHER CONNECTED TO AGND OR LEFT FLOATING. 08675-048 NOTES 1. EXPOSED PAD. THE PADDLE NEEDS TO BE SOLDERED AND EITHER CONNECTED TO AGND OR LEFT FLOATING. Figure 8. 32-Lead LFCSP Pin Configuration Figure 7. 40-Lead LFCSP Pin Configuration BALL A1 CORNER 1 2 3 4 5 6 A A1 A2 A3 A4 A5 A6 B B1 B2 B3 B4 B5 B6 C C1 C2 C3 C4 C5 C6 D D1 D2 D3 D4 D5 D6 E E1 E2 E3 E4 E5 E6 F F1 F2 F3 F4 F5 F6 TOP VIEW (BALL SIDE DOWN) Not to Scale 08675-109 ADuC7023 Figure 9. 36-Lead WLCSP Pin Configuration Table 9. Pin Function Descriptions 40LFCSP 0 Pin No. 3236LFCSP WLCSP 0 N/A Mnemonic Exposed Paddle 36 37 38 39 32 28 29 30 31 N/A ADC0 ADC1 ADC2/CMP0 ADC3/CMP1 P2.4/ADC9/PLAI[10] A4 B4 A5 B5 B2 Description Exposed Pad. The paddle needs to be soldered and either connected to AGND or left floating. Single-Ended or Differential Analog Input 0. Single-Ended or Differential Analog Input 1. Single-Ended or Differential Analog Input 2/Comparator Positive Input. Single-Ended or Differential Analog Input 3/Comparator Negative Input. General-Purpose Input and Output Port 2.4/ADC Single-Ended or Differential Analog Input/Programmable Logic Array Input Element 10. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. Rev. H | Page 15 of 98 08675-007 P0.6/MISO/PLAI[2] P0.7/MOSI/PLAO[0] P1.0/SPICLK/PWM0/PLAO[1] P1.1/SS/IRQ1/PWM1/PLAO[2]/TI P1.6/PWM2/SCL1/PLAI[5] P1.7/PWM3/SDA1/PLAI[6] DGND IOVDD LV DD RST 11 12 13 14 15 16 17 18 19 20 TOP VIEW (Not to Scale) AV DD GNDREF DAC0 DAC1 DAC2 DAC3 P0.4/IRQ0/SCL0/PLAI[0]/CONVSTART P2.2/ADC7/SYNC/PLAO[6] P1.5/ADC6/PWMTRIPINPUT /PLAO[4] P0.3/PLAO[9]/TCK P0.2/PLAO[8]/TDI P0.1/PLAI[9]/TDO P0.0/nTRST/ADCBUSYPLAI[8]/BM TMS RTCK XCLKO XCLKI 9 10 11 12 13 14 15 16 ADuC7023 30 29 28 27 26 25 24 23 22 21 P0.6/MISO/SCL1/PLAI[2] P0.7/MOSI/SDA1/PLAO[0] P1.0/SPICLK/PWM0/PLAO[1] P1.1/SS/IRQ1/PWM1/PLAO[2]/T1 DGND IOVDD LV DD RST AV DD 1 GNDREF 2 DAC0 3 DAC1 4 DAC2 5 DAC3 6 P1.4/ADC10/PLAO[3] 7 P2.0/ADC12/PWM4/PLAI[7] 8 P0.4/IRQ0/SCL0/PLAI[0]/CONVSTART 9 P0.5/SDA0/PLAI[1]/COMPOUT 10 ADuC7023 Data Sheet 40LFCSP 31 Pin No. 3236LFCSP WLCSP N/A A1 Mnemonic P2.3/ADC8/PLAO[7] 30 N/A B1 P2.2/ADC7/SYNC/PLAO[6] 8 N/A E6 P2.0/ADC12/PWM4/PLAI[7] 2 2 C4 GNDREF 3 4 5 6 24 3 4 5 6 20 C5 C6 D5 D6 D2 DAC0 DAC1 DAC2 DAC3 TMS 25 21 D1 P0.0/nTRST/ADCBUSY/PLAI[8]/BM 26 22 C1 P0.1/PLAI[9]/TDO 27 23 C2 P0.2/PLAO[8]/TDI Description General-Purpose Input and Output Port 2.3/ADC Single-Ended or Differential Analog Input 8/Programmable Logic Array Output Element 7. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. When used as ADC input, pull-up resistor should be disabled manually. General-Purpose Input and Output Port 2.2/ADC Single-Ended or Differential Analog Input 7/PWM Sync/Programmable Logic Array Output Element 6. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. When used as ADC input, pull-up resistor should be disabled manually. General-Purpose Input and Output Port 2.0/ADC Single-Ended or Differential Analog Input 12/PWM Output 4/Programmable Logic Array Input Element 7. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. When used as an ADC input, it is not possible to disable the internal pull-up resister. This means that this pin has a higher leakage current value than other analog input pins. Ground Voltage Reference for the ADC. For optimal performance, the analog power supply should be separated from DGND. DAC0 Voltage Output or ADC Input. DAC1 Voltage Output or ADC Input. DAC2 Voltage Output DAC3 Voltage Output Test Mode Select, JTAG Test Port Input. Debug and download access. This pin has an internal pull-up resistor to IOVDD. In some cases an external pull-up resistor is also required to ensure the part does not enter an erroneous state. This is a multifunction pin as follows: General-Purpose Input and Output Port 0.0. By default, this pin is configured as GPIO. JTAG Reset Input. Debug and download access. If this pin is held low, JTAG access is not possible because the JTAG interface is held in reset and P0.1/P0.2/P0.3 are configured as GPIO pins. ADC Busy Signal. Programmable Logic Array Input Element 8. Boot Mode Entry Pin. The ADuC7023 enters I2C download mode if BM is low at reset with a flash address 0x80014 = 0xFFFFFFFFF. The ADuC7023 executes code if BM is pulled high at reset or if BM is low at reset with a flash address 0x80014 not equal to 0xFFFFFFFFF. The default value of this pin depends on the level of P0.0/BM. If P0.0/ BM = 0, this pin defaults to a general purpose input. If P0.0/BM = 1, this pin defaults to a JTAG test data output pin and does not work as a GPIO. This is a multifunction pin as follows: General-Purpose Input and Output Port 0.1. Programmable Logic Array Input Element 9. Test Data Out, JTAG Test Port Output. Debug and download access. When debugging the part via JTAG, this pin must not be toggled by user code, and the GP0CON/GP0DAT register bits affecting this pin must not be changed as doing so disables JTAG access. The default value of this pin depends on the level of P0.0/BM. If P0.0/ BM = 0, this pin defaults to a general purpose input. If P0.0/BM = 1, this pin defaults to a JTAG test data input pin and does not work as a GPIO. This is a multifunction pin as follows: General-Purpose Input and Output Port 0.2. Programmable Logic Array Output Element 8. Test Data In, JTAG Test Port Input. Debug and download access. When debugging the part via JTAG, this pin must not be toggled by user code, and the GP0CON/GP0DAT register bits affecting this pin must not be changed as doing so disables JTAG access. Rev. H | Page 16 of 