0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CDCI6214RGER

CDCI6214RGER

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VQFN24

  • 描述:

    CDCI6214RGER

  • 数据手册
  • 价格&库存
CDCI6214RGER 数据手册
Product Folder Order Now Technical Documents Support & Community Tools & Software CDCI6214 SNAS734D – JULY 2017 – REVISED JUNE 2019 CDCI6214 Ultra-Low Power Clock Generator With PCIe Support, Four Programmable Outputs and EEPROM 1 Features 3 Description • The CDCI6214 device is an ultra-low power clock generator. The device selects between two independent reference inputs to a phase-locked loop and generates up to four different frequencies on configurable differential output channels and also a copy of the reference clock on a LVCMOS output channel. 1 • • • • • • • • • • • • One Configurable High Performance, Low-Power PLL With 4 Programmable Outputs RMS Jitter Performance – Supports PCIe Gen1 with or without Spread Spectrum Clocking (SSC) – Supports PCIe Gen2 / Gen3 / Gen4 without SSC Typical Power Consumption: 150 mW at 1.8 V(2) Universal Clock Input – Differential AC-Coupled or LVCMOS: 1 MHz to 250 MHz – Crystal: 8 MHz to 50 MHz Flexible Output Frequencies – 44.1 kHz to 350 MHz – Glitchless Output Divider Switching Four Individually Configurable Outputs – LVCMOS, LVDS or HCSL – Differential AC-Coupled With Programmable Swing (LVDS-, CML-, LVPECL-Compatible) Fully Integrated PLL, Configurable Loop Bandwidth: 100 kHz to 3 MHz Single or Mixed Supply Operation for Level Translation: 1.8 V, 2.5 V and 3.3 V Configurable GPIOs – Status Signals – Up to 4 Individual Output Enables – Output Divider Synchronization Flexible Configuration Options – I2C-Compatible Interface: Up to 400 kHz – Integrated EEPROM With Two Pages and External Select Pin Only Supports 100 Ω Systems Industrial Temperature Range: –40ºC to 85ºC Small Footprint: 24-Pin VQFN (4 mm × 4 mm) 2 Applications • • • • • PCIe Gen 1/2/3/4 clocking 1G / 10G Ethernet Switches, NIC, Accelerators Test & Measurement , Handheld Equipment Multi-Function Printers Broadcast Infrastructure Each of the four output channels has a configurable integer / fractional output divider and a dedicated integer divider. Together with the output muxes, this allows up to five different frequencies. Clock distribution dividers are reset in a deterministic way for clean clock gating and glitch-less update capability. Flexible power-down options allow to optimize the device for lowest power consumption in active and standby operation. Typically four 156.25 MHz LVDS outputs consume 150 mW at 1.8V. Typical RMS jitter of 386 fs for 100 MHz HCSL output enhances system margin for PCIe applications. The CDCI6214 is configured using internal registers that are accessed by an I2C-compatible serial interface and internal EEPROM. The CDCI6214 enables high-performance clock trees from a single reference at ultra-low power with a small footprint. The factory- and user-programmable EEPROM make the CDCI6214 ideal as easy-to-use, instant-on clocking solution with low power consumption. Device Information(1) PART NUMBER CDCI6214 PACKAGE BODY SIZE (NOM) VQFN (24) 4.00 mm × 4.00 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. (2) Four LVDS outputs, 156.25 MHz with crystal reference. Application Example CDCI6214 Voltage Domain 1.8V / 2.5V / 3.3V FPGA DAC DAC Crystal CDCI6214 Voltage Domain 1.8V / 2.5V / 3.3V MCU Ethernet LVCMOS Crystal Copy PCIe Voltage Domain 1.8V / 2.5V / 3.3V Copyright © 2017, Texas Instruments Incorporated 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. CDCI6214 SNAS734D – JULY 2017 – REVISED JUNE 2019 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 4 5 6.1 6.2 6.3 6.4 6.5 6.6 Absolute Maximum Ratings ...................................... 5 ESD Ratings.............................................................. 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 5 EEPROM Characteristics.......................................... 6 Reference Input, Single-Ended and Differential Mode Characteristics (REFP, REFN, FB_P, FB_N) ............ 6 6.7 Reference Input, Crystal Mode Characteristics (XIN, XOUT) ........................................................................ 6 6.8 General-Purpose Input and Output Characteristics (GPIO[4:1], SYNC/RESETN) ..................................... 6 6.9 Triple Level Input Characteristics (EEPROMSEL, REFSEL) .................................................................... 7 6.10 Reference Mux Characteristics .............................. 7 6.11 Phase-Locked Loop Characteristics ....................... 7 6.12 Closed-Loop Output Jitter Characteristics .............. 8 6.13 PCIe Gen1 Spread Spectrum Generator ................ 8 6.14 Output Mux Characteristics .................................... 8 6.15 LVCMOS Output Characteristics ............................ 9 6.16 HCSL Output Characteristics ................................. 9 6.17 LVDS DC-Coupled Output Characteristics ............. 9 6.18 Programmable Differential AC-Coupled Output Characteristics ......................................................... 10 6.19 Output Skew and Delay Characteristics ............... 10 6.20 Output Synchronization Characteristics................ 10 6.21 Timing Characteristics........................................... 11 6.22 I2C-Compatible Serial Interface Characteristics (SDA/GPIO2, SCL/GPIO3) ...................................... 11 6.23 Timing Requirements, I2C-Compatible Serial Interface (SDA/GPIO2, SCL/GPIO3) ....................... 11 6.24 Power Supply Characteristics ............................... 