0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PT7C4339UEX

PT7C4339UEX

  • 厂商:

    BCDSEMI(美台)

  • 封装:

    -

  • 描述:

    LOWPOWERCONSUMPTIONI2CREALT

  • 数据手册
  • 价格&库存
PT7C4339UEX 数据手册
PT7C4339/4339C ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Real-time Clock Module Features Description  Real-Time Clock (RTC) Including Time (Seconds, Minutes and Hours) and Calendar (Day, Date, Month and Year with Leap-Year Compensation Valid Up to 2100) counter functions (BCD code)  Available in a Surface-Mount Package with an Integrated Crystal (Only for PT7C4339C)  I2C Serial Interface supports I2C-Bus's high speed mode (400 kHz)  Programmable square wave output signal, defaults to 32 kHz on Power-up  Two Time-of-Day Alarms  Oscillator Stop Flag  Automatic Power-Fail Detect and Switch Circuitry  Temperature Range: -40°C to +85°C  Package: MSOP-8L and SOIC-8L for PT7C4339 TDFN4x4-8L for PT7C4339C The PT7C4339 real-time clock is a low-power clock/calendar device with two programmable time-ofday alarms and a programmable square-wave output. Address and data are transferred serially through an I2C bus. The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM indicator. The PT7C4339 has a build-in power-sense circuit that detects power failures and automatically switch to the backup supply, maintaining time, date, and alarm operation. Pin Configuration PT7C4339 Applications PT7C4339C 1 X1 VCC 8 1 NC 2 X2 SQW/INT 7 2 VBACKUP 3 VBACKUP SCL 6 3 GND SQW/INT 6 4 GND SDA 5 4 SDA VCC 5 SOIC-8 MSOP8 NC 8 SCL 7 DFN4*4-8L Table1. Diverse functions of RTC circuits Item Function PT7C4339 Source 1 Oscillator External crystal External crystal Integrated Crystal Oscillator enable/disable   Oscillator fail detect   12-hour   24-hour   Century bit   Time count chain enable/disable   2 2 1, 4.096k, 8.192k, 32.768k 1, 4.096k, 8.192k, 32.768k     Time display 2 PT7C4339C Time 3 Interrupt Alarm interrupt output 4 Programmable square wave output (Hz) 5 Communication 6 Power failure detect 2 2-wire I C bus 2015-08-0008 PT0508-1 1 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Pin Description Pin No Pin 4339 4339C Name Type 1 / X1 I 2 / X2 O 6 7 SCL I 5 4 SDA I/O 3 2 VBACKU O P 7 6 SQW /INT O 8 5 VCC P 4 / 3 1,8 GND NC P Description Oscillator Circuit Input. Together with X1, 32.768kHz crystal is connected between them. Or external clock input. Oscillator Circuit Output. Together with X1, 32.768kHz crystal is connected between them. When 32.768kHz external input, X2 must be float. Serial Clock Input. SCL is used to synchronize data movement on the I2C serial interface. The pull up voltage may be up to 5.5V regardless of the voltage on VCC. Serial Data Input/Output. SDA is the input/output pin for the 2-wire serial interface. The SDA pin is open-drain output and requires an external pull-up resistor. The pull up voltage may be up to 5.5V regardless of the voltage on VCC. Secondary Power Supply. Supply voltage must be held between 1.3V and 3.7V for proper operation. This pin can be connected to a primary cell, such as a lithium button cell. Additionally, this pin can be connected to a rechargeable cell or a super cap when used in conjunction with the trickle-charge feature. Diodes should not be placed in series between the backup source and the VBACKUP input, or improper operation will result. If a backup supply is not required, V BACKUP must be grounded. Square-Wave/Interrupt Output. Programmable square-wave or interrupt output signal. It is an open-drain output and requires an external pull up resistor. The pull up voltage may be up to 5.5V regardless of the voltage on VCC. If not used, this pin may be left unconnected. Power. When voltage is applied within normal limits, the device is fully accessible and data can be written and read. When a backup supply is connected and V CC is below VPF, reads and writes are inhibited. The timekeeping and alarm functions operate when the device is powered by V CC or VBACKUP. Ground. No Connect. These pins are not connected internally, but must be grounded for proper operation. Maximum Ratings Storage Temperature.................................................................................... -55oC to +125oC Ambient Temperature with Power Applied..............................................-40oC to +85oC Supply Voltage to Ground Potential (VCCto GND)..................................-0.3V to +6.0V DC Input (All Other Imputs except VCC& GND) ........................... -0.3V to VCC +0.3V DC Output Voltage (SDA, SQW /INT pins) .............................................