0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
74LVC1G139DCUTE4

74LVC1G139DCUTE4

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VFSOP8

  • 描述:

    IC DECODER/DEMUX 1X2:4 8VSSOP

  • 数据手册
  • 价格&库存
74LVC1G139DCUTE4 数据手册
SN74LVC1G139 www.ti.com SCES602C – AUGUST 2004 – REVISED JANUARY 2014 SN74LVC1G139 2-to-4 Line Decoder Check for Samples: SN74LVC1G139 FEATURES DESCRIPTION • This 2-to-4 line decoder is designed for 1.65-V to 5.5-V VCC operation. 1 2 • • • • • • • • • Available in the Texas Instruments NanoStar™ and NanoFree™ Packages Supports 5-V VCC Operation Inputs Accept Voltages to 5.5 V Supports Down Translation to VCC Max tpd of 4.9 ns at 3.3 V Low Power Consumption, 10-µA Max ICC ±24-mA Output Drive at 3.3 V Ioff Supports Live Insertion, Partial-PowerDown Mode, and Back-Drive Protection Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A) – 1000-V Charged-Device Model (C101) The SN74LVC1G139 2-line to 4-line decoder is designed to be used in high-performance memorydecoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, this decoder can be used to minimize the effects of system decoding. When used with high-speed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory usually are less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible. NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. DCU PACKAGE (TOP VIEW) DCT PACKAGE (TOP VIEW) A 1 8 VCC B 2 7 Y0 Y3 3 6 Y1 GND 4 5 Y2 See mechanical drawings for dimensions. A B Y3 GND 1 2 3 8 7 6 4 5 VCC Y0 Y1 Y2 YEP OR YZP PACKAGE (BOTTOM VIEW) GND Y3 B A 4 5 3 6 2 7 1 8 Y2 Y1 Y0 VCC 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoStar, NanoFree are trademarks of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2004–2014, Texas Instruments Incorporated SN74LVC1G139 SCES602C – AUGUST 2004 – REVISED JANUARY 2014 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. Function Table SELECT INPUTS OUTPUTS B A Y0 Y1 Y2 Y3 L L L H H H L H H L H H H L H H L H H H H H H L Logic Diagram (Positive Logic) A 1 3 Y3 Select Inputs B 2 5 Y2 Data Outputs 6 7 2 Submit Documentation Feedback Y1 Y0 Copyright © 2004–2014, Texas Instruments Incorporated Product Folder Links :SN74LVC1G139 SN74LVC1G139 www.ti.com SCES602C – AUGUST 2004 – REVISED JANUARY 2014 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX UNIT VCC Supply voltage range –0.5 6.5 V VI Input voltage range –0.5 6.5 V VO Voltage range applied to any output in the high-impedance or power-off state (2) –0.5 6.5 V VO Voltage range applied to any output in the high or low state (2) (3) –0.5 VCC + 0.5 V IIK Input clamp current VI < 0 –50 mA IOK Output clamp current VO < 0 –50 mA IO Continuous output current ±50 mA ICC Continuous current through VCC or GND ±100 mA θJA Package thermal impedance (4) Tstg Storage temperature range DCT package 220 DCU package 227 YEP or YZP package (1) (2) (3) (4) °C/W 102 –65 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. The value of VCC is provided in the Recommended Operating Conditions table. The package thermal impedance is calculated in accordance with JESD 51-7. Submit Documentation Feedback Copyright © 2004–2014, Texas Instruments Incorporated Product Folder Links :SN74LVC1G139 3 SN74LVC1G139 SCES602C – AUGUST 2004 – REVISED JANUARY 2014 www.ti.com Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) (1) VCC Supply voltage Operating Data retention only High-level input voltage MAX 1.65 5.5 1.5 VCC = 1.65 V to 1.95 V VIH MIN 1.7 VCC = 3 V to 3.6 V V 2 0.7 × VCC VCC = 1.65 V to 1.95 V Low-level input voltage V 0.65 × VCC VCC = 2.3 V to 2.7 V VCC = 4.5 V to 5.5 V VIL UNIT 0.35 × VCC VCC = 2.3 V to 2.7 V 0.7 VCC = 3 V to 3.6 V 0.8 VCC = 4.5 V to 5.5 V V 0.3 × VCC VI Input voltage 0 5.5 V VO Output voltage 0 VCC V IOH High-level output current VCC = 1.65 V –4 VCC = 2.3 V –8 –16 VCC = 3 V VCC = 4.5 V –32 VCC = 1.65 V 4 VCC = 2.3 V IOL Low-level output current Δt/Δv Input transition rise or fall rate TA Operating