0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BQ25606RGET

BQ25606RGET

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VQFN24_4X4MM_EP

  • 描述:

    电池管理 具有高输入电压和电源路径的独立 1 芯 3A 快速充电器 VQFN24

  • 数据手册
  • 价格&库存
BQ25606RGET 数据手册
BQ25606 ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 BQ25606 独立单节 3.0A 降压电池充电器 1 特性 • 高效 1.5MHz 同步开关模式降压充电器 – 在 2A 电流(5V 输入)下具有 92% 的充电效率 – 针对 USB 电压输入 (5V) 进行了优化 • 支持 USB On-The-Go (OTG) – 具有高达 1.2A 输出的升压转换器 – 在 1A 输出下具有 92% 的升压效率 – 精确的恒定电流 (CC) 限制 – 高达 500µF 容性负载的软启动 – 输出短路保护 • 单个输入,支持 USB 输入和高电压适配器 – 支持 3.9V 至 13.5V 输入电压范围,绝对最大输 入电压额定值为 22V – 通过高达 4.6V 的输入电压限制 (VINDPM) 进行 最大功率跟踪 – VINDPM 阈值自动跟踪电池电压 – 自动检测 USB SDP、DCP 以及非标准适配器 • 高电池放电效率,电池放电 MOSFET 为 19.5mΩ • 窄 VDC (NVDC) 电源路径管理 – 无需电池或深度放电的电池即可瞬时启动 – 电池充电模式下实现理想的二极管运行 • 高集成度,包括所有 MOSFET、电流感测和环路补 偿 • 在系统待机电压下具有 58µA 的低电池泄漏电流 • 高精度 – 充电电压调节范围为 ±0.5% – ±6% 1.2A 和 1.8A 充电电流调节 – ±5% 0.5A、1.2A 和 1.8A 输入电流调节 • 安全相关认证: – 经 IEC 62368-1 CB 认证 2 应用 • EPOS、便携式扬声器 • 手机附件 • 医疗设备 3 说明 BQ25606 是高度集成的独立 3.0A 开关模式电池充电 管理和系统电源路径管理器件,适用于单节锂离子和锂 聚合物电池。该解决方案在系统和电池之间高度集成输 入反向阻断 FET(RBFET,Q1)、高侧开关 FET (HSFET,Q2)、低侧开关 FET(LSFET,Q3)以 及电池 FET(BATFET,Q4)。其低阻抗电源路径对 开关模式运行效率进行了优化、缩短了电池充电时间并 延长了放电阶段的电池使用寿命。 器件信息(1) 器件型号 BQ25606 (1) 封装 VQFN (24) 封装尺寸(标称值) 4.00mm × 4.00mm 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 USB VBUS SW BTST ILIM SYS ICHG BAT ICHG REGN + CE VSET TS 简化版应用 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLUSCK6 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 Table of Contents 1 特性................................................................................... 1 2 应用................................................................................... 1 3 说明................................................................................... 1 4 Revision History.............................................................. 2 5 说明(续).........................................................................4 6 Device Comparison Table...............................................5 7 Pin Configuration and Functions...................................6 8 Specifications.................................................................. 8 8.1 Absolute Maximum Ratings........................................ 8 8.2 ESD Ratings............................................................... 8 8.3 Recommended Operating Conditions.........................8 8.4 Thermal Information....................................................9 8.5 Electrical Characteristics.............................................9 8.6 Timing Requirements................................................ 13 8.7 Typical Characteristics.............................................. 15 9 Detailed Description......................................................17 9.1 Overview................................................................... 17 9.2 Functional Block Diagram......................................... 18 9.3 Feature Description...................................................19 10 Application and Implementation................................ 26 10.1 Application Information........................................... 26 10.2 Typical Application.................................................. 27 11 Power Supply Recommendations..............................34 12 Layout...........................................................................35 12.1 Layout Guidelines................................................... 35 12.2 Layout Example...................................................... 35 13 Device and Documentation Support..........................37 13.1 Device Support....................................................... 37 13.2 接收文档更新通知................................................... 37 13.3 支持资源..................................................................37 13.4 Trademarks............................................................. 37 13.5 Electrostatic Discharge Caution..............................37 13.6 术语表..................................................................... 37 14 Mechanical, Packaging, and Orderable Information.................................................................... 38 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 Changes from Revision B (November 2019) to Revision C (September 2021) • • • • • • • • • • • • • • Page 添加了 IEC 62368-1 CB 特性..............................................................................................................................1 删除了整个数据表中的 WEBENCH.................................................................................................................... 1 从节 5 中的第三段中删除了“为零”.................................................................................................................. 4 Added 节 6 .........................................................................................................................................................5 Added 节 9.3.4.1 ..............................................................................................................................................21 Added 节 9.3.4.2 ..............................................................................................................................................21 Added 节 9.3.4.3 ..............................................................................................................................................21 Added sentence to third paragraph in 节 9.3.5.4 ............................................................................................. 22 Changed "fault" to "the timer" in last paragraph of 节 9.3.5.6 .......................................................................... 24 Added 节 9.3.6 .................................................................................................................................................24 Added 节 9.3.6.1 ..............................................................................................................................................24 Added 节 9.3.6.2 ..............................................................................................................................................24 Added 表 10-1 ..................................................................................................................................................27 Changed > to ≤ in last paragraph in 节 10.2.2.3 ............................................................................................ 28 Changes from Revision A (August 2017) to Revision B (November 2019) Page • 更改了“应用”部分........................................................................................................................................... 1 Changes from Revision * (May 2017) to Revision A (August 2017) • • • • • • • • 2 Page 更改了数据表标题............................................................................................................................................... 1 从节 1 中删除了“200nS 快速关闭”................................................................................................................. 1 更改了简化应用原理图........................................................................................................................................1 Changed ACDRV pin references to "NC" in 节 7 section................................................................................... 6 Deleted ACDRV pin references from Pin Functions table.................................................................................. 6 Changed VAC pin description in Pin Functions table......................................................................................... 