12 6.25 Typical Characteristics .......................................... 13 7 Parameter Measurement Information ................ 14 8 Detailed Description ............................................ 18 7.1 Parameters.............................................................. 14 8.1 8.2 8.3 8.4 8.5 8.6 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ Programming .......................................................... Register Maps ........................................................ 18 18 19 30 31 40 Application and Implementation ........................ 92 9.1 9.2 9.3 9.4 Application Information............................................ Typical Applications ................................................ Do's and Don'ts ....................................................... Initialization Setup .................................................. 92 92 95 95 10 Power Supply Recommendations ..................... 97 10.1 Power-Up Sequence ............................................. 97 10.2 De-Coupling .......................................................... 97 11 Layout................................................................... 97 11.1 Layout Guidelines ................................................. 97 11.2 Layout Examples................................................... 97 12 Device and Documentation Support ................. 99 12.1 12.2 12.3 12.4 12.5 12.6 Device Support .................................................... Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 99 99 99 99 99 99 13 Mechanical, Packaging, and Orderable Information ........................................................... 99 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision C (November 2018) to Revision D Page • Added VDDREF and tablenote to the output supply voltage parameter in the Recommended Operating Conditions ......... 5 • Added statement on chX_1p8vdet setting ........................................................................................................................... 21 • Changed CDCI6214 - Pre-Configured EEPROM Page 0 graphic........................................................................................ 38 Changes from Revision B (April 2018) to Revision C Page • Corrected PCIe compliance statement .................................................................................................................................. 1 • Changed pin names for pins 1 and 2 from: XIN and XOUT to: XOUT/FB_P and XIN/FB_N. ............................................... 4 • Changed descriptions for pins 1 and 2................................................................................................................................... 4 • Changed pin names for pins 1 and 2 in Absolute Maximum Ratings .................................................................................... 5 • Changed pin names for pins 1 and 2 in Reference Input, Single-Ended and Differential Mode Characteristics (REFP, REFN, FB_P, FB_N).................................................................................................................................................. 6 • Changed Input capacitance specification symbols in Reference Input, Single-Ended and Differential Mode Characteristics (REFP, REFN, FB_P, FB_N) from: CIN_XOUT and CIN_XIN to: CIN_XOUT/FB_P and CIN_XIN/FB_P ........................... 6 2 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 CDCI6214 www.ti.com SNAS734D – JULY 2017 – REVISED JUNE 2019 • Changed the test conditions for the fractional RMS Jitter specification in Closed-Loop Output Jitter Characteristics from: Y1 =122.88 MHz LVDS to: Y1 =133+1/3 MHz LVDS and the typical value from: 2 ps to: 3 ps................................... 8 • Changed name of the PCIe Spread Spectrum Generator table to PCIe Gen1 Spread Spectrum Generator ....................... 8 • Changed pins 1 and 2 from: XIN and XOUT to: XOUT/FB_P and XIN/FB_N in the Functional Block Diagram ................. 18 • Changed pins 1 and 2 from: XIN and XOUT to: XOUT/FB_P and XIN/FB_N in the Reference Block graphic ................... 19 • Changed External (XIN) pin to: FB_P/N in the Phase-Locked Loop Circuit graphic............................................................ 21 • Changed pins 1 and 2 from: XIN and XOUT to: XOUT/FB_P and XIN/FB_N in the CDCI6214 - Pre-Configured EEPROM Page 0 and CDCI6214 - Pre-Configured EEPROM Page 1 graphics ................................................................. 38 • Changed pins XIN and XOUT to: XOUT/FB_P and XIN/FB_N in the Typical Applications schematics.............................. 92 • Changed design parameter superscript to a subscript ........................................................................................................ 93 Changes from Revision A (October 2017) to Revision B Page • Changed pinout pins 5 and 6 from NC to REFP, REFN inputs.............................................................................................. 4 • Changed supply voltage maximum from: 3.6 V to: 3.65 V ..................................................................................................... 5 • Removed Skew between HCSL maximum from the Output Skew and Delay Characteristics table ................................... 10 Changes from Original (July 2017) to Revision A Page • Changed device status from Advanced Info to Production Data............................................................................................ 1 • Changed REFSEL pin description to reflext REFMUX control. ........................................................................................... 