0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX86160EFN+

MAX86160EFN+

  • 厂商:

    AD(亚德诺)

  • 封装:

    LFLGA18

  • 描述:

    AN INTEGRATED BIO SENSOR SYSTEM

  • 数据手册
  • 价格&库存
MAX86160EFN+ 数据手册
EVALUATION KIT AVAILABLE MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications General Description Benefits and Features The MAX86160 is an integrated heart rate monitor sensor module designed for the demanding requirements of mobile, wearable, and hearable devices. It includes internal LEDs, photo-detector, and low-noise electronics with high-dynamic-range ambient light rejection. This integrated product is a complete system solution, and comes with plug-and-play software and robust algorithms to give meaningful outputs to the user with minimal additional design effort. The MAX86160 sensor module takes care of the most challenging parts of the design for fast time-to-market in mobile and wearable devices. ●● Miniature 4.3mm x 2.8mm x 1.45mm 18-pin Optical Module • Optical-Grade, Robust Glass Eliminates Customer Cover Glass ●● High In-Band 13Hz Signal-to-Noise Ratio (SNR) Reflective Heart Rate Monitor and Medical-Grade Pulse Oximeter ●● Ultra Low-Power Operation for Mobile Device • Zero-Power Shutdown Current (0.7μA, typ) ●● -40°C to +85°C Operating Temperature Range The MAX86160 operates on a 1.8V supply voltage, with a separate 3.3V/5.0V power supply for the internal LEDs. Communication to and from the module occurs entirely through a standard I2C-compatible interface. The module can be shut down through software with near zero standby current, allowing the power rails to remain powered at all times. Applications ●● ●● ●● ●● Wearable and Hearable Devices Smartphones/Tablets Disposable Patch Sensors Fitness Assistant Devices Ordering Information appears at end of data sheet. Simplified Block Diagram ELECTRICAL DIGITAL NOISE CANCELLATION HOST (AP) I2C DATA FIFO LED DRIVERS 19 BIT ADC OPTICAL IR/GREEN LEDS PHOTODIODE SUBJECT GLASS LID AMBIENT LIGHT CANCELLATION MAX86160 19-8601; Rev 0; 9/16 AMBIENT LIGHT PACKAGING MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 18-Lead OESIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 HRM Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 LED Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Proximity Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Interrupt Status 1 (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 A_FULL: FIFO Almost Full Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PPG_RDY: New PPG FIFO Data Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 ALC_OVF: Ambient Light Cancellation Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PROX_INT: Proximity interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PWR_RDY: Power Ready Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Interrupt Status 2 (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 VDD_OOR: VDD Out-of-Range flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Interrupt Enable 1 (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 A_FULL_EN: FIFO Almost Full Flag enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PPG_RDY_EN: New PPG FIFO Data Ready Interrupt enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ALC_OVF_EN: Ambient Light Cancellation (ALC) Overflow Interrupt enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PROX_INT_EN: Proximity Interrupt enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Interrupt Enable 2 (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 VDD_OOR_EN: VDD Out-of-Range Indicator enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FIFO Write Pointer (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FIFO_WR_PTR: FIFO Write Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 OVF_COUNTER: FIFO Overflow Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 FIFO Read Pointer (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 FIFO_RD_PTR: FIFO Read Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 www.maximintegrated.com Maxim Integrated │  2 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications TABLE OF CONTENTS (CONTINUED) FIFO Data Register (0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 FIFO_DATA: FIFO Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 FIFO Configuration (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 A_FULL_CLR: FIFO Almost Full Interrupt Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 A_FULL_TYPE: FIFO Almost Full Flag Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 FIFO_ROLLS_ON_FULL: FIFO Rolls on Full Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 FIFO_A_FULL: FIFO Almost Full Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 FIFO Data Control Register 1 (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 FD2: FIFO Data Time Slot 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 FD1: FIFO Data Time Slot 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 FD4: FIFO Data Time Slot 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 FD3: FIFO Data Time Slot 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 System Control (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 FIFO_EN: FIFO Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SHDN: Shutdown Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 RESET: Reset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PPG Configuration 1 (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PPG_ADC_RGE: PPG ADC Range Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PPG_SR: PPG Sample Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PPG Sample Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Maximum Sample rates Supported for all the Pulse Widths and Number of LEDs: . . . . . . . . . . . . . . . . . . . . . . . . 23 PPG_LED_PW: LED Pulse Width Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 PPG Configuration 2 (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SMP_AVE: Sample Averaging Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Prox Interrupt Threshold (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PROX_INT_THRESH: Proximity Mode Interrupt Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LED1 PA (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LED1_PA: LED 1 (IR) Current Pulse Amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LED3 PA (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 LED3_PA: LED 3 (Green) Current Pulse Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 LED Range (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 LED3_PA: LED 3 (Green) Current Pulse Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 LED1_RGE: LED 1 (IR) Current Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 LED PILOT PA (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PILOT_PA: Proximity Mode LED Pulse Amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Part ID (0xFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PART_ID: Part Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 www.maximintegrated.com Maxim Integrated │  3 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications TABLE OF CONTENTS (CONTINUED) Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Power Sequencing and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Power-Up Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Power-Down Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Early STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Write Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Read Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 FIFO Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 FIFO Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 FIFO