-0.3V to +6.0V Power Dissipation ...................................................................320mW(depend on package) Lead Temperature (soldering, 10s)............................................................................+260 oC Soldering Temperature (reflow).................................................................................+260 oC Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Recommended Operating Conditions Symbol VCC VBACKUP Description Min Type Max Unit Supply Voltage 3.0 3.3 5.5 V Backup Supply Voltage 1.3 3.0 3.7 V VIH Input high level 0.7VCC - VCC+0.3 V VIL Input low level -0.3 - 0.3VCC V VPF Power-Fail Voltage 1.60 1.72 1.88 V TA Operation Temperature -40 - 85 ºC 2015-08-0008 PT0508-1 2 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| DC Electrical Characteristics Unless otherwise specified, VCC = MIN to MAX, VBACKUP=MIN to MAX, TA = -40 °C to +85 °C Item Sym. Pin Condition Min Input Leakage ILI SCL VIN=VCC or GND I/O Leakage ILO Typ Max Units -1 1 μA SDA, SQW/INT -1 1 μA IOL1 SQW/INT 1.0 3.0 - mA IOL2 SDA, 1.5 3.0 - mA Logic 0 Out VOL= 0.2V; VBACKUP >= VBACKMIN IOL1 SQW/INT VCC absent, BBSQI=1 0.25 - mA VCC Active Current ICCA (Note 1) 80 250 μA 40 100 VCC Standby Current(Note 2) ICCS Trickle-Charger Resistor Register10h = A5h, VCC = Typ, VBACKUP= 0V R1 Trickle-Charger Resistor Register10h = A6h, VCC = Typ, VBACKUP = 0V Trickle-Charger Resistor Register10h = A7h, VCC = Typ, VBACKUP = 0V Logic0 Out VOL= 0.4V; VCC> VCCMIN VBACKUP Leakage Current VCC = 3.3V VCC = 5.5V 150 μA 200 Ω R2 2000 Ω R3 4000 Ω (Note 3) IBKLKG VBACKUP 25 100 nA DC Electrical Characteristics Unless otherwise specified, VCC = 0V, VBACKUP=MIN to MAX, TA = -40 °C to +85 °C Item Sym. Condition VBACKUP Current, /EOSC=0, SQW Off IBKOSC VBACKUP Current, /EOSC=0, SQW On VBACKUP Current, /EOSC=1 Min Typ Max Units Note 4, Note5 300 600 nA IBKSQW Note 4 400 900 nA IBKDR Note6 10 100 nA Note: 1. SCL clocking at max frequency = 400 kHz, VIL = 0.0V, VIH = VCC, trickle charger disabled. 2. Specified with 2-wire bus inactive, VIL = 0.0V, VIH = VCC, trickle charger disabled. 3. VCC must be less than 3.63V if 200Ω resistance is selected. 4. Using recommended crystal on X1 and X2. 5. Specified with the SQW function disabled by setting INTCN = 1. 6. Crystal oscillator is disabled. 2015-08-0008 PT0508-1 3 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| AC Electrical Characteristics Sym VHM VHL Description Rising and falling threshold voltage high Rising and falling threshold voltage low Value 0.8 VCC 0.2 VCC Unit V V Signal VHM VLM tr tf Over the operating range (Figure 1) Symbol Item fSCL SCL clock frequency tSU;STA START condition set-up time tHD;STA START condition hold time tSU;DAT Data set-up time (RTC read/write) tHD;DAT1 Data hold time (RTC write) tHD;DAT2 Data hold time (RTC read) tSU;STO STOP condition setup time tBUF Bus idle time between a START and STOP condition tLOW When SCL = "L" tHIGH When SCL = "H" tr Rise time for SCL and SDA tf Fall time for SCL and SDA tSP* Allowable spike time on bus CB Capacitance load for each bus line CI/O * I/O Capacitance (SDA, SCL) TOSF Oscillator Stop Flag (OSF) Delay * Note: only reference for design S SCL Min. 0.6 0.6 200 35 0 0.6 1.3 1.3 0.6 - Typ. - Sr tLOW fSCL tHIGH Max. 400 0.3 0.3 50 400 10 100 P tHD;STA tSP Unit kHz s s ns ns s s s s s s s ns pF pF ms tSU;STA tBUF SDA tHD;STA S Start condition Sr Restart condition tSU;DAT tHD;DAT P tSU;STA tSU;STO tHD;STA Stop condition Figure1 I2C Timing 2015-08-0008 PT0508-1 4 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Functional Block Diagram VCC Power Failure Detect Trickle Charger Control VBACKUP Alarm 1 Register Comparator 1 (Sec, Min, Hour, Day/Date) Alarm 2 Register Comparator 2 (Min, Hour, Day/Date) X1 CD 32.768 kHz X2 OSC Time Counter Counter Chain (Sec,Min,Hour,Day,Date,Month,Year) CG “C” version only Address Decoder Control Register SQW/INT Address Register SCL I /O Interface (I2C) Interrupt Control Square Wave Output Control Shift Register SDA Oscillator Circuit PT7C4339 The PT7C4339 uses an external 32.768 kHz crystal. Table1 specifies several crystal parameters for the external crystal. The Block Diagram shows a functional schematic of the oscillator circuit. The startup time is usually less than 1 second when using a crystal with the specified characteristics. Table1 Crystal Specifications Parameter Symbol Min Typ Max Unit Nominal Frequency fO 32.768 kHz Series Resistance ESR 70 k Load Capacitance CL 6 pF Note: The crystal, traces, and crystal input pins should be isolated from RF generating signals. Clock Accuracy The accuracy of