26 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 3 CDCI6214 SNAS734D – JULY 2017 – REVISED JUNE 2019 www.ti.com 5 Pin Configuration and Functions VDDVCO EEPROMSEL Y1P Y1N STATUS/GPIO1 SDA/GPIO2 24 23 22 21 20 19 RGE Package 24-Pin VQFN Top View XOUT / FB_P 1 18 Y2P XIN / FB_N 2 17 Y2N VDDREF 3 16 VDDO12 REFSEL 4 15 VDDO34 REFP 5 14 Y3P REFN 6 13 Y3N 7 8 9 10 11 12 Y0 RESETN/SYNC Y4N Y4P OE/GPIO4 SCL/GPIO3 25 (GND) Not to scale Pin Functions PIN NAME NO. TYPE XOUT/FB_P 1 XIN/FB_N 2 I Crystal Input / Differential Negative Reference VDDREF 3 P Power Supply Pin for Input Path, Digital and EEPROM REFSEL 4 I Manual Reference Selection MUX for PLL, RPU = 50 kΩ, RPD = 50 kΩ REFP 5 I Differential Positive Reference REFN 6 I Differential Negative Reference Y0 7 O Output 0 Pin RESETN/SYNC 8 I Chip Reset. Alternatively, Output Divider Sync, RPU = 50 kΩ (1) Y4N 9 O Output 4 Negative Pin Y4P 10 O Output 4 Positive Pin OE/GPIO4 11 IO Global output enable (default) or programmable GPIO, RPU = 50 kΩ (1) SCL/GPIO3 12 IO Serial interface clock (default) or programmable GPIO Y3N 13 O Output 3 Negative Pin Y3P 14 O Output 3 Positive Pin VDDO34 15 P Power Supply for Outputs 3 and 4 VDDO12 16 P Power Supply for Outputs 1 and 2 Y2N 17 O Output 2 Negative Pin Y2P 18 O Output 2 Positive Pin SDA/GPIO2 19 IO Serial interface data (default) or programmable GPIO STATUS/GPIO1 20 IO Status (default) or programmable GPIO, RPU = 50 kΩ (1) Y1N 21 O Output 1 Negative Pin Y1P 22 O Output 1 Positive Pin EEPROMSEL 23 I EEPROM Page Mode Select, RPU = 50 kΩ, RPD = 50 kΩ (1) VDDVCO 24 P Power Supply Pin for VCO / PLL GND 25 G Ground, Thermal Pad (1) 4 IO DESCRIPTION Crystal Driver Output / LVCMOS Input / Differential Positive Reference RPU is an internal pullup resistor. RPD is an internal pulldown resistor. Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 CDCI6214 www.ti.com SNAS734D – JULY 2017 – REVISED JUNE 2019 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX UNIT VDDREF, VDDVCO, VDDO12, VDDO34 Supply voltage –0.3 3.65 V XIN/FB_P, XOUT/FB_N, REFP, REFN Input voltage –0.3 VDDREF + 0.3 V STATUS/GPIO1, SDA/GPIO2, SCL/GPIO3, OE/GPIO4, REFSEL, EEPROMSEL, RESETN/SYNC Input voltage –0.3 VDDREF + 0.3 V Y0, Y1P, Y1N, Y2P, Y2N, Y3P, Y3N, Y4P, Y4N Output voltage –0.3 VDDO_x + 0.3 V STATUS/GPIO1, SDA/GPIO2, SCL/GPIO3, OE/GPIO4 Output voltage –0.3 VDDREF + 0.3 V TJ Junction temperature 125 ºC Tstg Storage temperature 150 ºC (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) 2000 Charged-device model (CDM), per JEDEC specification JESD22C101 (2) 500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT 1.71 3.465 V Output supply voltage 1.71 3.465 V Output supply voltage 1.71 3.465 V VDDO3 Output supply voltage 1.71 3.465 V VDDO4 Output supply voltage 1.71 3.465 V TA Ambient temperature –40ºC 85 ºC VDDREF, VDDVCO Core supply voltage (1) VDDO1 VDDO2 (1) NOM VDDREF and VDDVCO must be powered from the same supply voltage. 6.4 Thermal Information CDCI6214 THERMAL METRIC (1) RGE (VQFN) UNIT 24 PINS RθJA Junction-to-ambient thermal resistance 39.5 °C/W RθJC(top) Junction-to-case (top) thermal resistance 29.5 °C/W RθJB Junction-to-board thermal resistance 16.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance 2.6 °C/W ψJT Junction-to-top characterization parameter 0.4 °C/W ψJB Junction-to-board characterization parameter 16.8 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 5 CDCI6214 SNAS734D – JULY 2017 – REVISED JUNE 2019 www.ti.com 6.5 EEPROM Characteristics VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER nEEcyc EEPROM programming cycles tEEret EEPROM data retention TEST CONDITIONS MIN each word TYP 10 MAX UNIT 10,000 cycles 10 years 6.6 Reference Input, Single-Ended and Differential Mode Characteristics (REFP, REFN, FB_P, FB_N) VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS fIN_Ref Reference frequency VIH Input high voltage LVCMOS input buffer VIL Input low voltage LVCMOS input buffer VIN_DIFF Differential input voltage swing, peak-to-peak VDDREF = 2.5 V or 3.3 V, ACcoupled differential input buffer VIN_DIFF Differential input voltage swing, peak-to-peak VDDREF = 1.8 V, AC-coupled differential input buffer dVIN/dT Input slew rate 20% – 80% IDC Input duty cycle MIN TYP 1 MAX UNIT 250 MHz 0.8 × VDDREF V 0.2 × VDDREF V 0.5 1.6 V 0.5 1.0 V 3 V/ns 40% 60% CIN_XOUT/FB_P Input capacitance No xtal active, on-chip load disabled, at 25°C 7 pF CIN_XIN/FB_P Input capacitance No xtal active, on-chip load disabled, at 25°C 5 pF CIN_REF Input capacitance at 25°C 5 pF 6.7 Reference Input, Crystal Mode Characteristics (XIN, XOUT) VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS fIN_Xtal Crystal frequency Fundamental mode ZESR Crystal equivalent series resistance A supported crystal is within CL PXTAL MIN TYP MAX UNIT 8 50 MHz 30 100 Ω Crystal load capacitance Using on-chip load capacitance. A supported crystal is within. 