0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HMC561

HMC561

  • 厂商:

    AD(亚德诺)

  • 封装:

    模具

  • 描述:

    IC MULTI BB FREQ DIE

  • 数据手册
  • 价格&库存
HMC561 数据手册
HMC561 v04.0714 FREQUENCY MULTIPLIER - ACTIVE - CHIP GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 21 GHz OUTPUT Typical Applications Features The HMC561 is suitable for: High Output Power: +17 dBm • Clock Generation Applications: SONET OC-192 & SDH STM-64 Low Input Power Drive: 0 to +6 dBm • Point-to-Point & VSAT Radios 100 KHz SSB Phase Noise: -139 dBc/Hz • Test Instrumentation Die Size: 1.6 x 0.9 x 0.1 mm Fo Isolation: 15 dBc @ Fout= 16 GHz • Military & Space General Description Functional Diagram The HMC561 is a x2 active broadband frequency multiplier chip utilizing GaAs PHEMT technology. When driven by a +5 dBm signal, the multiplier provides +17 dBm typical output power from 8 to 21 GHz and the Fo and 3Fo isolations are 15 dBc at 16 GHz. The HMC561 is ideal for use in LO multiplier chains for Pt to Pt & VSAT Radios yielding reduced parts count vs. traditional approaches. The low additive SSB Phase Noise of -139 dBc/Hz at 100 kHz offset helps maintain good system noise performance. Electrical Specifications, TA = +25°C, Vdd1 = Vdd2 = +5V, 5 dBm Drive Level [1] Parameter Min. Frequency Range, Input Typ. Max. 4 - 10.5 Frequency Range, Output Units GHz 8 - 21 GHz 17 dBm Fo Isolation (with respect to output level) 15 dBc 3Fo Isolation (with respect to output level) 15 dBc 4Fo Isolation (with respect to output level) 15 dBc Input Return Loss 15 dB Output Return Loss 12 dB Output Power SSB Phase Noise (100 kHz Offset) Supply Current (Idd) (Vdd1= Vdd2= +5V, Vgg = -1.7V Typ.) 14 -139 98 dBc/Hz 126 mA [1] Adjust Vgg between -2.0 and -1.2V to achieve Idd1 + Idd2 = 98 mA. 1 Information furnished by Analog Devices is believed to be accurate and reliable. However, no For price, delivery,Drive, and to Chelmsford, place orders: Analog Devices, Inc., Foris assumed price, bydelivery andforto place orders: Analog Devices, 2 Elizabeth MA 01824 responsibility Analog Devices its use, nor for any infringements of patents or other Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 rights of third parties that may result from its use. Specifications subject to change without notice. No Phone: 978-250-3343 Fax: 978-250-3373 Phone: Order781-329-4700 On-line at www.hittite.com • Order online at www.analog.com license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Application Support: Phone: 1-800-ANALOG-D Trademarks and registered trademarks are the property of their respective owners. Application Support: Phone: 978-250-3343 or apps@hittite.com HMC561 v04.0714 GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 21 GHz OUTPUT 22 20 20 18 18 16 14 12 10 8 16 14 12 10 8 6 6 4 4 2 2 7 9 11 13 15 17 19 21 7 23 9 11 +25C +85C 17 19 21 23 20 20 15 18 10 16 14 12 10 8 6 4 dBm 2 dBm 6 dBm Isolation @ 5 dBm Drive Level 22 OUTPUT POWER (dBm) OUTPUT POWER (dBm) 15 -2 dBm 0 dBm -55C Output Power vs. Supply Voltage @ 5 dBm Drive Level 5 0 -5 -10 -15 -20 -25 4 -30 2 -35 7 9 11 13 15 17 19 21 23 7 9 11 FREQUENCY (GHz) 4.5V 13 15 17 19 21 23 FREQUENCY (GHz) 5.0V 5.5V F0 2F0 3F0 4F0 SSB Phase Noise Performance, Fout = 16 GHz, Input Power = +3 dBm Output Power vs. Input Power 25 0 SSB PHASE NOISE (dBc/Hz) 20 OUTPUT POWER (dBm) 13 FREQUENCY (GHz) FREQUENCY (GHz) FREQUENCY MULTIPLIER - ACTIVE - CHIP Output Power vs. Drive Level 22 OUTPUT POWER (dBm) OUTPUT POWER (dBm) Output Power vs. Temperature @ 5 dBm Drive Level 15 10 5 0 -5 -10 -15 -5 -2 1 4 7 10 INPUT POWER (dBm) 8GHz 14GHz -30 -60 -90 -120 -150 -180 102 103 104 105 106 107 OFFSET FREQUENCY (Hz) 20GHz Information furnished by Analog Devices is believed to be accurate and reliable. However, no