the clock is dependent upon the accuracy of the crystal and the accuracy of the match between the capacitive load of the oscillator circuit and the capacitive load for which the crystal was trimmed. Crystal frequency drift caused by temperature shifts creates additional error. External circuit noise coupled into the oscillator circuit can result in the clock running fast. Figure 2 shows a typical PC board layout for isolating the crystal and oscillator from noise. PT7C4339C The PT7C4339C integrates a standard 32,768Hz crystal in the package. Typical accuracy at nominal VCC and +25°C is approximately ±10ppm. 2015-08-0008 PT0508-1 5 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Recommended Layout for Crystal (only for PT7C4339) Figure 2 typical PC board layout for isolating the crystal and oscillator from noise 2015-08-0008 PT0508-1 6 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Functional Description 1. Overview of Functions 1.1. Clock function CPU can read or write data including the year (last two digits), month, date, day, hour, minute, and second. Any (two-digit) year that is a multiple of 4 is treated as a leap year and calculated automatically as such until the year 2100. For PT7C4339 on a power-on reset (POR), the time and date are set to 00:00:00 01/01/00 (hh:mm:ss DD/MM/YY) and the Day register is set to 01. 1.2. Alarm function This device has two alarm system (Alarm 1 and Alarm 2) that outputs interrupt signals from SQW/INT to CPU when the date, day of the week, hour, minute or second correspond to the setting. Each of them may output interrupt signal separately at a specified time. The alarm is be selectable between on and off for matching alarm or repeating alarm. 1.3. Programmable square wave output A square wave output enable bit controls square wave output at pin 7. Frequencies are selectable: 1, 4.096k, 8.192k, 32.768 kHz. 1.4. Interface with CPU Data is read and written via the I2C bus interface using two signal lines: SCL (clock) and SDA (data). Since the output of the I/O pin SDA is open drain, a pull-up resistor should be used on the circuit board if the CPU output I/O is also open drain. The SCL's maximum clock frequency is 400 kHz, which supports the I2C bus's high-speed mode. 1.5. Oscillator fail detect When oscillator fail, PT7C4339 OSF bit will be set. 1.6. Oscillator enable/disable Oscillator can be enabled or disabled at the same time by /EOSC bit. 2. Operation The PT7C4339 operates as a slave device on the serial bus. Access is obtained by implementing a START condition and providing a device identification code followed by data. Subsequent registers can be accessed sequentially until a STOP condition is executed. The device is fully accessible and data can be written and read when V CC is greater than VPF. However, when VCC falls below VPF, the internal clock registers are blocked from any access. If VPF is less than VBACKUP, the device power is switched from VCC to VBACKUP when VCC drops below VPF. If VPF is greater than VBACKUP, the device power is switched from VCC to VBACKUP when VCC drops below VBACKUP. The registers are maintained from the VBACKUP source until VCC is returned to nominal levels. 3. Power Control The power-control function is provided by a precise, temperature-compensated voltage reference and a comparator circuit that monitors the VCC level. The device is fully accessible and data can be written and read when VCC is greater than VPF. However, when VCC falls below VPF, the internal clock registers are blocked from any access. If V PF is less than VBACKUP, the device power is switched from VCC to VBACKUP when VCC drops below VPF. If VPF is greater than VBACKUP, the device power is switched from V CC to VBACKUP when VCC drops below VBACKUP. The registers are maintained from the VBACKUP source until VCC is returned to nominal levels (Table 2). After VCC returns above VPF, read and write access is allowed after tREC (Figure 1). On the first application of power to the device the time and date registers are reset to 01/01/00 01 00:00:00 (MM/DD/YY DOW HH:MM:SS). Table 2: Power Control Supply Condition Read/Write Access Power by VCC < VPF, VCC < VBACKUP No VBACKUP VCC < VPF, VCC > VBACKUP No VCC VCC > VPF, VCC < VBACKUP Yes VCC VCC > VPF, VCC > VBACKUP Yes VCC 2015-08-0008 PT0508-1 7 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 4. Registers 4.1. Allocation of registers Addr. (hex) *1 Function Bit 7 Bit 6 Bit 5 Register definition Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 00 Seconds (00-59) 0 S40 S20 S10 S8 S4 S2 S1 01 Minutes (00-59) 0 M40 M20 M10 