Data Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Write Pointer to the FIFO, FIFO_WR_PTR[4:0]: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Read Pointer to the FIFO, FIFO_RD_PTR[4:0]: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 FIFO Data Read, FIFO_DATA[7:0]: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Reading from the FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 FIFO Flush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 FIFO Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 www.maximintegrated.com Maxim Integrated │  4 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications LIST OF FIGURES Figure 1. I2C-Compatible Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 2: Power-Up Sequence of the Power Supply Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 3. START, STOP, and REPEATED START Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 4. I2C Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 5. Writing One Data Byte to MAX86160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 6. Reading One Byte of Data from MAX86160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 7. Reading Multiple Bytes of Data from the MAX86160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 8. Example of FIFO Organization with Four Active Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 9. Example of FIFO Organization with Two Active Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 LIST OF TABLES Table 1: MAX86160 I2C Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 2. FIFO Data Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 3. FDx Format Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 4. FIFO Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Example 1: Configurations for 2 elements: PPG (LED1) + PPG (LED3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Example 2: Configurations for 1 elements: PPG (LED1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 5. Sample of FIFO Data Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 6. FIFO Handling Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 7. FIFO Sample Elements Order with Four Active Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 8. FIFO Sample Elements Order with Two Active Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 www.maximintegrated.com Maxim Integrated │  5 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Absolute Maximum Ratings VDD to GND..........................................................-0.3V to +2.2V PGND to GND.......................................................-0.3V to +0.3V LED_DRVx, VLED to PGND.................................-0.3V to +6.0V VREF to GND.........................................................-0.3V to +2.2V Output Short-Circuit Duration.....................................Continuous Continuous Input Current Into Any Pin (Except LED_DRVx Pins)..............................................±20mA Continuous Power Dissipation.........................................440mW SDA, SCL, INTB, GPIO to GND...........................-0.3V to +6.0V OESIP (derate 5.5mW/°C above +70°C) ........... -40°C to +85°C Operating Temperature Range............................ -40°C to +85°C Junction Temperature.......................................................+150°C Storage Temperature Range............................. -40°C to +105°C Soldering Temperature (Reflow).......................................+260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information 18-Lead OESIP Package Code F182A4+1 Outline Number 21-100099 Land Pattern Number 90-100030 Thermal Resistance, Four Layer Board: Junction-to-Ambient (θJA) 174°C/W (Note 1) Junction-to-Case Thermal Resistance (θJC) 150°C/W (Note 1) For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermaltutorial. www.maximintegrated.com Maxim Integrated │  6 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Electrical Characteristics ((VDD = 1.8V, VLED = 3.3V(IR), VLED = 5.0V (GREEN), GND = PGND = 0V, TA = +25°C, min/max are from TA = -40°C to +85°C, unless otherwise noted.) (Note 2) ) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER SUPPLY Power Supply Voltage VDD 1.7 1.8 2.0 V LED Supply Voltage for IR VLED 3.1 3.3 5.5 V LED Supply Voltage for Green VLED 4.0 5.0 5.5 V Heart Rate Mode; PW = 50μs; SPS = 100; LED Driver = 0mA 400 750 Heart Rate Mode; PW = 50μs; SPS = 10; LED Driver = 0mA 400 750 VDD Current in Shutdown TA= 25°C 0.5 12 μA VLED Current in Shutdown TA = 25°C 0 1 μA 1.204 1.215 V VDD Supply Current Internal Voltage Reference (Note 3) IDD VREF Bypass to GND with 1μF μA 1.192 PULSE OXIMETRY/HEART RATE SENSOR CHARACTERISTICS ADC Resolution IR ADC Count Green ADC Count Dark Current Counts 19 bits Proprietary ATE Setup. IR_PA = 0x13, PW = 50μS, SPS = 1000, TA = +25°C 121,072 131,072 141,072 Counts GREEN_C Proprietary ATE Setup. GREEN_PA = 0x80, PW = 50μS, SPS = 1000, TA = +25°C 111,072 131,072 151,072 Counts DC_C ALC = ON, IR_PA = 0x00, PW = 50μS, SPS = 1000, PPG_ADC_RGE = 8μA, TA = +25°C 0.0001 0.02 % of FS IR_C PSRR_VDD Propriety ATE setup, 1.7V < VDD < 2.0V, IR_PA = 0x12, GREEN_PA = 0x80, PW = 50μS, SPS = 1000 0.5 1 % of FS IR/GREEN ADC Count - PSRR (LED Driver Outputs) PSRR_LED Propriety ATE setup, 3.1V < VLED < 5V(IR), 4V < VLED < 5.5V (GREEN), IR_PA = 0x12, GREEN_PA = 0x80, PW = 50μS, SPS = 1000 0.05 0.5 % of FS ADC Clock Frequency CLK 9.649 9.846 10.043 MHz ILED = 20mA, TA = +25°C 870 880 900 nm ILED = 20mA, TA = +25°C 520 527 540 nm IR/GREEN ADC Count PSRR (VDD) IR LED CHARACTERISTICS (Note 5) LED Peak Wavelength λP GREEN LED CHARACTERISTICS (Note 5) LED Peak Wavelength www.maximintegrated.com λP Maxim Integrated │  7 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Electrical Characteristics (continued) ((VDD = 1.8V, VLED = 3.3V(IR), VLED = 5.0V (GREEN), GND = PGND = 0V, TA = +25°C, min/max are from TA = -40°C to +85°C, unless otherwise noted.) (Note 2) ) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS LED DRIVERS LED Current Resolution LED Drive Current Range (Note 4) 8 ILED VLED = 5.0V (for GREEN), VLED = 3.3V (for IR ONLY), LEDx_PA = 0xFF, LEDx_RGE[1:0] = 00 50 VLED = 5.0V (for GREEN), VLED = 3.3V (for IR ONLY), LEDx_PA = 0xFF, LEDx_RGE[1:0] = 01 100 VLED = 5.0V (for GREEN), VLED = 3.3V (for IR ONLY), LEDx_PA = 0xFF, LEDx_RGE[1:0] = 10 150 VLED = 5.0V (for GREEN), VLED = 3.3V (for IR ONLY), LEDx_PA = 0xFF, LEDx_RGE[1:0] = 11 200 bits mA DIGITAL CHARACTERISTICS (SDA, SCL, INT) Output Low Voltage SDA, INTB VOL ISINK = 6mA 0.4 V 0.4 V I2C Input Voltage Low VIL_I2C SDA, SCL I2C Input Voltage High VIH_I2C SDA, SCL VHYS SDA, SCL 200 mV Input Capacitance (Note 5) CIN SDA, SCL 10 pF Input Leakage Current IIN Input Hysteresis (Note 5) 1.4 V VIN = 0V, TA = +25°C (SDA, SCL) 0.01 1 VIN = VDD, TA = +25°C (SDA, SCL) 0.01 1 μA I2C TIMING CHARACTERISTICS (SDA, SCL) (Note 5, Figure 1) I2C Write Address BC Hex I2C Read Address BD Hex Serial Clock Frequency fSCL 0 400 kHz Bus Free Time Between STOP and START Conditions tBUF 1.3 µs Hold Time (Repeated) START Condition tHD,STA 0.6 µs SCL Pulse-Width Low tLOW 1.3 µs SCL Pulse-Width High tHIGH 0.6 µs Setup Time for a Repeated START Condition tSU,STA 0.6 µs Data Hold Time tHD,DAT 0 www.maximintegrated.com 900 ns Maxim Integrated │  8 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Electrical Characteristics (continued) ((VDD = 1.8V, VLED = 3.3V(IR), VLED = 5.0V (GREEN), GND = PGND = 0V, TA = +25°C, min/max are from TA = -40°C to +85°C, unless otherwise noted.) (Note 2) ) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Data Setup Time tSU,DAT 100 ns Setup Time for STOP Condition tSU,STO 0.6 µs Pulse Width of Suppressed Spike tSP 0 Bus Capacitance CB SDA and SCL Receiving Rise Time tR SDA and SCL Receiving Fall Time SDA Transmitting Fall Time 50 ns 400 pF 20 + 0.1CB 300 ns tF 20 + 0.1CB 300 ns tF 20 + 0.1CB 300 ns Note 2: All devices are 100% production tested at TA = +25°C. Specifications over temperature limits are guaranteed by Maxim Integrated’s bench or proprietary automated test equipment (ATE) characterization. Note 3: Internal Reference Voltage only. Note 4: Whenever Green LED is used, VLED must be 4.0V or above. For LED Current range more than 100mA (LEDx_RGE = 2'b1X), VLED must be 4.5V or above. Note 5: For design guidance only. Not production tested. Figure 1. I2C-Compatible Interface Timing Diagram www.maximintegrated.com Maxim Integrated │  9 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Typical Operating Characteristics (VDD = 1.8V, VLED = 3.3V(IR), VLED = 5.0V (GREEN), GND = PGND = 0V, TA = +25°C, unless otherwise noted.)