5 8 pF Crystal tolerated drive power A supported crystal tolerates up to 100 CXIN_LOAD On-Chip load capacitance Programmable in typical 200fF steps at room temp DNLXIN_LOAD Differential non-linearity at room temp uW 3 9.1 200 pF fF 6.8 General-Purpose Input and Output Characteristics (GPIO[4:1], SYNC/RESETN) VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS MIN TYP MAX 0.8 × VDDREF UNIT VIH Input high voltage VIL Input low voltage IIH Input high level current VIH = VDDREF –0.02 μA IIH Input high level current VIH = VDDREF, Pin 12, 19 0.004 μA IIL Input low level current VIL = GND –50 μA IIL Input low level current VIL = GND, Pin 12, 19 –0.004 μA dVIN/dT Input slew rate 20% – 80% CIN_GPIO Input Capacitance 6 V 0.2 × VDDREF 0.5 V/ns 10 Submit Documentation Feedback V pF Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 CDCI6214 www.ti.com SNAS734D – JULY 2017 – REVISED JUNE 2019 General-Purpose Input and Output Characteristics (GPIO[4:1], SYNC/RESETN) (continued) VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 0.8 × VDDREF VOH Output high voltage only capacitive load V VOL Output low voltage only capacitive load dVOUT/dT Output slew rate 20% - 80%, at 10pF 0.3 V/ns RPU Pullup resistance Pin 11, 20 77 kΩ 0.2 × VDDREF V 6.9 Triple Level Input Characteristics (EEPROMSEL, REFSEL) VDDVCO,VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VIH Input high voltage 0.8 × VDDREF VIM Input mid voltage 0.41 × VDDREF VIL Input low voltage IIH Input high level current VIH = VDDREF 40 μA IIM Input mid level current VIH = VDDREF/2 –1 μA IIL Input low level current VIL = GND –40 μA tRIN input slew rate 10% - 90% V 0.5 × VDDREF 0.58 × VDDREF V 0.2 × VDDREF V 50 ns CIN_TRI 10 RPDPU pF 64 kΩ 6.10 Reference Mux Characteristics (1) VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS LREF_MUX Reference mux isolation XIN = Crystal 25 MHz, REF = 27 MHz LREF_MUX Reference mux isolation XIN = Crystal 25 MHz, REF = 24.576 MHz (1) MIN TYP MAX UNIT 89 dBc 78 dBc Mux isolation is defined as the attenuation relative to the carrier base harmonic as a positive dBc number. 6.11 Phase-Locked Loop Characteristics VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS MIN MAX UNIT 1 TYP 100 MHz 2400 2800 MHz 100 3000 kHz 400 700 MHz fPFD Phase detector frequency fVCO Voltage-controlled oscillator frequency fBW Configurable closed-loop PLL bandwidth fCLKDIST Clock distribution frequency KVCO Voltage-controlled oscillator gain fVCO = 2.4 GHz 62 MHz/V KVCO Voltage-controlled oscillator gain fVCO = 2.5 GHz 62 MHz/V KVCO Voltage-controlled oscillator gain fVCO = 2.8 GHz 92 MHz/V |ΔTCL| Allowable temperature drift for continuous lock dT/dt ≤ 20 K / min REF = 25 MHz 125 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 ºC 7 CDCI6214 SNAS734D – JULY 2017 – REVISED JUNE 2019 www.ti.com 6.12 Closed-Loop Output Jitter Characteristics VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER tRJ_CL RMS phase jitter TEST CONDITIONS MIN TYP MAX UNIT int. Range from 10 kHz to 20 MHz , XIN = Crystal 25 MHz, Integer Output Divider, Yx = 156.25 MHz LVDS 500 750 fs int. Range from 10 kHz to 20 MHz , XIN = Crystal 25 MHz, Integer Output Divider, Yx = 100 MHz HCSL 386 800 fs 500 fs PCIe Gen 3/4 Common Clock transfer functions applied, XIN = Crystal 25 MHz, Integer Output Divider, Yx = 100 MHz HCSL int. Range from 10 kHz to 20 MHz , XIN = Crystal 25 MHz, VCO = 2500 MHz, Fractional Output Divider , Y1 =133+1/3 MHz LVDS (1) (1) 3 ps Integrated RMS jitter at other frequencies using fractional output divider may vary. Contact TI for further assistance. 6.13 PCIe Gen1 Spread Spectrum Generator VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C, fVCO = 2.4 GHz, ch[4:1]_iod_mux = 2, ch[4:1]_iod = 3, ch[4:1]_ssc_counter = 4, ch[4:1]_ssc_fmod = 1, ch[4:1]_ssc_type = 1, ch[4:1]_ssc_spread = 0 PARAMETER fSSC TEST CONDITIONS MIN TYP SSC deviation 31.25 tSSC_FREQ_ SSC deviation –0.5% MAX UNIT kHz DEVIATION 6.14 Output Mux Characteristics (1) VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER LOUT_MUX LOUT_MUX LOUT_MUX LOUT_MUX LOUT_MUX (1) 8 TEST CONDITIONS MIN TYP MAX UNIT Output mux isolation REF = 27 MHz, XIN = 25 MHz, VCO = 2500 MHz, PSFB = 4, Y_ODD = 312.5 MHz, Y_EVEN = 208.3 MHz, LVPECL 65 dBc Output mux isolation REF = 27 MHz, XIN = 25 MHz, VCO = 2500 MHz, PSFB = 4, Y_ODD = 312.5 MHz, Y_EVEN = 250 MHz, LVPECL 63 dBc Output mux isolation REF = 27 MHz, XIN = 25 MHz, VCO = 2500 MHz, PSFB = 4, Y_ODD = 312.5 MHz, Y_EVEN = 89.3 MHz, LVPECL 72 dBc Output mux isolation REF = 27 MHz, XIN = 25 MHz, VCO = 2500 MHz, PSFB = 4, IODs = 312.5 MHz, Yx=BYPASS (XIN), LVPECL 64 dBc Output mux isolation REF = 27 MHz, XIN = 25 MHz, VCO = 2500 MHz, PSFB = 4, Y_ODD = 100 MHz, Y_EVEN = 266.6 MHz, LVPECL 57 dBc Mux isolation is defined as the attenuation relative to the carrier base harmonic as a positive dBc number. Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 CDCI6214 www.ti.com SNAS734D – JULY 2017 – REVISED JUNE 2019 6.15 LVCMOS Output Characteristics VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS fO_LVCMOS Output frequency VDDO_x = 2.5 V or 3.3 V, normal drive fO_LVCMOS Output frequency VDDO_x = 1.8 V, normal drive VOH_LVCMO TYP MAX UNIT 0.1 350 MHz 0.1 250 MHz 0.8 × VDDREF Output high voltage Normal mode, only capacitive load Output low voltage Normal mode, only capacitive load Output high voltage Slow mode, only capacitive load Output low voltage Slow mode, only capacitive load Output impedance Normal mode 28 Ω Output impedance Weak mode 80 Ω Phase noise floor, single side band fCARRIER = 100 MHz, fOFFSET = 10 MHz S VOL_LVCMO MIN V 0.2 × VDDREF S VOH_LVCMO S VOL_LVCMO 0.7 × VDDREF V 0.3 × VDDREF S RON_LVCMO V V S RON_LVCMO S LLVCMOS_10 0M –148 dBc/Hz 6.16 HCSL Output Characteristics VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS MIN MAX UNIT 350 MHz 0.55 V 1.0 V 0.8 2.0 Vpp 250 550 mV fO_HCSL Output frequency VCM_HCSL Output common mode VOD Differential output voltage fO_HCSL = 100 MHz 0.4 VSS Differential output voltage, peak to peak fO_HCSL = 100 MHz VCROSS Absolute crossing point Rp = 49.9 Ω ±5%, fO_HCSL = 100 