6 Deleted ACDRV pin references from 节 8.1 table...............................................................................................8 Added 节 8.2 table.............................................................................................................................................. 8 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn • • • • • • • • ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 Deleted VAC debounce time fromTiming Requirements table..........................................................................13 Changed 节 9.2 ................................................................................................................................................18 Changed Power Up from Input Source section................................................................................................ 19 Deleted Power Up OVPFET section.................................................................................................................19 Deleted OVPFET Startup Control timing illustration ........................................................................................ 19 Added subsection explaining D+/D– detection ...............................................................................................19 Changed Input Overvoltage (ACOV) section....................................................................................................25 Changed BQ25606 Application Diagram schematic.........................................................................................27 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 3 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 5 说明(续) BQ25606 可为 独立充电器和便携式设备提供快速充电功能和高输入电压支持。其输入电压和电流调节可以为电池 提供最大的充电功率。它还集成了自举二极管以进行高侧栅极驱动,从而简化系统设计。 该器件支持多种输入源,包括标准 USB 主机端口、USB 充电端口以及兼容 USB 的高电压适配器。该器件根据内 置 USB 接口设置默认输入电流限值。该器件符合 USB 2.0 和 USB 3.0 电源规范,具有输入电流和电压调节功 能。当内置 USB 接口确定输入适配器未知时,该器件的输入电流限值由 ILIM 引脚设置电阻器值决定。该器件还 具有高达 1.2A 的恒定电流限制能力,能够为 VBUS 提供 5.15V 的电压,符合 USB On-the-Go (OTG) 运行功率额 定值规范。 电源路径管理将系统电压调节至稍高于电池电压的水平,但是不会下降至 3.5V 最小系统电压以下。借助于这个特 性,即使在电池电量完全耗尽或者电池被拆除时,系统也能保持运行。当达到输入电流限值或电压限值时,电源 路径管理自动将充电电流减少。随着系统负载持续增加,电源路径将使电池放电,直到满足系统电源需求。该补 充模式可防止输入源过载。 此器件在无需软件控制情况下启动并完成一个充电周期。它检测电池电压并通过三个阶段为电池充电:预充电、 恒定电流和恒定电压。在充电周期的末尾,当充电电流低于预设限值并且电池电压高于再充电阈值时,充电器自 动终止。如果已完全充电的电池降至再充电阈值以下,则充电器自动启动另一个充电周期。 此充电器提供针对电池充电和系统运行的多种安全特性,其中包括电池负温度系数热敏电阻监视、充电安全性计 时器和过压/过流保护。当结温超过 110°C 时,热调节会减小充电电流。STAT 输出报告充电状态和任何故障状 况。其他安全特性包括针对充电和升压模式的电池温度感应、热调节和热关断以及输入 UVLO 和过压保护。 该器件采用 24 引脚 4mm x 4mm QFN 封装。 4 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 6 Device Comparison Table BQ25606 BQ25616 BQ25616J Quiescent battery current (BAT,SYS,SW) 58 μA 9.5 μA 9.5 μA VBUS OVP reaction-time 200 ns 130 ns 130 ns Input voltage regulation accuracy ±3% ±2% ±2% TS profile JEITA Hot/Cold JEITA Charge safety timer accuracy 10 hr 20 hr 20 hr Charge voltage limit 4.2 V/4.35 V/4.4 V 4.1 V/4.2 V/4.35 V 4.1 V/4.2 V/4.35 V Battery voltage regulation ±0.5% ±0.4% ±0.4% ACDRV No Yes Yes Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 5 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 VBUS PMID REGN BTST SW SW 24 23 22 21 20 19 7 Pin Configuration and Functions VAC 1 18 GND NC 2 17 GND D+ 3 16 SYS D± 4 15 SYS STAT 5 14 BAT OTG 6 13 BAT 9 10 11 12 ILIM CE ICHG VSET 8 TS 7 PG Thermal Pad (Not to scale) 图 7-1. BQ25606 RGE Package 24-Pin VQFN Top View 表 7-1. Pin Functions PIN NAME NC I/O 2 13 BAT 14 DESCRIPTION No connection. This pin must be floating. P Battery connection point to the positive terminal of the battery pack. The internal current sensing resistor is connected between SYS and BAT. Connect a 10-µF capacitor closely to the BAT pin. BTST 21 P PWM high side driver positive supply. internally, the BTST is connected to the cathode of the boost-strap diode. Connect a 0.047-μF bootstrap capacitor from SW to BTST. CE 9 DI Charge enable pin. When this pin is driven low, battery charging is enabled. D+ 3 AIO Positive line of the USB data line pair. D+/D– based USB host/charging port detection. The detection includes data contact detection (DCD), primary and secondary detection in BC1.2 and nonstandard adaptors. D– 4 AIO Negative line of the USB data line pair. D+/D– based USB host/charging port detection. The detection includes data contact detection (DCD), primary and secondary detection in BC1.2 and nonstandard adaptors. GND ICHG 6 NO. 17 18 10 P Power ground and signal ground. AI ICHG pin sets the charge current limit. A resistor is connected from ICHG pin to ground to set charge current limit as ICHG = KICHG/RICHG. The acceptable range for charge current is 300 mA to 3000 mA. ILIM 8 AI ILIM sets the input current limit. A resistor is connected from ILIM pin to ground to set the input current limit as IINDPM = KILIM/RILIM. The acceptable range for ILIM current is 500 mA to 3200 mA. The resistor based input current limit is effective only when the input adapter is detected as unknown. Otherwise, the input current limit is determined by D+/D– detection outcome. OTG 6 DI Boost mode enable pin. When this pin is pulled HIGH, OTG is enabled. OTG cannot be floating. PG 7 DO Open drain active low power good indicator. Connect to the pull up rail through a 10-kΩ resistor. LOW indicates a good input if the input voltage is between UVLO and ACOV, above SLEEP mode threshold, and input current limit is above 30 mA. PMID 23 P Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of HSFET. Connect a 10-μF ceramic capacitor between PMID and GND. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 表 7-1. Pin Functions (continued) PIN NAME REGN STAT NO. 22 5 I/O P DO 19 SW SYS 20 15 16 DESCRIPTION PWM low side driver positive supply output. Internally, REGN is connected to the anode of the booststrap diode. Connect a 4.7-μF (10-V rating) ceramic capacitor from REGN to analog GND. The capacitor should be placed close to the IC. Open-drain interrupt output. Connect the STAT pin to a logic rail via 10-kΩ resistor. The STAT pin indicates charger status. Charge in progress: LOW Charge complete or charger in SLEEP mode: HIGH Charge suspend (fault response): Blink at 1 Hz. P Switching node connecting to output inductor. Internally SW is connected to the source of the n-channel HSFET and the drain of the n-channel LSFET. Connect a 0.047-μF bootstrap capacitor from SW to BTST. P Converter output connection point. The internal current sensing resistor is connected between SYS and BAT. Connect a 20-µF capacitor close to the SYS pin. TS 11 AI Temperature qualification voltage input to support JEITA profile. Connect a negative temperature coefficient thermistor. Program temperature window with a resistor divider from REGN to TS to GND. Charge suspends when TS pin voltage is out of range. Recommend 103AT-2 thermistor. VAC 1 AI Input voltage sensing. This pin must be shorted to the VBUS pin. VBUS 24 P Charger input voltage. The internal n-channel reverse block MOSFET (RBFET) is connected between VBUS and PMID with VBUS on source. Place a 1-uF ceramic capacitor from VBUS to GND and place it as close as possible to the IC. AI VSET pin sets default battery charge voltage in the BQ25606. Program battery regulation voltage with a resistor pull-down from VSET to GND. RPD > 50 kΩ (float pin) = 4.208 V RPD < 500 Ω (short to GND) = 4.352 V 5 kΩ < RPD < 25 kΩ = 4.400 V P Ground reference for the device that is also the thermal pad used to conduct heat from the device. This connection serves two purposes. The first purpose is to provide an electrical ground connection for the device. The second purpose is to provide a low thermal-impedance path from the device die to the PCB. This pad should be tied externally to a ground plane. VSET Thermal Pad 12 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 7 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 8 Specifications 8.