98 Data Sheet ADuC7023 40LFCSP 28 Pin No. 3236LFCSP WLCSP 24 C3 Mnemonic P0.3/PLAO[9]/TCK 17 18 19 13 14 15 E3 F3 D3 DGND IOVDD LVDD 20 23 16 19 F2 E1 RST RTCK 9 7 F6 P0.4/IRQ0/SCL0/PLAI[0]/CONV 10 8 E5 P0.5/SDA0/PLAI[1]/COMPOUT 9 F5 P0.6/MISO/SCL1/PLAI[2] 10 D4 P0.7/MOSI/SDA1/PLAO[0] 11 P0.6/MISO/PLAI[2] 12 P0.7/MOSI/PLAO[0] 21 17 F1 XCLKI 22 16 18 N/A E2 N/A XCLKO P1.7/PWM3/SDA1/PLAI[6] 15 N/A N/A P1.6/PWM2/SCL1/PLAI[5] 29 N/A N/A P1.5/ADC6/PWMTRIPINPUT/PLAO[4] 7 N/A N/A P1.4/ADC10/PLAO[3] Description The default value of this pin depends on the level of P0.0/BM. If P0.0/BM = 0, this pin defaults to a general purpose input. If P0.0/BM = 1, this pin defaults to a JTAG test data clock pin. This is a multifunction pin as follows: General-Purpose Input and Output Port 0.3. Programmable Logic Array Output Element 9. Test Clock, JTAG Test Port Clock Input. Debug and download access. When debugging the part via JTAG, this pin must not be toggled by user code and the GP0CON/GP0DAT register bits affecting this pin must not be changed as doing so disables JTAG access. Digital Ground. 3.3 V Supply for GPIO and Input of the On-Chip Voltage Regulator. 2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 μF capacitor to DGND only. Reset Input, Active Low. Return JTAG Clock Signal. This is not the standard JTAG clock signal. It is an output signal from the JTAG controller. If using a 20-lead JTAG header, connect to Pin 11. General-Purpose Input and Output Port 0.4/External Interrupt Request 0/ I2C0 Clock Signal/Programmable Logic Array Input Element 0/ADC External Convert Start. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. General-Purpose Input and Output Port 0.5/I2C0 Data Signal/ Programmable Logic Array Input Element 1/Voltage Comparator Output. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. General-Purpose Input and Output Port 0.6/SPI MISO Signal/I2C1 Clock On 32-Lead and 36-Ball Packages/Programmable Logic Array Input Element 2. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. General-Purpose Input and Output Port 0.7/SPI MOSI Signal/I2C1 Data Signal On 32-Lead and 36-Ball Packages/Programmable Logic Array Output Element 0. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. General-Purpose Input and Output Port 0.6/SPI MISO Signal/Programmable Logic Array Input Element 2. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. General-Purpose Input and Output Port 0.7/SPI MOSI Signal/Programmable Logic Array Output Element 0. By default this pin is configured as a digital input with a weak pull-up reisistor enabled. Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits. Connect to DGND if unused. Output from the Crystal Oscillator Inverter. Leave unconnected if unused. General-Purpose Input and Output Port 1.7/PWM Output 3/I2C1 Data Signal/Programmable Logic Array Input Element 6. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. General-Purpose Input and Output Port 1.6/PWM Output 2/I2C1 Clock Signal/Programmable Logic Array Input Element 5. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. General-Purpose Input and Output Port 1.5/ADC Single-Ended or Differential Analog Input 6/PWMTRIPINPUT/Programmable Logic Array Output Element 4. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. When used as ADC input, the pull-up resistor should be disabled manually. General-Purpose Input and Output Port 1.4/ADC Single-Ended or Differential Analog Input 10/Programmable Logic Array Output Element 3. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. When used as ADC input, the pull-up resistor should be disabled manually. Rev. H | Page 17 of 98 ADuC7023 Data Sheet 40LFCSP 34 Pin No. 3236LFCSP WLCSP 26 A3 Mnemonic P1.3/ADC5/IRQ3/PLAI[4] 33 25 A2 P1.2/ADC4/IRQ2/PLAI[3]/ECLK/ 14 12 F4 P1.1/SS/IRQ1/PWM1/PLAO[2]/T1 13 11 E4 P1.0/SCLK/PWM0/PLAO[1] 35 27 B3 VREF 40 1 32 1 A6 B6 AGND AVDD Description General-Purpose Input and Output Port 1.3/ADC Single-Ended or Differential Analog Input 5/External Interrupt Request 3/ Programmable Logic Array Input Element 4. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. When used as ADC input, the pull-up resistor should be disabled manually. General-Purpose Input and Output Port 1.2/ADC Single-Ended or Differential Analog Input 4/External Interrupt Request 2/ Programmable Logic Array Input Element 3/Input-Output for External Clock. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. When used as ADC input, the pull-up resistor should be disabled manually. General-Purpose Input and Output Port 1.1/SPI Interface Slave Select (Active Low)/External Interrupt Request 1/PWM Output 1/ Programmable Logic Array Output Element 2/Timer 1 Input Clock. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. General-Purpose Input and Output Port 1.0/SPI Interface Clock Signal/ PWM Output 0/Programmable Logic Array Output Element 1. By default, this pin is configured as a digital input with a weak pull-up resistor enabled. 2.5 V Internal Voltage Reference. Must be connected to a 0.47 μF capacitor when using the internal reference. Analog Ground. Ground reference point for the analog circuitry. 