M8 M4 M2 M1 02 Hours (00-23 / 01-12) 0 12, /24 H20 or P, /A H10 H8 H4 H2 H1 03 Days of the week (01-07) 0 0 0 0 0 W4 W2 W1 04 Dates (01-31) 0 0 D20 D10 D8 D4 D2 D1 05 Months (01-12) Century 0 0 MO10 MO8 MO4 MO2 MO1 06 Years (00-99) Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1 07 Alarm 1: Seconds A1M1*2 S40 S20 S10 S8 S4 S2 S1 08 Alarm 1: Minutes A1M2*2 M40 M20 M10 M8 M4 M2 M1 09 Alarm 1: Hours A1M3*2 12, /24 H10 H8 H4 H2 H1 0A Alarm 1: Day, Date A1M4*2 Day, /Date H20 or P, /A 0, D20 0, D10 0, D8 W4, D4 W2, D2 W1, D1 0B Alarm 2: Minutes A2M2*3 M40 M20 M10 M8 M4 M2 M1 0C Alarm 2: Hours A2M3*3 12, /24 H10 H8 H4 H2 H1 0D Alarm 2: Day, Date A2M4*3 Day, /Date H20 or P, /A 0, D20 0, D10 0, D8 W4, D4 W2, D2 W1, D1 0E Control /EOSC*4 0 BBSQI RS2*5 RS1*5 A2IE*7 A1IE*7 0F Status OSF*9 0 0 0 0 0 A2F*8 A1F*8 10 Trickle charger TCS3 TCS2 TCS1 TCS0 DS1 DS0 ROUT1 ROUT0 INTCN*6 Caution points: *1. PT7C4339 uses 8 bits for address. For excess 10H address, PT7C4339 will not respond (no acknowledge signal was given). *2. Alarm 1 mask bits. Select alarm repeated rate when an alarm occurs. *3. Alarm 2 mask bits. Select alarm repeated rate when an alarm occurs. *4. Oscillator enable/disable bit. *5. Square wave output frequency select. *6. Interrupt output pin select bit. *7. Alarm 1 and alarm 2 enable bits. *8. Alarm 1 and alarm 2 flag bits. *9. Oscillators stop flag. *10. All bits marked with "0" are read-only bits. Their value when read is always "0". 2015-08-0008 PT0508-1 8 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 4.2. Control and status register Addr. (hex) Description D7 D6 D5 D4 D3 D2 D1 D0 0E Control (default) /EOSC 0 0 0 BBSQI 0 RS2 1 RS1 1 INTCN 0 A2IE 0 A1IE 0 0F Status (default) OSF 1 0 0 0 0 0 0 0 0 0 0 A2F A1F Undefined Undefined 1) Oscillator related bits /EOSC Enable oscillator bit. /EOSC Data Description 0 Starts the oscillator. 1 The oscillator is stopped. Default Read / Write 2) BBSQI Battery-Backed Square-Wave and Interrupt Enable bit. BBSQI Data Read / Write Description Default 0 The SQW/INT pin goes high impedance when VCC falls below the power-fail trip point. 1 Enables the square wave or interrupt output when VCC is absent and the PT7C4339 is being powered by the VBACKUP pin. 3) Square wave frequency selection bits RS2, RS1 Square wave Rate Select. These bits control the frequency of the square-wave output when the square wave has been enabled. RS2, RS1 Data SQW output freq. (Hz) 00 1 01 4.096k 10 8.192k 11 32.768k Read / Write Default 4) OSF Oscillator Stop Flag Logic 1 in this bit indicates that the oscillator either is stopped or was stopped for some period of time and may be used to judge the validity of the clock and calendar data. This bit is set to logic 1 anytime that the oscillator stops. The following are examples of conditions that can cause the OSF bit to be set: 1) The first time power is applied. 2) The voltage present on VCC is insufficient to support oscillation. 3) The /EOSC bit is turned off. 4) External influences on the crystal (e.g., noise, leakage, etc.). This bit remains at logic 1 until written to logic 0. 2015-08-0008 PT0508-1 9 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 5) Interrupt related bits INTCN Interrupt Output pin select bit. This bit controls the relationship between the two alarms and the interrupt output pins. INTCN Data Description A match between the timekeeping registers and the alarm 1 or alarm 2 registers activate the SQW/INT pin (provided that the alarm is enabled). 1 Read/write Default 0 In this configuration, a square wave is output on the SQW/INT pin. A1IE Alarm 1 Interrupt Enable. A1IE Data Description Default 0 The A1F bit does not initiate the SQW/INT signal. 1 Permits the alarm 1 flag (A1F) bit in the status register to assert SQW/INT. Read/write A1F Alarm 1 Flag. A1F Data Read / Write 0 Description Default The time does not match the alarm 1 registers. A logic 1 in the Alarm 1 Flag bit indicates that the time matched the alarm 1 registers. If the A1IE bit is Read a logic 1 and the INTCN bit is set to a logic 1, the SQW/INT pin is also asserted. A1F is cleared when 1 written to logic 0. This bit can only be written to logic 0. Attempting to write to logic 1 leaves the value unchanged. A2IE Alarm 2 Interrupt Enable. A2IE Data Description Default 0 The A2F bit does not initiate an interrupt signal. 