(TA = +25°C, unless otherwise noted.) VDD SUPPLY CURRENT vs. SUPPLY VOLTAGE COUNTS (SUM) SUPPLY CURRENT (mA) 25000 0.7 0.6 0.5 0.4 SHUTDOWN MODE 0.3 0.2 IR Green 15000 10000 0 0.5 1 1.5 2 0 5 VLED = 4.75V 0.08 0.07 VLED = 3.1V 50 100 40 20 700 800 900 40.0 0.0 1000 500 GREEN LED PEAK WAVELENGTH vs. TEMPERATURE toc7 600 700 540 toc08 LED CURRENT 10mA 20mA 30mA 50mA 890 880 LED_PW = 400µs PPG_SR = 400SPS 0 400 WAVELENGTH (nm) PEAK WAVELENGTH (nm) PEAK WAVELENGTH (nm) 60.0 20.0 LED CURRENT 870 to06 80.0 WAVELENGTH (nm) 900 100 GREEN LED SPECTRA AT 25°C 60 0 50 120.0 80 920 50 TEMPERATURE (°C) www.maximintegrated.com 0 100.0 IR LED PEAK WAVELENGTH vs. TEMPERATURE -50 -50 TEMPERATURE (°C) toc05 TEMPERATURE (°C) 910 2.0 20 NORMALIZED POWER (%) NORMALIZED POWER (%) VLED SHUTDOWN CURRENT (µA) 0.10 860 15 100 0.11 0 10 120 VLED = 5.25V -50 3.0 IR LED SPECTRA AT 25°C toc4 0.13 0.09 4.0 DISTANCE (mm) VLED SHUTDOWN CURRENT vs. TEMPERATURE 0.12 1.7V 1.8V 2.0V 2.2V 5.0 0.0 0 2.5 VDD 6.0 1.0 5000 SUPPLY VOLTAGE (V) 0.06 7.0 20000 0.1 toc03 8.0 LED_PW = 400µs PPG_SR = 400SPS ADC FULL SCALE = 16384nA 30000 0.8 0.0 toc02 35000 IR MODE VDD SHUTDOWN CURRENT (µA) toc01 1.0 0.9 VDD SHUTDOWN CURRENT vs. TEMPERATURE DC COUNTS vs. DISTANCE FOR COVER GLASS 100 535 10mA 20mA 30mA 50mA 530 525 520 515 150 510 -50 0 50 100 150 TEMPERATURE (°C) Maxim Integrated │  10 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Pin Configurations Pin Description PIN NAME FUNCTION POWER 11 VDD Analog Supply. Connect to externally-regulated supply. Bypass to GND 12 VLED LED Power Supply Input. Connect to external battery supply. Bypass to PGND. 13 PGND LED Power Return. Connect to GND. 14 GND Analog Power Return. Connect to GND. CONTROL INTERFACE 5 INTB Open-Drain Interrupt 6 SDA I2C Data 7 SCL I2C Clock REFERENCE 15 VREF Internal Reference Decoupling Point. Bypass to GND. 1 N.C. No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins. 2 N.C. No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins. N.C. www.maximintegrated.com Maxim Integrated │  11 MAX86160 PIN Integrated Heart-Rate Sensor for In-Ear Applications NAME FUNCTION 3 N.C. No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins. 4 N.C. No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins. 8 N.C. No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins. 9 N.C. No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins. 10 N.C. No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins. 16 N.C. No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins. 17 N.C. No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins. 18 N.C. No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins. MAX86160 Functional Diagram 3.1~5.0V 1 1.8V VDD VREF VLED 1μF SDA VREF GREEN IR ADC VISIBLE + IR Digital Controller and Signal Processor SCL INTB μC Or APPS PROCESSOR LED DRIVERS N.C. N.C. PGND GND Note 1: If Green LED is used, VLED must be 4.0V or above . For LED Current range more than 100mA (LEDx_RGE = 2'b1X), VLED must be 4.5V or above . www.maximintegrated.com Maxim Integrated │  12 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Detailed Description LED Driver The MAX86160 is a heart rate sensor system solution module designed for the demanding requirements of mobile and wearable devices. The MAX86160 maintains a very small total solution size without sacrificing optical or electrical performance. Minimal external hardware components are necessary for integration into a mobile device.The device is fully adjustable through software registers, and the digital output data is stored in a 32-deep FIFO within the device. The FIFO allows the device to be connected to a micro-controller or processor on a shared bus, where the data is not being read continuously from the MAX86160’s registers. HRM Subsystem The HRM subsystem in the MAX86160 is composed of ambient light cancellation (ALC), a continuous-time sigma delta ADC, and proprietary discrete time filter. The ALC has an internal DAC to cancel ambient light and increase the effective dynamic range. The internal ADC is a continuous time oversampling sigma delta converter with 19-bit resolution. The ADC output data rate can be programmed from10sps (samples per second) to 3200sps. The MAX86160 includes a proprietary discrete time filter to reject 50Hz/60Hz interference and slow moving residual ambient noise. The MAX86160 integrates green and infrared LED drivers to modulate LED pulses for HR measurements. The LED current can be programmed from 0mA to 200mA with proper VLED supply voltage. The LED pulse width can be programmed from 50μs to 400μs to allow the algorithm to optimize HR accuracy and power consumption based on use cases. Proximity Function The MAX86160 includes a proximity function to save power and reduce visible light emission when the user’s finger is not on the sensor. Proximity function is enabled by setting PROX_INT_EN to 1. When the HR function is initiated, the IR LED is turned on in proximity mode with a drive current set by the PILOT_PA register. When an object is detected by exceeding the IR ADC count threshold (set in the PROX_INT_ THRESH register), PROX_INT interrupt is asserted and the part transitions automatically to the normal HR Mode. To reenter PROX mode, a new HR reading must be initiated (even if the value is the same). The proximity function can be disabled by resetting PROX_INT_EN to 0. In that case, when the HR function is initiated in the FIFO Data Control registers, the HR mode begins immediately. Register Map ADDRESS NAME MSB LSB STATUS REGISTERS 0x00 Interrupt Status 1[7:0] A_FULL_ PPG_ RDY_ ALC_ OVF_ PROX_ INT_ – – – PWR_ RDY_ 0x01 Interrupt Status 2[7:0] VDD_ OOR_ – – – – – – – 0x02 Interrupt Enable 1[7:0] A_FULL_ EN_ PPG_ RDY_ EN_ ALC_ OVF_ EN_ PROX_ INT_EN_ – – – – 0x03 Interrupt Enable 2[7:0] VDD_ OOR_ EN_ – – – – – – – www.maximintegrated.com Maxim Integrated │  13 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Register Map (continued) ADDRESS NAME MSB LSB 0x04 FIFO Write Pointer[7:0] – – – FIFO_WR_PTR_[4:0] 0x05 Overflow Counter[7:0] – – – OVF_COUNTER_[4:0] 0x06 FIFO Read Pointer[7:0] – – – FIFO_RD_PTR_[4:0] 0x07 FIFO Data Register[7:0] FIFO REGISTERS 0x08 FIFO Configuration[7:0] FIFO_DATA_[7:0] – A_FULL_ A_FULL_ CLR_ TYPE_ FIFO_ ROLLS_ ON_ FULL_ FIFO_A_FULL_[3:0] FIFO DATA CONTROL 0x09 FIFO Data Control Register 1[7:0] FD2_[3:0] FD1_[3:0] 0x0A FIFO Data Control Register 2[7:0] FD4_[3:0] FD3_[3:0] – SYSTEM CONTROL 0x0D System Control [7:0] – – – – – FIFO_ EN_ SHDN_ RESET_ PPG Configuration 0x0E PPG Configuration 1 [7:0] 0x0F PPG Configuration 2 [7:0] 0x10 Prox Interrupt Threshold [7:0] PPG_ADC_RGE_ [1:0] – PPG_SR_[3:0] – – – PPG_LED_PW_[1:0] – SMP_AVE_[2:0] PROX_INT_THRESH_[7:0] LED Pulse Amplitude 0x11 LED1 PA[7:0] LED1_PA_[7:0] – 0x13 LED3 PA[7:0] 0x14 LED Range[7:0] 0x15 LED PILOT PA[7:0] LED3_PA_[7:0] – – LED3_RGE_[1:0] – – LED1_RGE_[1:0] PILOT_PA_[7:0] – Part