3.3 V Analog Power. Rev. H | Page 18 of 98 Data Sheet ADuC7023 1.2 0.5 1.0 0.4 0.8 0.3 0.6 0.2 0.4 0.1 0 –0.1 –0.2 –0.4 –0.3 –0.6 –0.4 –0.8 500 1000 3500 –1.0 4095 20 0.4 0 SINAD, THD AND PHSN OF ADC (dB) 0.6 0.2 0 –0.2 –0.4 –0.6 –0.8 500 1000 1500 2000 2500 3000 ADC CODES SAMPLING RATE = 950kSPS WORST CASE POSITIVE = 0.57, CODE = 4063 WORST CASE NEGATIVE = –0.90, CODE = 3356 3500 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 1500 2000 2500 3000 ADC CODES SAMPLING RATE = 950kSPS WORST CASE POSITIVE = 0.64, CODE = 3583 WORST CASE NEGATIVE = –0.61, CODE = 1830 3500 4095 08675-051 1000 4095 –40 –60 –80 –100 –200 20,000 40,000 60,000 FREQUENCY (Hz) 80,000 104,400 Figure 14. SINAD, THD, and PHSN of ADC , Internal 2.5 V Reference Used 0.5 500 3500 –20 0 0.6 0 1500 2000 2500 3000 ADC CODES SAMPLING RATE = 950kSPS WORST CASE POSITIVE = 1.09, CODE = 4032 WORST CASE NEGATIVE = –0.98, CODE = 3422 –400 4095 Figure 11. Typical INL, fADC = 950 kSPS, Internal Reference Used –0.6 1000 08675-050 0 500 Figure 13. Typical INL, fADC = 950 kSPS, External 1.0 V Reference Used Figure 10. Typical DNL, fADC = 950 kSPS, Internal Reference Used –1.0 0 08675-053 1500 2000 2500 3000 ADC CODES SAMPLING RATE = 950kSPS WORST CASE POSITIVE = 0.63, CODE = 2364 WORST CASE NEGATIVE = –0.46, CODE = 2363 INL (LSB) 0 –0.2 0 DNL (LSB) 0.2 08675-052 INL (LSB) 0.6 08675-049 DNL (LSB) TYPICAL PERFORMANCE CHARACTERISTICS Figure 12. Typical DNL, fADC = 950 kSPS, External 1.0 V Reference Used Rev. H | Page 19 of 98 ADuC7023 Data Sheet TERMINOLOGY ADC SPECIFICATIONS The ratio is dependent upon the number of quantization levels in the digitization process; the more levels, the smaller the quantization noise. Integral Nonlinearity (INL) The maximum deviation of any code from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are zero scale, a point ½ LSB below the first code transition, and full scale, a point ½ LSB above the last code transition. The theoretical signal to (noise + distortion) ratio for an ideal N-bit converter with a sine wave input is given by Differential Nonlinearity (DNL) The difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC. Total Harmonic Distortion The ratio of the rms sum of the harmonics to the fundamental. Signal to (Noise + Distortion) = (6.02 N + 1.76) dB Thus, for a 12-bit converter, this is 74 dB. DAC SPECIFICATIONS Offset Error The deviation of the first code transition (0000 . . . 000) to (0000 . . . 001) from the ideal, that is, +½ LSB. Relative Accuracy Otherwise known as endpoint linearity, relative accuracy is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero error and full-scale error. Gain Error The deviation of the last code transition from the ideal AIN voltage (full scale − 1.5 LSB) after the offset error has been adjusted out. Signal to (Noise + Distortion) Ratio The measured ratio of signal to (noise + distortion) at the output of the ADC. The signal is the rms amplitude of the fundamental. Noise is the rms sum of all nonfundamental signals up to half the sampling frequency (fS/2), excluding dc. Voltage Output Settling Time The amount of time it takes the output to settle to within a 1 LSB level for a full-scale input change. Rev. H | Page 20 of 98 Data Sheet ADuC7023 OVERVIEW OF THE ARM7TDMI CORE The ARM7® core is a 32-bit reduced instruction set computer (RISC). It uses a single 32-bit bus for instruction and data. The length of the data can be 8 bits, 16 bits, or 32 bits. The length of the instruction word is 32 bits. The ARM7TDMI is an ARM7 core with four additional features: T support for the thumb (16-bit) instruction set, D support for debug, M support for long multiplications, and I includes the EmbeddedICE module to support embedded system debugging. EXCEPTIONS ARM supports five types of exceptions and a privileged processing mode for each type. The five types of exceptions are:   THUMB MODE (T) An ARM instruction is 32 bits long. The ARM7TDMI processor supports a second instruction set that has been compressed into 16 bits, called the Thumb® instruction set. Faster execution from 16-bit memory and greater code density can usually be achieved by using the Thumb instruction set instead of the ARM instruction set, which makes the ARM7TDMI core particularly suitable for embedded applications. However, the Thumb mode has two limitations. Thumb code typically requires more instructions for the same job. As a result, ARM code is usually best for maximizing the performance of time critical code. Also, the Thumb instruction set does not include some of the instructions needed for exception handling, which automatically switches the core to ARM code for exception handling. See the ARM7TDMI user guide for details on the core architecture, the programming model, and both the ARM and ARM Thumb instruction sets. LONG MULTIPLY (M) The ARM7TDMI instruction set includes four extra instructions that perform 32-bit by 32-bit multiplication with a 64-bit result, and 32-bit by 32-bit multiplication-accumulation (MAC) with a 64-bit result. These results are achieved in fewer cycles than required on a standard ARM7 core.    