1 Permits the alarm 2 flag (A2F) bit in the status register to assert SQW/INT (when INTCN = 1). Read/write A2F Alarm 2 Flag. A1F Data Read / Write 0 Description Default The time does not match the alarm 2 registers. A logic 1 in the Alarm 2 Flag bit indicates that the time matched the alarm 2 registers. If the A2IE bit Read 1 is a logic 1 and the INTCN bit is set to a logic 1, the SQW/INT pin is also asserted. A2F is cleared when written to logic 0. This bit can only be written to logic 0. Attempting to write to logic 1 leaves the value unchanged. 2015-08-0008 PT0508-1 10 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 4.3. Time Counter Time digit display (in BCD code):  Second digits: Range from 00 to 59 and carried to minute digits when incremented from 59 to 00.  Minute digits: Range from 00 to 59 and carried to hour digits when incremented from 59 to 00.  Hour digits: See description on the /12, 24 bit. Carried to day and day-of-the-week digits when incremented from 11 p.m. to 12 a.m. or 23 to 00. Addr. Description D7 D6 D5 D4 D3 D2 D1 D0 (hex) 00 Seconds (default) 0 0 S40 S20 S10 S8 S4 S2 S1 Undefined Undefined Undefined Undefined Undefined Undefined Undefined 01 Minutes (default) 0 0 M40 M20 M10 M8 M4 M2 M1 Undefined Undefined Undefined Undefined Undefined Undefined Undefined Hours 0 12, /24 H20 or P,/A H10 H8 H4 H2 H1 (default) 0 Undefined Undefined Undefined Undefined Undefined Undefined Undefined Note: Any registered imaginary time should be replaced with correct time, otherwise it will cause the clock counter malfunction. 02 12, /24 bit This bit is used to select between 12-hour clock system and 24-hour clock system. 12, /24 Data Description 0 24-hour system 1 12-hour system Read / Write This bit is used to select between 12-hour clock operation and 24-hour clock operation. 12, /24 Description Hours register 0 24-hour time display 1 12-hour time display 24-hour clock 00 01 02 03 04 05 06 07 08 09 10 11 12-hour clock 52 ( AM 12 ) 41 ( AM 01 ) 42 ( AM 02 ) 43 ( AM 03 ) 44 ( AM 04 ) 45 ( AM 05 ) 46 ( AM 06 ) 47 ( AM 07 ) 48 ( AM 08 ) 49 ( AM 09 ) 50 ( AM 10 ) 51 ( AM 11 ) 24-hour clock 12 13 14 15 16 17 18 19 20 21 22 23 12-hour clock 72 ( PM 12) 61 ( PM 01 ) 62 ( PM 02 ) 63 ( PM 03 ) 64 ( PM 04 ) 65 ( PM 05 ) 66 ( PM 06 ) 67 ( PM 07 ) 68 ( PM 08 ) 69 ( PM 09 ) 70 ( PM 10 ) 71 ( PM 11 ) * Be sure to select between 12-hour and 24-hour clock operation before writing the time data. 4.4. Days of the week Counter The day counter is a divide-by-7 counter that counts from 01 to 07 and up 07 before starting again from 01. Values that correspond to the day of week are user defined but must be sequential (i.e., if 1 equals Sunday, then 2 equals Monday, and so on). Illogical time and date entries result in undefined operation. Addr. Description D7 D6 D5 D4 D3 D2 D1 D0 (hex) 03 Days of the week (default) 0 0 0 0 0 0 0 0 2015-08-0008 0 0 W4 W2 W1 Undefined Undefined Undefined PT0508-1 11 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 4.5. Calendar Counter The data format is BCD format.  Day digits: Range from 1 to 31 (for January, March, May, July, August, October and December).  Range from 1 to 30 (for April, June, September and November).  Range from 1 to 29 (for February in leap years).  Range from 1 to 28 (for February in ordinary years).  Carried to month digits when cycled to 1.  Month digits: Range from 1 to 12 and carried to year digits when cycled to 1.  Year digits: Range from 00 to 99 and 00, 04, 08, … , 92 and 96 are counted as leap years. Addr. Description D7 D6 D5 D4 D3 D2 (hex) D1 D0 04 Dates (default) 0 0 0 0 D20 D10 D8 D4 D2 D1 Undefined Undefined Undefined Undefined Undefined Undefined 05 Months (default) Century*1 Undefined 0 0 06 Years (default) Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1 Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined 0 0 M10 M8 M4 M2 M1 Undefined Undefined Undefined Undefined Undefined *1: The century bit is toggled when the years register overflows from 99 to 00. 4.6. Alarm Register Alarm 1, Alarm 2 Register Addr. 07 08 09 0A 0B 0C 0D Description Alarm 1: Seconds (default) Alarm 1: Minutes (default) D7 D6 *1 A1M1 S40 Undefined Undefined A1M2*1 M40 D4 S20 Undefined M20 D3 D2 D1 D0 S10 S8 S4 S2 S1 Undefined Undefined Undefined Undefined Undefined M10 M8 M4 M2 M1 Undefined Undefined Undefined Undefined Undefined Undefined A1M3 12, /24 H20 or P,/A Undefined Undefined Undefined Day, 0, Alarm 1: Day, Date A1M4*1 *1 /Date D20 (default) Undefined Undefined Undefined H10 H8 H4 H2 H1 Undefined Undefined Undefined Undefined Undefined 0, 0, W4, W2, W1, D10 D8 D4 D2 D1 Undefined Undefined Undefined Undefined Undefined Alarm 1: Hours (default) Alarm 2: Minutes (default) Undefined Undefined D5 *1 A2M2*2 M40 Undefined Undefined M20 M10 M8 M4 M2 M1 Undefined Undefined Undefined Undefined Undefined Undefined A2M3*2 