For price, delivery,Drive, and to Chelmsford, place orders: Analog Devices, Inc., Foris assumed price, bydelivery andforto place orders: Analog Devices, 2 Elizabeth MA 01824 responsibility Analog Devices its use, nor for any infringements of patents or other Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 rights of third parties that may result from its use. Specifications subject to change without notice. No Phone: 978-250-3343 Fax: 978-250-3373 Phone: Order781-329-4700 On-line at www.hittite.com • Order online at www.analog.com license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Application Support: Phone: 1-800-ANALOG-D Trademarks and registered trademarks are the property of their respective owners. Application Support: Phone: 978-250-3343 or apps@hittite.com 2 HMC561 v04.0714 GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 21 GHz OUTPUT Input Return Loss vs. Temperature Output Return Loss vs. Temperature 0 -5 -4 INPUT RETURN LOSS (dB) RETURN LOSS (dB) -10 -15 -20 -25 -30 -8 -12 -16 -20 -35 -40 -24 3 4 5 6 7 8 9 FREQUENCY (GHz) 25C 10 11 7 12 9 11 13 15 17 19 21 23 FREQUENCY (GHz) 85C -55C +25C -55C +85C Supply Current vs. Input Power 130 125 120 115 110 Idd (mA) FREQUENCY MULTIPLIER - ACTIVE - CHIP 0 105 100 95 90 85 80 75 70 -10 -6 -2 2 6 10 INPUT POWER (dBm) Absolute Maximum Ratings Typical Supply Current vs. Vdd1, Vdd2 RF Input (Vdd1= Vdd2= +5V) +10 dBm Vdd1, Vdd2 (Vdc) Idd1 + Idd2 (mA) Supply Voltage (Vdd1, Vdd2) +5.5 Vdc 4.5 97 Channel Temperature 175 °C 5.0 98 5.5 99 Continuous Pdiss (T= 85 °C) (derate 10.4 mW/°C above 85 °C) 940 mW Thermal Resistance (channel to die bottom) 95.9 °C/W Storage Temperature -65 to +150 °C Operating Temperature -55 to +85 °C ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS 3 Information furnished by Analog Devices is believed to be accurate and reliable. However, no For price, delivery,Drive, and to Chelmsford, place orders: Analog Devices, Inc., Foris assumed price, bydelivery andforto place orders: Analog Devices, 2 Elizabeth MA 01824 responsibility Analog Devices its use, nor for any infringements of patents or other Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 rights of third parties that may result from its use. Specifications subject to change without notice. No Phone: 978-250-3343 Fax: 978-250-3373 Phone: Order781-329-4700 On-line at www.hittite.com • Order online at www.analog.com license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Application Support: Phone: 1-800-ANALOG-D Trademarks and registered trademarks are the property of their respective owners. Application Support: Phone: 978-250-3343 or apps@hittite.com HMC561 v04.0714 GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 21 GHz OUTPUT Die Packaging Information [1] Standard Alternate [2] GP-2 (Gel Pack) — [1] R  efer to the “Packaging Information” section for die packaging dimensions. [2] Reference this suffix only when ordering alternate die packaging. NOTES: 1. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS]. 2. DIE THICKNESS IS .004” 3. TYPICAL BOND PAD IS .004” SQUARE. 4. TYPICAL BOND SPACING IS .006” CENTER TO CENTER. 5. BOND PAD METALIZATION: GOLD 6. BACKSIDE METALIZATION: GOLD 7. BACKSIDE METAL IS GROUND. 8. NO CONNECTION REQUIRED FOR UNLABELED BOND PADS. Pad Descriptions Pad Number Function Description 1, 4, 8 GND Die bottom must be connected to RF ground. 