ID 0xFF Part ID[7:0] www.maximintegrated.com PART_ID_[7:0] Maxim Integrated │  14 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Interrupt Status 1 (0x00) BIT 7 6 5 4 3 2 1 0 Field A_FULL PPG_RDY ALC_OVF PROX_INT – – – PWR_RDY Reset 0x0 0x0 0x0 0x0 – – – 0x0 Read Only Read Only Read Only Read Only – – – Read Only Access Type A_FULL: FIFO Almost Full Flag VALUE ENUMERATION DECODE 0 OFF Normal Operation 1 ON Indicates that the FIFO buffer will overflow the threshold set by FIFO_A_FULL on the next sample. This bit is cleared when the Interrupt Status 1 Register is read. It is also cleared when FIFO_DATA register is read, if A_FULL_CLR = 1 PPG_RDY: New PPG FIFO Data Ready VALUE ENUMERATION DECODE 0 OFF Normal Operation 1 ON In HR modes, this interrupt triggers when there is a new sample in the data FIFO. The interrupt is cleared by reading the Interrupt Status 1 register (0x00), or by reading the FIFO_DATA register. ALC_OVF: Ambient Light Cancellation Overflow VALUE ENUMERATION DECODE 0 OFF Normal Operation 1 ON This interrupt triggers when the ambient light cancellation function of the HR photodiode has reached its maximum limit due to overflow, and therefore, ambient light is affecting the output of the ADC. The interrupt is cleared by reading the Interrupt Status 1 register (0x00). PROX_INT: Proximity interrupt If PROX_INT is masked then the prox mode is disabled and the select PPG begins immediately. This bit is cleared when the Interrupt Status 1 Register is read. VALUE ENUMERATION DECODE 0 OFF Normal Operation 1 ON Indicates that the proximity threshold has been crossed when in proximity mode. PWR_RDY: Power Ready Flag VALUE ENUMERATION 0 OFF Normal Operation 1 ON Indicates that VBATT went below the UVLO threshold. This bit is not triggered by a soft reset. This bit is cleared when Interrupt Status 1 Register is read. www.maximintegrated.com DECODE Maxim Integrated │  15 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Interrupt Status 2 (0x01) BIT 7 6 5 4 3 2 1 0 Field VDD_OOR – – – – – – – Reset 0x0 – – – – – – – Read Only – – – – – – – Access Type VDD_OOR: VDD Out-of-Range flag This flag checks if the VDD_ANA supply voltage is outside supported range. VALUE ENUMERATION DECODE 0 OFF VDD_ANA between range. 1 ON Indicated that VDD_ANA is greater than 2.05V or less than 1.65V. This bit is automatically cleared when the Interrupt Status 2 register is read. The detection circuitry has a 10ms delay time, and will continue to trigger as long as the VDD_ANA is out of range. Interrupt Enable 1 (0x02) BIT 7 6 5 4 3 2 1 0 Field A_FULL_EN PPG_RDY_ EN ALC_OVF_ EN PROX_INT_ EN – – – – Reset 0x0 0x0 0x0 0x0 – – – – Write, Read Write, Read Write, Read Write, Read – – – – Access Type A_FULL_EN: FIFO Almost Full Flag enable VALUE ENUMERATION DECODE 0 OFF A_FULL interrupt is disabled 1 ON A_FULL interrupt is enabled PPG_RDY_EN: New PPG FIFO Data Ready Interrupt enable VALUE ENUMERATION DECODE 0 OFF PPG_RDY interrupt is disabled 1 ON PPG_RDY interrupt is enabled. ALC_OVF_EN: Ambient Light Cancellation (ALC) Overflow Interrupt enable The ALC_OVF flag will be triggered when the HRM photodiode has reached it’s maximum limit due to overflow. At this point, the ADC output will be affected by the ambient light. VALUE ENUMERATION 0 OFF ALC_OVF interrupt is disabled 1 ON ALC_OVF interrupt is enabled www.maximintegrated.com DECODE Maxim Integrated │  16 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications PROX_INT_EN: Proximity Interrupt enable When the HR function is initiated, the IR LED is turned on in proximity mode with a drive current set by the PILOT_PA register. When an object is detected by exceeding the IR ADC count threshold (set in the PROX_INT_ THRESH register), PROX_INT interrupt is asserted and the part transitions automatically to the normal HR mode. VALUE ENUMERATION DECODE 0 OFF PROX_INT interrupt is disabled 1 ON PROX_INT interrupt is enabled Interrupt Enable 2 (0x03) BIT 7 6 5 4 3 2 1 0 Field VDD_OOR_ EN – – – – – – – Reset 0x0 – – – – – – – Write, Read – – – – – – – 2 1 0 Access Type VDD_OOR_EN: VDD Out-of-Range Indicator enable VALUE ENUMERATION DECODE 0 OFF Disables the VDD_OVR interrupt 1 ON Enables the VDD_OVR interrupt FIFO Write Pointer (0x04) BIT 7 6 5 4 3 Field – – – FIFO_WR_PTR[4:0] Reset – – – 0x00 Access Type – – – Write, Read FIFO_WR_PTR: FIFO Write Pointer This points to the location where the next sample will be written. This pointer advances for each sample pushed on to the FIFO. BIT 7 6 5 Field – – – OVF_COUNTER[4:0] Reset – – – 0x00 Access Type – – – Read Only www.maximintegrated.com 4 3 2 1 0 Maxim Integrated │  17 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications OVF_COUNTER: FIFO Overflow Counter When FIFO is full any new samples will result in new or old samples getting lost depending on FIFO_ROLLS_ON_FULL. OVF_COUNTER counts the number of samples lost. It saturates at 0x1F. FIFO Read Pointer (0x06) BIT 7 6 5 4 3 2 1 Field – – – FIFO_RD_PTR[4:0] Reset – – – 0x00 Access Type – – – Write, Read 0 FIFO_RD_PTR: FIFO Read Pointer The FIFO Read Pointer points to the location from where the processor gets the next sample from the FIFO through the I2C interface. This advances each time a sample is popped from the FIFO. The processor may also write to this pointer after reading the samples. This allows rereading (or retrying) samples from the FIFO. FIFO Data Register (0x07) BIT 7 6 5 4 3 Field FIFO_DATA[7:0] Reset 0x00 Access Type 2 1 0 Write, Read FIFO_DATA: FIFO Data Register This is a read-only register and is used to get data from the FIFO. See FIFO Description for more details. FIFO Configuration (0x08) BIT 7 6 5 4 3 2 1 Field – A_FULL_ CLR A_FULL_ TYPE FIFO_ ROLLS_ ON_FULL FIFO_A_FULL[3:0] Reset – 0x0 0x0 0x0 0xF Access Type – Write, Read Write, Read Write, Read Write, Read 0 A_FULL_CLR: FIFO Almost Full Interrupt Options This defines whether the A-FULL interrupt should get cleared by FIFO_DATA register read. VALUE ENUMERATION 0 RD_DATA_NOCLR 1 RD_DATA_CLR www.maximintegrated.com DECODE A_FULL interrupt does not get cleared by FIFO_DATA register read. It gets cleared by status register read. A_FULL interrupt gets cleared by FIFO_DATA register read or status register read. Maxim Integrated │  18 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications A_FULL_TYPE: FIFO Almost Full Flag Options This defines the behavior of the A_FULL interrupt. VALUE ENUMERATION DECODE 0 AFULL_RPT A_FULL interrupt gets asserted when the a_full condition is detected. It is cleared by status register read, but re-asserts for every sample if the a_full condition persists. 