12, /24 H20 or P,/A Undefined Undefined Undefined Day, 0, Alarm 2: Day, Date A2M4*2 /Date*2 D20 (default) Undefined Undefined Undefined H10 H8 H4 H2 H1 Undefined Undefined Undefined Undefined Undefined 0, 0, W4, W2, W1, D10 D8 D4 D2 D1 Undefined Undefined Undefined Undefined Undefined Alarm 2: Hours (default) *1 Note: Alarm mask bit, using to select Alarm 1 alarm rate. *2 Note: Alarm mask bit, using to select Alarm 2 alarm rate. 2015-08-0008 PT0508-1 12 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 4.7. Alarm Function Related register Addr. Function (hex) Bit 7 Bit 6 Bit 5 Register definition Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 00 Seconds 0 S40 S20 S10 S8 S4 S2 S1 01 Minutes 0 M40 M20 M10 M8 M4 M2 M1 02 Hours 0 12, /24 H20 or A, /P H10 H8 H4 H2 H1 03 Days of the week 0 0 0 0 0 W4 W2 W1 04 Dates 0 0 D20 D10 D8 D4 D2 D1 07 Alarm 1: Seconds A1M1 S40 S20 S10 S8 S4 S2 S1 08 Alarm 1: Minutes A1M2 M40 M20 M10 M8 M4 M2 M1 09 Alarm 1: Hours A1M3 12, /24 H10 H8 H4 H2 H1 0A Alarm 1: Day, Date A1M4 Day, /Date H20 or A, /P 0, D20 0, D10 0, D8 W4, D4 W2, D2 W1, D1 0B Alarm 2: Minutes A2M2 M40 M20 M10 M8 M4 M2 M1 0C Alarm 2: Hours A2M3 12, /24 H10 H8 H4 H2 H1 0D Alarm 2: Day, Date A2M4 Day, /Date H20 or A, /P 0, D20 0, D10 0, D8 W4, D4 W2, D2 W1, D1 0E Control /EOSC 0 BBSQI RS2 RS1 INTCN A2IE A1IE 0F Status OSF 0 0 0 0 0 A2F A1F Note: Alarm function does not support different hour system adopted in time and alarm register. The PT7C4339 contains two time-of-day/date alarms. The alarms can be programmed (by the INTCN bit of the control register) to operate in two different modes - each alarm can drive a common interrupt output. Bit 7 of each of the time-of-day/date alarm registers are mask bits. When all of the mask bits for each alarm are logic 0, an alarm only occurs when the values in the timekeeping registers 00h ~ 04h match the values stored in the time-of-day/date alarm registers. The alarms can also be programmed to repeat every second, minute, hour, day, or date. Table3 and Table4 show the possible settings. The Day, /Date bits (bit 6 of the alarm day/date registers) control whether the alarm value stored in bits 0 ~ 5 of that register reflects the day of the week or the date of the month. If the bit is written to logic 0, the alarm is the result of a match with date of the month. If the bit is written to logic 1, the alarm is the result of a match with day of the week. When the PT7C4339 register values match alarm register settings, the corresponding alarm flag (A1F or A2F) bit is set to logic 1. If the corresponding alarm interrupt enable (A1IE or A2IE) is also set to logic 1, the alarm condition activates one of the interrupt output (SQW/INT) signals. The match is tested on the once-per-second update of the time and date registers. 2015-08-0008 PT0508-1 13 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Table3. Alarm 1 Mask Bits Alarm 1 register mask bits Day, /Date A1M4 A1M3 A1M2 A1M1 Alarm rate  1 1 1 1 Alarm once per second  1 1 1 0 Alarm when seconds match  1 1 0 0 Alarm when minutes and seconds match  1 0 0 0 Alarm when hours, minutes, and seconds match 0 0 0 0 0 Alarm when date, hours, minutes, and seconds match 1 0 0 0 0 Alarm when day, hours, minutes, and seconds match Others Ignored. Table4. Alarm 2 Mask Bits Alarm 2 register mask bits Day, /Date A2M4 A2M3 A2M2 1 1 1  Alarm rate Alarm once per minute (00 seconds of every minute)  1 1 0 Alarm when minutes match  0 1 0 0 Alarm when hours, minutes 0 0 0 Alarm when date, hours, and minutes match 1 0 0 0 Alarm when day, hours, and minutes match Others Ignored. 4.8. Trickle Charger Register (10h) The simplified schematic in Figure 5 shows the basic components of the trickle charger. The trickle-charge select (TCS) bits (bits 4 to 7) control the selection of the trickle charger. To prevent accidental enabling, only a pattern on 1010 enables the trickle charger. All other patterns disable the trickle charger. The trickle charger is disabled when power is first applied. The diode-select (DS) bits (bits 2 and 3) select whether or not a diode is connected between VCC and VBACKUP. The ROUT bits (bits 0 and 1) select the value of the resistor connected between VCC and VBACKUP. Table 5 shows the bit values. Table5. Trickle Charger Register (10h) BIT 7 BIT 6 BIT 5 BIT 4 TCS3 TCS2 TCS1 TCS0 X X X X X X X X X X X X 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 BIT 3 DS1 0 1 X 0 1 0 1 0 1 0 BIT 2 DS0 0 1 X 1 0 1 0 1 0 0 BIT 1 ROUT1 X X 0 0 0 1 1 1 1 0 BIT 0 ROUT0 X X 0 1 1 0 0 1 1 0 Function Disabled Disabled Disabled No diode, 200Ω resistor One