free-air temperature 8 16 VCC = 3 V 4 mA 24 VCC = 4.5 V 32 VCC = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V 20 VCC = 3.3 V ± 0.3 V 15 VCC = 5 V ± 0.5 V (1) mA –24 ns/V 10 –40 85 °C All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. Submit Documentation Feedback Copyright © 2004–2014, Texas Instruments Incorporated Product Folder Links :SN74LVC1G139 SN74LVC1G139 www.ti.com SCES602C – AUGUST 2004 – REVISED JANUARY 2014 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOH = –100 µA VOH 1.65 V to 5.5 V 1.65 V 1.2 IOH = –8 mA 2.3 V 1.9 4.5 V IOL = 100 µA 1.65 V to 5.5 V 0.1 IOL = 4 mA 1.65 V 0.45 IOL = 8 mA 2.3 V 0.3 IOL = 32 mA 0.4 VI = 5.5 V or GND VI or VO = 5.5 V ICC VI = 5.5 V or GND, IO = 0 ΔICC One input at VCC – 0.6 V, Other inputs at VCC or GND Ci VI = VCC or GND V 0.55 4.5 V Ioff (1) 3.8 3V IOL = 24 mA A or B inputs 2.3 IOH = –32 mA IOL = 16 mA II V 2.4 3V IOH = –24 mA UNIT VCC – 0.1 IOH = –4 mA IOH = –16 mA VOL MIN TYP (1) MAX VCC 0.55 0 to 5.5 V ±1 µA 0 ±5 µA 1.65 V to 5.5 V 10 µA 3 V to 5.5 V 500 µA 3.3 V 4 pF All typical values are at VCC = 3.3 V, TA = 25°C. Switching Characteristics over recommended operating free-air temperature range, CL = 15 pF (unless otherwise noted) (see Figure 1) PARAMETER tpd FROM (INPUT) TO (OUTPUT) A or B Y VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V VCC = 3.3 V ± 0.3 V VCC = 5 V ± 0.5 V MIN MAX MIN MAX MIN MAX MIN MAX 2.7 15.3 1.5 7.5 0.9 4.9 0.8 3.6 UNIT ns Switching Characteristics over recommended operating free-air temperature range, CL = 30 pF or 50 pF (unless otherwise noted) (see Figure 2) PARAMETER tpd FROM (INPUT) TO (OUTPUT) A or B Y VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V VCC = 3.3 V ± 0.3 V VCC = 5 V ± 0.5 V MIN MAX MIN MAX MIN MAX MIN MAX 3 16.7 1.6 8.2 1.2 5.9 1.1 4.2 UNIT ns Operating Characteristics TA = 25°C PARAMETER Cpd (1) (1) Power dissipation capacitance TEST CONDITIONS VCC = 1.8 V VCC = 2.5 V VCC = 3.3 V VCC = 5 V TYP TYP TYP TYP f = 10 MHz 31 34 36 39 UNIT pF Two outputs switching Submit Documentation Feedback Copyright © 2004–2014, Texas Instruments Incorporated Product Folder Links :SN74LVC1G139 5 SN74LVC1G139 SCES602C – AUGUST 2004 – REVISED JANUARY 2014 www.ti.com Parameter Measurement Information VLOAD S1 RL From Output Under Test CL (see Note A) Open GND RL TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open VLOAD GND LOAD CIRCUIT INPUTS VCC 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V 5 V ± 0.5 V VI tr/tf VCC VCC 3V VCC ≤2 ns ≤2 ns ≤2.5 ns ≤2.5 ns VM VLOAD CL RL V∆ VCC/2 VCC/2 1.5 V VCC/2 2 × VCC 2 × VCC 6V 2 × VCC 15 pF 15 pF 15 pF 15 pF 1 MΩ 1 MΩ 1 MΩ 1 MΩ 0.15 V 0.15 V 0.3 V 0.3 V VI Timing Input VM 0V tw tsu VI Input VM VM th VI Data Input VM VM 0V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VOLTAGE WAVEFORMS PULSE DURATION VI VM Input VM 0V VOH VM Output VM VOL VM tPLZ VLOAD/2 VM tPZH VOH Output VM 0V Output Waveform 1 S1 at VLOAD (see Note B) tPLH tPHL VM tPZL tPHL tPLH VI Output Control VM VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS Output Waveform 2 S1 at GND (see Note B) VOL + V∆ VOL tPHZ VM VOH − V∆ VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms 6 Submit Documentation Feedback Copyright © 2004–2014, Texas Instruments Incorporated Product Folder Links :SN74LVC1G139 SN74LVC1G139 www.ti.com SCES602C – AUGUST 2004 – REVISED JANUARY 2014 Parameter Measurement Information VLOAD S1 RL From Output Under Test CL (see Note A) Open GND RL TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open VLOAD GND LOAD CIRCUIT INPUTS VCC 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V 5 V ± 0.5 V VI tr/tf VCC VCC 3V VCC ≤2 ns ≤2 ns ≤2.5 ns ≤2.5 ns VM VLOAD CL RL V∆ VCC/2 VCC/2 1.5 V VCC/2 2 × VCC 2 × VCC 6V 2 × VCC 30 pF 30 pF 50 pF 50 pF 1 kΩ 500 Ω 500 Ω 500 Ω 0.15 V 0.15 V 0.3 V 0.3 V VI Timing Input VM 0V tw tsu VI Input VM VM th VI Data Input VM VM 0V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VOLTAGE WAVEFORMS