1 AFULL_ONCE A_FULL interrupt gets asserted only when the a_full condition is detected. The interrupt gets cleared on status register read, and does not re-assert for every sample until a new a-full condition is detected. FIFO_ROLLS_ON_FULL: FIFO Rolls on Full Options This bit controls the behavior of the FIFO when the FIFO becomes completely filled with data. ●● When the device is in PROX mode, the FIFO always rolls on full. ●● Push to FIFO is enabled when FIFO is full if FIFO_ROLLS_ON_FULL = 1 and old samples are lost. Both FIFO_ WR_PTR and FIFO_RD_PTR increment for each sample after the FIFO is full. ●● Push to FIFO is disabled when FIFO is full if FIFO_ROLLS_ON_FULL = 0 and new samples are lost. FIFO_WR_ PTR does not increment for each sample after the FIFO is full. VALUE ENUMERATION DECODE 0 OFF The FIFO stops on full. 1 ON The FIFO automatically rolls over on full. FIFO_A_FULL: FIFO Almost Full Value These bits indicate how many new samples can be written to the FIFO before the interrupt is asserted. For example, if set to 0xF, the interrupt triggers when there is 17 empty space left (15 data samples), and so on. FIFO_A_FULL FREE SPACE BEFORE INTERRUPT # OF SAMPLES IN FIFO 0000 0 32 0001 1 31 0010 2 30 0011 3 29 ---- ---- ---- 1110 14 18 1111 15 17 FIFO Data Control Register 1 (0x09) BIT 7 6 5 4 3 2 1 Field FD2[3:0] FD1[3:0] Reset 0x0 0x0 Write, Read Write, Read Access Type www.maximintegrated.com 0 Maxim Integrated │  19 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications FD2: FIFO Data Time Slot 2 These bits set the data type for element 2 of the FIFO. The FIFO can hold up to 32 samples. Each sample can hold up to four elements and each element is 3 bytes wide. The data type that gets stored in the 3 bytes is configured by FD1, FD2, FD3 and FD4 according to the table below. For restriction on data type sequences please see the FLEX FIFO document. FD2 DATA TYPE FD2 DATA TYPE FD2 DATA TYPE FD2 DATA TYPE 0000 Reserved 0100 Reserved 1000 Reserved 1100 Reserved 0001 PPG_LED1 0101 Pilot LED1 1001 Reserved 1101 Reserved 0010 Reserved 0110 Reserved 1010 Reserved 1110 Reserved 0011 PPG_LED3 0111 Pilot LED3 1011 Reserved 1111 Reserved FD1: FIFO Data Time Slot 1 These bits set the data type for element 1 of the FIFO. The FIFO can hold up to 32 samples. Each sample can hold up to four elements and each element is 3 bytes wide. The data type that gets stored in the 3 bytes is configured by FD1, FD2, FD3, and FD4 according to the table below. For restriction on data type sequences please refer to the FIFO Description section. FD1 DATA TYPE FD1 DATA TYPE FD1 DATA TYPE FD1 DATA TYPE 0000 Reserved 0100 Reserved 1000 Reserved 1100 Reserved 0001 PPG_LED1 0101 Pilot LED 1 1001 Reserved 1101 Reserved 0010 Reserved 0110 Reserved 1010 Reserved 1110 Reserved 0011 PPG_LED3 0111 Pilot LED3 1011 Reserved 1111 Reserved FIFO Data Control Register 2 (0x0A) BIT 7 6 5 4 3 2 1 Field FD4[3:0] FD3[3:0] Reset 0x0 0x0 Write, Read Write, Read Access Type 0 FD4: FIFO Data Time Slot 4 These bits set the data type for element 4 of the FIFO. The FIFO can hold up to 32 samples. Each sample can hold up to four elements and each element is 3 bytes wide. The data type that gets stored in the 3 bytes is configured by FD1, FD2, FD3, and FD4 according to the table below. For restriction on data type sequences please see the FLEX FIFO document. FD4 DATA TYPE FD4 DATA TYPE FD4 DATA TYPE FD4 DATA TYPE 0000 Reserved 0100 Reserved 1000 Reserved 1100 Reserved 0001 PPG_LED1 0101 Pilot LED1 1001 Reserved 1101 Reserved 0010 Reserved 0110 Reserved 1010 Reserved 1110 Reserved 0011 PPG_LED3 0111 Pilot LED3 1011 Reserved 1111 Reserved www.maximintegrated.com Maxim Integrated │  20 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications FD3: FIFO Data Time Slot 3 These bits set the data type for element 3 of the FIFO. The FIFO can hold up to 32 samples. Each sample can hold up to four elements and each element is 3 bytes wide. The data type that gets stored in the 3 bytes is configured by FD1, FD2, FD3, and FD4 according to the table below. For restriction on data type sequences please refer to the FIFO Description section. FD3 DATA TYPE FD3 DATA TYPE FD3 DATA TYPE FD3 DATA TYPE 0000 Reserved 0100 Reserved 1000 Reserved 1100 Reserved 0001 PPG_LED1 0101 Pilot LED1 1001 Reserved 1101 Reserved 0010 Reserved 0110 Reserved 1010 Reserved 1110 Reserved 0011 PPG_LED3 0111 Pilot LED3 1011 Reserved 1111 Reserved System Control (0x0D) BIT 7 6 5 4 3 2 1 0 Field – – – – – FIFO_EN SHDN RESET Reset – – – – – 0x0 0x0 0x0 Access Type – – – – – Write, Read Write, Read Write, Read FIFO_EN: FIFO Enable VALUE ENUMERATION DECODE 0 OFF Push to FIFO is disabled, but the read and write pointers and the data in the FIFO are all held at their values before FIFO_EN is set to 0. 1 ON The FIFO is enabled. When this bit is set the FIFO is flushed of all old data and the new samples start loading from pointer zero. SHDN: Shutdown Control The part can be put into a power-save mode by setting this bit to one. While in power-save mode, all registers retain their values, and write/read operations function as normal. All interrupts are cleared to zero in this mode. VALUE ENUMERATION 0 OFF The part is in normal operation. No action taken. ON The part can be put into a power-save mode by writing a ‘1’ to this bit. While in this mode all registers remain accessible and retain their data. ADC conversion data contained in the registers are previous values. Writeable registers also remain accessible in shutdown. All interrupts are cleared. In this mode the oscillator is shutdown and the part draws minimum current. If this bit is asserted during a active conversion then the conversion completes before the part shuts down. 1 www.maximintegrated.com DECODE Maxim Integrated │  21 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications RESET: Reset Control When this bit is set, the part initiates a forced power-on-reset sequence. All configuration, threshold and data registers including distributed registers are reset to their power-on-state. This bit then automatically becomes ‘0’ after the reset sequence is completed. VALUE ENUMERATION DECODE 0 OFF The part is in normal operation. No action taken. 1 ON The part initiates a forced power-on-reset sequence. All configuration, threshold and data registers including distributed registers are reset to their power-on-state. This bit then automatically becomes ‘0’ after the reset sequence is completed. PPG Configuration 1 (0x0E) BIT 7 6 5 4 3 2 1 0 Field PPG_ADC_RGE[1:0] PPG_SR[3:0] PPG_LED_PW[1:0] Reset 0x0 0x0 0x0 Write, Read Write, Read Write, Read Access Type PPG_ADC_RGE: PPG ADC Range Control These bits set the ADC range of the PPG sensor as shown in the table below. PPG_ADC_RGE LSB [PA] FULL SCALE [NA] 00 7.8125 4096 01 15.625 8192 10 31.25 16384 11 62.5 32768 PPG_SR: PPG Sample Rate Control PPG Sample Rate Control These bits set the effective sampling rate of the PPG sensor as shown in the table below. Note: If a sample rate is set can not be supported by the selected pulse width and LED mode then the highest available sample rate will be automatically set. The user can read back this register to confirm the sample rate. PPG_SR SAMPLES PER SECOND PULSES PER SAMPLE, N PPG_SR SAMPLES PER SECOND PULSES PER SAMPLE, N 0000 10 1 1000 1000 1 0001 20 1 1001 1600 1 0010 50 1 1010 3200 1 0011 84 1 1011 10 2 0100 100 1 1100 20 2 0101 200 1 1101 50 2 0110 400 1 1110 84 2 0111 800 1 1111 100 2 www.maximintegrated.com Maxim Integrated │  22 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Maximum Sample Rates Supported for all the Pulse Widths and Number of LEDs: NUMBER OF ADC CONVERSIONS PER SAMPLE PPG_LED_PW = 0 (50US) PPG_LED_PW = 1 (100US) PPG_LED_PW = 2 (200US) PPG_LED_PW = 3 (400US) 1 LED, N = 1 3200 1600 1000 1000 2 LED, N = 1 1600 800 800 400 1 LED, N = 2 100 100 100 100 2 LED, N = 2 100 100 100 84 PPG_LED_PW: LED Pulse Width Control These bits set the pulse width of the LED drivers and the integration time of PPG ADC as shown in the table below. PPG_LED_PW PULSE WIDTH [US] INTEGRATION TIME [US] RES BITS 00 50 50 19 01 100 100 19 10 200 200 19 11 400 400 19 PPG Configuration 2 (0x0F) BIT 7 6 5 4 3 2 1 Field – – – – – SMP_AVE[2:0] Reset – – – – – 0x0 Access Type – – – – – Write, Read 0 SMP_AVE: Sample Averaging Options To reduce the amount of data throughput, adjacent samples (in each individual channel) can be averaged and decimated on the chip by setting this register. These bits set the number of samples that are averaged on chip before being written to the FIFO. www.maximintegrated.com SMP_AVE[2:0] SAMPLE AVERAGE 000 1 (No Averaging) 001 2 010 4 011 8 100 16 101 32 110 32 111 32 Maxim Integrated │  23 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Prox Interrupt Threshold (0x10) BIT 7 6 5 4 3 2 Field PROX_INT_THRESH[7:0] Reset 0x00 Access Type 1 0 Write, Read PROX_INT_THRESH: Proximity Mode Interrupt Threshold This register sets the IR ADC count that will trigger the beginning of HR mode. The threshold is defined as the 8 MSB bits of the ADC count. For example, if PROX_INT_THRESH[7:0] = 0x01, then an ADC value of 1023 (decimal) or higher triggers the PROX interrupt. If PROX_INT_THRESH[7:0] = 0xFF, then only a saturated ADC triggers the interrupt. LED1 PA (0x11) BIT 7 6 5 4 3 Field LED1_PA[7:0] Reset 0x00 Access Type 2 1 0 Write, Read LED1_PA: LED 1 (IR) Current Pulse Amplitude. These bits set the nominal current pulse amplitude of LED 1, as shown in the table below. LED1_RGE 00 (50MA) 01 (100MA) 10 (150MA) 11 (200MA) LED1_PA LED Current[mA] LED Current[mA] LED Current[mA] LED Current[mA] 00000000 0 0 0 0 00000001 0.2 0.4 0.6 0.8 00000010 0.4 0.8 1.2 1.6 00000011 0.6 1.2 1.8 2.4 11111100 50.4 100.8 151.2 201.6 11111101 50.6 101.2 151.8 202.4 11111110 50.8 101.6 152.4 203.2 11111111 51 102 153 204 LSB 0.2 0.4 0.6 0.8 ............ Note: For LED Current more than 100mA, VLED must be 4.5V or above. www.maximintegrated.com Maxim Integrated │  24 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications LED3 PA (0x13) BIT 7 6 5 4 Field 3 2 1 0 LED3_PA[7:0] Reset 0x00 Access Type Write, Read LED3_PA: LED 3 (Green) Current Pulse Amplitude These bits set the nominal current pulse amplitude of LED 3, as shown in the table below. LED3_RGE 00 (50MA) 01 (100MA) 10 (150MA) 11 (200MA) LED3_PA LED Current[mA] LED Current[mA] LED Current[mA] LED Current[mA] 00000000 0 0 0 0 00000001 0.2 0.4 0.6 0.8 00000010 0.4 0.8 1.2 1.6 00000011 0.6 1.2 1.8 2.4 11111100 50.4 100.8 151.2 201.6 11111101 50.6 101.2 151.8 202.4 11111110 50.8 101.6 152.4 203.2 11111111 51 102 153 204 LSB 0.2 0.4 0.6 0.8 ............ Note: For LED Current more than 100mA, VLED must be 4.5V or above. LED Range (0x14) BIT 7 6 5 4 3 2 1 0 Field – – LED3_RGE[1:0] – – LED1_RGE[1:0] Reset – – 0x00 – – 0x00 Access Type – – Write, Read – – Write, Read LED3_PA: LED 3 (Green) Current Pulse Amplitude These bits set the nominal current pulse amplitude of LED 3, as shown in the table below. LED3_RGE LED CURRENT[MA] 00 50 01 100 10 150 11 200 www.maximintegrated.com Maxim Integrated │  25 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications LED1_RGE: LED 1 (IR) Current Control Range selection of the LED current. Please refer to LED1_PA[7:0] for more details. For LED Current more than 100mA, VLED must be 4.5V or above. LED1_RGE LED CURRENT[MA] 00 50 01 100 10 150 11 200 LED PILOT PA (0x15) BIT 7 6 5 Field 4 3 2 1 0 PILOT_PA[7:0] Reset 0x00 Access Type Write, Read PILOT_PA: Proximity Mode LED Pulse Amplitude. The purpose of PILOT_PA is to set the LED power during the PROX mode, as well as in Multi-LED mode. These bits set the current pulse amplitude for the pilot mode as shown in the table below. When LED x is used, the respective LEDx_RGE is used to control the range of the LED driver in conjunction with PILOT_PA. For instance, if LED1 is used in the PILOT mode, then, LED1_RGE together with PILOT_ PA will be used to set the LED1 current. LEDX_RGE 00 (50MA) 01 (100MA) 10 (150MA) 11 (200MA) PILOT_PA LED Current[mA] LED Current[mA] LED Current[mA] LED Current[mA] 00000000 0 0 0 0 00000001 0.2 0.4 0.6 0.8 00000010 0.4 0.8 1.2 1.6 00000011 0.6 1.2 1.8 2.4 11111100 50.4 100.8 151.2 201.6 11111101 50.6 101.2 151.8 202.4 11111110 50.8 101.6 152.4 203.2 11111111 51 102 153 204 LSB 0.2 0.4 0.6 0.8 ............ Note: For LED Current more than 100mA, VLED must be 4.5V or above. Part ID (0xFF) BIT 7 6 5 Field Reset Access Type 4 3 2 1 0 PART_ID[7:0] 0x1E Read Only PART_ID: Part Identifier This register stores the Part identifier for the chip. www.maximintegrated.com Maxim Integrated │  26 MAX86160 Applications Information Power Sequencing and Requirements Power-Up Sequencing It is recommended to power the VDD_ANA supply first, then VDD_DIG before the LED power supplies (VLED). VDD_ANA and VDD_DIG can be powered on at the same time. The interrupt and I2C pins can be pulled up to an external voltage even when the power supplies are not powered up. After the power is established, an interrupt occurs to alert the system that the sensor is ready for operation. Reading the I2C interrupt register clears the interrupt, as shown in Figure 2. Power-Down Sequencing The sensor is designed to be tolerant of any power supply sequencing on power-down. I2C Interface The MAX86160 features an I2C/SMBus-compatible, 2-wire serial interface consisting of a serial data line (SDA) and a serial clock line (SCL). SDA and SCL facilitate communication between the MAX86160 and the master at clock rates up to 400kHz. The master generates SCL and initiates data transfer on the bus. The master device writes data to the MAX86160 by transmitting the proper slave address followed by data. Each transmit sequence Integrated Heart-Rate Sensor for In-Ear Applications is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word transmitted to the MAX86160 is 8 bits long and is followed by an acknowledge clock pulse. A master reading data from the MAX86160 transmits the proper slave address followed by a series of nine SCL pulses. The MAX86160 transmits data on SDA in sync with the master-generated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START (S) or REPEATED START (Sr) condition, a not acknowledge, and a STOP (P) condition. SDA operates as both an input and an open-drain output. A pullup resistor, typically greater than 1000Ω, is required on SDA. SCL operates only as an input. A pullup resistor, typically greater than 1000Ω, is required on SCL if there are multiple masters on the bus, or if the single master has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. Series resistors protect the digital inputs of the MAX86160 from high voltage spikes on the bus lines and minimize crosstalk and undershoot of the bus signals. Bit Transfer One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals. See the START and STOP Conditions section. Figure 2: Power-Up Sequence of the Power Supply Rails www.maximintegrated.com Maxim Integrated │  27 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications START and STOP Conditions Slave Address SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high . A START condition from the master signals the beginning of a transmission to the MAX86160. The master terminates transmission, and frees the bus, by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition. A bus master initiates communication with a slave device by issuing a START condition followed by the 7-bit slave ID. When idle, the MAX86160 waits for a START condition followed by its slave ID. The serial interface compares each salve ID bit by bit, allowing the interface to power down and disconnect from SCL immediately if an incorrect slave ID is detected. After recognizing a START condition followed by the correct slave ID, the MAX86160 is programmed to accept or send data. The LSB of the slave ID word is the read/write (R/W) bit. R/W indicates whether the master is writing to or reading data from the MAX86160 (R/W = 0 selects a write condition, R/W = 1 selects a read condition). After receiving the proper slave ID, the MAX86160 issues an ACK by pulling SDA low for one clock cycle. Early STOP Conditions The MAX86160 recognizes a STOP condition at any point during data transmission, except when the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition. The MAX86160 slave ID consists of seven fixed bits, B7–B1 (set to 0b1011110). The most significant slave ID bit (B7) is transmitted first, followed by the remaining bits. Figure 3. START, STOP, and REPEATED