diode, 200Ω resistor No diode, 2kΩ resistor One diode, 2kΩ resistor No diode, 4kΩ resistor One diode, 4kΩ resistor Initial power-up values Warning: The ROUT value of 200Ω must not be selected whenever VCC is greater than 3.63V. The user determines diode and resistor selection according to the maximum current desired for battery or super cap charging. The maximum charging current can be calculated as illustrated in the following example. Assume that a 3.3V system power supply is applied to VCC and a super cap is connected to VBACKUP. Also assume that the trickle charger has been enabled with a diode and resistor R2 between VCC and VBACKUP. The maximum current IMAX would therefore be calculated as follows: IMAX = (3.3V - diode drop) / R2 ≈ (3.3V - 0.7V) / 2kΩ ≈ 1.3mA As the super cap or battery charges, the voltage drop between VCC and VBACKUP decreases and therefore the charge current decreases. 2015-08-0008 PT0508-1 14 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Figure 5: Programmable Trickle Charger 5. I2C Bus Interface 5.1. Overview of I2C-BUS The I C bus supports bi-directional communications via two signal lines: the SDA (data) line and SCL (clock) line. A combination of these two signals is used to transmit and receive communication start/stop signals, data signals, acknowledge signals, and so on. Both the SCL and SDA signals are held at high level whenever communications are not being performed. The starting and stopping of communications is controlled at the rising edge or falling edge of SDA while SCL is at high level. During data transfers, data changes that occur on the SDA line are performed while the SCL line is at low level, and on the receiving side the data is captured while the SCL line is at high level. In either case, the data is transferred via the SCL line at a rate of one bit per clock pulse. The I2C bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a chip select pin, slave addresses are allocated to each device and the receiving device responds to communications only when its slave address matches the slave address in the received data. 2 5.2. System Configuration All ports connected to the I2C bus must be either open drain or open collector ports in order to enable AND connections to multiple devices. SCL and SDA are both connected to the VCC line via a pull-up resistance. Consequently, SCL and SDA are both held at high level when the bus is released (when communication is not being performed). 2015-08-0008 PT0508-1 15 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Vcc RP RP SDA SCL Master MCU Slave RTC Other Peripheral Device Note: When there is only one master, the MCU is ready for driving SCL to "H" and RP of SCL may not required. Fig2. System configuration 5.3. Starting and Stopping I2C Bus Communications Fig3. Starting and stopping on I2C bus 1) START condition, repeated START condition, and STOP condition a) START condition SDA level changes from high to low while SCL is at high level b) STOP condition SDA level changes from low to high while SCL is at high level c) Repeated START condition (RESTART condition) In some cases, the START condition occurs between a previous START condition and the next STOP condition, in which case the second START condition is distinguished as a RESTART condition. Since the required status is the same as for the START condition, the SDA level changes from high to low while SCL is at high level. 2) Data Transfers and Acknowledge Responses during I2C-BUS Communication a) Data transfers Data transfers are performed in 8-bit (1 byte) units once the START condition has occurred. There is no limit on the amount (bytes) of data that are transferred between the START condition and STOP condition. The address auto increment function operates during both write and read operations. Updating of data on the transmitter (transmitting side)'s SDA line is performed while the SCL line is at low level. 