Normal interrupt or IRQ. This is provided to service general-purpose interrupt handling of internal and external events. Fast interrupt or FIQ. This is provided to service data transfers or communication channels with low latency. FIQ has priority over IRQ. Memory abort. Attempted execution of an undefined instruction. Software interrupt instruction (SWI). This can be used to make a call to an operating system. Typically, the programmer defines interrupt as IRQ, but for higher priority interrupt, that is, faster response time, the programmer can define interrupt as FIQ. ARM REGISTERS ARM7TDMI has a total of 37 registers: 31 general-purpose registers and six status registers. Each operating mode has dedicated banked registers. When writing user-level programs, 15 general-purpose 32-bit registers (R0 to R14), the program counter (R15), and the current program status register (CPSR) are usable. The remaining registers are only used for system-level programming and exception handling. When an exception occurs, some of the standard registers are replaced with registers specific to the exception mode. All exception modes have replacement banked registers for the stack pointer (R13) and the link register (R14) as represented in Figure 15. The fast interrupt mode has more registers (R8 to R12) for fast interrupt processing. This means the interrupt processing can begin without the need to save or restore these registers, and thus save critical time in the interrupt handling process. EmbeddedICE (I) R0 EmbeddedICE provides integrated on-chip support for the core. The EmbeddedICE module contains the breakpoint and watchpoint registers that allow code to be halted for debugging purposes. These registers are controlled through the JTAG test port. R1 When a breakpoint or watchpoint is encountered, the processor halts and enters debug state. Once in a debug state, the processor registers can be inspected as well as the Flash/EE, SRAM, and memory mapped registers. R8 USABLE IN USER MODE SYSTEM MODES ONLY R2 R3 R4 R5 R6 R7 R9 R10 R11 R12 R13 R14 R8_FIQ R9_FIQ R10_FIQ R11_FIQ R12_FIQ R13_FIQ R14_FIQ R13_SVC R14_SVC R13_ABT R14_ABT R13_IRQ R14_IRQ R13_UND R14_UND R15 (PC) USER MODE SPSR_FIQ FIQ MODE SPSR_SVC SVC MODE SPSR_ABT ABORT MODE SPSR_IRQ IRQ MODE Figure 15. Register Organization Rev. H | Page 21 of 98 SPSR_UND UNDEFINED MODE 08675-008 CPSR ADuC7023 Data Sheet More information relative to the model of the programmer and the ARM7TDMI core architecture can be found in ARM7TDMI technical and ARM architecture manuals available directly from ARM Ltd. INTERRUPT LATENCY The worst-case latency for a fast interrupt request (FIQ) consists of the following: the longest time the request can take to pass through the synchronizer, the time for the longest instruction to complete (the longest instruction is an LDM) that loads all the registers including the PC, and the time for the data abort and FIQ entry. At the end of this time, the ARM7TDMI executes the instruction at 0x1C (FIQ interrupt vector address). The maximum total time is 50 processor cycles, which is just under 1.2 μs in a system using a continuous 41.78 MHz processor clock. The maximum interrupt request (IRQ) latency calculation is similar but must allow for the fact that FIQ has higher priority and could delay entry into the IRQ handling routine for an arbitrary length of time. This time can be reduced to 42 cycles if the LDM command is not used. Some compilers have an option to compile without using this command. Another option is to run the part in thumb mode where the time is reduced to 22 cycles. The minimum latency for FIQ or IRQ interrupts is a total of five cycles, which consist of the shortest time the request can take through the synchronizer, plus the time to enter the exception mode. The ARM7TDMI always runs in ARM (32-bit) mode when in privileged modes, for example, when executing interrupt service routines. Rev. H | Page 22 of 98 Data Sheet ADuC7023 MEMORY ORGANIZATION The ADuC7023 incorporates two separate blocks of memory: 8 kB of SRAM and 64 kB of on-chip Flash/EE memory; 62 kB of on-chip Flash/EE memory is available to the user, and the remaining 2 kB are reserved for the factory configured boot page. These two blocks are mapped as shown in Figure 16. 0xFFFFFFFF MMRs 0xFFFF0000 RESERVED 0x0008FFFF FLASH/EE 0x00080000 The total 64 kB of Flash/EE memory is organized as 32k × 16 bits; 31k × 16 bits is user space and 1 k × 16 bits is reserved for the on-chip kernel. The page size of this Flash/EE memory is 512 bytes. 62 kilobytes of Flash/EE memory are available to the user as code and nonvolatile data memory. There is no distinction between data and program because ARM code shares the same space. The real width of the Flash/EE memory is 16 bits, which means that in ARM mode (32-bit instruction), two accesses to the Flash/EE are necessary for each instruction fetch. It is, therefore, recommended to use Thumb mode when executing from Flash/EE memory for optimum access speed. The maximum access speed for the Flash/EE memory is 41.78 MHz in Thumb mode and 20.89 MHz in full ARM mode. More details about Flash/EE access time are outlined later in the Execution Time from SRAM and Flash/EE section. SRAM 08675-009 RESERVED 0x00011FFF SRAM 0x00010000 0x0000FFFF REMAPPABLE MEMORY SPACE 0x00000000 (FLASH/EE OR SRAM) Figure 16. Physical Memory Map By default, after a reset, the Flash/EE memory is mirrored at Address 0x00000000. It is possible to remap the SRAM at Address 0x00000000 by clearing Bit 0 of the Remap MMR. This remap function is described in more detail in the Flash/EE Memory section. MEMORY ACCESS The ARM7 core sees memory as a linear array of the 232 byte location where the different blocks of memory are mapped as outlined in Figure 16. The ADuC7023 memory organizations are configured in little endian format, which means that the least significant byte is located in the lowest byte address, and the most significant byte is in the highest byte address. BIT 0 BYTE 3 . . . BYTE 2 . . . BYTE 1 . . . BYTE 0 . . . B A 9 8 7 6 5 4 0x00000004 3 2 1 0 0x00000000 0xFFFFFFFF 32 BITS 08675-010 BIT 31 FLASH/EE MEMORY Eight kilobytes of SRAM are available to the user, organized as 2k × 32 bits, that is, two words. ARM code can run directly from SRAM at 41.78 MHz, given that the SRAM array is configured as a 32-bit