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) MIN MAX UNIT Voltage Range (with respect to GND) VAC –2 22 V Voltage Range (with respect to GND) VBUS (converter not switching)(2) –2 22 V Voltage Range (with respect to GND) BTST, PMID (converter not switching)(2) –0.3 22 V Voltage Range (with respect to GND) SW –2 16 V BTST to SW –0.3 7 V D+, D– –0.3 7 V Voltage Range (with respect to GND) REGN, TS, CE, PG, BAT, SYS (converter not switching) –0.3 7 V Output Sink Current STAT 6 mA Voltage Range (with respect to GND) VSET, ILIM, ICHG, OTG –0.3 7 PGND to GND (QFN package only) –0.3 0.3 V Operating junction temperature, TJ –40 150 °C Storage temperature, Tstg –65 150 °C Voltage Range (with respect to GND) Voltage Range (with respect to GND) Voltage Range (with respect to GND) (1) (2) V Stresses beyond those listed under Absolute maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to the network ground terminal unless otherwise noted. VBUS is specified up to 22 V for a maximum of one hour at room temperature 8.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ ESDA/JEDEC JS-001, all pins(1) ±2000 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±250 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 8.3 Recommended Operating Conditions MIN 8 3.9 NOM MAX V VBUS Input voltage Iin Input current (VBUS) 3.25 A ISYSOP Output current (SW) 3.0 A VBATOP Battery voltage 4.4 V IBATOP Fast charging current 3.0 A IBATOP Discharging current (continuous) 6 A Submit Document Feedback 13.5 UNIT (1) Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 8.3 Recommended Operating Conditions (continued) MIN TA (1) Operating ambient temperature NOM MAX 85 –40 UNIT °C The inherent switching noise voltage spikes should not exceed the absolute maximum voltage rating on either the BTST or SW pins. A tight layout minimizes switching noise. 8.4 Thermal Information BQ25606 THERMAL METRIC (1) RGE (VQFN) UNIT 24 PINS RθJA Junction-to-ambient thermal resistance 31.9 °C/W RθJC(top) RθJB Junction-to-case (top) thermal resistance 27 °C/W Junction-to-board thermal resistance 9.2 °C/W ΨJT Junction-to-top characterization parameter 0.4 °C/W ΨJB Junction-to-board characterization parameter 9.2 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance 2.8 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application Report. 8.5 Electrical Characteristics VVAC_PRESENT < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT QUIESCENT CURRENTS IBAT Battery discharge current (BAT, SW, SYS) in buck mode VBAT = 4.5 V, VBUS < VAC-UVLOZ, leakage between BAT and VBUS, TJ< 85°C IBAT Battery discharge current (BAT, SW, SYS) VBAT = 4.5 V, No VBUS, TJ < 85°C IVBUS Input supply current (VBUS) in buck mode VVBUS = 12 V, VVBUS > VVBAT, converter not switching IVBUS Input supply current (VBUS) in buck mode VVBUS > VUVLO, VVBUS > VVBAT, converter switching, VBAT = 3.8V, ISYS = 0A 3 mA IBOOST Battery discharge current in boost mode VBAT = 4.2 V, boost mode, IVBUS = 0 A, converter switching 3 mA 5 µA 58 85 µA 1.5 3 mA VBUS, VAC AND BAT PIN POWER UP VBUS_OP VBUS operating range VVBUS rising 3.9 VVAC_PRESENT REGN turn-on threshold VVAC rising 3.36 VVAC_PRESENT_H VVAC falling YS 13.5 3.65 3.97 V V mV 300 VSLEEP Sleep mode falling threshold (VVAC–VVBAT ), VBUSMIN_FALL ≤ VBAT ≤ VREG, VAC falling 37 76 126 mV VSLEEPZ Sleep mode rising threshold (VVAC–VVBAT ), VBUSMIN_FALL ≤ VBAT ≤ VREG, VAC rising 130 220 350 mV VVAC_OV_RISE VAC Overvoltage rising threshold VAC rising 13.5 14.28 14.91 VVAC_OV_HYS VAC Overvoltage hysteresis VAC falling VBAT_DPL_FALL Battery depletion falling threshold (Q4 turn-off threshold) VBAT falling 2.15 2.6 V VBAT_DPL_RISE Battery Depletion rising threshold (Q4 turn-on threshold) VBAT rising 2.35 2.82 V 520 V mV Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 9 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 8.5 Electrical Characteristics (continued) VVAC_PRESENT < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX 180 UNIT VBAT_DPL_HYST Battery Depletion rising hysteresis VBAT rising VBUSMIN_FALL Bad adapter detection falling threshold VBUS falling VBUSMIN_HYST Bad adapter detection hysteresis IBADSRC Bad adapter detection current source Sink current from VBUS to GND VSYS_MIN System regulation voltage VVBAT < VSYS_MIN = 3.5V, charge enabled or disabled VSYS System regulation voltage ISYS = 0 A, VVBAT > VSYSMIN, charge disabled RON(RBFET) Top reverse blocking MOSFET onresistance between VBUS and PMID Q1 -40°C≤ TA ≤ 125°C 45 mΩ RON(HSFET) Top switching MOSFET on-resistance between PMID and SW - Q2 VREGN = 5 V , -40°C≤ TA ≤ 125°C 62 mΩ RON(LSFET) Bottom switching MOSFET onresistance between SW and GND - Q3 VREGN = 5 V , -40°C≤ TA ≤ 125°C 70 mΩ VFWD BATFET forward voltage in supplement mode 30 mV RON(BAT-SYS) SYS-BAT MOSFET on-resistance QFN package, Measured from BAT to SYS, VBAT = 4.2V, TJ = 25°C 19.5 24 mΩ RON(BAT-SYS) SYS-BAT MOSFET on-resistance QFN package, Measured from BAT to SYS, VBAT = 4.2V, TJ = – 40 - 125°C 19.5 30 mΩ 3.65 3.8 mV 3.93 V 200 mV 30 mA POWER PATH 3.5 3.68 V VBAT + 50 mV V BATTERY CHARGER VBATREG VBATREG_ACC Charge voltage RVSET > 50 kΩ, –40 ≤ TJ ≤ 85°C 4.187 4.208 4.229 V RVSET < 500 Ω, –40 ≤ TJ ≤ 85°C 4.330 4.352 4.374 V RVSET = 10 kΩ, –40 ≤ TJ ≤ 85°C 4.378 4.4 4.422 V VBAT = 4.208 V or VBAT = 4.352 V, –40 ≤ TJ ≤ 85°C Charge voltage setting accuracy ICHG_REG_RANGE Charge current regulation range –0.5% 0.5% 0 3000 mA 715 mA ICHG_REG Charge current regulation RICHG = 1100 Ω, VVBAT = 3.1 V or VVBAT = 3.8 V 516 ICHG_REG_ACC Charge current regulation accuracy RICHG = 1100 Ω, VVBAT = 3.1 V or VVBAT = 3.8 V -16% ICHG_REG Charge current regulation ICHG_REG Charge current regulation accuracy RICHG = 562 Ω, VBAT = 3.1 V or VBAT = 3.8 V ICHG_REG Charge current regulation RICHG = 372 Ω, VVBAT = 3.1 V or VVBAT = 3.8 V 1.715 ICHG_REG_ACC Charge current regulation accuracy RICHG = 372 Ω, VVBAT = 3.1 V or VVBAT = 3.8 V -5% KICHG Charge current regulation setting ratio RICHG = 372 Ω, 562 Ω VVBAT = 3.1 V or VVBAT = 3.8 V 639 KICHG_ACC Charge current regulation setting ratio accuracy RICHG = 372Ω, 562 Ω VVBAT = 3.1 V or VVBAT = 3.8 V -6% 10 RICHG = 562 Ω, VVBAT = 3.1 V or VVBAT = 3.8 V Submit Document Feedback 1.14 615 16% 1.218 -6% 1.28 A 6% 1.813 1.89 A 5% 677 715 A×Ω 6% Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 8.5 Electrical Characteristics (continued) VVAC_PRESENT < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless otherwise noted) MIN TYP MAX UNIT VBATLOWV_FALL Battery LOWV falling threshold PARAMETER Fast charge to precharge TEST CONDITIONS 2.67 2.8 2.87 V VBATLOWV_RISE Battery LOWV rising threshold Pre-charge to fast charge 3.0 3.1 3.24 V IPRECHG Precharge current regulation RICHG = 1100 Ω, VVBAT = 2.6 V, IPRECHG = 5% of ICHG = 615mA 21 38 IPRECHG_ACC Precharge current regulation accuracy Percentage of ICHG,RICHG = 1100 Ω, VVBAT = 2.6 V, ICHG = 615mA 3.4% 6.2% IPRECHG Precharge current regulation RICHG = 562 Ω, VVBAT = 2.6 V, IPRECHG = 5% of ICHG = 1.218A 48 67 IPRECHG_ACC Precharge current regulation accuracy Percentage of ICHG,RICHG = 562 Ω, V1330 = 2.6 V, ICHG = 1.218A 3.9% 5.5% IPRECHG Precharge current regulation RICHG = 372 Ω, VVBAT = 2.6 V, IPRECHG = 5% of ICHG = 1.813A 76 97 IPRECHG_ACC Precharge current regulation accuracy Percentage of ICHG,RICHG = 372 Ω, VVBAT = 2.6 V, ICHG = 1.813A 4.1% 5.4% ITERM Termination current regulation 26 100 ITERM_ACC Termination current regulation