2 RFIN This pad is AC coupled and matched to 50 Ohms. 3 Vgg Gate control for multiplier. Adjust to achieve Idd of 98 mA. Please follow “MMIC Amplifier Biasing Procedure” Application note. 5, 6 Vdd1, Vdd2 Supply voltage 5V ± 0.5V. 7 RFOUT This pad is AC coupled and matched to 50 Ohms. Interface Schematic Information furnished by Analog Devices is believed to be accurate and reliable. However, no For price, delivery,Drive, and to Chelmsford, place orders: Analog Devices, Inc., Foris assumed price, bydelivery andforto place orders: Analog Devices, 2 Elizabeth MA 01824 responsibility Analog Devices its use, nor for any infringements of patents or other Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 rights of third parties that may result from its use. Specifications subject to change without notice. No Phone: 978-250-3343 Fax: 978-250-3373 Phone: Order781-329-4700 On-line at www.hittite.com • Order online at www.analog.com license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Application Support: Phone: 1-800-ANALOG-D Trademarks and registered trademarks are the property of their respective owners. Application Support: Phone: 978-250-3343 or apps@hittite.com FREQUENCY MULTIPLIER - ACTIVE - CHIP Outline Drawing 4 HMC561 v04.0714 GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 21 GHz OUTPUT FREQUENCY MULTIPLIER - ACTIVE - CHIP Assembly Diagram 5 Information furnished by Analog Devices is believed to be accurate and reliable. However, no For price, delivery,Drive, and to Chelmsford, place orders: Analog Devices, Inc., Foris assumed price, bydelivery andforto place orders: Analog Devices, 2 Elizabeth MA 01824 responsibility Analog Devices its use, nor for any infringements of patents or other Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 rights of third parties that may result from its use. Specifications subject to change without notice. No Phone: 978-250-3343 Fax: 978-250-3373 Phone: Order781-329-4700 On-line at www.hittite.com • Order online at www.analog.com license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Application Support: Phone: 1-800-ANALOG-D Trademarks and registered trademarks are the property of their respective owners. Application Support: Phone: 978-250-3343 or apps@hittite.com HMC561 v04.0714 GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 21 GHz OUTPUT Mounting & Bonding Techniques for Millimeterwave GaAs MMICs 50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2). 0.102mm (0.004”) Thick GaAs MMIC Wire Bond 0.076mm (0.003”) RF Ground Plane Microstrip substrates should be located as close to the die as possible in order to minimize bond wire length. Typical die-to-substrate spacing is 0.076mm to 0.152 mm (3 to 6 mils). 0.127mm (0.005”) Thick Alumina Thin Film Substrate Figure 1. Handling Precautions Follow these precautions to avoid permanent damage. Storage: All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment. 0.102mm (0.004”) Thick GaAs MMIC Wire Bond 0.076mm (0.003”) Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems. RF Ground Plane Static Sensitivity: Follow ESD precautions to protect against ESD strikes. Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up. 0.150mm (0.005”) Thick Moly Tab General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip may have fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers. 0.254mm (0.010”) Thick Alumina Thin Film Substrate Figure 2. Mounting The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat. FREQUENCY MULTIPLIER - ACTIVE - CHIP The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note). Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 °C and a tool temperature of 265 °C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 °C. DO NOT expose the chip to a temperature greater than 320 °C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment. Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer’s schedule. Wire Bonding Ball or wedge bond with 0.025mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 °C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible
HMC561 价格&库存

很抱歉,暂时无法提供与“HMC561”相匹配的价格&库存,您可以联系我们找货

免费人工找货