START Conditions Table 1: MAX86160 I2C Slave Address B7 B6 B5 B4 B3 B2 B1 B0 WRITE ADDRESS READ ADDRESS 1 0 1 1 1 1 0 R/W 0xBC 0xBD www.maximintegrated.com Maxim Integrated │  28 MAX86160 Acknowledge The acknowledge bit (ACK) is a clocked 9th bit that the MAX86160 uses to handshake receipt each byte of data when in write mode. The MAX86160 pulls down SDA during the entire master-generated 9th clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master retries communication. The master pulls down SDA during the 9th clock cycle to acknowledge receipt of data when the MAX86160 is in read mode. An acknowledge is sent by Integrated Heart-Rate Sensor for In-Ear Applications the master after each read byte to allow data transfer to continue. A not-acknowledge is sent when the master reads the final byte of data from the MAX86160, followed by a STOP condition. Write Data Format For the write operation, send the slave ID as the first byte followed by the register address byte and then one or more data bytes. The register address pointer increments automatically after each byte of data received, so for example the entire register bank can be written by at one time. Terminate the data transfer with a STOP condition. The write operation is shown in the following figure. Figure 4. I2C Acknowledge Figure 5. Writing One Data Byte to MAX86160 www.maximintegrated.com Maxim Integrated │  29 MAX86160 Read Data Format For the read operation, two I2C operations must be performed. First, the slave ID byte is sent followed by the I2C register that you wish to read. Then a REPEAT START (Sr) condition is sent, followed by the read slave ID. The MAX86160 then begins sending data beginning with the register selected in the first operation. The read pointer increments automatically, so the MAX86160 continues sending data from additional registers in sequential order until a STOP (P) condition is received. The exception to this is the FIFO_DATA register, at which the read pointer no longer increments when reading additional bytes. To Integrated Heart-Rate Sensor for In-Ear Applications read the next register after FIFO_DATA, an I2C write command is necessary to change the location of the read pointer. Figure below show the process of reading one byte or multiple bytes of data. An initial write operation is required to send the read register address. Data is sent from registers in sequential order, starting from the register selected in the initial I2C write operation. If the FIFO_DATA register is read, the read pointer will not automatically increment, and subsequent bytes of data contain the contents of the FIFO. Figure 6. Reading One Byte of Data from MAX86160 www.maximintegrated.com Maxim Integrated │  30 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Figure 7 Figure 7. Reading Multiple Bytes of Data from the MAX86160 FIFO Description Overview The FLEX FIFO is designed to support configurable number of elements. So the number of elements in each sample is configurable. All elements are of same width, but may be interpreted differently, depending on how the FIFO data is configured. MS bits of any element that is smaller than this width is padded with zeroes. Reading FIFO through the I2C returns only the active FIFO Data corresponding to the current configuration. The design is also scalable, to support any ●● Element width, in number of bits ●● Sample length, in number of elements ●● FIFO depth, in number of samples. Each sample is comprised of up to four elements. The actual number of elements in a sample depends on: ●● FIFO Data Control Registers 1 ●● FIFO Data Control Registers 2 www.maximintegrated.com Maxim Integrated │  31 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications FIFO Data Types FIFO Data Control Registers Table 2 shows FIFO data control registers which are used for enabling any of the PPG mode. Table 2. FIFO Data Control Registers ADDRESS REGISTER NAME HARDWIRED VALUE 0x09 FIFO Data Configuration Register 1 00 FD2 FD1 0x0A FIFO Data Configuration Register 2 00 FD4 FDS3 B7 B6 B5 B4 B3 B2 B1 B0 FD1, FD2, FD3, and FD4 (FDx are configured as shown in Table 3 to hold data as programmed. It also shows the format of the data in the FIFO. Table 3. FDx Format Configurations FDX DATA TYPE FIFO CONTENT OR DATA DESCRIPTION 0000 Reserved Reserved 0001 PPG PPG_DATA[18:0] for LED1 (IR) 0010 Reserved Reserved 0011 PPG PPG_DATA[18:0] for LED3 (Green) 0100 Reserved Reserved 0101 Reserved PPG_DATA[18:0] for Pilot LED1 (IR) 0110 Reserved Reserved 0111 PPG PPG_DATA[18:0] for Pilot LED3 (Green) 1000 Reserved Reserved 1001 Reserved Reserved 1010 Reserved Reserved 1011 Reserved Reserved 1100 Reserved Reserved 1101 Reserved Reserved 1110 Reserved Reserved 1111 Reserved Reserved NOTE MS bits should be masked MS bits should be masked MS bits should be masked MS bits should be masked ●● If a configuration uses only one element, FD2, FD3 and FD4 are programmed as zeroes, and FD1 is programmed to the required data type. ●● If a configuration uses only two elements, FD3 and FD4 are programmed as zeroes, and FD1 and FD2 are programmed to the required data types. ●● If a configuration uses only three elements, FD4 is programmed as zeroes, and FD1, FD2 and FD3 are programmed to the required data types. ●● If a configuration uses all four elements, FD1, FD2, FD3 and FD4 are programmed to the required Data Types. www.maximintegrated.com Maxim Integrated │  32 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications PPG Data is left justified as shown in the Table 4. In other words, the MSB bit is always in the bit 18 position regardless of ADC resolution setting. FIFO_DATA[23:19] are "don't care" and should be masked. Table 4. FIFO Data Format FIFO_DATA[23:0] BYTE 1 ADC Resolution PPG(19-bit) BYTE 2 BYTE 3 [23] [22] [21] [20] [19] [18] [17] [16] [15] [14] [13] [12] [11] [10] [9] x x x x [8] [7] [6] [5] [4] [3] [2] [1] [0] x Example 1: Configurations for 2 elements: PPG (LED1) + PPG (LED3) FD1 FD2 FD3 FD4 0001 (PPG) 0011 (PPG) 0000 (None) 0000 (None) Example 2: Configurations for 1 elements: PPG (LED1) FD1 FD2 FD3 FD4 0001 (PPG) 0000 (None) 0000 (None) 0000 (None) A sample in the FIFO is shown in Table 5. Table 5. Sample of FIFO Data Index INDEX WITHIN A SAMPLE FIFO_DATA[23:0] 0 FD1 data, if enabled 1 FD2 data, if enabled 2 FD3 data, if enabled 3 FD4 data, if enabled FIFO Handling Only the elements corresponding to the active FIFO data are pushed onto the FIFO, and only these are read through the I2C interface. The unused FIFO data are not read through the I2C, so they are ”don’t care” and not padded with zeroes. The FIFO handling registers are shown in Table 6. Table 6. FIFO Handling Registers ADDRESS REGISTER NAME HARDWIRED VALUE 0x04 FIFO Write Pointer 00 FIFO_WR_PTR B7 B6 B5 B4 B3 B2 0x05 Overflow Counter 00 OVF_COUNTER 0x06 FIFO Read Pointer 00 FIFO_RD_PTR 0x07 FIFO Data Register 00 0x08 FIFO Configuration www.maximintegrated.com 00 B1 B0 FIFO_DATA FIFO_ROLLS_ON_ FULL FIFO_A_FULL Maxim Integrated │  33 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Write Pointer to the FIFO, FIFO_WR_PTR[4:0]: This points to the location where the next sample will be written. This pointer advances for each sample pushed on to the FIFO. Read Pointer to the FIFO, FIFO_RD_PTR[4:0]: This points to the location from where the AP gets the next sample from the FIFO through the I2C interface. This advances each time a sample is popped from the FIFO. The AP may also write to this pointer after reading the samples. This allows rereading (or retrying) samples from the FIFO. FIFO Data Read, FIFO_DATA[7:0]: This is a read-only register and is used to get data from the FIFO. Reading FIFO_DATA register does not automatically increment the