accuracy Percentage of ICHG, RICHG = 562 Ω, VVBAT = 4.35 V, ICHG = 1.218 A 2.1% 8.3% ITERM Termination current regulation RICHG = 372 Ω, VVBAT = 4.35 V, ICHG = 1.813 A ITERM_ACC Termination current regulation accuracy Percentage of ICHG, RICHG = 372 Ω, VVBAT = 4.35 V, ICHG = 1.813 A VSHORT Battery short voltage VVBAT falling 1.85 2 2.15 VSHORTZ Battery short voltage VVBAT rising 2.05 2.25 2.35 V ISHORT Battery short current VVBAT < VSHORTZ 70 90 110 mA VRECHG Recharge Threshold below VBAT_REG VBAT falling 87 121 156 mV ISYSLOAD System discharge load current VSYS = 4.2 V RICHG = 562 Ω, VVBAT = 4.35V,CHG = 1.218A 56 100 3.0% 126 mA mA mA mA mA 7.0% 30 V mA INPUT VOLTAGE AND CURRENT REGULATION VDPM_VBAT Input voltage regulation limit VVBAT < 4.1 V (VVBAT= 3.6 V) VDPM_VBAT_ACC Input voltage regulation accuracy VVBAT < 4.1 V (VVBAT = 3.6 V) 4.171 4.3 4.429 –3% 3% V IINDPM USB input current regulation limit VVBUS = 5 V, USB500 charge port detected by DPDM , –40 ≤ TJ ≤ 85°C 448 500 mA IINDPM Input current regulation limit RILIM = 910 Ω, unknown adaptor detected by DPDM , –40 ≤ TJ ≤ 85°C 505 526 550 mA IINDPM Input current regulation limit accuracy RILIM = 374 Ω, unknown adaptor detected by DPDM , –40 ≤ TJ ≤ 85°C 1220 1276 1330 mA IINDPM Input current regulation limit RILIM = 265 Ω, unknown adaptor detected by DPDM , –40 ≤ TJ ≤ 85°C 1.73 1.8 1.871 A IINDPM_ACC Input current regulation limit accuracy RILIM = 265 Ω, 374 Ω, 910 Ω, unknown adaptor detected by DPDM , –40 ≤ TJ ≤ 85°C –5% KILIM Input current setting ratio, ILIM = KILIM / RILIM RILIM = 910 Ω, 374 Ω, 265 Ω, unknown adaptor detected by DPDM, –40 ≤ TJ ≤ 85°C 459 5% 478 500 A×Ω Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 11 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 8.5 Electrical Characteristics (continued) VVAC_PRESENT < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless otherwise noted) PARAMETER TEST CONDITIONS KILIM_ACC Input current setting ratio, ILIM = KILIM / RILIM IIN_START Input current limit during system start-up sequence RILIM = 910 Ω, 374 Ω, 265 Ω, unknown adaptor detected by DPDM, –40 ≤ TJ ≤ 85°C MIN TYP MAX UNIT 5% –5% 200 mA BAT PIN OVERVOLTAGE PROTECTION VBATOVP_RISE Battery overvoltage threshold VBAT rising, as percentage of VBAT_REG 103% 104% 105% VBATOVP_FALL Battery overvoltage threshold VBAT falling, as percentage of VBAT_REG 101% 102% 103% THERMAL REGULATION AND THERMAL SHUTDOWN TJUNCTION_REG Junction Temperature Regulation Threshold TSHUT Thermal Shutdown Rising Temperature TSHUT_HYST Thermal Shutdown Hysteresis Temperature Increasing 110 °C 160 °C 30 °C JEITA THERMISTOR COMPARATOR (BUCK MODE) VT1 T1 (0°C) threshold, Charge suspended T1 below this temperature. Charger suspends charge. As Percentage to VREGN VT1 Falling 72.4% 73.3% 74.2% As Percentage to VREGN 69% 71.5% 74% VT2 T2 (10°C) threshold, Charge back to As percentage of VREGN ICHG/2 and 4.2 V below this temperature 67.2% 68% 69% VT2 Falling As Percentage to VREGN 66% 66.8% 67.7% VT3 T3 (45°C) threshold, charge back to ICHG and 4.05V above this temperature. Charger suspends charge. As Percentage to VREGN 43.8% 44.7% 45.8% VT3 Falling As Percentage to VREGN 45.1% 45.7% 46.2% VT5 T5 (60°C) threshold, charge suspended above this temperature. As Percentage to VREGN 33.7% 34.2% 35.1% VT5 Falling As Percentage to VREGN 34.5% 35.3% 36.2% COLD OR HOT THERMISTER COMPARATOR (BOOST MODE) VBCOLD Cold Temperature Threshold, TS pin Voltage Rising Threshold As Percentage to VREGN (Approx. –20°C w/ 103AT), –20°C ≤ TJ≤ 125°C 79.5% 80% 80.5% VBCOLD Falling –20°C ≤ TJ≤ 125°C 78.5% 79% 79.5% VBHOT Hot Temperature Threshold, TS pin Voltage falling Threshold As Percentage to VREGN (Approx. 60°C w/ 103AT), –20°C ≤ TJ≤ 125°C 30.2% 31.2% 32.2% VBHOT Rising –20°C ≤ TJ≤ 125°C 33.8% 34.4% 34.9% CHARGE OVERCURRENT COMPARATOR (CYCLE-BY-CYCLE) IHSFET_OCP HSFET cycle-by-cycle over-current threshold 5.2 IBATFET_OCP System over load threshold 6.0 8.0 A A PWM fSW PWM switching frequency DMAX Maximum PWM duty cycle(1) Oscillator frequency, buck mode 1320 1500 1680 kHz Oscillator frequency, boost mode 1170 1412 1500 kHz 5.280 V 97% BOOST MODE OPERATION VOTG_REG 12 Boost mode regulation voltage VVBAT = 3.8 V, I(PMID) = 0 A Submit Document Feedback 4.972 5.126 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 8.5 Electrical Characteristics (continued) VVAC_PRESENT < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless otherwise noted) PARAMETER VOTG_REG_ACC VBATLOWV_OTG TEST CONDITIONS Boost mode regulation voltage accuracy VVBAT = 3.8 V, I(PMID) = 0 A MIN TYP MAX -3 UNIT 3 % Battery voltage exiting boost mode VVBAT falling 2.6 2.8 2.9 V Battery voltage entering boost mode VVBAT rising 2.9 3.0 3.15 V IOTG OTG mode output current limit VOTG_OVP OTG overvoltage threshold Rising threshold 1.2 1.4 1.6 A 5.55 5.8 6.15 V VREGN REGN LDO output voltage VVBUS = 9 V, IREGN = 40 mA 5.6 6 6.65 V VREGN REGN LDO output voltage VVBUS = 5 V, IREGN = 20 mA 4.6 4.7 4.9 V 0.4 V REGN LDO LOGIC I/O PIN CHARACTERISTICS (CE, PSEL, SCL, SDA, INT) VILO Input low threshold CE VIH Input high threshold CE IBIAS High-level leakage current CE VILO Input low threshold OTG VIH Input high threshold OTG IBIAS High-level leakage current OTG 1.3 V Pull up rail 1.8 V 1 µA 0.4 V 1 µA 0.4 V 1.05 1.35 V -1 1 µA 700 mV 1.3 V Pull up rail 1.8 V LOGIC I/O PIN CHARACTERISTICS (PG, STAT) VOL Low-level output voltage D+/D– DETECTION VD+_1P2 D+ Threshold for Non-standard adapter (combined V1P2_VTH_LO and V1P2_VTH_HI) ID+_LKG Leakage current into D+ VD–_600MVSRC Voltage source (600 mV) ID–_100UAISNK D– current sink (100 µA) RD–_19K D– resistor to ground (19 kΩ) VD–_0P325 D– comparator threshold for primary detection D– pin Rising VD–_2P8 HiZ 500 600 VD– = 500 mV, 50 100 150 µA VD– = 500 mV, 14.25 24.8 kΩ 250 400 mV D– Threshold for non-standard adapter (combined V2P8_VTH_LO and V2P8_VTH_HI) 2.55 2.85 V VD–_2P0 D– Comparator threshold for nonstandard adapter (For non-standard – same as BQ2589x) 1.85 2.15 V VD–_1P2 D– Threshold for non-standard adapter (combined V1P2_VTH_LO and V1P2_VTH_HI) 1.05 1.35 V ID–_LKG Leakage current into D– -1 1 µA (1) HiZ Specified by design. Not production tested. 8.6 Timing Requirements PARAMETER MIN NOM MAX UNIT VBUS/BAT POWER UP tACOV VBUS OVP reaction time tBADSRC Bad adapter detection duration tTERM_DGL Deglitch time for charge termination VAC rising above ACOV threshold to turn off Q2 200 ns 30 ms 250 ms Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 13 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 8.6 Timing Requirements (continued) PARAMETER MIN NOM MAX UNIT tRECHG_DGL Deglitch time for recharge 250 ms tSYSOVLD_DGL System over-current deglitch time to turn off Q4 100 µs tBATOVP Battery overvoltage deglitch time to disable charge 1 µs tSAFETY Typical Charge Safety Timer Range 14 8 Submit Document Feedback 10 12 hr Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 8.7 Typical Characteristics 100 100 95 95 85 Efficiency (%) Charge Efficiency (%) 90 90 85 80 75 80 75 70 65 70 VBUS Voltage 5V 9V 12 V 65 60 VBAT = 3.2 V VBAT = 3.8 V VBAT = 4.1 V 55 50 60 0 0.5 1 fSW = 1.5 MHz 1.5 2 Charge Current (A) 2.5 0 3 0.2 0.4 D001 VOTG = 5.15 V Inductor DCR = 18 mΩ VBAT = 3.8 V 0.6 0.8 OTG Current (A) 1 1.2 1.4 D001 inductor DCR = 18 mΩ 图 8-2. Efficiency vs. OTG Current 图 8-1. Charge Efficiency vs. Charge Current 6 3.85 3.8 SYSMIN Voltage (V) OTG Output Voltage (V) 5 4 3 2 1 3.75 3.7 3.65 3.6 3.55 3.5 -40 0 0 0.2 0.4 0.6 0.8 1 Output Current (A) 0 A ≤ IOTG ≤1.37 A VVBAT = 3.8 V 1.2 1.4 1.6 -25 -10 5 20 35 50 65 80 Junction Temperature (°C) 95 110 125 D001 D001 图 8-4. SYSMIN Voltage vs. Junction