PULSE DURATION VI VM Input VM 0V VOH VM Output VM VOL VM 0V VLOAD/2 VM tPZH VOH Output VM tPLZ Output Waveform 1 S1 at VLOAD (see Note B) tPLH tPHL VM tPZL tPHL tPLH VI Output Control VM VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS VOL + V∆ VOL tPHZ Output Waveform 2 S1 at GND (see Note B) VM VOH − V∆ VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 2. Load Circuit and Voltage Waveforms Submit Documentation Feedback Copyright © 2004–2014, Texas Instruments Incorporated Product Folder Links :SN74LVC1G139 7 SN74LVC1G139 SCES602C – AUGUST 2004 – REVISED JANUARY 2014 www.ti.com REVISION HISTORY Changes from Revision B (December 2005) to Revision C Page • Updated document to new TI data sheet format. ................................................................................................................. 1 • Updated Features. ................................................................................................................................................................ 1 • Removed Ordering Information table. ................................................................................................................................... 1 • Added ESD warning. ............................................................................................................................................................ 2 8 Submit Documentation Feedback Copyright © 2004–2014, Texas Instruments Incorporated Product Folder Links :SN74LVC1G139 PACKAGE OPTION ADDENDUM www.ti.com 16-Apr-2014 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) 74LVC1G139DCTRE4 ACTIVE SM8 DCT 8 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 C39 Z 74LVC1G139DCTRG4 ACTIVE SM8 DCT 8 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 C39 Z 74LVC1G139DCTTE4 ACTIVE SM8 DCT 8 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 C39 Z 74LVC1G139DCURE4 ACTIVE US8 DCU 8 TBD Call TI Call TI -40 to 85 C39R 74LVC1G139DCURG4 ACTIVE US8 DCU 8 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 C39R 74LVC1G139DCUTE4 ACTIVE US8 DCU 8 TBD Call TI Call TI -40 to 85 C39R 74LVC1G139DCUTG4 ACTIVE US8 DCU 8 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 C39R SN74LVC1G139DCTR ACTIVE SM8 DCT 8 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 C39 Z SN74LVC1G139DCTT ACTIVE SM8 DCT 8 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 C39 Z SN74LVC1G139DCUR ACTIVE US8 DCU 8 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 C39R SN74LVC1G139DCUT ACTIVE US8 DCU 8 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 C39R SN74LVC1G139YZPR ACTIVE DSBGA YZP 8 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 85 (DF7 ~ DFN) 3000 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 16-Apr-2014 Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 7-Nov-2013 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant SN74LVC1G139DCUR US8 DCU 8 3000 180.0 8.4 2.25 3.35 1.05 4.0 8.0 Q3 SN74LVC1G139YZPR DSBGA YZP 8 3000 178.0 9.2 1.02 2.02 0.63 4.0 8.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 7-Nov-2013 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74LVC1G139DCUR US8 DCU 8 3000 202.0 201.0 28.0 SN74LVC1G139YZPR DSBGA YZP 8 3000 220.0 220.0 35.0 Pack Materials-Page 2 MECHANICAL DATA MPDS049B – MAY 1999 – REVISED OCTOBER 2002 DCT (R-PDSO-G8) PLASTIC SMALL-OUTLINE PACKAGE 0,30 0,15 0,65 8 0,13 M 5 0,15 NOM ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ 2,90 2,70 4,25 3,75 Gage Plane PIN 1 INDEX AREA 1 0,25 4 0° – 8° 3,15 2,75 0,60 0,20 1,30 MAX Seating Plane 0,10 0,10 0,00 NOTES: A. B. C. D. 4188781/C 09/02 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion Falls within JEDEC MO-187 variation DA. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 D: Max = 1.918 mm, Min =1.858 mm E: Max = 0.918 mm, Min =0.858 mm IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated
74LVC1G139DCUTE4 价格&库存

很抱歉,暂时无法提供与“74LVC1G139DCUTE4”相匹配的价格&库存,您可以联系我们找货

免费人工找货