MHz ΔVCROSS Relative crossing point variation w.r.t to average crossing point, fO_HCSL = 100 MHz dV/dt Slew rate for rising and falling edge Differential, at VCROSS ±150 mV, fO_HCSL = 100 MHz (1) ΔdV/dt Slew rate matching Single-ended, at VCROSS ±75 mV, fO_HCSL = 100 MHz (1) ODC Output duty cycle Not in PLL bypass mode RP Parallel termination Rp = 49.9 Ω ±5% required LHCSL_100M Phase noise floor, single side band (1) TYP 0.1 0.2 0.34 100 1 mV 4 V/ns 20% 45% 55% 45 55 fCARRIER = 100 MHz, fOFFSET = 10 MHz -152 Ω dBc/Hz PCIe test load slew rate 6.17 LVDS DC-Coupled Output Characteristics VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS MIN TYP 0.1 MAX UNIT 350 MHz fO_PRG_AC Output frequency VCM Output common mode VDDO_X = 2.5 V, 3.3 V, chx_lvds_cmtrim_inc = 2 1.125 1.2 1.375 V VCM Output common mode VDDO_X = 1.8 V, chx_lvds_cmtrim_inc = 2 0.8 0.9 1 V VOD Differential output voltage LVDS 0.3 0.45 tRF Output rise/fall times LVDS (20% to 80%) 0.25 675 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 V ps 9 CDCI6214 SNAS734D – JULY 2017 – REVISED JUNE 2019 www.ti.com LVDS DC-Coupled Output Characteristics (continued) VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER ODC LLVDS_DC_1 TEST CONDITIONS Output duty cycle Not in PLL bypass mode Phase noise floor, single side band fCARRIER = 100MHz, fOFFSET = 10MHz 00M MIN TYP 45% MAX UNIT 55% –152 dBc/Hz 6.18 Programmable Differential AC-Coupled Output Characteristics VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C and AC-coupled outputs PARAMETER TEST CONDITIONS MIN TYP UNIT 350 MHz Output frequency VOD Differential output voltage LVDS-like 0.45 V VOD Differential output voltage CML-like 0.8 V VOD Differential output voltage LVPECL-like 0.9 V tRF Output rise/fall times LVDS-like (20% to 80%) 675 ps tRF Output rise/fall times CML-like (20% to 80%) 520 ps tRF Output rise/fall times LVPECL-like (20% to 80%) 500 ODC Output duty cycle Not in PLL bypass mode LDIFF_AC_10 Phase noise floor, single side band fCARRIER = 100 MHz, fOFFSET = 10 MHz 0M 0.1 MAX fO_PRG_AC 45% ps 55% –152 dBc/Hz 6.19 Output Skew and Delay Characteristics VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS MIN TYP MAX UNIT tSK_HCSL Skew between HCSL Y[4:1] = HCSL, fOY[4:1] = 100 MHz 140 ps tSK_DIFFAC Skew between progr. differential AC Y[4:1] = programmable output swing, fOY[4:1] = 100 MHz 150 ps tSK_LVCMOS Skew between LVCMOS Y[4:1] = LVCMOS, fOY[4:1] = 100 MHz 100 ps tSK_LVCMOS Skew between LVCMOS to Bypass Y[4:0] = LVCMOS, fOY[4:0] = 100 MHz 3 ns Propagation delay REF = 67 MHz, VCO = 2680 MHz, PSFB = 4, PSAY_ODD = 4, PSBY_EVEN = 4, IODY_ODD = 10, IODY_EVEN = 10, YP_ODD = YN_ ODD = IOD, in ext. ZDM, LVCMOS _BYP tPD_ZDM –600 600 ps MAX UNIT 6.20 Output Synchronization Characteristics VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS tSU_SYNC Setup time SYNC pulse With respect to PLL reference rising edge at 100 MHz with R = 1 tH_SYNC Hold time SYNC pulse With respect to PLL reference rising edge at 100 MHz with R = 1 tPWH_SYNC High pulse width for SYNC With R = 1, at least 2 PFD periods + 24 feedback pre-scaler periods 60 ns tPWL_SYNC Low pulse width for SYNC With R = 1, at least 1 PFD period 6 ns tEN Individual output enable time (1) Tri-state to first rising edge, fY[4:1] < 200 MHz (1) 10 MIN TYP 3 ns 3 4 ns nCK Output clock cycles of respective output channel. Global output enable handled by digital logic, additional propagation will be added. Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 CDCI6214 www.ti.com SNAS734D – JULY 2017 – REVISED JUNE 2019 Output Synchronization Characteristics (continued) VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER tDIS Individual output disable time (1) TEST CONDITIONS MIN TYP Last falling edge to tri-state, fY[4:1] < 200 MHz MAX 4 UNIT nCK 6.21 Timing Characteristics VDDVCO,VDDO12,VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS tINIT Initialization time Initialization time from POR to device releasing PLL outputs. tVDD Power supply ramp Timing requirement for any VDD pin while RESETN = LOW MIN TYP 50 MAX UNIT 5 ms 2000 µs MAX UNIT 6.22 I2C-Compatible Serial Interface Characteristics (SDA/GPIO2, SCL/GPIO3) VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS MIN TYP 0.7 × VDDREF VIH Input voltage, logic high V VIL Input voltage, logic low VHYS Input Schmitt trigger hysteresis VDDREF = 3.3 V, fSCL = 400 kHz 156 mV VHYS Input Schmitt trigger hysteresis VDDREF = 2.5 V, fSCL = 400 kHz 118 mV VHYS Input Schmitt trigger hysteresis VDDREF = 1.8 V, fSCL = 400 kHz 85 IIH Input leakage current VDDREF = 0.17 V..3.12 V VOL Low-level output voltage VOL 0.3 × VDDREF V mV –10 10 μA At 3-mA sink current, VDDREF = 3.3 V – 5% 0.4 V Low-level output voltage At 3-mA sink current, VDDREF = 2.5 V – 5% 0.4 V VOL Low-level output voltage At 2-mA sink current, VDDREF = 1.8 V – 5% 0.342 V IOL Low-level output current VOL = 0.4 V CIN Input capacitance 3 mA 10 pF 6.23 Timing Requirements, I2C-Compatible Serial Interface (SDA/GPIO2, SCL/GPIO3) VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS MIN TYP MAX UNIT tPW_G Pulse width of suppressed glitches fSCL SCL clock frequency Standard 100 50 kHz fSCL SCL clock frequency Fast-mode 400 kHz tSU_STA Setup time start condition SCL = VIH before SDA = VIL 0.6 μs tH_STA Hold time start condition SCL = VIL after SCL = VIL. After this time, the first clock edge is generated. 