wide memory array. More details about SRAM access time are outlined later in the Execution Time from SRAM and Flash/EE section. MEMORY MAPPED REGISTERS The memory mapped register (MMR) space is mapped into the upper two pages of the memory array and accessed by indirect addressing through the ARM7 banked registers. The MMR space provides an interface between the CPU and all on-chip peripherals. All registers, except the core registers, reside in the MMR area. All shaded locations shown in Figure 18 are unoccupied or reserved locations and should not be accessed by user software. Table 10 to Table 23 show the full MMR memory map. The access time for reading from or writing to an MMR depends on the advanced microcontroller bus architecture (AMBA) bus used to access the peripheral. The processor has two AMBA buses: advanced high performance bus (AHB) used for system modules and advanced peripheral bus (APB) used for lower performance peripheral. Access to the AHB is one cycle, and access to the APB is two cycles. All peripherals on the ADuC7023 are on the APB except the Flash/EE memory and the GPIOs. Figure 17. Little Endian Format Rev. H | Page 23 of 98 ADuC7023 Data Sheet 0xFFFFFFFF 0xFFFFF820 0xFFFFF800 FLASH CONTROL INTERFACE 0xFFFFF46C GPIO 0xFFFFF400 0xFFFF0FBF PWM 0xFFFF0F80 0xFFFF0B54 PLA 0xFFFF0B00 0xFFFF0A14 SPI 0xFFFF0A00 0xFFFF0948 I2C1 0xFFFF0900 0xFFFF0848 I2C0 0xFFFF0800 0xFFFF0620 0xFFFF0600 DAC 0xFFFF0538 ADC 0xFFFF0500 0xFFFF0490 0xFFFF048C 0xFFFF0448 0xFFFF0440 0xFFFF0420 0xFFFF0404 0xFFFF0370 0xFFFF0360 0xFFFF0334 0xFFFF0320 0xFFFF0310 BAND GAP REFERENCE POWER SUPPLY MONITOR PLL AND OSCILLATOR CONTROL WATCHDOG TIMER GENERAL-PURPOSE TIMER TIMER0 0xFFFF0300 0xFFFF0220 0xFFFF0140 0xFFFF0000 REMAP AND SYSTEM CONTROL INTERRUPT CONTROLLER 08675-011 0xFFFF0238 Figure 18. Memory Mapped Registers Rev. H | Page 24 of 98 Data Sheet ADuC7023 Table 10. IRQ Address Base = 0xFFFF0000 Address 0x0000 0x0004 0x0008 0x000C 0x0010 0x0014 Name IRQSTA IRQSIG IRQEN IRQCLR SWICFG IRQBASE Byte 4 4 4 4 4 4 Access Type R R R/W W W R/W 0x001C IRQVEC 4 R 0x00000000 0x0020 IRQP0 4 R/W 0x00000000 0x0024 IRQP1 4 R/W 0x00000000 0x0028 IRQP2 4 R/W 0x00000000 0x002C 0x0030 0x0034 RESERVED IRQCONN IRQCONE 4 4 4 R/W R/W R/W 0x00000000 0x00000000 0x00000000 0x0038 0x003C IRQCLRE IRQSTAN 4 4 R/W R/W 0x00000000 0x00000000 0x0100 0x0104 0x0108 0x010C 0x011C 0x013C FIQSTA FIQSIG FIQEN FIQCLR FIQVEC FIQSTAN 4 4 4 4 4 4 R R R/W W R RW 0x00000000 Default Value 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 Description Active IRQ source. Current state of all IRQ sources (enabled and disabled). Enabled IRQ sources. MMR to disable IRQ sources. Software interrupt configuration MMR. Base address of all vectors. Points to start of a 64-byte memory block which can contain up to 32 pointers to separate subroutine handlers. This register contains the subroutine address for the currently active IRQ source. This register contains the interrupt priority setting for Interrupt Source 1 to Interrupt Source 7. An interrupt can have a priority setting of 0 to 7. This register contains the interrupt priority setting for Interrupt Source 8 to Interrupt Source 15. This register contains the interrupt priority setting for Interrupt Source 16 to Interrupt Source 21. Reserved. Used to enable IRQ and FIQ interrupt nesting. This register configures the external interrupt sources as rising edge, falling edge, or level triggered. Used to clear an edge level triggered interrupt source. This register indicates the priority level of an interrupt that has just caused an interrupt exception. Active FIQ source. Current state of all FIQ sources (enabled and disabled). Enabled FIQ sources. MMR to disable FIQ sources. FIQ interrupt vector. This register indicates the priority level of an FIQ that has just caused an FIQ exception. Table 11. System Control Address Base = 0xFFFF0200 Address 0x0220 0x0230 0x0234 0x0248 0x024C Name Remap2 RSTSTA RSTCLR RSTKEY1 RSTCFG Byte 1 1 1 1 1 Access Type R/W R/W W W R/W Default Value1 0x00 0x01 0x00 0xXX 0x00 0x0250 RSTKEY2 1 W 0xXX 1 2 Description Remap control register. RSTSTA status MMR. RSTCLR MMR for clearing RSTSTA register. 0x76 should be written to this register before writing to RSTCFG. This register allows the DAC and GPIO outputs to retain state after a watchdog or software reset. 0xB1 should be written to this register after writing to RSTCFG. N/A means not applicable. Updated by kernel. Rev. H | Page 25 of 98 ADuC7023 Data Sheet Table 12. Timer Address Base = 0xFFFF0300 Address 0x0300 0x0304 0x0308 0x030C 0x0320 0x0324 0x0328 0x032C 0x0330 0x0360 0x0364 0x0368 0x036C 1 Name T0LD T0VAL T0CON T0CLRI T1LD T1VAL T1CON T1CLRI T1CAP T2LD T2VAL T2CON T2CLRI Byte 2 2 2 1 4 4 4 1 4 2 2 2 1 Access Type R/W R R/W W R/W R R/W W R R/W R R/W W Default Value1 0x0000 0xFFFF 0x0000 0xXX 0x00000000 0xFFFFFFFF 0x00000000 0xXX 0x00000000 0x0000 0xFFFF 0x0000 0xXX Description Timer0 load register. Timer0 value register. Timer0 control MMR. Timer0 interrupt clear register. Timer1 load register. Timer1 value register Timer1 control MMR. Timer1 interrupt clear register. Timer1 capture register. Timer2 load register. Timer2 value register. Timer2 control MMR. Timer2 interrupt clear register. Default Value1 0xXXXX 0x00 0xXXXX 0xXXXX 0x21 0xXXXX 0xXXXX 0x0004 0xXXXX 0x0008 0x0000 Description POWCON0 prewrite key. Power control and core speed control register. POWCON0 postwrite key. PLLCON prewrite key. PLL clock source selection MMR. PLLCON postwrite key. POWCON1 prewrite