register address. So burst reading this register reads the same address over and over. The length of a sample is determined by the number of active elements in the sample. Each element is three bytes long, so, to read one complete sample, the FIFO_DATA register has to be read N times, where Reading from the FIFO Normally, reading registers from the I2C interface autoincrements the register address pointer, so that all the registers can be read in a burst read without an I2C restart event. In this case, this holds true for all registers except for the FIFO_DATA register (register 0x07). Reading the FIFO_DATA register does not automatically increment the register address. Burst reading this register reads data from the same address over and over. Each sample comprises multiple bytes of data, so multiple bytes should be read from this register (in the same transaction) to get one full sample. FIFO_RD_PTR advances only after burst reading the entire sample. Each sample is read from the FIFO in the following order, when all four elements are active. N = (Number of Active Elements) x (Number of Bytes, 3) Table 7. FIFO Sample Elements Order with Four Active Elements FIFO_RD_PTR[4:0] n Sample: www.maximintegrated.com 1st read Element 1[23:16] n 2nd read Element 1[15:8] n 3rd read Element 1[7:0] n 4th read Element 2[23:16] n 5th read Element 2[15:8] n 6th read Element 2[7:0] n 7th read Element 3[23:16] n 8th read Element 3[15:8] n 9th read Element 3[7:0] n 10th read Element 4[23:16] n 11th read Element 4[15:8] n 12th read Element 4[7:0] n Maxim Integrated │  34 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Table 7. FIFO Sample Elements Order with Four Active Elements (continued) FIFO_RD_PTR[4:0] n+1 Sample: 13th read Element 1[23:16] n+1 14th read Element 1[15:8] n+1 15th read Element 1[7:0] n+1 16th read Element 2[23:16] n+1 17th read Element 2[15:8] n+1 18th read Element 2[7:0] n+1 19th read Element 3[23:16] n+1 20th read Element 3[15:8] n+1 21st read Element 3[7:0] n+1 22nd read Element 4[23:16] n+1 23rd read Element 4[15:8] n+1 24th read . . . . Element 4[7:0] . . . . n+1 . . . . .... Each sample is read from the FIFO in the following order, when any two elements are active. Table 8. FIFO Sample Elements Order with Two Active Elements FIFO_RD_PTR[4:0] n Sample: n+1 Sample: . . . . www.maximintegrated.com 1st read Element 1[23:16] n 2nd read Element 1[15:8] n 3rd read Element 1[7:0] n 4th read Element 2[23:16] n 5th read Element 2[15:8] n 6th read Element 2[7:0] n 7th read Element 1[23:16] n+1 8th read Element 1[15:8] n+1 9th read Element 1[7:0] n+1 10th read Element 2[23:16] n+1 11th read Element 2[15:8] n+1 12th read Element 2[7:0] n+1 . . . . . . . . .... Maxim Integrated │  35 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Enable Push on FIFO FULL, FIFO_ROLLS_ON_FULL: This bit determines whether samples get pushed on to the FIFO when it is full. If push is enabled when FIFO is full, old samples are lost. Otherwise, new samples are lost. Overflow counter, OVF_COUNTER[4:0]: When the FIFO is full, samples are lost. OVF_COUNTER counts the number of samples lost. It saturates at 0x1F. When a complete sample is popped from the FIFO (when the read pointer advances), and OVF_COUNTER is reset to zero. FIFO Almost Full Counter, FIFO_AFULL_COUNT[3:0]: This determines the amount of space available in the FIFO, to declare that it is Almost Full. FIFO Almost Full status, and Interrupt Enable, A_FULL and MSK_A_FULL: When the FIFO is almost full, Almost Full interrupt is asserted if it is enabled by the MSK_A_FULL bit. This prompts the AP to read some samples before the FIFO gets full. A_FULL bit is cleared when the status register is read. The AP reads the FIFO_WR_PTR and FIFO_RD_PTR to calculate the number of samples available in the FIFO, and read as many samples as it needs up to a maximum of available samples. The AP may then choose to write the new read pointer to the FIFO_RD_PTR register. If necessary to retry, the AP updates the FIF_RD_PTR register with appropriate value. Example: Following is an example of the pseudo code: First transaction: Get the FIFO_WR_PTR and FIFO_RD_PTR: START; Send device address + write mode Send address of FIFO_WR_PTR; REPEATED_START; Send device address + read mode Read FIFO_WR_PTR; Read OVF_COUNTER; Read FIFO_RD_PTR; STOP; AP evaluates the number of samples to be read from the FIFO: If OVF_COUNTER is zero, NUM_AVAILABLE_SAMPLES = FIFO_WR_PTR – FIFO_RD_PTR (Note: pointer wrap around should be taken into account) If OVF_COUNTER is non-zero some samples are lost, and NUM_AVAILABLE_SAMPLES = 32 NUM_SAMPLES_TO_READ = < less than or equal to NUM_AVAILABLE_SAMPLES > Next transaction: Read NUM_SAMPLES_TO_READ samples from the FIFO: START; Send device address + write mode Send address of FIFO_DATA; REPEATED_START; Send device address + read mode for (i = 0; i < NUM_SAMPLES_TO_READ; i++) { Read FIFO_DATA; Save Data_Item1[23:16]; Read FIFO_DATA; Save Data_Item1[15:8]; Read FIFO_DATA; Save Data_Item1[7:0]; www.maximintegrated.com Maxim Integrated │  36 MAX86160 } Integrated Heart-Rate Sensor for In-Ear Applications Read FIFO_DATA; Save Data_Item2[23:16]; Read FIFO_DATA; Save Data_Item2[15:8]; Read FIFO_DATA; Save Data_Item2[7:0]; Read FIFO_DATA; Save Data_Item3[23:16]; Read FIFO_DATA; Save Data_Item3[15:8]; Read FIFO_DATA; Save Data_Item3[7:0]; STOP; Next transaction: Write to FIFO_RD_PTR register. If the pervious transaction was successful, FIFO_RD_PTR points to the next sample in the FIFO, and this transaction is not necessary. Otherwise, the AP will update the FIFO_RD_PTR appropriately to New_FIFO_RD_PTR, so that the samples will be re-read. START; Send device address + write mode Send address of FIFO_RD_PTR; Write New_FIFO_RD_PTR; STOP; FIFO Flush The FIFO gets flushed if FIFO_EN = 1, and if any of the following conditions are met: ●● I2C write to any of the PPG configuration registers ●● I2C write to any of the FIFO data control registers ●● At the rising-edge of FIFO_EN ●● Enter and exit PROX mode When the FIFO gets flushed, FIFO_WR_PTR and FIFO_RD_PTR are reset to zero, and the contents of the FIFO are lost. If FIFO contents should not be lost, set FIFO_EN = 0, before writing to any of the registers listed above. Note: FIFO_EN bit is in the System Control Register. Data will be pushed to the FIFO, when FIFO_EN = 1. When FIFO_EN = 0, push to FIFO is disabled, but it holds the status of the FIFO (FIFO pointers and the actual data). www.maximintegrated.com Maxim Integrated │  37 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications FIFO Organization Figure 8 shows how the samples are organized in the FIFO, when all four elements in a sample are active. Figure 8. Example of FIFO Organization with Four Active Elements www.maximintegrated.com Maxim Integrated │  38 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Figure 9 shows how the samples are organized in the FIFO, when only two elements in a sample are active. Figure 9. Example of FIFO Organization with Two Active Elements www.maximintegrated.com Maxim Integrated │  39 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Typical Application Circuits Ordering Information PART NUMBER TEMP RANGE PIN[TOP PACKAGE MARKING] MAX86160EFN+T -40°C to +85°C 18 PIN LGA + Denotes a lead(Pb)-free/RoHS-compliant package. T Denotes tape-and-reel. www.maximintegrated.com Maxim Integrated │  40 MAX86160 Integrated Heart-Rate Sensor for In-Ear Applications Revision History REVISION NUMBER REVISION DATE 0 9/16 DESCRIPTION Initial release PAGES CHANGED — For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2016 Maxim Integrated Products, Inc. │  41
MAX86160EFN+ 价格&库存

很抱歉,暂时无法提供与“MAX86160EFN+”相匹配的价格&库存,您可以联系我们找货

免费人工找货