Temperature VOTG = 5.15 V 图 8-3. OTG Output Voltage vs. Output Current 4.5 2.75 IINDPM = 1.8 A IINDPM = 1.28 A IINDPM = 0.52 A 2.25 4.4 Input Current Limit (A) BATREG Charge Voltage (V) 2.5 4.3 4.2 4.1 4 -40 -10 5 20 35 50 65 80 Junction Temperature (°C) 95 1.5 1.25 1 0.75 0.5 VBATREG = 4.208 V VBATREG = 4.352 V VBATREG = 4.4 V -25 2 1.75 0.25 110 125 0 -40 -25 -10 5 20 35 50 Junction Temperature (°C) 65 80 D001 图 8-5. BATREG Charge Voltage vs. Junction Temperature 95 D001 VVBUS = 5 V 图 8-6. Input Current Limit vs. Junction Temperature Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 15 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -40 2 ICHG = 1.8 A ICHG = 1.2 A ICHG = 0.68 A 1.8 1.6 Charge Current (A) Charge Current (A) 8.7 Typical Characteristics (continued) -25 -10 5 20 35 50 65 Junction Temperature (°C) 80 95 0.8 0.6 0 30 110 40 50 D001 VBAT = 3.8 V 60 70 80 90 100 Junction Temperature (°C) VVBUS = 5V 110 120 130 D001 VBAT = 3.8V 图 8-8. Charge Current vs. Junction Temperature Under Thermal Regulation 486 705 RILIM = 265 : RILIM = 374 : RILIM = 910 : 484 RICHG = 372 : RICHG = 562 : RICHG = 1100 : 700 Charge Current Setting Ratio Input Current Limit Setting Ratio 1 0.2 图 8-7. Charge Current vs. Junction Temperature 482 480 478 476 474 695 690 685 680 675 670 665 -25 -10 5 20 35 50 Junction Temperature (°C) VVBUS = 5 V 65 80 95 660 -40 -25 D001 VBAT = 3.8 V 图 8-9. Input Current Limit Setting Ratio vs. Junction Temperature 16 1.2 0.4 VVBUS = 5 V 472 -40 1.4 -10 5 20 35 50 65 Junction Temperature (°C) VVBUS = 5 V 80 95 110 D001 VBAT = 3.8 V 图 8-10. Charge Current Setting Ratio vs. Junction Temperature Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 9 Detailed Description 9.1 Overview The BQ25606 is a highly integrated 3.0-A switch-mode battery charger for single cell Li-ion and Li-polymer batteries. It includes an input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), lowside switching FET (LSFET, Q3), and battery FET (BATFET, Q4), and bootstrap diode for the high-side gate drive. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 17 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 9.2 Functional Block Diagram VBUS PMID VVVAC_PRESENT VVAC IIN + RBFET (Q1) UVLO Q1 Gate Control ± VBAT + VSLEEP + VVAC VVAC VVAC_OV SLEEP ± EN_HIZ + REGN EN_REGN REGN LDO ACOV ± BTST FBO VVBUS VIN VAC VBUS_OVP_BOOST + VOTG_OVP ± IQ2 Q2_UCP_BOOST + VVBUS VOTG_HSZCP ± ± VOTG_BAT CONVERTER Control ± + BAT IINDPM + ± REGN BATOVP 104% × V BAT_REG IC TJ SW Q3_OCP_BOOST + + IIN HSFET (Q2) IQ3 VINDPM LSFET (Q3) ± + TREG + ± SYS ± ± + + VSYSMIN ± BAT ILSFET_UCP VBAT_REG PGND IQ2 + UCP Q2_OCP + IHSFET_OCP IQ3 ± ICHG ± EN_HIZ EN_CHARGE EN_BOOST ICHG_REG VBTST - VSW REFRESH + VBTST_REFRESH ± SYS ICHG VBAT_REG ICHG_REG Q4 Gate Control BATFET (Q4) BAT IBADSRC REF DAC ILIM ICHG BAD_SRC Converter Control State Machine IDC ± IC TJ TSHUT ± BAT_GD 'Å + TSHUT VSET D+ + Input Source Detection BAT + VBATGD ± USB Adapter VREG -VRECHG RECHRG OTG + BAT ± ICHG TERMINATION + ITERM STAT CHARGE CONTROL STATE MACHINE ± VBATLOWV BATLOWV + BAT ± BQ25606 VSHORT BATSHORT + SUSPEND ± BAT /PG Battery Sensing Thermistor TS /CE 18 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 9.3 Feature Description 9.3.1 Device Power Up from Battery without Input Source If only battery is present and the voltage is above depletion threshold (VBAT _DPL_RISE), the BATFET turns on and connects battery to system. The REGN stays off to minimize the quiescent current. The low RDSON of BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time. The device always monitors the discharge current through BATFET (Supplement Mode). When the system is overloaded or shorted (IBAT > IBATFET_OCP), the device turns off BATFET immediately until the input source plugs in again. 9.3.2 Power Up from Input Source When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all the bias circuits. It detects and sets the input current limit before the buck converter is started. The power-up sequence from input source is as listed: 1. 2. 3. 4. 5. Power up REGN LDO Poor source qualification Input source type detection is based on D+/D– to set input current limit (IINDPM) . Input voltage limit threshold setting (VINDPM threshold) Converter power up 9.3.2.1 Power Up REGN Regulation The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. The REGN also provides bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well. The REGN is enabled when all the below conditions are valid: • VVAC above VVAC_PRESENT • VVAC above VBAT + VSLEEPZ in buck mode or VBUS below VBAT + VSLEEP in boost mode • After 220-ms delay is completed If any one of the above conditions is not valid, the device is in high impedance mode (HIZ) with REGN LDO off. The device draws less than IVBUS_HIZ from VBUS during HIZ state. The battery powers up the system when the device is in HIZ. 9.3.2.2 Poor Source Qualification After REGN LDO powers up, the device confirms the current capability of the input source. The input source must meet both of the following requirements in order to start the buck converter. • VAC voltage below VVAC_OV • VBUS voltage above VVBUSMIN when pulling IBADSRC (typical 30 mA) If the device fails the poor source detection, it repeats poor source qualification every 2 seconds. 9.3.2.3 Input Source Type Detection After the REGN LDO is powered, the device runs input source detection through D+/D– lines. The BQ25606 follows the USB Battery Charging Specification 1.2 (BC1.2) to detect input source (SDP/ DCP) and nonstandard adapter through USB D+/D– lines. The BQ25606 sets input current limit through D+/D- detection and ILIM pins. 9.3.2.3.1 D+/D– Detection Sets Input Current Limit in BQ25606 The BQ25606 contains a D+/D– based input source detection to set the input current limit at VBUS plug-in. The D+/D– detection includes standard USB BC1.2 and nonstandard adapter. When input source is plugged in, the device starts standard USB BC1.2 detections. The USB BC1.2 is capable to identify Standard Downstream Port (SDP) and Dedicated Charging Port (DCP). When the Data Contact Detection (DCD) timer expires, the nonstandard adapter detection is applied to set the input current limit. The nonstandard detection is used to distinguish vendor specific adapters (Apple and Samsung) based on their unique dividers on the D+/D– pins. If Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 19 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 an adapter is detected as DCP, the input current limit is set at 2.4 A. If an adapter is detected as unknown, the input current limit is set at 500 mA by ILIM pin. 表 9-1. Nonstandard Adapter Detection NONSTANDARD ADAPTER D+ THRESHOLD D– THRESHOLD INPUT CURRENT LIMIT (A) Divider 1 VD+ within VD+ _2p8 VD– within VD– _2p0 2.1 Divider 2 VD+ within VD+ _1p2 VD– within VD– _1p2 2 Divider 3 VD+ within VD+ _2p0 VD– within VD– _2p8 1 Divider 4 VD+ within VD+ _2p8 VD– within VD– _2p8 2.4 表 9-2. Input Current Limit Setting from D+/D– Detection D+/D– DETECTION INPUT CURRENT LIMIT (IINLIM) USB SDP (USB500) 500 mA USB DCP 2.4 A Divider 3 1A Divider 1 2.1 A Divider 4 2.4 A Divider 2 2A Unknown 5-V adapter Set by ILIM pin 9.3.2.4 Input Voltage Limit Threshold Setting (VINDPM Threshold) The device VINDPM is set at 4.3 V. The device supports dynamic VINDPM tracking which tracks the battery voltage. The device VINDPM tracks battery voltage with 200 mV offset such that when VBAT + 200 mV is greater than 4.3 V, the VINDPM value is automatically adjusted to VBAT + 200 mV. 9.3.2.5 Converter Power Up After the input current limit is set, the converter is enabled and the HSFET and LSFET start switching. If battery charging is disabled, BATFET turns off. Otherwise, BATFET stays on to charge the battery. The device provides soft start when system rail is ramped up. When the system rail is below 2.2 V, the input current is limited to is to 200 mA . After the system rises above 2.2 V, the device limits input current to the value set by ILIM pin. As a battery charger, the device deploys a highly efficient 1.5 MHz step-down switching regulator. The fixed frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery voltage, charge current and temperature, simplifying output filter design. The device switches to PFM control at light load or when battery is below minimum system voltage setting or charging is disabled. 