key. Power control and core speed control register. POWCON1 postwrite key. Power supply monitor control register. Comparator control register. Default Value 0x0600 0x00 0x01 0x00 0x00000000 Description ADC control MMR. ADC positive channel selection register. ADC negative channel selection register. ADC status MMR. ADC data output MMR. N/A means not applicable. Table 13. PLL/PSM Base Address = 0xFFFF0400 Address 0x0404 0x0408 0x040C 0x0410 0x0414 0x0418 0x0434 0x0438 0x043C 0x0440 0x0444 1 Name POWKEY1 POWCON0 POWKEY2 PLLKEY1 PLLCON PLLKEY2 POWKEY3 POWCON1 POWKEY4 PSMCON CMPCON Byte 2 1 2 2 1 2 2 2 2 2 2 Access Type W R/W W W R/W W W R/W W R/W R/W N/A means not applicable. Table 14. Reference Base Address = 0xFFFF0480 Address: 0x048C Name: REFCON Byte: 1 Access type: Read/write Default value: 0x00 Description: Reference control register. Table 15. ADC Address Base = 0xFFFF0500 Address 0x0500 0x0504 0x0508 0x050C 0x0510 Name ADCCON ADCCP ADCCN ADCSTA ADCDAT Byte 2 1 1 1 4 Access Type R/W R/W R/W R R Rev. H | Page 26 of 98 Data Sheet Address 0x0514 0x0530 0x0534 0x0544 0x0548 Name ADCRST ADCGN ADCOF TSCON TEMPREF ADuC7023 Byte 1 2 2 1 2 Access Type R/W R/W R/W R/W R/W Default Value 0x00 Factory configured Factory configured 0x00 Factory configured Description ADC reset MMR. ADC gain calibration MMR. ADC offset calibration MMR. Temperature sensor chopping enable register. Temperature sensor reference value. Default Value 0x00 0x00000000 0x00 0x00000000 0x00 0x00000000 0x00 0x00000000 0x00 0x0000 0x0000 Description DAC0 control MMR. DAC0 data MMR. DAC1 control MMR. DAC1 data MMR. DAC2 control MMR. DAC2 data MMR. DAC3 control MMR. DAC3 data MMR. DAC Configuration MMR DAC Key0 MMR DAC Key1 MMR Table 16. DAC Address Base = 0xFFFF0600 Address 0x0600 0x0604 0x0608 0x060C 0x0610 0x0614 0x0618 0x061C 0x0654 0x0650 0x0658 Name DAC0CON DAC0DAT DAC1CON DAC1DAT DAC2CON DAC2DAT DAC3CON DAC3DAT DACBCFG DACBKEY0 DACBKEY1 Byte 1 4 1 4 1 4 1 4 1 2 2 Access Type R/W R/W R/W R/W R/W R/W R/W R/W R/W W W Table 17. I2C0 Base Address = 0XFFFF0800 Address 0x0800 0x0804 0x0808 0x080C 0x0810 Name I2C0MCON I2C0MSTA I2C0MRX I2C0MTX I2C0MCNT0 Byte 2 2 1 1 2 Access Type R/W R R W R/W Default Value 0x0000 0x0000 0x00 0x00 0x0000 0x0814 I2C0MCNT1 1 R 0x00 0x0818 I2C0ADR0 1 R/W 0x00 0x081C I2C0ADR1 1 R/W 0x00 0x0824 0x0828 0x082C 0x0830 0x0834 0x0838 0x083C 0x0840 0x0844 0x0848 0x084C I2C0DIV I2C0SCON I2C0SSTA I2C0SRX I2C0STX I2C0ALT I2C0ID0 I2C0ID1 I2C0ID2 I2C0ID3 I2C0FSTA 2 2 2 1 1 1 1 1 1 1 2 R/W R/W R/W R W R/W R/W R/W R/W R/W R/W 0x1F1F 0x0000 0x0000 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x0000 Description I2C0 master control register. I2C0 master status register. I2C0 master receive register. I2C0 master transmit register. I2C0 master read count register. Write the number of required bytes into this register prior to reading from a slave device. I2C0 master current read count register. This register contains the number of bytes already received during a read from slave sequence. I2C0 address byte register. Write the required slave address in here prior to communications. I2C0 address byte register. Write the required slave address in here prior to communications. Used in 10-bit mode only. I2C0 clock control register. Used to configure the SCL frequency. I2C0 slave control register. I2C0 slave status register. I2C0 slave receive register. I2C0 slave transmit register. I2C0 hardware general call recognition register. I2C0 slave ID0 register. Slave bus ID register. I2C0 slave ID1 register. Slave bus ID register. I2C0 slave ID2 register. Slave bus ID register. I2C0 slave ID3 register. Slave bus ID register. I2C0 FIFO status register. Used in both master and slave modes. Default Value 0x0000 0x0000 Description I2C1 master control register. I2C1 master status register. Table 18. I2C1 Base Address = 0XFFFF0900 Address 0x0900 0x0904 Name I2C1MCON I2C1MSTA Byte 2 2 Access Type R/W R Rev. H | Page 27 of 98 ADuC7023 Address 0x0908 0x090C 0x0910 Name I2C1MRX I2C1MTX I2C1MCNT0 Data Sheet Byte 1 1 2 Access Type R W R/W Default Value 0x00 0x00 0x0000 Description I2C1 master receive register. I2C1 master transmit register. I2C1 master read count register. Write the number of required bytes into this register prior to reading from a slave device. Rev. H | Page 28 of 98 Data Sheet ADuC7023 Address 0x0914 Name I2C1MCNT1 Byte 1 Access Type R Default Value 0x00 0x0918 I2C1ADR0 1 R/W 0x00 0x091C I2C1ADR1 1 R/W 0x00 0x0924 0x0928 0x092C 0x0930 0x0934 0x0938 0x093C 0x0940 0x0944 0x0948 0x094C I2C1DIV I2C1SCON I2C1SSTA I2C1SRX I2C1STX I2C1ALT I2C1ID0 I2C1ID1 I2C1ID2 I2C1ID3 I2C1FSTA 2 2 2 1 1 1 1 1 1 1 2 R/W R/W R/W R W R/W R/W R/W R/W R/W R/W 0x1F1F 0x0000 0x0000 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x0000 Description I2C1 master current read count register. This register contains the number of bytes already received during a read from slave sequence. I2C1 address byte register. Write the required slave address in here prior to communications. I2C1 address byte register. Write the required slave address in here prior to communications. Used in 10-bit mode only. I2C1 clock control register. Used to configure the SCL frequency. I2C1 slave control register. I2C1 slave status register. I2C1 slave receive register. I2C1 slave transmit register. I2C1 hardware general call recognition register. I2C1 slave ID0 register. Slave bus ID register. I2C1 slave ID1 register. Slave bus ID register. I2C1 slave ID2 register. Slave bus ID register. I2C1 slave ID3 register. Slave bus