0.6 μs tSU_SDA Setup time data SDA valid after SCL = VIL, fSCL = 100 kHz 250 ns tSU_SDA Setup time data SDA valid after SCL = VIL, fSCL = 400 kHz 100 ns tH_SDA Hold time data SDA valid before SCL = VIH 0 μs tPWH_SCL Pulse width high, SCL fSCL = 100 kHz 4 μs tPWH_SCL Pulse width high, SCL fSCL = 400 kHz 0.6 μs tPWL_SCL Pulse width low, SCL fSCL = 100 kHz 4.7 μs Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 ns 11 CDCI6214 SNAS734D – JULY 2017 – REVISED JUNE 2019 www.ti.com Timing Requirements, I2C-Compatible Serial Interface (SDA/GPIO2, SCL/GPIO3) (continued) VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS tPWL_SCL Pulse width low, SCL fSCL = 400 kHz tOF Output fall time COUT = 10..400 pF MIN TYP MAX UNIT 250 ns MAX UNIT 1.3 μs 6.24 Power Supply Characteristics VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C PARAMETER TEST CONDITIONS MIN TYP IDD_REF Reference input current DBL = on 4 mA IDD_XIN Crystal input current Crystal with Pmax = 200 μW 2 mA IDD_VCO VCO and PLL current fVCO = 2500 MHz, PSFB = PSA = 4 and PSB = off 13 mA IDD_OUT Output channel current Activated output channel, 1x LVDS 156.25 MHz 10 mA IDD_IOD Output integer divider current 2 mA IDD_FOD Output fractional divider current 20 mA IDD_PDN Power-down current Using reset pin / bits 3 mA IDD_TYP Typical current 4x 156.25-MHz LVDS case using crystal input and doubler 83 mA IDD_TYP Typical current 2x IODs LVDS/LVCMOS, 1x FOD LVDS 72 mA LPSNR Power supply noise rejection (1) Yx = 100 MHz LVDS, on one of VDDx injected sine wave 50 mV at fINJ = 10 kHz, –56 dBc LPSNR Power supply noise rejection (1) Yx = 100MHz LVDS, on one of VDDx injected sine wave 50 mV at fINJ = 100 kHz –46 dBc LPSNR Power supply noise rejection (1) Yx = 100MHz LVDS, on one of VDDx injected sine wave 50 mV at fINJ = 1 MHz –49 dBc LPSNR Power supply noise rejection (1) Yx = 100MHz LVDS, on one of VDDx injected sine wave 50 mV at fINJ = 10 MHz –69 dBc LPSNR Power supply noise rejection (1) Yx = 100MHz LVDS, on one of VDDx injected sine wave 50 mV at fINJ = 20 MHz –74 dBc LPSNR Power supply noise rejection (1) Yx = 100MHz LVDS, on one of VDDx injected sine wave 50 mV at fINJ = 40 MHz –73 dBc (1) 12 dBc with respect to output carrier frequency. Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 CDCI6214 www.ti.com SNAS734D – JULY 2017 – REVISED JUNE 2019 6.25 Typical Characteristics -20 -20 -30 -30 -40 -40 -50 -50 -60 -60 Power Density in dBc/Hz Power Density in dBc/Hz VDDx = 1.8 V at room temperature -70 -80 -90 -100 -110 -120 -130 -140 -70 -80 -90 -100 -110 -120 -130 -140 -150 -150 -160 -160 -170 -180 102 -170 10 3 4 10 5 10 10 6 7 10 7 4x10 -180 102 103 Frequency in Hz Reference: Crystal 25 MHz 104 105 106 107 4x107 Frequency in Hz Closed-Loop Phase Noise 100-MHz HCSL from 2.4-GHz VCO Reference: Crystal 25 MHz Figure 1. 100-MHz Carrier Closed-Loop Phase Noise 156.25-MHz LVDS from 2.5-GHz VCO Figure 2. 156.25-MHz Carrier Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 13 CDCI6214 SNAS734D – JULY 2017 – REVISED JUNE 2019 www.ti.com 7 Parameter Measurement Information 7.1 Parameters 7.1.1 Reference Inputs VDD VDD R1 = 100 W RS ZO = 50 W RINT XOUT/FB_P C = 0.1 mF XIN/FB_N R2 = 100 W Clock Generator: RINT + RS = 50 W Figure 3. Single-Ended LVCMOS Crystal Input Signal Generator (1) < 2 VPP DUT 100 Applied signal has to stay within VIN_DIFF limits. Figure 4. Differential AC-Coupled Input 7.1.2 GPIOs 7.1.3 Outputs Scope LVCMOS 50 DUT GND Figure 5. LVCMOS Output 14 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 CDCI6214 www.ti.com SNAS734D – JULY 2017 – REVISED JUNE 2019 Parameters (continued) 100 k 100 k 1 pF 33 (1) < 1 pF < 1 pF GND 50 High Impedance Probe Measured using Tektronix DPO75902SX oscilloscope. Recommended to use an oscilloscope bandwidth setting of 4/8 GHz and vertical setting of 50mV/division. Data processed using Clock Jitter Tool: Ver:1.6.7.2. Figure 14. HCSL PCIe Test Load Setup 7.1.4 Serial Interface STOP ACK START tIR tPWL_SCL tPWH_SCL STOP tIF ~~ VIH SCL ~~ VIL tH_STA tSU_STA tBUS tIR tSU_SDA tH_SDA tIF tSU_STOP ~~ ~~ VIH SDA ~~ VIL Figure 15. I2C Timing 7.1.5 Power Supply Sine Wave Modulator Power Supply Signal Generator DUT Reference Input Device Output Balun Phase Noise/ Spectrum Analyzer Figure 16. PSNR Setup Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 17 CDCI6214 SNAS734D – JULY 2017 – REVISED JUNE 2019 www.ti.com 8 Detailed Description 8.1 Overview The CDCI6214 clock generator is a phase-locked loop with integrated loop filter and selectable input reference. The output of the integrated voltage-controlled oscillator (VCO) is connected to a clock distribution network, which includes multiple frequency dividers and feeds four output channels with configurable differential and single-ended output buffers. 8.2 Functional Block Diagram VDDVCO 24 CDCI6214 7 Y0 LVCMOS 4 Differential REFP 5 VCO x REFN 6 PSA Phase Locked Loop 1 MHz to 250 MHz FOD1 24 Bit (+SSC) PSB REFSEL 4 BYP 2400 MHz to 2800 MHz 21 ch2 DS 100 kHz to 3000 kHz @25 MHz 1 MHz to 100 MHz 1 MHz to 50 MHz 22 DS IOD1 14 Bit ch1_mux PSA ch1_iod_mux /4, /5, /6 x2 CP R 8 MHz to 50 MHz 16 VDDO12 LF PFD x VCO DS 8 Bits OSC XOUT/FB_P N 1 PSB VCO /4, /5, /6 PSA PSFB PSB /4, /5, /6 14 Bits ZDM CL x FOD2 24 Bit (+SSC) x DS IOD2 14 Bit BYP ch1 18 ch3 17 Y2P Y2N ch2_mux ch2_iod_mux 2 XIN/FB_N Y1P Y1N 3 pF to 9 pF x x LDOs for Analog VCO VDDREF 3 FOD3 24 Bit (+SSC) PSA PSB LDO for Digital x DS IOD3 14 Bit ch4 BYP Osc. ch3_mux ch3_iod_mux M H L Registers 14 Y3P Y3N 13 ch2 Default 15 VDDO34 x SCL 12 I2C Digital Page 1 SDA 19 VCO FOD4 24 Bit (+SSC) PSA Page 0 x GPIO GPIO Reset GPO Sync PSB x DS IOD4 14 Bit BYP 11 20 8 GPIO1 RESETN / SYNC 9 DS Y4P Y4N ch4_mux EEPROM GPIO4 10 ch3 ch4_iod_mux 23 x EEPROMSEL blockdiag_detailed_pg1p0_v7 Copyright © 2017, Texas Instruments Incorporated Figure 17. CDCI6214 Clock Generator With Four Outputs x 18 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 CDCI6214 www.ti.com SNAS734D – JULY 2017 – REVISED JUNE 2019 8.3 Feature Description The following sections describe the individual blocks of the CDCI6214 ultra-low power clock generator. 