9.3.3 Boost Mode Operation From Battery The device supports boost converter operation to deliver power from the battery to other portable devices through USB port. The maximum output current is up to 1.2 A. The boost operation can be enabled if the conditions are valid: 1. 2. 3. 4. 5. BAT above VOTG_BAT VBUS less than BAT+VSLEEP (in sleep mode) Boost mode operation is enabled (OTG pin HIGH) Voltage at TS (thermistor) pin as a percentage of VREGN is within acceptable range (VBHOT < VTS < VBCOLD) After 30-ms delay from boost mode enable During boost mode, the VBUS output is 5.15 V and the output current can reach up to 1.2 A. The boost output is maintained when BAT is above VOTG_BAT threshold. When OTG is enabled, the device starts up with PFM and later transits to PWM to minimize the overshoot. 20 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 9.3.4 Power Path Management The device accommodates a wide range of input sources from USB, wall adapter, to car charger. The device provides automatic power path selection to supply the system (SYS) from input source (VBUS), battery (BAT), or both. 9.3.4.1 Narrow VDC Architecture When the battery is below the minimum system voltage setting, the BATFET operates in linear mode (LDO mode), and the system is typically 180 mV above the minimum system voltage setting. As the battery voltage rises above the minimum system voltage, the BATFET is fully on and the voltage difference between the system and battery is the VDS of the BATFET. When battery charging is disabled and above the minimum system voltage setting or charging is terminated, the system is always regulated at typically 50 mV above the battery voltage. 4.5 4.3 Minimum System Voltage Charge Disabled Charge Enabled SYS (V) 4.1 3.9 3.7 3.5 3.3 3.1 2.7 2.9 3.1 3.3 3.5 3.7 BAT (V) 3.9 4.1 4.3 D002 图 9-1. System Voltage vs Battery Voltage 9.3.4.2 Dynamic Power Management To meet maximum current limit in the USB specification and avoid over loading the adapter, the device features Dynamic Power management (DPM), which continuously monitors the input current and input voltage. When input source is overloaded, either the current exceeds the input current limit (IINDPM) or the voltage falls below the input voltage limit (VINDPM). The device then reduces the charge current until the input current falls below the input current limit or the input voltage rises above the input voltage limit. When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to drop. Once the system voltage falls below the battery voltage, the device automatically enters the supplement mode where the BATFET turns on and the battery starts discharging so that the system is supported from both the input source and battery. 9.3.4.3 Supplement Mode When the system voltage falls below the battery voltage, the BATFET turns on and the BATFET gate is regulated the so that the minimum BATFET VDS stays at 30 mV when the current is low. This prevents oscillation from entering and exiting the supplement mode. As the discharge current increases, the BATFET gate is regulated with a higher voltage to reduce RDSON until the BATFET is in full conduction. At this point onwards, the BATFET VDS linearly increases with discharge current. shows the V-I curve of the BATFET gate regulation operation. The BATFET turns off to exit supplement mode when the battery is below battery depletion threshold. 9.3.5 Battery Charging Management The device charges 1-cell Li-Ion battery with up to 3.0-A charge current for high capacity tablet battery. The 19.5mΩ BATFET improves charging efficiency and minimize the voltage drop during discharging. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 21 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 9.3.5.1 Autonomous Charging Cycle With battery charging enabled (CE pin is LOW), the device autonomously completes a charging cycle. The device default charging parameters are listed in 表 9-3. 表 9-3. Charging Parameter Default Setting DEFAULT MODE BQ25606 Charging voltage VSET controlled Charging current ICHG controlled Precharge current 5% of ICHG Termination current 5% of ICHG Temperature profile JEITA Safety timer 10 hours A new charge cycle starts when the following conditions are valid: • • • • Converter starts Battery charging is enabled (CE is low) No thermistor fault on TS No safety timer fault The charger device automatically terminates the charging cycle when the charging current is below termination threshold, battery voltage is above recharge threshold, and device not is in DPM mode or thermal regulation. When a fully charged battery is discharged below recharge threshold, the device automatically starts a new charging cycle. After the charge is done, toggle CE pin can initiate a new charging cycle. The STAT output indicates the charging status: charging (LOW), charging complete or charge disable (HIGH) or charging fault (blinking). 9.3.5.2 Charging Termination The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is below termination current. After the charging cycle is completed, the BATFET turns off. The converter keeps running to power the system, and BATFET can turn on again to engage Supplement Mode. 9.3.5.3 Thermistor Qualification The charger device provides a single thermistor input for battery temperature monitor. 9.3.5.4 JEITA Guideline Compliance During Charging Mode To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high temperature ranges. To initiate a charge cycle, the voltage on TS pin must be within the VT1 to VT5 thresholds. If TS voltage exceeds the T1-T5 range, the controller suspends charging and waits until the battery temperature is within the T1 to T5 range. At cool temperature (T1-T2), the charge current is reduced to 20% of programmed fast charge current. At warm temperature (T3-T5), the charge voltage is reduced to 4.1 V. Charge termination is disabled for cool and warm conditions. 22 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 100 VBATREG 4.1 4 90 Charging Voltage (V) Charging Current (%) 80 70 60 50 40 30 3 2 1 20 10 0 0 T2 T1 ±5 0 5 T3 10 15 20 25 30 35 40 45 50 55 60 65 T2 T1 T5 ±5 70 0 T3 10 15 20 25 30 5 35 40 45 50 T5 55 60 65 70 Battery Pack Temperature (°C) Battery Pack Temperature (°C) 图 9-3. JEITA Profile: Charging Voltage 图 9-2. JEITA Profile: Charging Current 方程式 1 through 方程式 2 describe updates to the resistor bias network. REGN RT1 TS RT2 NTC 103AT 图 9-4. TS Pin Resistor Network % % % % (1) % (2) Select 0°C to 60°C range for Li-ion or Li-polymer battery: • • • • RTHCOLD = 27.28 kΩ RTHHOT = 3.02 kΩ RT1 = 5.23 kΩ RT2 = 30.9 kΩ 9.3.5.5 Boost Mode Thermistor Monitor during Battery Discharge Mode For battery protection during boost mode, the device monitors the battery temperature to be within the VBCOLD to VBHOT thresholds. When temperature is outside of the temperature thresholds, the boost mode is suspended. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 23 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 Temperature Range to Boost 100% Boost Disabled VBCOLD (±10°C) Boost Enabled VBHOT (65°C) Boost Disabled 0% 图 9-5. TS Pin Thermistor Sense Threshold in Boost Mode 9.3.5.6 Charging Safety Timer The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The safety timer is two hours when the battery is below VBATLOWV threshold and 10 hours when the battery is higher than VBATLOWV threshold. During input voltage, current, JEITA cool or thermal regulation, the safety timer counts at half clock rate as the actual charge current is likely to be below the register setting. For example, if the charger is in input current regulation throughout the whole charging cycle, the safety timer will expire in 20 hours. During the fault, timer is suspended. Once the fault goes away, the timer resumes. If user stops the current charging cycle, and start again, timer gets reset. 9.3.6 Status Outputs ( PG, STAT) 9.3.6.1 Power Good Indicator (PG Pin) The PG pin goes LOW to indicate a good input source when: • • • • • VBUS above VVBUS_UVLO VBUS above battery (not in sleep) VBUS below VACOV threshold VBUS above VPOOSRC (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source) Completed 节 9.3.2.3 9.3.6.2 Charging Status Indicator (STAT) The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED. 表 9-4. STAT Pin State CHARGING STATE STAT INDICATOR Charging in progress (including recharge) LOW Charging termination (top off timer may be running) HIGH Sleep mode, charge disable, boost mode HIGH Charge suspend (input overvoltage, TS fault, safety timer fault or system overvoltage) 24 Submit Document Feedback Blinking at 1 Hz Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 9.3.7 Protections 9.3.7.1 Input Current Limit The device's ILIM pin is to program maximum input current when D+/D- detection identifies an unknown adaptor plugged in. The maximum input current is set by a resistor from ILIM pin to ground as: IINMAX = KILIM RILIM (3) 9.3.7.2 Voltage and Current Monitoring in Converter Operation The device closely monitors the input and system voltage, as well as internal FET currents for safe buck and boost mode operation. 9.3.7.2.1 Voltage and Current Monitoring in Buck Mode 9.3.7.2.1.1 Input Overvoltage (ACOV) If VAC exceeds VVAC_OV, HSFET stops switching immediately. 9.3.7.2.1.2 System Overvoltage Protection (SYSOVP) The charger device clamps the system voltage during load transient so that the components connect to system would not be damaged due to high voltage. SYSOVP threshold is 350 mV above minimum system regulation voltage when the system is regulate at VSYS_MIN. Upon SYSOVP, converter stops switching immediately to clamp the overshoot. The charger provides 30-mA discharge current (ISYSLOAD) to bring down the system voltage. 9.3.7.3 Voltage and Current Monitoring in Boost Mode The device closely monitors the VBUS voltage, as well as RBFET and LSFET current to ensure safe boost mode operation. 9.3.7.3.1 VBUS Soft Start When the boost function is enabled, the device soft-starts boost mode to avoid inrush current. 9.3.7.3.2 VBUS Output Protection The device monitors boost output voltage and other conditions to provide output short circuit and overvoltage protection. The boost build in accurate constant current regulation to allow OTG to adapt to various types of load. If a short circuit is detected on VBUS, boost turns off and retries 7 times. If retries are not successful, OTG is disabled. 9.3.7.3.3 Boost Mode Overvoltage Protection When the VBUS voltage rises above regulation target and exceeds VOTG_OVP, the device stop switching. 9.3.7.4 Thermal Regulation and Thermal Shutdown 9.3.7.4.1 Thermal Protection in Buck Mode The BQ25606 monitors the internal junction temperature TJ to avoid overheat of the chip and limits the IC surface temperature in buck mode. When the internal junction temperature exceeds thermal regulation limit (110°C), the device lowers down the charge current. During thermal regulation, the actual charging current is usually below the programmed battery charging current. Therefore, termination is disabled, the safety timer runs at half the clock rate. 9.3.7.4.2 Thermal Protection in Boost Mode The device monitors the internal junction temperature to provide thermal shutdown during boost mode. When IC junction temperature exceeds TSHUT (160°C), the boost mode is disabled and BATFET is turned off. When IC junction temperature is below TSHUT(160°C) - TSHUT_HYS (30°C), the BATFET is enabled automatically to allow system to restore. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 25 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 9.3.7.5 Battery Protection 9.3.7.5.1 Battery Overvoltage Protection (BATOVP) The battery overvoltage limit is clamped at 4% above the battery regulation voltage. When battery over voltage occurs, the charger device immediately disables charging. 9.3.7.5.2 Battery Overdischarge Protection When battery is discharged below V BAT_DPL_FALL, the BATFET is turned off to protect battery from overdischarge. To recover from overdischarge latch-off, an input source plug-in is required at VBUS. The battery is charged with ISHORT (typically 100 mA) current when the VBAT < VSHORT, or precharge current as set by 5% of ICHG when the battery voltage is between VSHORTZ and VBAT_LOWV. 9.3.7.5.3 System Overcurrent Protection When the system is shorted or significantly overloaded (IBAT > IBATOP) and the current exceeds BATFET overcurrent limit, the BATFET latches off. The BATFET latch can be reset with VBUS plug-in. 10 Application and Implementation Note 以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定 器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 10.1 Application Information A typical application consists of the device configured as a stand-alone power path management device and a single cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of Smartphone and other portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET Q4) between the system and battery. The device also integrates a bootstrap diode for the high-side gate drive. 26 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 10.2 Typical Application Input 3.9 V to 13.5 V 1 H VBUS System 3.5 V to 4.6 V SW 1 F 10 F 47 nF PMID BTST REGN 10 F ACDRV 4.7 µF GND VAC SYS SYS SYS 2.2 k /PG 2.2 k STAT BQ25606 BAT 10 F OTG Host 450 REGN ICHG 5.23 k /CE TS 30.1 k 10 k + D+ USB D- ILIM 240 VSET Float: VREG = 4.208 V Short : VREG = 4.352 V RPD=10 NŸ: VREG = 4.400 V RPD 图 10-1. BQ25606 Application Diagram 10.2.1 Design Requirements 表 10-1. Design Parameters PARAMETER VALUE VBUS voltage range 4 V to 13.5 V Input current limit (D+/D– detection) 2.4 A Fast charge current limit (ICHG pin) ICHG pin Minimum system voltage 3.5 V Battery regulation voltage (VSET pin) 4.2 V 10.2.2 Detailed Design Procedure 10.2.2.1 Inductor Selection The 1.5-MHz switching frequency allows the use of small inductor and capacitor values to maintain an inductor saturation current higher than the charging current (ICHG) plus half the ripple current (IRIPPLE): Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 27 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 ISAT ≥ ICHG + (1/2) IRIPPLE (4) The inductor ripple current depends on the input voltage (VVBUS), the duty cycle (D = VBAT/VVBUS), the switching frequency (fS) and the inductance (L). IRIPPLE = VIN ´ D ´ (1 - D) fs ´ L (5) The maximum inductor ripple current occurs when the duty cycle (D) is 0.5 or approximately 0.5. Usually inductor ripple is designed in the range between 20% and 40% maximum charging current as a trade-off between inductor size and efficiency for a practical design. 