ID register. I2C1 FIFO status register. Used in both master and slave modes. Default Value 0x0000 0x00 0xXX 0x00 0x0000 Description SPI status MMR. SPI receive MMR. SPI transmit MMR. SPI baud rate select MMR. SPI control MMR. Default Value 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x00 0x00000000 0x00000000 0x00000000 0x00000000 0x00 Description PLA Element 0 control register. PLA Element 1 control register. PLA Element 2 control register. PLA Element 3 control register. PLA Element 4 control register. PLA Element 5 control register. PLA Element 6 control register. PLA Element 7 control register. PLA Element 8 control register. PLA Element 9 control register. PLA Element 10 control register. PLA Element 11 control register. PLA Element 12 control register. PLA Element 13 control register. PLA Element 14 control register. PLA Element 15 control register. PLA clock select register. PLA interrupt control register. PLA ADC trigger control register. PLA data in register. PLA data out register. PLA lock register. Table 19. SPI Base Address = 0xFFFF0A00 Address 0x0A00 0x0A04 0x0A08 0x0A0C 0x0A10 Name SPISTA SPIRX SPITX SPIDIV SPICON Byte 2 1 1 1 2 Access Type R R W R/W R/W Table 20. PLA Base Address = 0XFFFF0B00 Address 0x0B00 0x0B04 0x0B08 0x0B0C 0x0B10 0x0B14 0x0B18 0x0B1C 0x0B20 0x0B24 0x0B28 0x0B2C 0x0B30 0x0B34 0x0B38 0x0B3C 0x0B40 0x0B44 0x0B48 0x0B4C 0x0B50 0x0B54 Name PLAELM0 PLAELM1 PLAELM2 PLAELM3 PLAELM4 PLAELM5 PLAELM6 PLAELM7 PLAELM8 PLAELM9 PLAELM10 PLAELM11 PLAELM12 PLAELM13 PLAELM14 PLAELM15 PLACLK PLAIRQ PLAADC PLADIN PLADOUT PLALCK Byte 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 4 4 4 4 1 Access Type R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R W Rev. H | Page 29 of 98 ADuC7023 Data Sheet Table 21. PWM Base Address = 0xFFFF0F80 Address 0x0F80 Name PWMCON1 Byte 2 Access Type R/W Default Value 0x0012 0x0F84 0x0F88 0x0F8C 0x0F90 0x0F94 0x0F98 0x0F9C 0x0FA0 0x0FA4 0x0FA8 0x0FB0 0x0FB8 PWM0COM0 PWM0COM1 PWM0COM2 PWM0LEN PWM1COM0 PWM1COM1 PWM1COM2 PWM1LEN PWM2COM0 PWM2COM1 PWM2LEN PWMCLRI 2 2 2 2 2 2 2 2 2 2 2 2 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W W 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 Description PWM Control Register 1. See the Pulse-Width Modulator section for full details. Compare Register 0 for PWM Output 0 and PWM Output 1. Compare Register 1 for PWM Output 0 and PWM Output 1. Compare Register 2 for PWM Output 0 and PWM Output 1. Frequency control for PWM Output 0 and PWM Output 1. Compare Register 0 for PWM Output 2 and PWM Output 3. Compare Register 1 for PWM Output 2 and PWM Output 3. Compare Register 2 for PWM Output 2 and PWM Output 3. Frequency control for PWM Output 2 and PWM Output 3. Compare Register 0 for PWM Output 4. Compare Register 1 for PWM Output 4. Frequency control for PWM Output 4. PWM interrupt clear register. Writing any value to this register clears a PWM interrupt source. Table 22. GPIO Base Address = 0xFFFFF400 Address 0xF400 0xF404 0xF408 0xF420 0xF424 0xF428 0xF42C 0xF430 0xF434 0xF438 0xF43C 0xF440 0xF444 0xF448 0xF44C Name GP0CON GP1CON GP2CON GP0DAT GP0SET GP0CLR GP0PAR GP1DAT GP1SET GP1CLR GP1PAR GP2DAT GP2SET GP2CLR GP2PAR Byte 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Access Type R/W R/W R/W R/W W W R/W R/W W W R/W R/W W W R/W Default Value 0x00001111 0x00000000 0x00000000 0x000000XX 0x000000XX 0x000000XX 0x22220000 0x000000XX 0x000000XX 0x000000XX 0x22000022 0x000000XX 0x000000XX 0x000000XX 0x00000000 Description GPIO Port0 control MMR. GPIO Port1 control MMR. GPIO Port2 control MMR. GPIO Port0 data control MMR. GPIO Port0 data set MMR. GPIO Port0 data clear MMR. GPIO Port0 pull-up disable MMR. GPIO Port1 data control MMR. GPIO Port1 data set MMR. GPIO Port1 data clear MMR. GPIO Port1 pull-up disable MMR. GPIO Port2 data control MMR. GPIO Port2 data set MMR. GPIO Port2 data clear MMR. GPIO Port2 pull-up disable MMR. Default Value 0x20 0x0000 0x07 0xXXXX 0x0000 0xFFFFFF 0x00000000 0xFFFFFFFF Description Flash/EE status MMR. Flash/EE control MMR. Flash/EE control MMR. Flash/EE data MMR. Flash/EE address MMR. Flash/EE LFSR MMR. Flash/EE protection MMR. Flash/EE protection MMR. Table 23. Flash/EE Base Address = 0xFFFFF800 Address 0xF800 0xF804 0xF808 0xF80C 0xF810 0xF818 0xF81C 0xF820 Name FEESTA FEEMOD FEECON FEEDAT FEEADR FEESIGN FEEPRO FEEHIDE Byte 1 2 1 2 2 3 4 4 Access Type R R/W R/W R/W R/W R R/W R/W Rev. H | Page 30 of 98 Data Sheet ADuC7023 ADC CIRCUIT OVERVIEW The converter accepts an analog input range of 0 V to VREF when operating in single-ended mode. In fully differential mode, the input signal must be balanced around a common-mode voltage (VCM) in the 0 V to AVDD range with a maximum amplitude of 2 VREF (see Figure 19). AVDD VCM 2VREF VCM 0 2VREF 08675-012 2VREF Figure 19. Examples of Balanced Signals in Fully Differential Mode A high precision, low drift, factory calibrated, 2.5 V reference is provided on chip. An external reference can also be connected as described later in the Band Gap Reference section. Single or continuous conversion modes can be initiated in the software. An external CONVSTART pin, an output generated from the on-chip PLA, or a Timer0 or Timer1 overflow can also be used to generate a repetitive trigger for ADC conversions. A voltage output from an on-chip band gap reference proportional to absolute temperature can also be routed through the front-end ADC multiplexer. This temperature channel can be selected as an ADC input. This facilitates an internal temperature sensor channel that