8.3.1 Reference Block A reference clock to the PLL is fed to pins 1 (XOUT/FB_P) and 2 (XIN/FB_N) or to pins 5 (REFP) and 6 (REFN). There are multiple input stages available to adapt to many clock references. The bit-fields that control the reference input type selection are xin_inbuf_ctrl and ref_inbuf_ctrl. The reference mux selects the reference for the PLL and the PLL-bypass path. For debug purposes ip_byp_mux allows to connect the reference divider or doubler output to the clock distribution. The buffers for the PLL-bypass path can be individually enabled and disabled using ip_byp_en_ch[4:1] and ip_byp_en_y0. ref_inbuf_ctrl ch0_lvcmos_drv REFP 5 ip_byp_en_y0 x REFN 6 7 Y0 ip_byp_mux 4 REFSEL 4 ip_rdiv = 0 ref_mux x2 ref_mux_src PLL ip_xo_gm chX R ip_xo_gm_fine ip_rdiv t 1 OSC chX_iod_mux ip_byp_en_chX ip_rdiv ip_xo_cload XOUT/FB_P 1 CL x PLL XIN/FB_N 2 xin_inbuf_ctrl Internal Zero Delay Feedback Figure 18. Reference Block 8.3.1.1 Input Stages 8.3.1.1.1 Crystal Oscillator The XIN and XOUT pins provide a crystal oscillator stage to drive a fundamental mode crystal in the range of 8 MHz to 50 MHz. The crystal input stage integrates a tunable load capacitor array up to 9 pF using ip_xo_cload. The drive capability of the oscillator is adjusted using ip_xo_gm. 8.3.1.1.2 LVCMOS The LVCMOS input buffer threshold voltage follows VDDREF. This helps to use the device as a level shifter as the outputs have separate supplies. 8.3.1.1.3 Differential AC-Coupled The differential input stage has an internal bias generator and should only be used with AC-coupled reference inputs. 8.3.1.2 Reference Mux Either XIN or REF can be selected as reference to the PLL and clock distribution path. The reference mux is controlled using the REFSEL pin with ref_mux_src = 0 or the ref_mux bit-field with ref_mux_src = 1. 8.3.1.3 Reference Divider A reference divider can be used to divide higher input frequencies to the permitted PFD range. It supports division values of 1 to 255 using ip_rdiv. Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 19 CDCI6214 SNAS734D – JULY 2017 – REVISED JUNE 2019 www.ti.com Feature Description (continued) 8.3.1.3.1 Doubler The reference path contains a doubler circuit. It is used to double the input frequency and can be used to achieve the highest PFD update frequency of 100 MHz using a 50-MHz crystal. The doubler activates using ip_rdiv = 0. 8.3.1.4 Bypass-Mux The input reference or the input to the PFD can be routed to the bypass path using ip_byp_mux. 8.3.1.5 Zero Delay, Internal and External Path In zero delay mode the REF input clock is used as reference clock at the PFD. The FB_P clock (LVCMOS) or FB_P/N clock (differential) can be used to feed an external source as feedback clock to the PFD. The external feedback path is recommended for zero delay operation. Moreover there is an additional internal feedback path which is sourced by output channel 2. Table 1. Zero Delay Operation (1) Operation Reference Feedback REFSEL ref_mux ref_mux_ src Normal PLL, XIN Reference L x 0 1 x 0 0 x x x x x x Normal PLL, REF Reference L x 0 1 x x 0 x x x x x x Normal PLL, REF Reference x 1 1 1 x x 0 x x x x x x Zero Delay, Internal Feedback x 1 1 1 A A 1 0 1 B B C C Zero Delay, External Feedback x 1 1 1 A A 1 1 1 B B C C (1) (2) ip_rdiv ref_inbuf _ctrl xin_inbuf _ctrl zdm_mo de zdm_cloc ksel zdm_aut o pll_psfb pll_psa pll_ndiv ch2_iod_ div (2) 'x' allows any possible bit-field value. An entry of 'A', 'B' or 'C' indicates the same bit-field value. For internal feedback channel 2 is required. For external feedback the output clock connected to FB_P/N is recommended to have same settings as default PLL feedback path. 8.3.2 Phase-Locked Loop The CDCI6214 contains a fully integrated phase-locked loop circuit. The error between a reference phase and an internal feedback phase is compared at the phase-frequency-detector. The comparison result is fed to a charge pump that is connected to an integrated loop filter. The control voltage resulting from the loop filter tunes an internal voltage-controlled oscillator (VCO). The frequency of the VCO is fed through a pre-scaler feedback divider (PSFB) and another feedback divider back to the PFD. The PLL closed-loop bandwidth is configurable using registers PLL0, PLL1, and PLL2. • • • • • • • 20 Integer PLL PFD operates 1 MHz to 100 MHz Live Lock-Detector provides PLL lock status on status pin and bit lock_det (there is an additional sticky bit unlock_s) Integrated selectable loop filter components For 25-MHz PFD bandwidths between 100 kHz and 3000 kHz can be achieved to optimize PLL to input reference Voltage-Controlled Oscillator (VCO) tuning range of 2400 to 2800 MHz VCO is compatible to 0.5% spread spectrum (SSC) references at 100 MHz. Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 CDCI6214 www.ti.com SNAS734D – JULY 2017 – REVISED JUNE 2019 Clock Distribution 4 DS pll_cp_dn Reference Clock Feedback Clock pll_lf_res pll_psa RRes Charge Pump Phase Frequency Detector /4, /5 /6 Clock Distribution Pre-Scaler A Voltage Controlled Oscillator pll_cp_up CPcap CZcap pll_lf_pcap DS /4, /5 /6 Clock Distribution Pre-Scaler B pll_lf_zcap GND 14 Bit Feedback Divider FB_P/N /4, /5 /6 Feedback Pre-Scaler pll_ndiv zdm_clocksel zdm_mode pll_psb DS Divider Synchronization pll_psfb Internal (CH2) x x Figure 19. Phase-Locked Loop Circuit Table 2. Common Clock Generator Loop Filter Settings (1) fVCO in MHz (1) (2) fPFD in MHz BW in MHz Phase Margin in ° Damping Factor ICP in mA pll_cp_up (2) CPcap IN pF RRes IN kΩ CZcap IN pF pll_lf_pcap pll_lf_res pll_lf_zcap 2400 25 0.51 67 0.9 2.0 17.5 2.5 450 2400 50 0.97 67 1.3 2.0 17.5 2.5 450 2400 100 1.41 68 1.2 2.4 17.5 1.5 450 2457.6 61.44 1.04 67 1.4 1.8 17.5 2.5 450 2500 25 0.49 67 0.9 2.0 17.5 2.5 450 2500 50 0.93 68 1.3 2.0 17.5 2.5 450 2680 67 0.38 67 1.3 0.2 19.5 5.5 480 2688 48 0.93 68 1.3 1.5 17.5 2.5 480 2688 96 0.36 67 1.0 0.2 19.5 3.5 480 2800 50 1.00 68 1.0 2.6 17.5 1.5 450 2800 100 1.00 68 1.0 1.3 17.5 1.5 450 All values typical design targets. Program same value to pll_cp_dn. 8.3.3 Clock Distribution The VCO connects to two individually configurable pre-scaler dividers sourcing the on-chip clock distribution. The clock distribution consists of four output channels. Each output channel contains a divider with integer and fractional division as well as spread-spectrum and synchronization capabilities. A mux after each divider allows to feed the generated frequency to the adjacent output buffers. Thus for single frequency clock generation only a single output divider needs to be active. The output buffers are compatible to various signaling standards: LVDS, CML-like, LVPECL-like, LVCMOS and HCSL using ch1_outbuf_ctrl. • HCSL must be directly connected to a load termination to ground. A series resistance can be used to adapt to the trace impedance. • LVDS requires a differential termination connected between the positive and negative output buffer pins. The termination can be connected directly or using AC-coupling. When using the LVDS output type, set ch1_1p8vdet, ch2_1p8vdet, ch3_1p8vdet, andch4_1p8vdet to match the VDDO12 and VDDO34. • CML and LVPECL are only supported in an AC-coupled configuration. The receiver and the termination may only be connected through AC-coupling capacitors to the device pins. • LVCMOS outputs are designed for capacitive loads only. A series resistance should be used to adapt the Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 21 CDCI6214 SNAS734D – JULY 2017 – REVISED JUNE 2019 www.ti.com driver impedance to the trace impedance. For a typical 50-Ω trace, a resistor between 22 Ω to 33 Ω should be used. The polarity of the positive and negative pins can be adjusted separately. The output buffers support a wide frequency range of up to 350 MHz. Higher output frequencies up to 700 MHz are functional, but are not covered by electrical specifications. 8.3.3.1 Output Channel Figure 20. Clock Distribution Pre-Scaler Dividers (1) chX_fod_msb chX_fod chX_syn c_en 24 Bit Fractio nal Divide r VCO DS PSA 5 Bit Digital Del ay PSB chX_iod_div chX-1 YXP YXN 14 Bit Inte ger Divide r chX+1 chX_syn c_dela y BYP chX_mux chX_iod_mux chX_outbuf_ctrl chX_mute_sel chX_cmo s_pol Clock Distribu tion chX_1p8vdet chx_lvcmos_drv Figure 21. Clock Distribution, Output Channel (1) INSTANCES DIVISION VALUES PSA 4, 5, 6 PSB 4, 5, 6 A known phase relationship for divider synchronization with mixed division values is ensured by architecture. Table 3. Output Buffer Signal Standards OUTPUT LVCMOS Y0 X Y1 LVDS AC-CML (2) AC-LVPECL (2) X X X X Y2 X X X X X Y3 X X X X X x X x X Y4 (1) (2) HCSL (1) For highest performance it is recommended to use HCSL on output Y1 or Y4. The common mode shall be provided externally through an external bias source, like a voltage divider or pullup resistor. The output buffer will provide sufficient swing. Table 4. Output Channel Signal Selection NO. INPUT SOURCE 0 Channel N-1 Y1 (N=1) Y2 (N=2) Y3 (N=3) Y4 (N=4) x x x x 1 IOD N x x x 2 Channel N+1 x x x Table 5. Integer Divider Input Selection 22 NO. SOURCE 0 Pre-scaler A 1 Pre-scaler B 2 Fractional Divider 3 Bypass Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Product Folder Links: CDCI6214 CDCI6214 www.ti.com SNAS734D – JULY 2017 – REVISED JUNE 2019 Table 6. Output Channel Divider Types and Delay ABBREVIATION TYPE IOD Integer FOD (1) (2) (3) Fractional DIVIDER (2) DELAY MIN MAX PRE-SCALER, CYCLES 1 16383 32 (1) 2/3 4/3 32 (3) Cycles of the selected pre-scaler PSA or PSB. with respect to fractional divider input frequency fFOD_IN = fVCO / 8. Cycles of fVCO/8. 8.3.3.2 Fractional Divider 8.3.3.2.1 Synthesis Mode A 24-Bit resolution fractional divider synthesizes any frequency between fVCO/12 ≤ fFOD ≤ fVCO/6. The synthesized frequency fFOD is available on the respective integer divider source mux ch[4:1]_iod_mux for further division when required. Please use the TICS Pro software to generate the fractional divider settings for ch[4:1]_fod_msb and ch[4:1]_fod. In general the following bits should be considered to activate one of the fractional dividers. • pdn_pll_fodclk = 0 • pdn_ch[4:1] = 0 • pdn_ch[4:1]_fod = 0 • ch[4:1]_iod_mux = 2 For spread spectrum operation the part shall be configured in "bypass-mode" which is basically a fVCO / 8 integer mode. For bypass mode the settings shall be ch[4:1]_fod_msb = 32768 and ch[4:1]_fod = 0. 8.3.3.2.2 Spread Spectrum Clocking The device offers a spread spectrum clocking option in each output channel. The following requirements have to be met for the spread spectrum option to operate: fY[4:1] = fVCO / (8 · ch[4:1]_iod_div) where • • • 2400
CDCI6214RGER 价格&库存

很抱歉,暂时无法提供与“CDCI6214RGER”相匹配的价格&库存,您可以联系我们找货

免费人工找货
CDCI6214RGER
  •  国内价格 香港价格
  • 3000+53.524083000+6.47209

库存:0