10.2.2.2 Input Capacitor Design input capacitance to provide enough ripple current rating to absorb input switching ripple current. The worst case RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not operate at 50% duty cycle, then the worst case capacitor RMS current ICin occurs where the duty cycle is closest to 50% and can be estimated using 方程式 6. ICIN = ICHG ´ D ´ (1 - D) (6) Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be placed to the drain of the high-side MOSFET and source of the low-side MOSFET as close as possible. Voltage rating of the capacitor must be higher than normal input voltage level. A rating of 25 V or higher capacitor is preferred for 15-V input voltage. Capacitance of 22 μF is suggested for typical of 3-A charging current. 10.2.2.3 Output Capacitor Ensure that the output capacitance has enough ripple current rating to absorb the output switching ripple current. 方程式 7 shows the output capacitor RMS current ICOUT calculation. ICOUT = IRIPPLE 2´ 3 » 0.29 ´ IRIPPLE (7) The output capacitor voltage ripple can be calculated as follows: DVO = ö VOUT æ V 1 - OUT ÷ 2 ç VIN ø 8LCfs è (8) At certain input and output voltage and switching frequency, the voltage ripple can be reduced by increasing the output filter LC. The charger device has internal loop compensation optimized for ≤20-μF ceramic output capacitance. The preferred ceramic capacitor is 10-V rating, X7R or X5R. 28 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 10.2.3 Application Curves VVBUS = 5 V VVBAT = 3.2 V 图 10-2. Power Up with Charge Disabled VVBUS = 5 V ICHG = 2 A VVBAT = 3.2 V 图 10-3. Power Up with Charge Enabled VVBUS = 5 V ISYS = 50 mA Charge Disabled 图 10-4. PFM Switching in Buck Mode VVBUS = 9 V ISYS = 50 mA Charge Disabled 图 10-5. PFM Switching in Buck Mode Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 29 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 VVBUS = 12 V ISYS = 50 mA Charge Disabled 图 10-6. PFM Switching in Buck Mode VVBUS = 12 V ICHG = 2 A VVBAT = 3.8 V VVBUS = 5 V ICHG = 2 A 图 10-7. PWM Switching in Buck Mode VVBUS = 5 V ICHG = 2 A 图 10-8. PWM Switching in Buck mode 30 VVBAT = 3.8 V Submit Document Feedback VVBAT = 3.2 V 图 10-9. Charge Enable Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn VVBUS = 5 V ICHG = 2 A ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 VVBAT = 3.2 V 图 10-10. Charge Disable VVBAT = 4 V ILOAD= 1 A PFM Enabled 图 10-12. OTG Switching VVBAT = 4 V ILOAD= 50 mA PFM Enabled 图 10-11. OTG Switching VVBUS = 5 V ISYS from 0 A to 2 A VBAT = 3.7 V IINDPM = 1 A ICHG = 1 A 图 10-13. System Load Transient Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 31 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 VVBUS = 5 V ISYS from 0 A to 4 A VBAT = 3.7 V IINDPM = 2 A ICHG = 1 A VVBUS = 5 V ISYS from 0 A to 2 A VBAT = 3.7 V 图 10-14. System Load Transient VVBUS = 5 V ISYS from 0 A to 4 A VBAT = 3.7 V IINDPM = 1 A ICHG = 2 A 32 图 10-15. System Load Transient VVBUS = 5 V ISYS from 0 A to 2 A VBAT = 3.7 V 图 10-16. System Load Transient IINDPM = 1 A ICHG = 2 A IINDPM = 2 A ICHG = 2 A 图 10-17. System Load Transient Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn VVBUS = 5 V ISYS from 0 A to 4 A VBAT = 3.7 V ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 IINDPM = 2 A ICHG = 2 A VBAT = 3.8 V CLOAD = 470 µF 图 10-19. OTG Start Up 图 10-18. System Load Transient Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 33 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 11 Power Supply Recommendations In order to provide an output voltage on SYS, the BQ25606 device requires a power supply between 3.9-V and 13.5-V input with at least 100-mA current rating connected to VBUS and a single-cell Li-Ion battery with voltage > VBATUVLO connected to BAT. The source current rating needs to be at least 3 A in order for the buck converter of the charger to provide maximum output power to SYS. 34 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 12 Layout 12.1 Layout Guidelines The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the components to minimize high frequency current path loop (see 图 12-1) is important to prevent electrical and magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the proper layout. 1. Place input capacitor as close as possible to PMID pin and GND pin connections and use shortest copper trace connection or GND plane. 2. Place inductor input pin to SW pin as close as possible. Minimize the copper area of this trace to lower electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other trace or plane. 3. Put output capacitor near to the inductor and the device. Ground connections need to be tied to the IC ground with a short copper trace connection or GND plane. 4. Route analog ground separately from power ground. Connect analog ground and connect power ground separately. Connect analog ground and power ground together using thermal pad as the single ground connection point. Or using a 0-Ω resistor to tie analog ground to power ground. 5. Use single ground connection to tie charger power ground to charger analog ground. Just beneath the device. Use ground copper pour but avoid power pins to reduce inductive and capacitive noise coupling. 6. Place decoupling capacitors next to the IC pins and make trace connection as short as possible. 7. It is critical that the exposed thermal pad on the backside of the device package be soldered to the PCB ground. Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on the other layers. 8. Ensure that the number and sizes of vias allow enough copper for a given current path. Refer to the BQ25601 and BQ25601D (PWR877) Evaluation Module User's Guide for the recommended component placement with trace and via locations. For the VQFN information, refer to the Quad Flatpack NoLead Logic Packages Application Report and QFN and SON PCB Attachment Application Report. 12.2 Layout Example + + ± 图 12-1. High Frequency Current Path Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 35 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 图 12-2. Layout Example 36 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 13 Device and Documentation Support 13.1 Device Support 13.1.1 第三方产品免责声明 TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此 类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。 13.2 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 13.3 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 13.4 Trademarks TI E2E™ is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 13.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 13.6 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 37 BQ25606 www.ti.com.cn ZHCSGR3C – MAY 2017 – REVISED SEPTEMBER 2021 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 38 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: BQ25606 重要声明和免责声明 TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没 有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可 将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知 识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款 (https:www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。重要声明 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司 PACKAGE OPTION ADDENDUM www.ti.com 9-Oct-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) BQ25606RGER ACTIVE VQFN RGE 24 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 BQ25606 BQ25606RGET ACTIVE VQFN RGE 24 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 BQ25606 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
BQ25606RGET 价格&库存

很抱歉,暂时无法提供与“BQ25606RGET”相匹配的价格&库存,您可以联系我们找货

免费人工找货