measures die temperature. TRANSFER FUNCTION Single-Ended Mode 1111 1111 1101 1111 1111 1100 1LSB = FS 4096 0000 0000 0011 0000 0000 0010 0000 0000 0000 0V 1LSB +FS – 1LSB VOLTAGE INPUT 08675-013 0000 0000 0001 Figure 20. ADC Transfer Function in Single-Ended Mode Fully Differential Mode The amplitude of the differential signal is the difference between the signals applied to the VIN+ and VIN– pins (that is, VIN+ − VIN−). The maximum amplitude of the differential signal is, therefore, −VREF to +VREF p-p (that is, 2 × VREF). This is regardless of the common mode (CM). The common mode is the average of the two signals, for example, (VIN+ + VIN–)/2, and is, therefore, the voltage on which the two inputs are centered. This results in the span of each input being CM ±VREF/2. This voltage has to be set up externally, and its range varies with VREF (see the Driving the Analog Inputs section). The output coding is twos complement in fully differential mode with 1 LSB = 2 VREF/4096 or 2 × 2.5 V/4096 = 1.22 mV when VREF = 2.5 V. The output result is ±11 bits, but this is shifted by one to the right. This allows the result in the ADCDAT MMR to be declared as a signed integer when writing C code. The designed code transitions occur midway between successive integer LSB values (that is, 1/2 LSB, 3/2 LSB, 5/2 LSB, … , FS − 3/2 LSB). The ideal input/output transfer characteristic is shown in Figure 21. SIGN BIT 0 1111 1111 1110 0 1111 1111 1100 1LSB = 2 × VREF 4096 0 1111 1111 1010 In single-ended mode, the input range is 0 V to VREF. The output coding is straight binary in single-ended mode with 0 0000 0000 0010 0 0000 0000 0000 1 1111 1111 1110 1 0000 0000 0100 1 0000 0000 0010 1 LSB = FS/4096, or 2.5 V/4096 = 0.61 mV, or 610 μV when VREF = 2.5 V 1 0000 0000 0000 0LSB +VREF – 1LSB –VREF + 1LSB VOLTAGE INPUT (VIN+ – VIN–) Figure 21. ADC Transfer Function in Differential Mode The ideal code transitions occur midway between successive integer LSB values (that is, 1/2 LSB, 3/2 LSB, 5/2 LSB, … , FS − 3/2 LSB). The ideal input/output transfer characteristic is shown in Figure 20. Rev. H | Page 31 of 98 08675-014 VCM 1111 1111 1110 OUTPUT CODE The ADC consists of a 12-bit successive approximation converter based around two capacitor DACs. Depending on the input signal configuration, the ADC can operate in one of two different modes: fully differential mode (for small and balanced signals) or single-ended mode (for any single-ended signals). 1111 1111 1111 OUTPUT CODE The analog-to-digital converter (ADC) incorporates a fast, multichannel, 12-bit ADC. It can operate from 2.7 V to 3.6 V supplies and is capable of providing a throughput of up to 1 MSPS when the clock source is 41.78 MHz. This block provides the user with a multichannel multiplexer, a differential track-and-hold, an on-chip reference, and an ADC. ADuC7023 Data Sheet ACQ TYPICAL OPERATION When configured via the ADC control and channel selection registers, the ADC converts the analog input and provides a 12-bit result in the ADC data register. SIGN BITS ADC BUSY DATA ADCDAT 0 12-BIT ADC RESULT ADCSTA = 0 ADCSTA = 1 ADC INTERRUPT Figure 22. ADC Result Format The same format is used in DACxDAT, simplifying the software. Current Consumption The ADC in standby mode, that is, powered up but not converting, typically consumes 640 μA. The internal reference adds 140 μA. During conversion, the extra current is 0.3 μA multiplied by the sampling frequency (in kHz). Timing Figure 23 gives details of the ADC timing. Users control the ADC clock speed and the number of acquisition clocks in the ADCCON MMR. By default, the acquisition time is eight clocks, and the clock divider is two. The number of extra clocks (such as bit trial or write) is set to 19, which gives a sampling rate of 774 kSPS. For conversion on the temperature sensor, set ADCCON = 0x37A3. When using multiple channels including the temperature sensor, the timing settings revert to the userdefined settings after reading the temperature sensor channel. Figure 23. ADC Timing MMR INTERFACE The ADC is controlled and configured via the eight MMRs described in this section. ADCCON Register Name: ADCCON Address: 0xFFFF0500 Default value: 0x0600 Access: Read/write Function: ADCCON is an ADC control register that allows the programmer to enable the ADC peripheral, select the mode of operation of the ADC (either in singleended mode or fully differential mode), and select the conversion type. This MMR is described in Table 24. Table 24. ADCCON MMR Bit Designations Bit 15 to 14 13 Value 12 to 10 000 001 010 011 100 101 9 to 8 00 01 10 11 08675-016 16 15 CONVSTART 08675-015 27 WRITE ADC CLOCK The top four bits are the sign bits. The 12-bit result is placed from Bit 16 to Bit 27 as shown in Figure 22. Note that in fully differential mode, the result is represented in twos complement format. In single-ended mode, the result is represented in straight binary format. 31 BIT TRIAL Description Reserved. Temperature sensor conversion enable. Set to 1 for temperature sensor conversions and single software conversions. Set to 0 for normal ADC conversions. ADC clock speed. fADC/1. This divider is provided to obtain 1 MSPS ADC with an external clock
ADUC7023BCPZ62I 价格&库存

很抱歉,暂时无法提供与“ADUC7023BCPZ62I”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ADUC7023BCPZ62I
  •  国内价格 香港价格
  • 1+85.232701+10.28560
  • 10+77.0561010+9.29890
  • 25+73.4559025+8.86450
  • 100+63.79030100+7.69800
  • 250+60.89800250+7.34900
  • 490+55.52820490+6.70100
  • 980+50.79300980+6.12960

库存:0