2015-08-0008 PT0508-1 08/24/15 16 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| The receiver (receiving side) captures data while the SCL line is at high level. *Note: with caution that if the SDA data is changed while the SCL line is at high level, it will be treated as a START, RESTART, or STOP condition. b) Data acknowledge response (ACK signal) When transferring data, the receiver generates a confirmation response (ACK signal, low active) each time an 8-bit data segment is received. If there is no ACK signal from the receiver, it indicates that normal communication has not been established. (This does not include instances where the master device intentionally does not generate an ACK signal.) Immediately after the falling edge of the clock pulse corresponding to the 8th bit of data on the SCL line, the transmitter releases the SDA line and the receiver sets the SDA line to low (= acknowledge) level. SCL from Master 1 8 2 SDA from transmitter (sending side) 9 Release SDA Low active SDA from receiver (receiving side) ACK signal After transmitting the ACK signal, if the Master remains the receiver for transfer of the next byte, the SDA is released at the falling edge of the clock corresponding to the 9th bit of data on the SCL line. Data transfer resumes when the Master becomes the transmitter. When the Master is the receiver, if the Master does not send an ACK signal in response to the last byte sent from the slave, that indicates to the transmitter that data transfer has ended. At that point, the transmitter continues to release the SDA and awaits a STOP condition from the Master. 5.4. Slave Address The I2C bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a chip select pin, slave addresses are allocated to each device. All communications begin with transmitting the [START condition] + [slave address (+ R/W specification)]. The receiving device responds to this communication only when the specified slave address it has received matches its own slave address. Slave addresses have a fixed length of 7 bits. See table for the details. An R/W bit is added to each 7-bit slave address during 8-bit transfers. Table Slave address R / W bit Operation Transfer data bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Read D1 h 1 (= Read) 1 1 0 1 0 0 0 Write D0 h 0 (= Write) 2015-08-0008 PT0508-1 17 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 5.5. I2C Bus’s Basic Transfer Format S Start indication Sr Restart indication Stop indication P A RTC Acknowledge A Master Acknowledge 1) Write via I2C bus Slave address (7 bits) S 1 Start 1 0 1 0 write 0 0 Addr. setting A A 0 A C K Slave address + write specification A C K Address Specifies the write start address. bit bit bit bit bit bit bit bit 7 6 5 4 3 2 1 0 Write data A P A C K Stop 2) Read via I2C bus (1) Standard read Slave address (7 bits) S 1 Start 1 0 1 0 0 write 0 Slave address (7 bits) 1 1 0 1 0 0 A C K Read 0 Restart Slave address + read specification A 0 Slave address + write specification Sr Addr. setting A A 1 A C K A C K Address Specifies the read start address. bit bit bit bit bit bit bit bit 7 6 5 4 3 2 1 0 Data read (1) Data is read from the specified start address and address auto increment. 2015-08-0008 A A C K bit bit bit bit bit bit bit bit 7 6 5 4 3 2 1 0 Data read (2) Address auto increment to set the address for the next data to be read. PT0508-1 18 /A P N O Stop A C K 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| (2) Simplified read Slave address (7 bits) S 1 Start 1 0 1 0 0 Read 0 Slave address + read specification A 1 A C K bit bit bit bit bit bit bit bit 7 6 5 4 3 2 1 0 Data read (1) Data is read from the address pointed by the internal address register and address auto increment. A A C K bit bit bit bit bit bit bit bit 7 6 5 4 3 2 1 0 Data read (2) Address register auto increment to set the address for the next data to be read. /A P N O Stop A C K Note: 1. The above steps are an example of transfers of one or two bytes only. There is no limit to the number of bytes transferred during actual communications. 2. 49H, 4AH are used as test mode address. Customer should not use the addresses. 2015-08-0008 PT0508-1 19 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Mechanical Information MSOP-8L 2015-08-0008 PT0508-1 20 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| SOIC-8L 2015-08-0008 PT0508-1 21 08/24/15 PT7C4339/4339C Real-time Clock Module ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| TDFN4.0x4.0-8L Ordering Information Part No. Package Code Package PT7C4339UE U Lead free and Green 8-pin MSOP PT7C4339UEX U Lead free and Green 8-pin MSOP Tape/Reel PT7C4339WE W Lead free and Green 8-pin SOIC PT7C4339WEX W Lead free and Green 8-pin SOIC Tape/Reel PT7C4339CZSAE* ZSA Lead free and Green 8-pin TDFN4.0x4.0 Note:  E = Pb-free and Green  Adding X Suffix= Tape/Reel  * Pls connect Pericom for available. Pericom Semiconductor Corporation  1-800-435-2336  www.pericom.com Pericom reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. Pericom does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom product. The company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom. 2015-08-0008 PT0508-1 22 08/24/15
PT7C4339UEX 价格&库存

很抱歉,暂时无法提供与“PT7C4339UEX”相匹配的价格&库存,您可以联系我们找货

免费人工找货